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Abstract

This report describes the Grothendieck Group for rational congruence classes of
positive definite integral matrices. The main result is an explicite diagonal matrix
for each class of this Grothendieck Group. We give some applications in design

theory.
Keywords: quadratic forms, designs, positive definite integral matrices, decompo-
sition.

1 Introduction.

Let M be an integral positive definite symmetric matrix. In this paper we consider
conditions for which M can be written as M = AAT, where A is an integral square
matrix (in this case we say that M is decomposable). There is a one-one relation between
integral positive definite symmetric matrices and positive definite quadratic forms with
integral coefficients. Though the theory can completely be described in terms of quadratic
forms, we prefer the use of matrices. The reason to do this is the fact that our applications
deal with matrices. The theory on quadratic forms can be found in [1, 3]. In these books
the theory is described in its generality. We consider just a special case.

We will denote by S the set of positive definite integral symmetric matrices. We
denote by G the related Grothendieck group. This group will be defined formally in
Section 3. In Section 4 we consider the structure of G. This structure is completely
described by Theorem 4.3. As a consequence of this theorem we can write each element
g of G uniquely as a sum of infinitely many generators. We will show as a consequence

that G = C, ® V° ® C5°, where Vj is the 4-group of Klein.

The second part of the paper deals with some decomposition problems which arise in
design theory. Usually one solves these problems with the Hasse-Minkowski invariants.
We will show that these problems can be solved easily without using the original Hasse
Principle. In this paper we will mainly develop tools for design theory. We end with
a general application. In Section 6 we will apply our method to the lattice graph. An
application to Quasi Symmetric designs is given in [4].



2 Notation.

The following notation will be used frequently in this paper. Most notations will be
explained again in the text.

(;) The Legendre symbol.

n The squarefree part of an integer n.

S s the set of positive definite symmetric integral matrices.

G is the Grothendieck Group associated to S.

“@” is a matrix addition.

“O is a matrix addition.

=” is the congruence relation.

A) s the class of the matrix A. (if A is a positive integer then (A) = ((A)).

A-p| is the class of the matrix (Apg) ® (Aq) ® 3(A), where q is a prime depending on p.
I, is the n x n-identity matrix.

J
7 is the all 1-vector.
Ky =ls+ das

M, =(n+1)I,—J,.

is the n x n all one matrix.

3

3 Basic Theory.

Let S be the set of positive definite symmetric integral matrices, including the empty set
element. We define an addition on § in the following way. Let A, B € S then we define
A®B= ( 8 g > (If A is an m x m-matrix and B is an n X n-matrix then A® B is
an (m + n) X (m + n)-matrix, with on the diagonal the original matrices A and B). The
set & with the addition @ is a semigroup, (i.e. it satisfies the grouplaws, except of the
existence of an inverse), with unity 0, the empty set element. Now we define a relation.
Let A and B be two elements of S of dimensions m and n respectively. We say A = B
if there exists an integral k x k-matrix Q such that Q(A @ It—n)Q" = B @ Ix_,. The
relation 2 is an equivalence relation, called rational equivalence relation (see [1, 3]). The
result is based on the Witt cancelation. We denote the class of the matrix A by (A). It
is well-known that each equivalence class contains a diagonal matrix (i.e. a matrix with
zeroes outside the diagonal), see [1]. We denote the 1 x 1-matrix equivalence class ((a))
simply by (a). Each class (A) can be written as (A) = @,(a;) for some positive integers
a;. Notice that (I,) = (1) = (@) = 0. The following Lemma can also be found in [1].

Lemma 3.1 Let a, b € Zso. Then we have

(1) (ab®) = (a),



(2) (a) @ (5) = a + ) © (ab(a + b)).

Hence the set § with the operation @) and equivalence under 2 is a semigroup. We
denote this semigroup by G (hence G = (S/ =, ®)). This is the Grothendieck group. The
following lemma shows that G is indeed a group.

Corollary 3.2 lLel a, b, ¢, n € %sy. Then we have
(1)  2(c(a®+ %)) = 2(c),
(2) 4(n) =0.

Proof.

(1) 2(c) = (a’c) @ (b%c) = (c(a® + b)) @ (a*b’c(a® + b?)),

(2) 0=2(a®+0b*) D2(c? +d?) =
2(a® 4+ b* 4 & + d%) ® 2((a* + b%)( + d?)(a® + B* + & + d?)) =
4(a® + b +¢* + d?). Now apply Legendre’s Theorem which says that every positive
rational integer can be written as sum of four squares.

Corollary 3.2 says that the inverse of (a) is 3(a). Hence each element of G has an inverse.
Therefore G is a group. Therefore we are able to define ©(a) = 3(a). We extend this
definition to ©(a) = 3(a) = (—a). This definition becomes usefull because of the following
generalization of Lemma 3.1. This lemma is new as far as we know. The advantage of
using this lemma is that it deducts a lot of calculations in the remainder of the paper.

Lemma 3.3 Let a, b € 7ZZ\{0}. Then we have

(1) (ab?) = (a),

(2) Ifa+b#0 then (a) ® (b) = (a + b) ® (ab(a + b)).

Proof. The extension of Lemma 3.1 (1) is easy to prove and the proof is left to the
reader. We will proof Lemma 3.1 (2). We have to distinguish 4 cases namely (i ): a > 0
and b > 0; (ii): a<0and b<0; (it ): a+b>0and ab< 0; (iv): a+ b < 0 and
ab < 0. Case (i) was proved in Lemma 3.1. For case (ii ) multiply case (i ) by —1. In
case (#i ) we may assume that @ > 0 and b < 0. Substitute b by —¢ and notice that
(a—c)®(c) = (a) ® (ac(a — ¢)). For proving case (iv ) multiply case (iii ) by —1. -

4 The Main Theorem.

The main theorem describes the Grothendieck Group in our special case (positive definite).
We introduce the p-excess (cf. [3]; It is possible to prove the Main Theorem avoiding the
p-excess, but the p-excesses make the proofs shorter.) Let g € G, g = @, (ax), with a;
integers. For p an odd prime we define the p-excess by

0 mod 8 if p fa*,
p—1mod8 if a—:@ =1; (1)
p+3mod8 if (£2)=-1.

p-excess((a)) =



Now p-excess(g) = Y. p-excess((ax)). The 2-excess is defined by

] —amod8 if aodd

aexeas ()] = { $(1—%)*mod 8 if aeven. (2)

Now 2-excess(g) = Y 2-excess((ax)).

Note. It is easy to verify by straight calculation that p-excess((a) @ (b)) = p-excess((a +
b) @ (ab(a + b))) mod 8, for each prime p.

In [3], Conway and Sloane prove a theorem about p-excesses. Here we will give the
positive definite version.

Theorem 4.1 Let g,h € G. Suppose g = P(a;) and h = @(b;). Then g = h is
equivalent to [Ja; - [[b; is a square and p-excess(g) = p-excess(h) mod 8 for all primes

p-

Note. In the general case it is important to consider the (—1)-excess. However in our
situation we have (—1)-excess = 0.

Let p and g be two primes then we like to express (pg) in terms of (p) and (g). For
example (55) = (5) @ (11) and (21) = (7) © (3). But (10) cannot be expressed in terms of
(2) and (5) as described above. On the other hand notice that (10) ®(2) = (15) @ (3). Our
goal of the Main Theorem is to express cach class of the Grothendieck Group G in terms
of (p), where pis a prime. In order to split (10) in terms of (2) and (5), we introduce the
symbol (p|.

Definition. Let p = 1 mod 4 be a prime. Then (p| = (pg) @ (¢), where ¢ # 1 mod 4
is an arbitrary prime for which (%) = —1. Notice that such a prime ¢q always exists,

cf. [6],Thm. 15 and Thm. 84.

Note. The symbol (p| is well defined, independent of the choice of g. To see this, suppose

(pl =d(pq) ® (q). Then g-excess((p|) = g-excess((pq)) + g-excess((q)) = 2¢—2+4 =
0 mod 8.

We extend the definition of (p| to

Definition. Let p = 1 mod 4 and A a non-zero integer then we denote by
(A - pl = (Apq) ® (Aq) © (A), where g is a prime as was defined in the previous definition.

It is easy to derive the following laws of addition.
Lemma 4.2 Let p and q be two primes and let X be a non-zero integer. Then we have

=(5.)=1

1, and p = ¢ = 3 mod 4

()@ (M) © (A)  if
(Apyo (M) @A) if
(
(

(1) (Apg) =

=3

Aopld(A-qlO(N) i =—landp=g¢q=1mod4

Aple Mg @A) i

TR VR VR VR

-

= —landp=1mod4, ¢ =3 mod 4



(A-pl® Ay & () it

(@) (Aq-pl = (Ap) © (Ag) ® (A) if
(Ap) D (A-qlO(A) i

Proof. All equations can be verified by p-excesses or by straight calculation. We will show

by straight calculation that if (%) = —land p=¢=1mod 4 then (Apg) = (A -p|® (-
q]©(A). We need a lemma which will be proven in the following section. First notice that

=1l
—land ¢ = 3 mod 4

._,
T vk i
Il

= —land ¢ =1 mod 1

there exists a prime r such that r» = 3 mod 4, (}57) = —1 and (;—) = —1 (See [6],Thm.
15 and Thm. 84). Lemma 5.1 tells us that (Apr) = (Aqr) @ (Apg) © (A). Hence (Apq) =
(Apr)©(Agr)®(A) = ((Apr) @ (Ar) ©(A) D ((Agr) @ (Ar)© (1)) @2(Aqr) ®2(Ar) B2(A) @ (A).
Now apply Lemma 3.2, (2). Then we have =(Apg) =< X-p| @ (A - q| @ 4aryo (A). g
Bach clement of the Grothendieck Group G can be represented in diagonal form. The
Theorem below shows that there is a unique representation in terms prime elements.

Theorem 4.3 (Main Theorem.) Lel S be the sel of positive definile integral symmelric
matrices. Let G = (§/ =,®) be the associated Grothendieck Group. Let g € G. Then g
can be written in a unique way as follows.

2)® @(5»' (p:) @ € (pi]) ® @Th‘ (), (3)

where p; and g; are primes with p; = 1 mod 4 and ¢; = 3 mod 4, where 8, §; and ¢; are
0 or 1, while n; € {0,1,2,3}.

Proof. Let ¢ = @P(q;). It is sufficient to prove that (a;) can be written in the form of
Formula 4.3. Suppose a; = [[p;. Then it is a consequence of Lemma 4.2 that a;j can be
written in the form of Formula 4.3.

The uniqueness of Formula 4.3 follows immediately from Theorem 4.1 or can be proven

on induction. -

Note. The Grothendieck Group can be scen as C@VXRC®, where C,, = Z/n7Z and V,
is the 4-group of Klein. C} is related to the prime 2, Vj is related to primes p = 1 mod 4
and C} is related to primes ¢ = 3 mod 4.

We conclude with 3 usefull corollaries which follow immediately from the Main Theo-

rem.

Corollary 4.4 Let g € G. Suppose g = P, (ar), with [[ ax is a square. Then g can be
written uniquely as
9 =D a((r) @ () © 2P <i(as) (4)
i J

where p; and q; are primes with p; = 1 mod 4 and g; = 3 mod 4, and where §; and ¢; are
0orl.



Corollary 4.5 Let g € G. Suppose g = (A) © 2@ (ax). If g = 0 then det A must be a
square.

Corollary 4.6 Let g € G. Suppose g =2@D, (ax). Then
9=2P(a),
J

where g; are primes with ¢; = 3 mod 4.

5 The relation with Diophantine Equations.

The following lemmas deal with the relation between equalities in the Grothendieck Group
and related Diophantine equations.

Lemma 5.1 Let a, b and ¢ be positive inlegers which are squarefree and relatively prime
in pairs. Let X be an arbitrary non—zero inleger. Then the following three statements are
equivalent:

be

P
b, (%) =1 and for all primes r dividing c, ("r“b) =1.

(2)  (Aac) @ (Abe) = (Aab) @ (),

(3) aX?+4bY? = cZ? has a non trivial integral solution in X, Y and Z,

(1) For all primes p dividing a the Legendre symbol ( ) =1, for all primes q dividing

Lemma 5.2 Let a, b and ¢ be positive integers which are squarefree and relatively prime
in pairs. Let A be an arbitrary non-zero integer. Then the following three statements are
equivalent:

(1) For all primes p dividing a, (‘T'”) =1, For all primes q dividing b, ('—;5) =1, For
all primes r dividing ¢, (=22) = 1.

(2) (Xab) ® (Aac) ® (Abe) @ (A) = 0.
(8) aX?4+bY?*+cZ? = abcW? has an integral solution in X, Y, Z and W with XY Z # 0,

Proof. (Lemma 5.1 and Lemma 5.2.)

(1)<(2) Can be derived from the p-excesses which were defined in the previous section,
(See also [3], pp. 372, Theorem 4.) First prove (1)<(2) in case that A = 1.
Then apply the definition of ® in order to show that A = 1 can be replaced by
an arbitrary non-zero integer.

(1)¢>(3) This cquivalence is based on a theorem of Legendre. See [5], pp. 423-433, (7]
and (8], pp. 42 51. o



Lemma 5.3 Lel a, b and ¢ be integers which are squarefree and relatively prime in pairs.
And suppose that (ac) @ (be) = (ab). We have

(1) Ifabe is odd then a = ¢ mod 4 or b= ¢ mod 1,
(2) Ifc s even then a+b=0mod 8 or a+ b= cmod 8,

(8) Ifab is even, say a is even then a + b= ¢ mod 8 or b = ¢ mod 8.

Proof. We calculate the 2-excess of (ac), (bc) and (ab) respectivily. We distinguish the

same cases as in the lemma.

(1) The 2-excess identity reads (1—ac)+(1—bc)—(1—ab) = 0 mod 8. Since ¢ = 1 mod 8,
we have ¢ — ac — bc + ab = (¢ — a)(¢c — b) = 0 mod 8. Notice that a — ¢ and b — ¢
are even. Hence a = ¢ mod 4 or b = ¢ mod 4.

(2) Let ¢ =2C. Now The 2-excess identity reads i(l = (10)2 + %(l —bC)? — (1 —ab)
0 mod 8 or a?C? + b*C* — 2aC — 2bC 4 2ab = 0 mod 16. Notice that a?C? + 22
a® + b* mod 16. Hence (a +b— (7)? = C? mod 16.

(8) Let a =2A. Now The 2-excess identity reads (1 — Ac)? + (1 — be) — 1(1 — Ab)?
0 mod 8 or A%c? — A%b? —2Ac—2bc+2Ab+2 = 0 mod 16. Notice that A%¢c? + A2b?
b + ¢ — 2 mod 16. Hence (A + b — ¢)? = A? mod 16.

It

o um

Another proof can be given by applying Lemma 5.1, (2)<(3). Notice that X?
0,1 0r4 mod 8.

Lemma 5.4 Let a, b and c be integers which are squarefree and relatively prime in pairs.
And suppose that (ab) @ (ac) @ (bc) = 0. Then

(1) Ifabc is odd then a = b = ¢ mod 4,
(2) If abc is even, say a is even then b+ ¢ =4 mod 8 or a+ b+ ¢ =4 mod 8.

Proof. The proof is comparable to the proof of the previous lemma. o

6 Some applications.

In this Section we will give two applications. The first application is the well-known
Theorem of Bruck-Chowla-Ryser (see [2]. The second application deals with the Lattice
graph. For another application see [4].

Before we give the two applications we will prove a lemma which expresses (al,, + 3.J,)
in terms of diagonal elements.

Lemma 6.1 Let K, = I, + J, and M, = (n + 1)I, — J,,, then we have
(1) (AKq) = (n+1)(A) © (A(n + 1)),

(2) (al,+ BJ,) =n(a) © (an) ® (n(fn + a),

(3) (AM,) =(n+1)(A(n+1)) © ().



1

o alazi 0 [ ARy 0
BJn)Qn = ( 0r ol s 4 ) Ispecially My Ay My = ( 0T A(n+ 1) )

-l 7 .
Proof. lLet @, = ( i - > be an n x n-matrix. We easily calculate that Q,(al, +

Hence (n + 1)(A) = (AK,) @ (A(n + 1)), which proves (1).
The proofs of (2) and (3) can be found from (al, + BJ,) = (aKn._1) ® (n(fn + @)). 4
We give another proof of:

Theorem 6.2 (Bruck, Chowla and Ryser) Let D be a symmetric 2-(v, k, \)-design.
Then v, k and X satisfy the following identity:

If v is even then k — X is a square.

If v is odd then

(k= N)X2 4 (=1)"T v¥? = 22 (5)

has a non-trivial integral solution in X, Y and Z.

Proof. Let A the associated incidence matrix. Then AAT = (k — A\)I, + AJ,. Therefore
(k= A)I, + AJ,) = 0. Now apply Lemma 6.4. We conclude that

v(k—A) 6 (v(k— X)) ® (v(vA+ (k= X)) =0. (6)

Notice that vA + (k — A) = k%. Now Formula 6 can be read as

vk —A) © (v(k— X)) @ (v) =0. (T

If v is even then the number of diagonal elements in which the factor (k — \) appears
i
2

is odd. Ience k& — A must be a square. If v is odd then v = (—1) mod 4. Hence

l'ormula 6 can be written in the form
v—1
(v) @ (=1) 2 (k= A) = (v(k — A)). (8)

Now apply Lemma 5.1. o

The second application deals with the Lattice graph. We consider the complete bi-
partite graph on 2n vertices, Knn. Let Po,..., P,y be vertices at one half of the graph,
and let P,, ..., Pau_y be the other vertices. We denote by £, the linegraph on n? vertices
corresponding to the n? edges of K,n, (also known as the Lattice graph). We denote the
vertices of £, by B;, with 0 <7< n?—1. Let 0 < a,b < n—1. Then the vertex Bantb



of £, corresponds to the edge P,P. 4 of K,,. We denote by L, the adjacency matrix
corresponding to L£,,. The eigenvalues of L, are

[2(n — 1)]', [n —2)*™" and [——2]("-1)2 a
In this section we will give decomposability conditions for a matrix of the form
L, =al +pL,+~J.

A main role is played by the eigenvalues of IL,. It can be verified easily that the
eigenvalues of I, are
ro = a+2B(n—1)+yn?
T a+ fB(n—2)
Ty = a—=20

We will consider I, being a function of rg, ry, r2. Our main theorem decompose
ILn(To,Thrz)-
Theorem 6.3 Let I, = I,(rg,r,72) be defined as above. Then we have

(L,) = (ro) @ 2n(rin) @ 2(r1) @ 2n(r;) @ 2®i(r2i). 9)

i=5
As a consequence of this theorem we have the following corollary:

Corollary 6.4 Let I, = IL,(ro,r1,72) be defined as above. And suppose that 1, is
decomposable. Then ro must be a square and we have
(i) Ifn=0mod4 then 2(r;) ® P(n) =0,
(it) Ifn=1mod4 then 2(n) ® 2(ry) ® P(n) =0,
(i) If n = 2 mod 4 then 2(ry) @ 2(r;) @ P(n) =0,
(iv) Ifn =3 mod 4 then 2(n) ® P(n) =0,
2
where P(n) = 2@(22' —1).
=4
Proof. Since IL,, is decomposable, Formula 9 must be equal to zero. Except of the first
term of the right-hand part (ro) all terms appear in pairs. Therefore ro must be a square,
(see Corollary 4.5). We consider four cases depending on n mod 4. We share the terms

2n(ryn) and 2(r;) which results, applying Corollary 4.6, in 2(ry) for even n and 2(n) for
odd n. The other terms can be simplified to P(n) or 2(r;) ® P(n) (depending on n).

Note. For n > 8 the sum P(n) will never be equal to 0. P(n) grows rather fast. For
example P(8) = 2(7), P(12) = 2(7) ® 2(11) and P(20) = 2(3) ® 2(7) @ 2(11) ® 2(19).

In order to prove the theorem we will use a lemma. This lemma expresses I, in terms
of i
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Lemma 6.5
<]Ln(7'(), 7'],7‘2)> = (7‘()) @ 2<7'l(nlnvl s J)) q) (7‘2(3](71.—-1)2 + ll'n.-l + J))

Proof. We are searching a matrix @ such that QTIL,Q is of the form as desired in the
lemma. We build up @ from three submatrices Fy, Fy and F3, such that Q = (Fo|F1| F).
We construct F; from E; which are defined by

By = LJ = L.(1,0,0),
By, = %(an +nl, — 2J) = ]Ln(Oy 1’0)7
E2 = —]2—((71 —Zn)l—nLn-i- ]) = ]Ln(Ovovl)

These matrices I9; satisfy I5;15; = &;;I;. Let 1 be the all one vector, let U be an n? x2(n—1)
matrix defined by U/ = (u;;), where

1 if P;eBifor 1<j5<2(n—1)and
Uiy = 0<i1<n? -1,
0 else,

and let V be an n? x (n — 1)* matrix defined by V = (v;;), where

1 if either 2 =1

or t=an+ (b+1)and j=(a—1)(n —1) + b,
) —1 ifeither i=b+1land j=(a—1)(n—1)+b,
W= or t=an+land j=(a—1)(n—1)+ b,

(where 1 <a,b<n-—1)
0 else.

Now we construct the matrices F; by

F'O = iEol,

F] = ElU,
F, = E,V.

Since L, F; = r; E; for 0 <1 <2 we get
QT]Ln(To, r,72)Q = TOI‘ Fo® Txr Fy EBT2F .

Notice that

R o= i,
"—n—_' if P € B;for 1<j2(n—1)and
F, = (f,-]-)wheref,j:{ 0<i<n-1,
:nl else,
1’2 = V
e R =1,
(IR = 2(nl,- L JY;
FJFy = La_i(n?n,1).



11
This proves the lemma. o

Proof of Theorem 6.2. We will first prove a special case, namely (AL, ((n+1)%, n+1,1)).
We use induction. For n = 2 we get (AL2(9,3,1)) = 2(X) @ 2(3)). Now we apply the
previous lemma. We have

(La(A(n + D2 AR+ 1),2)) = (A) © 2(A(RLny — J)) @ (A(BTnoryr + Loy + J)).

We apply Lemma 6.4 which says that (A(nl,_y — J)) = n(An) 6 (A). By induction on n
we get

(La(AM(n+1)%An +1),4)) = 2()) ®2(3)) @ 26D, (i(M) @ (A))
. 2(n —1)(\) @275 i(Ai).

Now we can prove the theorem in its generality. We get

(Ln(ro,m1,7m2)) = (ro) ®2(ri(nlny — J)) @ (r2(3(noryz + Lna + J))
= (ro) @ 2n(rin) @ 2(r1) ® 2n(rs) ® 2" i(rad). o

This leads to necessary conditions for square partial balanced designs similar to the ones

of S.S. Shrikhande and N.C. Jain (cf. [9]).
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