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Abstract

Let T,,, be the adjacency matrix of the triangular graph. We will give conditions
for a linear combination of T,,,, I and J to be decomposable. This leads to Bruck-
Ryser-Chowla like conditions for, what we call, triangular designs. These are quasi-
symmetric designs whose block graph is the complement of the triangular graph. For
these designs our conditions turn out to be stronger than the known non-existence
results for quasi-symmetric designs.

1 ~iangular designs.

A 2-(v, k, a) design D (with b blocks and r blocks through a given point) is called quasi-
symmetric if the sizes of the intersection of two distinct blocks take only two values x
and y(x C y), say. The ólock graph I' of D is the graph defined on the blocks of D, two
vertices being adjacent whenever the blocks meet in y points. Goethals and Seidel [12]
showed that I' is strongly regular having eigenvalues

rkr-k-bx~-xll rr-k-J~-}xlv-1 r x-klb-v
L y-x J ' IL y-x J ' ILy-xJ (1)

(exponents indicate the corresponding multiplicities). Note that the complement of D has
block intersection sizes v-2k-1-x and v-2k-~y, and hence has the same block graph as D.
The question which strongly regular graphs are block graphs of quasi-symmetric designs
is a difficult one and there is no chance for a general answer. The question is already
difficult for a simple family of strongly regular graphs, the so-called triangular graphs and
their complements. The triangular graph Tm is the line graph of the complete graph K,,,
(m ~ 3). It can also be defined as the block graph of the pair design on m points (this is
the 2-(rn, 2,1) design whose blocks are just all unordered pairs of points). We denote the
complement of T,,, by Tm and write T,,, and Tm for the corresponding acljacency matrices
(so Tm - J- I- Tm, wherein, as usual, I is the identity and J is the all-one matrix).
The eigenvalues of T„~ are

~ 2m - 4 1 1 , I m- 4 J m-1 , I - 2 J (m~')-1 , (2)
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and those of T,`„ are

I (mZ 2) J 1, I 3- m J m-' , [ 1 J (m'' )-1 . (3)

(Note that (2) follows from (1) applied to the pair design.) The following result is given
implicitely in Cameron and Van Lint [5] (our reference is to the latest edition, though the
result we refer to was already treated in the very first edition of 1975).

Proposition 1.1 The block graph of a quasi-symmetric 2-(v, k, a) design D is T,,,, if and
only if D is the pair design or the complement.

Proof. The 'if' part is by definition. To prove 'only if', take without loss of generality
k 1 v~2. By (1) and (2) D has ~2) blocks and m points. Hence by (1.52) to (1.54) of
[5], D is the complement of the unique 4-(23, 7, 1) design, or has k- v- 2. For the
first possibility the block graph is not Tm (as follows easily from Formula (1)) and in the
second case D is the complement of the pair design. O

For T,n the situation is less simple. Proposition 1.2 gives a parameter condition.

Proposition 1.2 The block graph of a quasisymmetric 2-(v, k, ~) design D is T,n, if and
only if the parameters of D satisfy

v- ~m2 l~,b- ~2~,k- 2a(m-2),r- 2am,

~- a(am - 2a - 2) y- a a(am - 4a f 2)
2(m - 3) ' - 2 'y - 2(m - 3) '

for some integer a.

Proof. Suppose the block graph of D is T,n. Put a - r- k. Then the formulas readily
follow by use of Formulas ( 1) and (3). Conversely, it follows that the block graph of a
design with the above parameters has the eigenvalues of Tm. For m~ 8 Hoffman [17] and
Chang [7] showed that Tm is determined by its eigenvalues. If m- 8, a can only be 2 or
6 and so D is a 2-(21, 6, 2) design or the complement. Such a design does not exist due
to Conner [9]. o

Designs with the parameters of Proposition 1.2 will be called triangulardesígns. If a- 2
they are the residual disigns of biplanes. Note that replacing a by m- a- 1 leads to the
complementary parametcr set.

In this paper we will derive Bruck-Ryser-Chowla type conditions for the existence of trian-
gular designs using rational decomposability of related matrices. The paper strengthens
an earlier non-existence result for triangular designs by the second author [13]. See also
the monograph on quasi-symmetric designs by Shrikhande and Sane [19] (p.147).
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2 Decomposability.

A matrix M is decomposaóle if M- QQT for some rational matrix Q. For M to be
decomposable, M clearly must be rational, positive semi-definite and the determinant of
M has to be rational square. But there are more restrictions. If M has an easy structure,
these additional restrictions can often be expressed in terms of some Diophantic equations.
The neccessary condition of Bruck, Ryser and Chowla ( see for instance [8, 14]) for the
existence of a symmetric 2-(v, k, ~) design is based on the fact that (k - a)I„ -}- aJ (the
index of I indicates the size) is decomposable. We will derive decomposability conditions
for a matrix of the form a.I f QTm -}- yJ, which will lead to the announced conditions for
triangular designs. In order to do so we necd to quote some results on rational congruences.
We use the approach and notations by Coster [11], which we will briefly explain.

Let S be the set of positive definite symmetric ratinal matrices, including the empty set
element. For A, ~3 E S, we define

AfB- r A 0 1`0 Bl
Let A and B be two elements of S of dimensions m and n respectively. We say A- B(A
is congruent to B) if there exists a rational k x k matrix Q such that Q(A f I~-,,,)QT -
B-j- Ik-,,. The relation - is an equivalence relation and the operation f acts on the
equivalence classes. It can be shown that (5~-, f) is a group. (See [6, 11]. The result
is based on Witt's cancelation law. The group is called the Grothendieck Group.) We
denote the equivalence class of A by Á, the inverse of Á by - Á and the 1 x 1 matrix
equivalence class ( a) by (a). Thus Í- 0- (1) - 0. Each class A can be written as
A-~(a;) -(al) f(a2) ~-.., for some positive integers a~,a2i.... We denote ~;` i(a)
(- alk) by k(a). Note that a matrix A E S is decomposible if and only if Á- 0.

By O we will denote an integral square, and by n` we denote the squarefree part of an
integer n. We denote by ordp(n) the largest integer k such that pk divides n. We denote
by N 1 the set of positive integers n with prime factorisation n - 2k jj; pk~ j~j~ q?~~ with
p; - 1 mod 4 and k, k; and 1~ non-negative integers. We denote by J1Iz the set of positive
integers n with prime factorisation n- 2~ jI; pk~ jj~ q?~' with p; - 1, 7 mod 8 and k, k; and
l~ non-negative integers. We denote by N 2 the set of positive integers with primefac-
torisation n- 2k jj; pk' rj~ q?r' where with p; - 1, 3 mod 8 and k, k; and 1~ non-negative
integers. (We choose the indices -1, 2 and -2 since the Jacobi symbols ~nl), ~n) and
~-2) are equal to 1 for the respective values of n.) 1'he following lemma gives some basicn
congruences.

Lemma 2.1 Lct a, b aTad ~~ be positivc ratinnal iaunabcrs, thcu

(1) (ab2) - (a),

(2) (a) f (b) - (a -}. b) ~- (ab(a -F b)),
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(3) 2((a2 -}- b2)c) - 2(c),

(4) 4(a) - 0,

(5) al~ -}- bcaJ - c(a) - (ac) f (bc).

Proof. Property (1) is obvious and implies that a, b and c may assumed to be integers.
To prove ( 2), define

Q- ( lb a )'

then Q((a) ~(b))QT -(a -~ b) ~(ab(a f b)). Congruence (3) follows from (1) and (2):
2(c) -(a2c) f(b2c) - 2((a2 ~ 62)c). To prove (4) we use Lagrange's theorem (see [16])
and write a- 62 ~ c2 ~ d~ f e2 for integers b, c, d and e. We assume 6-b c~ 0 and d f e~ 0
(otherwise (4) follows directly from (1) or (3)). Then we find by use of (2) and (3):
0- 2(62 fc2) -}-2(dZfe2) - 2(b~fc2fáfe2) ~-2((b2}c~)(dZ}e2)(62~-cZ~d2-Fe.2)) - 4(a).
'1'o provc (5) dc(ine

Q - 1`T' 1.~ 1

(1 is the all-one vector). Then

Q(aj~ f
b- a

J)QT -(al~-1 -~ aJ) -~ (bc).
c

For a- 6 this yields aI~-1 -}- aJ- c(a) -(ac). Hence aI~ f b~aJ - c(a) -(ac) f(bc). o

Next we quote some lemmas that relate congruences to properties of the involved integers.
Most results can be found in [10] or [11]. For Lemma 2.6 we refer to [18] pp. 160-161.

Lemma 2.2 Let a, b and c be positive integers which are squarefree and relatively prime
ín pairs. Then the following three statements are equivalent:

(1)
(2)
(3)

(ac) ~ (6c) - (ab),

aX2 -1- bY2 - cZ2 has a non trivial integral solution in X, Y and Z,

For all primes p dividing a the Legendre symbol ~bp ) - 1, for all primes q dividing

b, ~9)- 1 and for all primes r dividing c, (-Tb) - 1.

Lemma 2.3 Let a, b and c be positive integers which are squarefree and relatively prime
in pairs. Then the following three statements are equivalent:

(1)
(2)
(3)

(ab) -~ (ac) -{- ( bc) - 0.

aX2~bY2 fcZZ - abcWz has an integral solution in X, Y, Z and W with XYZ ~ 0,

For all primes p dividing a, (p)- 1, For all primes q dividing b, (-q`) - 1, For

all primes r dividing c, ~-r6) - 1.
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Lemma 2.4 Let a, b and c 6e integers which are squarefree and relatively prime in pairs.
And suppose that (ab) ~- (ac) -(bc). Then either:

(1)
(2)
(3)

abc is odd and a - b mod 4 or a- c mod 4,

a is even andb}c-0mod8 oró~-c-0mod8,

bc is even, say b is even and 6~- c- a mod 8 or a - c mod 8.

Lemma 2.5 Let a, 6 and c be integers which are squarefree and relatively prime in pairs.
And suppose that (ab) f (ac) -~ (bc} - 0. Then either:

(1)
(2)
(3)

abc is odd and a- 6- c mod 4,

alK: is r,vcn and u f b~ c- 4 rnod 8,

abc is even, say a is even and b f c- 4 mod 8.

Lemma 2.6 For i--2, -1, 2 we have

X2 - iY2 - nZ2 has an integral solution for X, Y and Z q n E N;.

3 The results.

In this section we state the main theorems. The proofs are postponed to the next section.
The first result gives a decomposability condition for a matrix of the form

~,,, - a7 ~ (3T,,, ~ ryJ.

Using the eigenvalues of T„~, we find that the eigenvalues of ~,,, are

ro - a f 2Q(m - 2) ~ 2rym(m - 1),

ri - a f Q(m - 4),

rZ - a - 2~,

with multiplicities 1, m- 1 and ~mz ~) - 1, respectively. We regard ~,,, as a function of
ro, rl and r2, rather than a, Q and ry and write ~m - ~,,,(ro, rl, r2). The main tool is a
diagonal form for ~m(ro, rl, r2).

Theorem 3.1

~.n(ro,ri,r2) - (ro~2)} fm(rl(m - 2)} - (r~m(m - 2)) ~

(~2) - 1)(r2} -~ (2rZ) - m(r2(m - 2)) f (2r2(m - 2)) - (2rZ(m - 1)).

Next we give the necessary condition for the existence of triangular designs.

(4)
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Theorem 3.2 Considcr a triangular design with parameters m and a. Let r-
Then

(1) r is integral,

(2) (m - 2)(~ )r(m~ ~) is an integral square,

(3) ((m2 ~~) } ((2) - 1)(r(m - 2)) f (2r(m - 1)) - m(r) - 0.

o m-a-1
2 m-3 '

Condition ( 2) was the main result of [13]. Condition (3) is the main new result of the
present paper. The conditions of Theorem 3.2 are made more explicit in the following
corollary.

Corollary 3.3 Given a triangular design as in Theorem 8.~.

(i ) If m - 0 mod 8, then rX2 -}- (m - 2)Y~ - 2(m - 1)Z~ has a non trivial integral
solutfon in X, Y and Z and if m - 8 mod 16 tieen r' must be even,

(ii ) if m- 1 mod 8, lhen r- O and in - 2 E J1~z,

(iii) tfm-2mod4, thenr(m-2)-O andm- 1 E.A~1,

(iv ) if m- 3 mod 8, then m- 2- ~ and rX~ f Y~ - 2(m - 1)ZZ must have a non
trivial integral solution, if m- 11 mod 16 then r' must be odd,

(v ) if m- 4 mod 8, then m - 4 mod 16, r` is odd and 2rX2~-(m-1)YZ-{-z(m-2)Z~ -
r(m - 1)(m - 2)W2 has an integral solution in X, Y, Z arzd W with XYZ ~ 0,

(vi) ifm-5mod8,thenr-~andm-2EJ1~2i

(vii)m~7mod8.

4 The proofs.

To prove Theorem 3.1 we use the following lemma.

Lemma 9.1

r~
~m(ro,ri,rz) - m -

2Im-i f m(m-2)J, f~n`-'(ro( m 2),,r,~tr2 2,rs)

Proof. Define

Eo - `II'm(1,!),6) -

E~ - ~m(6~ 1, 6) -

F,2 - ~m(Q,0,1) -

m(m-1~J~

m'2(Tmf2I-mJ),

m12(Tm ~( m-4)I - z J)m-1

Then E? - E;, E;Ei - 0 if i~ j, and ~m(ro, rl, r2)E; - r;E; (that is, the columns
(and rows) of E; are eigenvectors for the eigenvalt~e r;) for i- 0,1,2. Thus the matrices
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Eo, Er and Ez are the minimal idempotents of the triangular association scheme, see [5].
We partition Lhi~ columus of these idempotents according to the partition of T,,, into an
(m - 1)-clique and T,,,-t: E; -~ E'; E; J , and we define Q -~ E'1 Ëz f Ëo ~. Then

QT~m(ro, rr,rz)Q -~riE'iE'r~ f ~rzË2 Ës f roËó Éo~

-[mrl 2((J - Im-1) ~- 2Im-, - mJ)~ f

-rz (Tm-1
- (m - 4)I m-r - 2 J-}- 2ro JJm-2 ( ~ ) m-1 ) m(m-1)

- r ri ri(m - 4) 1 ro(m - 2) rz
Lm -

2Im-r } rrt(m - 2)JJ ~ ~m-1( m ' m-
2'rz). O

Proof of Theorem 3.1. We use induction on m. By use of (1) to (4) of Lemma 2.1 we
find that for m- 3 the right hand side of formula 3.1 becomes (3ro) ~ 3(rl) -(3r1). On
the other hand we have

~s(ro,rr,rz) - rrI-F- 3(ro - rr)J,

which is, by (5) of Lemma 2.1, congruent to 3(rr) -(3r1) ~(3ro).
Suppose m 1 3. Now by Lemma 4.1 and the induction hypothesis we have

~m (r0i rl ~ r2) - ,n2Im-1 ~ m~m-Z~ J f

(2ro(m - 2)z(m - 1)~m) f (m - 1)(rz(m - 3)~(m - 2)) -

(rz(m - 1)(m - 3)~(m - 2)) -~ ((n`2r) - 1)(rz} ~ (2rz) -

(rn - 1)(rz(m - 3)) ~- (2rz(m - 3)) - (2rz(m - 2)).

By use of Lemma 2.1 the first term of the right hand side equals

(m - 1){rl(m - 2)) - (rl(m - 1)(m - 2)) ~ (rr(m - 1)(m - 2)(m - 3))

- m(rl(rrz - 2)) - (rlm(m - 2)),

and the remaining part equals

(ra(2)) ~- (2rz) f ( m - 1)(rz(m - 2)(m - 3)) - (m - 1)(rz(m - 3)) -j-

((m? 1) - 1)(rz) - (rz(m - 1)(m - 2)(m - 3)) ~ (2rz(m - 3)) - (2rz(m - 2))

- (ro(2)) .} (2rz) ~ (m - 1)(rz) - (m - 1)(rz(m - 2)) -}.
( (,.`Z t) - 1 )(rz) -} (rz(m - 2)) - (2rz(m - I )) - (2rz(m - 2))

- {ro(z~) f (2rz) ~ ((z) - 1)(rz) - m(rz(m - 2)) f

2{rz(m - 2)) - (2rz(m - 1)) - (2rz(m - 2)).

This finishes the proof, since 2(rz(rn - 2)) -(2rz(m - 2)) -(2rz(m - 2)). ~
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Proof of Theorem 3.2. By definition r - y- x, so (1) is obvious. Let H denote the
v x b incidence matrix of the triangular design. Since 7„-1 is an induced subgraph of 7,n,
H has a v x v submatrix H satisfying

HT H-(k - x)I ~- rTn,-I ~- xJ -~,,,-1(k~, r, r(m - 2)).

So det HT H- kzrm-~(r(m - 2))(m~ ~)-1, hence (m - 2)(~)r(m~ 1) - 0 which proves
(2). Moreover, ~m-I(k2,T,T(m - 2)) is decomposable, so by Theorem 3.1 and (1) of
Lemma 2.1 we find

((m21)) -}- (m - 1)(r(m - 3)) - (r(m - 1)(m - 3)) -~ (2r(m - 2)) -}-

2m(m - 3)(r(m - 2)) - (m - 1)(r(m - 2)(m - 3)) ~ (2r(m - 2)(m - 3)) - (2r) - 0.

By (2) of Lemma 2.1 we have

(2r(m - 2)) ~ ( 2r(m - 2)(m - 3)) - (2r) - (2r(m - 3)),

(r(m - 3)) - (r(m - 2)(m - 3)) - ( r(m - 2)) - (r),

(2r(m - 3)) - (r(m - 1)(m - 3)) - (2r(na - 1)) - (r).

Hence
((n`~ 1)) } ((2) - 1)(r(m - 2)) } (2r(m - 1)) - m(r) - 0,

proving (3). ~

Proof of Corollary 3.3. We distinguísh eight cases depending on the value of m mod 8.
First we simplify the conditions (2) and (3) for these cases by use of Lemma 2.1. We find

m - 0 mod 8 : (2r(m - 1)) ~- ( 2(m - 1)(m - 2)) - (r(m - 2)),
m- 1 mod 8 : r- ~, (m - 2) f (2) -(2(m - 2)),
m-2mod4: r(m-2)-~, 2(m-1)-0,
m- 3 mod 8: m- 2- ~, (2(m - 1)) f(2r(m - 1)) -(r),
m - 4 mod 8 : (2r(m - 1)) -}. (2(m - 1)(m - 2)) ~ ( r(m - 2)) - 0,
m - 5 mod 8 : r - [7, (m - 2) -F ( 2(m - 2)) - (2),
m- 7 mod 8 : m- 2- O, irrelevant, since 5 is not a square mod 8.

Now apply Lemmas 2.1 to 2.6. ~

5 Known non-existence results.

The aim of this section is to show that for triangular designs Theorem 3.2 covers all other
known non-existence results (at least the ones known to us). Several papers are written
about restrictions on quasi-symmetric designs. Results relevant to triangular designs are
in [1, 2, 3, 4, 20]. In this section we assume that p is an odd prime and p~r. (Remember
that r - y- x- 'Z~mn3~ .) Therefore p~a or p~(m - a- 1). We may assume that p~a,
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otherwise we consider the complementary design. Notice that p~a and pJ(m - 3) implies
p~x, p~r, p~k, p~~ and p~r. We will use frequently the formula

r - a - r(m - 2). (5)

In Corollary 3 of [1] B, Bagchi proves the following result:

Lemma 5.1 Consider a triangular design. Suppose p is an odd prime such that p~r" and
p,~m(m - 1)(m - 2). Then

(i) m-0,3mod4.

(ái ) If m - 0, 3 mod 8 then (p) - 1.

(iii ) If m - 4 mod 8 then ( p)- 1.

Claim. The restrictions given in Lemma 5.1 follow from Theorem 3.2.

Proof. The condition p~r' implies that r~ O. Since pfm - 2, also r(m - 2) ~ O. But
if m- 1 mod 4 then r- o and if m- 2 mod 4 then r(m - 2) - o, by Corollary 3.3.
Therefore we conclude (i ). Next by considering in (i ), (iv ) and (v ) of Corollary 3.3 the
Diophantic equations modulo p, we find ( ii ) and ( iii ). o

Note that, unlike Bagchi, we did not need that p,~m, so the second condition for p can
be replaced by p,~v. In [4], Calderbank gives some restrictions for the existence of quasi-
symmetric designs. The statement restricted to triangular designs reads:

Lemma 5.2 Suppose p is an odd prime and p~r. I'hen cither

(i) r-~modp' ,

(ii) visodd,k-x-r-.~-0modpand(p)--1,

(iii ) v is odd, k- x- r -~- 0 mod p and (P) - ( p)(v-r)~Z - 1.

Claim. The restrictions given in Lemma 5.2 follow from Theorem 3.2.

Proof. We assume that p~a. If p~(m - 2) then p2~(r -,l) by Formula 5. If p~(m - a- 1)
then p2~r hence p2~(r -~). All these cases correspond with Calderbank's case ( i ). Now
we assume that ordp(r) - 1 and p,w. Now we apply Lemma 5.1. Hence m- 0, 3 mod 4,

(-1)(L-i)l2v 1 (v-')~2
which implies that v is odd. Furthermore ~ ~- 1, hence ~-~ -(p).

P P
If m- 0,3 mod 8 then v- 1 mod 4. This corresponds with Calderbanks case ( iii ). If
m- 4 mod 8 then v - 3 mod 4. (D) - -1 corresponds with case ( ii ), while (p) - 1
corresponds with case ( fii ). o

From Theorem 5.1 of Blokhuis and Calderbank [2] it follows that triangular designs satisfy:
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Lemma 5.3 Let p be an odd prime. Suppose ordy(r) - e and e is odd. Then either

(i) r-amodpe}' ,

( 1)(v-1)~~(v - x).
(ii ) v odd, ordp(x) is odd and ~- ~- 1,

P
(-1)(v-1)l~x~

(iii ) v odd, ordp(x) is even and - 1.
P

Claim. The restrictions given in Lemma 5.3 follow fiom Theorem 3.2.

Proof. If p~(m - 2) then ordP(r - a) ~ e, which is Blokhuis and Calderbanks case (i ).
Hence we will assume that p,~(m - 2). This implies (by Corollay 5.1) that ordp(r) -
ordp((m - 2)r) - e, which eliminates the cases m- 1, 2 mod 4. Hence v is odd. Let
ordp(a) - a, ordP(m - a- 1) -,Q and ordp(m - 3) - y. Then we have a ~ Q- ry- e. If
7~ 0 then a,0 - 0 and if a~i 1 0 then 7- 0. We distinguish several cases:

(i ) If y 1 0 then either p~a or p~(m - a- 1). We may assume that p~(m - a- 1).
Now a - m- 1- 2 mod p. Hence a- 1 mod p. But also v- 1 mod p. Hence

(-1)(v-1)12~~ (-1)(v-~)Izv
~ p ~- p - 1 by Lemma 5.1.

(ii ) If a ~ Q and a is odd (hence ,Q is even) then v-~- v mod pa and ordp(v) - Q.
(-1)(v-~)~2v'

It is easy to verify that ~ - 1.
P

(iii ) 1f a ~(~ and a is even (hence ~i ~ 0) then a - m- 1 mod pb henc,e a~` - v' mod p.

( iv ) If a G Q then interchange a and m - a- 1. Now we get case ( ii ) or case ( iii ). O

For the case of p- 2 we found two relevant results, one by Calderbank [3] and one by
Skinner [20]. Calderbank's result (Theorem 1 in [3]) restricted to triangular desígns gives.

Lemma 5.4 lj2~r. Then either

(i) r-~mod4,

(ii ) x is even, k - 0 mod 4 and v- fl mod 8,

(iii ) x is odd, k - v mod 4 and v- il mod 8.

Claim. The restrictions given ïn Lemma 5.4 also follow from Theorem 3.2.

Proof. If m is even then (since r is even) 4~r(m - 2) hence (i ) holds. If m- 1 mod 4
then r is a square and again case (i ) is satisfied. If m- 3 mod 16 then v- 1 mod 8 and r
is even implies that a- 0, 2 mod 8. If a- 0 mod 8 then we have case (ii ), if a- 2 mod 8
then we have case ( áii ). If m - 11 mod 16 then r has to be odd (see Corollary 3.3). This
agrees with Calderbank's result. o

10



The result by Skinner [20] is an extension of the previous result and has the following
consequence for triangular designs.

Lemma 5.5 Suppose ord2(r) - e and e is odd. If ordz(r - a) - e then v- 1 mod 8 and
k-0,lmod4

Claim. The restrictions given in Lemma 5.5 follow from Theorem 3.2.

Proof. ordz(r - a) - ordZ(r) implies that m is odd ( see Formula 5). Since ord2(r) is odd,
r~ t7, so m~ 1 mod 4. Hence m- 3 mod 8. Corollary 3.3 implies that m - 3 mod 16.
Hence v- 1 mod 8. Moreover, since a(m - a- 1) - 2r(m - 3), orda(a(m - a - 1)) 1 6.
So without loss of generality 8~a and hence k- a(m - 2)~2 - 0 mod 4. - O

If a- 2, triangular designs are 2-( ("`2 ~), m- 2, 2) designs. These designs are quasi-

residual for (symmetric) 2-((Z) f 1,m,2) designs (better known as biplanes). By Hall
and Conner [15] such a design is actually a residual designs, which means that it exists
if and only if the corresponding biplane exists. Thus the Bnick-Ryser-Chowla conditions
for biplanes give the following conditions for triangular designs.

Lemma 5.6 Suppose a - 2, then

(i) ifm-2,3,6mod8, thenm-2-~,

(ii) ifm-0,lmod8,thenm-2EJVz,

(iii ) ifm- 4,5 mod 8, then m- 2 E J1~2i

(iv) m~7mod8.

Claim. The restrictions above and those given by Theorem 3.2 for a- 2 are the same.

Proof. If a- 2 then T- 1- ~, and ( 2) and (3) of Theorem 3.2 become

(m - 2)(' ) - ~,
((2~ - 1)(m - 2) f(2(m - 2)) f(2) - 0.

By Lemma 2.2, 2.3 and 2.6, we find the above formulas. ~

Note that we only used that r- O. 'I'herefore the conditions of Lemma 5.6 are precisely
the conditions of Theorem 3.2 in case T- ~.

Unfortunately, but not suprisingly, Theorem 3.2 gives no new non-existence results for
biplanes. We don't know of any other results than the ones mentioned here that give
non-existence conditions for triangular designs. We have seen that Theorem 3.2 covers
all these results. But the theorem is stronger. For instance the case m- 24, a- 9 is
excluded by (3) of Theorem 3.2 (see the next section), but by none of the above results.
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6 Some parameter sets.

In this last section we discuss some special sets of parameters for triangular designs.

The case a - 2.
As remarked before, these are the residual designs of biplanes. Biplanes have been con-
structed for m- 4, 5, 6, 9, 11 and 13. These, and their complements provide the only
known examples of triangular designs. The smallest value for which existence of a biplane
is not known is rn- 16. This is also the smallest unknown triangular design (see tabel
below).

The case m G 100 and 2 G a G m~2.
R,emember that we do not loose generality by requiring a C m~2. We computed all
feasible parameter sets for triangular designs in this range. It turned out that 48 values
of (a,rn) survived condition (1) of Theorem 3.2, and 16 survived (1) and ( 2). These 16
are given in the forthcoming tabel.

m a v k .~ x y r p
t 24 9 253 99 42 36 39 3 11
27 8 325 100 33 28 31 3
33 12 496 186 74 66 ?0 4
36 11 630 198 62 55 59 4
48 20 1081 460 204 190 196 6
51 18 1225 441 165 153 159 6

t 60 21 1711 609 224 210 217 7 29
66 9 2080 288 41 36 40 4

t 68 15 2211 495 114 105 111 6 il
72 23 2485 805 268 253 261 8
73 30 2556 1065 456 435 444 9

t 80 35 3081 1365 620 595 605 10 3
81 26 3160 1027 342 325 334 9
83 32 3321 1296 518 496 506 10

t 88 17 3741 731 146 136 143 7 7
j' 96 33 4465 1.5C~ 1'

-
S,:;f? ~

i'----
~~~~ ~~

----~
5`3') ' 1 ï-- ~ 11~

The parameter sets indicated with t are excluded by (3) of Theorem 3.2. For these
parameters it is indicated modulo which prime p the Diophantic equation is not satisfied.
This leaves only 10 possible parameters for m C 100.

In general a very big part of feasible parameter sets for triangular designs are excluded
by Theorem 3.2. But on the other hand, some infinite series survive,. We shall give some
examples. First observe that from the definition of r we derive for 2 G a G m- 3

4r(r - 1)
m-af2rfl-b .

a-2r

Therefore a- 2r must be a divisor of 4r(r - 1).

(6)

12



The case a- 2r f 1.
W~ d~riv~ that m- 4r2 f 2. Hence m- 2 mod 4. Notice that m- 2- 4r~ is a square.
Since by '1'hcorem 3.'L r(m -'l) - t], we derive that r- O. '1'hus we find the following
infinite sequence of parameters satisfying all our conditions.

The case a- 3r - 1.

This implies that m- 9r. We consider the possible values of m mod 8.

0: r- 8u. m - 72u and a- 24u - 1 satisfy Corollary 3.3 (X - 3, Y- 1 and Z- 1).

1: r-(2u ~ 1)Z. m and a satisfy Corollary 3.3 (as a consequence of Lemma 2.6).

2,6: Impossible! (r(9r - 2) - O has no integral solutions.)

3: m-2 - q2 implies q - f5 mod 18. Now r- 9(q2~2), m - q2-}-2 and a- 3(q2-1)
satisfy Corollary 3.3 with X- 3, Y- q and Z- 1.

4: Condition ( 3) of Theorem 3.2 gives (2r(9r -1)) ~ (2(9r -1)(9r -2)) ~- ( r(9r -2)) -
0. This is equivalent with 2(r) -}. 2(9r - 2) - 0. Since gcd(r, 9r - 2) - 2 both terms
of the equation have to be zero. Hence r, 9r - 2 E N r.

5,7: Impossible, since 5 is not a square mod 8.

We find the following three series of possible values for a and m in case a- 3r - 1.

r a m
8u 24u - 1 72u

(2u f 1)2 3(2u -~ 1)2 - 1 9(2u -}- 1)2
36u2 f 20u } 3 108u2 f 60u ~- 8 (18u f 5)2 -~ 2

The case a - 4r.
Then m- 8r - 1, which is impossible by Corollary 3.3.

The case r - u'.

If r- u2, then the divisibility condition in Formula 6 reads a-2u2 divides 4(u-1)u2(u-~-1).
In this case the conditions of Theorem 3.2 are as given in Lemma 5.6, and many parameters
survive.

The case r - (2~.

lf r-~Z), the divísibility in Formula 6 is a- u(u -1) divides (u f 1)u(u -1)(u - 2). Many
feasible parameters satisfy our conditions. One of these cases is given below. Notice that
m- 2-(2u - 1)2 is a square. The Diophantic equation of Corollary 3.3 is satisfied, by
X-4,Y-2andZ-1.

Finally we remark that we expect that no triangular design with 2 C a G m- 3 will ever
be found. But we don't have enough evidence to conjecture that they don't exist.

T

z

T

2(u - 1)2

a

a

4u2 - 4u f 3

m
4u4 f 2

m
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