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1. Introduction; statement of the model

A(trianqular) array (Yin)) in R is a double sequence
(Yin); n E ti, 1 5 i 5 h(n)) of random
as n~~. It will be assumed
the triangle are defined
called m(n)-dependent if

random vectors (Y~n); 1 si
dependent. Here (m(n)) is
In Berk (1973)
with (m(n))
limit behavior

a central
unbounded)

of arrays
A triangular

part ( Xi,m(n)) and a

on a

variable (rv's) in R with h(n) -~ m
that the rv's which belong to the same row of
common probability space. The array

for all n E fi and k E{2,..., h(n)-m(n)}
i 5 k-1) and (Y~n);
a sequence

limit

is
for

m(n)tk 5 j 5 h(n)) are

is
the

in-

theorem
proved.

for m(n)-dependent arrays (possibly
We are especially interested in the

which only a main part
array (Xin)) is said to have

residual part (X. ) ifi,m(n)

Xl,m(n) } Xi,m(n)

is m(n)-dependent.
an m(n)-dependent main

for all n E n and i E{1,...,h(n)}

(1.2) (Xi,m(n)) is m(n)-dependent.

If, moreover,

(1.3)

then the

max P[~Xi,m(n)Ilsish(n)
z

array (Xin)) will be
research it will

e] ~ 0 for all e) 0,

called decomposable. In most part of this
even be assumed that ( Xin)) satisfies an (E(n), b(n))-

condition, i.e. that (m(n)) can be chosen such that (at least for n z n~)

(1.4) max P[~Xi,m(n)~ 2 E(n)) s á(n)
lsish(n)

for some sequences (e(n)) and (b(n)) in (O,m) tending to 0 as n~ m.
Decomposabi]ity was first introduced in Chanda, Puri 8, BuymgaarL (198~).
The concept was defined in this reference under the additional condition
not assumed in the n( present research) that the Xi ), as well as the

X. are identically distributed.i,m(n)'
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In the above reference linear processes (e.g. ARMA-processes) and
(non-linear) processes with Volterra expansions of a given finite order
(Priestley (1981)) are mentioned as examples of decomposable processes
which (with certain assumptions) satisfy an (e(n), b(n))-condition. In the
next example we will consider special decomposable processes generated by
a given decomposable process.

Example 1.1. For each n E I1 let X1,...,Xn be n successive observations
from a decomposable time series (Xi) satisfying an (e(n), b(n))-condition
for some sequences (E(n)) and (ó(n)). Suppose that the Xi are identically
distributed with continuously differentiable distribution function F(in-
dependent of n) with bounded derivative f. The rv's

Xl,m(n) ""'Xn,m(n)
have a common d.f. Fm(n). Set ~i,m(n) '- F(Xi,m(n))~ i E{1,...,n}. By the
mean value theorem we obtain:

~i -~i m(n) t Xi m(n)f(Xi m(n) t BnXi m(n)).

Fiere 8n E(0,1) is random. So, (~i) is also decomposable with residual
part given by ~. - X. f(X. t 8 X. ). Note thati,m(n) ' i,m(n) i,m(n) n i,m(n)
I~i,m(n)I 5 A~Xi,m(n)I w'p.l. Hence, (~i) satisfies the (É(n), ~(n))-con-
dition with é(n) :- Ae(n) and ~(n) :- b(n).

Let, furthermore, Ri n be the rank of Xi in the sample X1,...,Xn.
Decompose the array (Ri n~n) as follows:

i,n i,nr R t ~R Jn(~i) - n - ~i ,m(n) n - ~i,m(n) '

Here i'n is the empirical distribution function of ~1,...,~n. Let Un with
Un(t) :- f(rn(t) - t), t E[0,1], be the ( reduced) empirical process and
define

52n :- [ max ~Xi m(n)~ 5 e(n)].
15i5n

Then P(Qn) 5 ná(n). If e'(n) is chosen such that E(n)~E'(n) -~ 0, then we
have for n Z n~:
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P L IRn'n -~i m(n) z E'(n) J 5

5 P[~Í'n(~i) -~i~ 2 Z E~(n)] t P[~~i m(n)~ 2 2 E~(n)]

s P[ sup ~Un(t)~ Z 2 f E '(n)] t b(n)
Ostsl

s P(S2n n[ sup ~Un(t) - Un(s)I 2 2 f E'(n)] t( ntl)b(n)
Oss(tsl

-; ~ t (ntl)bn,

According to Nieuwenhuis 8. Ruymgaart (1989; Th. 2.1) there exists an ex-
ponential upper bound for ~, provided that b(n)~e'(n) ~ 0, e(n)~e'(n) ~ 0
and (Xi) is a linear process. The generalization of this theorem to more
general decomposable processes is, however, straightforward and will not
be proved here. Consequently,

(1.5) ~ s Cm(n) exp(-Aony(BTn)),

if b(n)~E'(n) ~ 0 and e(n)~e'(n) ~ 0. Here an :- n(e'(n))2~m(n),
Tn :- e'(n) and y~ is some decreasing and continuous function on [-l,m) for
which y~(x) .~ 0 as x T m. (cf. Shorack 8~ Wellner (1986)). Next assume that

E(n) - 0~(n-~). b(n) - 0~(n-nl). E'(n) -~(n-n~), b'(n) -~(n-~1) and
m(n) -[cnp] for some c E(O,m) and p E(0,1). Then the upper bound in
(1.5) tends to 0 exponentially fast provided that 0 C~,' C~-~p. Conse-
quently, the array (Ri n~n) is decomposable and satisfies the (E'(n),
b'(n))-condition if ~,' and ~i are such that 0 C~,' C min{~, }-}p} and
0 C~,i C nl - 1. It should also be assumed here that 0 C p C 1 and ~,1 ~ 1.
This decomposability of (Ri n~n) might be interesting. Unfortunately the
condition that n' should be between 0 and ~-}p is rather strong. o

According to Chanda, Puri ~ Ruymgaart (1989) decomposability might
be an alternative to the classical mixing concepts. The definition in
(1.1) -(1.3) is such that it might provide a useful model to many practi-
cal situations, especially when (1.4) is also assumed.
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That is why it is worthwhile to consider the asymptotic behavior of decom-
posable processes. In this monograph conditions will be presented which
guarantee asymptotic normality of the partial sums (if suitably standar-
dized) of such processes. Berk's theorem for m(n)-dependent rv's will be
the guide to this research.

In Section 2 some classical results will be generalized. Berk's
CLT (central limit theorem) for m(n)-dependent rv's and a well-known CLT
for linear processes generated by an i.i.d, sequence (cf, e.g. Anderson
(1971; Th. ~.~.8)) are generalized to a CLT for arrays with m(n)-dependent
main part. It is proved that, when compared to the CLT for linear proces-
ses, the resulting theorem is an almost generalization, since it is addi-
tionally needed that the (2tb)-th absolute moment of the generating rv's
exists.
In Section 3 things are simplified by considering decomposable arrays with
bounded residual part satisfying an (e(n), b(n))-condition. A CLT for such
arrays is proved. Some remarks are made about asymptotic normality for the
partial sums of arrays like (fn(Xin))) or (fn(Xin))gn(Yin))) if (Xin)) and
(Yin)) are decomposable and satisfy an (E(n), b(n))-condition. Here fn and
gn are functions for which Lipschitz-conditions hold.
Some applications are considered in Section 4. The first example is about
a stationary, decomposable sequence (Xi) of Un(0,1) rv's satisfying an
(e(n), b(n))-condition. It is assumed that (X1, Xlth) is positively qua-
drant dependent in the sense of Lehmann (1966). A central limit result can
be derived for the partial sums of an array (Jn(Xi)). Here (Jn) is some
sequence of (score) functions. Some special, not strongly mixing, sequence
with Un(0,1) marginals is considered, which satisfies the above condi-
tions. In the second example asymptotic normality of a class of serial
rank statistics is studied. Result of Nieuwenhuis 8~ Ruymgaart (1989) are
considered within the scope of the present research.

Remark. Throughout this paper A, A', B, B', C, C' E(O,m) will be used as
generic constants. They are independent of all the relevant parameters
(like e.g. the sample size n). Expressions in n are sometimes valid for
n Z n~ only, without mention. Here n~ does not depend on the relevant
parameters either.
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2. Generalization of some classical results

Limit theorems for linear processes are classical and well-known
(Marsaglia (1954), Parzen (1957), Anderson (1971; Th. 7.7.8), Brockwell 8~
Davies (1987; Prop. 6.3.10)). They have been a motivation to the present
research.

Theorem 2.1. Let (Xí) be the t~o-stded movíng average

(2.]) Xí - E 9kZí-k' t E Z,
kEZ

where (Z~) is a sequence of independently and identtcally dístributed
rv's r~íth E(Z )- 0 and E(Z~) - cs2. Suppose further that FkEZlgkl ~ m
Then L~-ZXt~Jn has a Zimíting normal dístributton mith mean 0 and vartance
ïk~(k), where a(k) - a2FsEZgsgstk'

This theorem is usually proved by splitting Xi into two terms ( cf. e.g.
Anderson (1971)):

Xi - IklS~mgkZi-k ; Ikl~~mgkZi-k -: Xi m, Xi.m, i E Z,

where m E I1 is fixed, i.e. does not depend on n, the number of observa-
tions. The resulting sequence (Xi,m)iQ is m-dependent.
Relation ( 1.1) is a generalization of this idea, apart from the fact that
here m depends on n. So, it is natural to consider the limit behavior of
arrays ( Xin)) with m(n)-dependent main part. At first we need a limit
theorem for m(n)-dependent sequences ( Berk (1973)).

Theorem 2.2. Let (Yln)) be a triangular array o,~ random vartables r~íth
h(n) ~~ as n-~ m. Suppose that thís array ís m(n)-dependent and is stan-
dardízed such that Var(ih(n)Y(n)) ~ 1. Assume ,~urther thati-1 f

2f2~b
(a) max L'~Y(n)~Z`b -~( 1 ~ l and m(n)( ) ~ 0

Zsísh(n) t lh(n)Ztb 2J h n

for some b ~ 0;



(b) max 1 Varl ï Y(n) J - al 1 J .
i~j~h(n) j-i lk-i}1 k llh(n)

Then

h(n)
F(Y~n) - Z'Yzn)) ~d N(0,1) as n~ m.

i-1

The above theorem can straightforwardly be extended to a limit theorem for
sequences with m(n)-dependent main part.

Theorem 2.3. Suppose that the array (X~n)) has an m(n)-dependent main part

(Xi,m(n)) and a residual part (Xi,m(n)). Set bn :- Var(ih(1)X~n)). Assume

that

~IX(n)I2fb
(a) max Z2tb I Ztb~2 J

- ~ 1
Isi~h(n) bn h(n)

2tb
~IXt,m(n)I ~ 1 1max - , J, and

ZSíSh(n) bn}b h(n)1fb 2

m(n)2f2~b

h(n) ~ 0 for some b~ 0;

(b) max 1 Z Var~ F Xkn) J -~Ih~n) J and
i~jsh(n) (j-i)bn k-tf1 ll

Then

j l
max 1 Z Var ï Xk m(n) J - o(h~n), .t~j~h(n) (j-t)bn k-it1 '

h(n)
(2.2) b ï (X~n) - ~X~n)) ~d N(0,1) as n-~ m.

n t-1
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Proof. Since

1 h(n) (n) (n) 1 h(n)
(2 3)

bn i~l (Xi
- EXi )-

bn iEl (Xi~m(n)
- EXi'm(n)) t

1 h(n)
} bn i~l ( Xi,m(n) - EXi,m(n))

and

h(n)
h(n) Var lEl Xi,m(n)

P E(Xi m(n) - EXi m(n)) 2 ebn s e2b2 -~ p,
i-1 ,

n

a consequence of Assumption (b), we only have to prove the asymptotic
normality of the first part on the right in (2.3). So, we want to apply
Theorem 2.2 to the double sequence

(Xi,m(n)~bn)' Note that

h(n) Xi m n l 1 (t~(~~) n l(2.4) Var ï b~J - 2 Varl ï Xi ) J t o(1) 4
i-1 n b h-1n

2 h(n) (n) h(n)- b2 Cov 1i1 Xi , ï X~ m(n) .
n j-1

The absolute value of the covariance-term in (2.4) is dominated by

h(n) ( ) h(n)
Var E X,n Var E X. ()

i-1 1 i-1 l,m n

b2 b2n n

ii 1 h( n) l
- b2 Var lïl Xi,m(n) J .

n

which tends to o by Assumption (b). Hence (2.4) tends to 1. Condition (b)
in Theorem 2.2 for Ykn) - Xk,m(n)~bn follows by similar arguments, while
(a) is an immediate consequence of Minkovski's inequality:

1~2

glXl,m(n)~bnl2tb 5 ~(EIXin)~bnl2;s)1~(2'b) ;
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t (EIX1'm(n),bnl2tá)1~(2.b)~2}5 .

Application of Theorem 2.2 yields Relation ( 2.2). a

It would be nice to find out that Theorem 2.3 is indeed a generalization
of Theorem 2.1. Unfortunately, it is only an 'almost' generalization. In
fact, Theorem 2.1 is a corollary of Theorem 2.3 if it is additionally
assumed that E(Zi}b) ( m for some b) 0. To prove this observation we
choose ó as above and m(n) such that m(n)2;2,S~n -~ 0. Set X~n) :-i
n-1,2 Xi, where (Xi) is the observed linear process. Note that b~ -
n-1Var(ïi-1Xi)

and that

,7-i j-i-1 r 1
li Var i X~ - ï I 1 - llJ 6(h),~- k-1 k h--(j-i-1)l j-i

where

6(h) :- Cov(X1. X1}h) - 62 i gkgk~h-
kQ

Hence ( j-i)-1Var(Ek-1 "Zc) ~~hQo(h) - o2(FkQgk)2 as j-i ~ m.

Write Xi - Yi,m(n) 4 Yi,m(n)' where

Yi.m(n) ~- ~IkISm(n)I2 gkZi-k and Yi m(n) :- Xi - Yi'm(n).

Set Xi,m(n) ;- n-1~2
Yi,m(n). Then

1 ~-1
j-i Var

k~lYk'm(n) 5 hQ
ICov(Y1 m(n), Ylth m(n))~

5 62 i F F ~gk~ ~8,~~
hEZ ~k~~m(n)~2 ~~~~m(n)~2

.~-kth

'~2( F ~Bk~)2 ~ 0 as n~ m,
~k~~mÍn)~2
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uniformly in i and j with i( j 5 n.
From these observations it can easily be deduced that (Xin)) and (Xi,m(n))
satisfy Assumption (b) in Theorem 2.3. The relations in (a) are also ful-
filled, since n-1Var(Ei-1Xi) tends to some constant ) 0(see above) and
since (Minkovski's inequality):

2tb 2tá 2fóE~Yi,m(n)~ 5 (Iklsm~n),2IBkI) E~Z1~ ,

E~Y. ~2}b 5[(EIX.~2tb)1~(2tb) t(E~Y. 2tó 1~(2tb) 2tbl,m(n) i l ,m(n)I ) ]

and (Fatou's lemma)

E~Xi~2}S S liminf
E~Yi,m n

I2'b
n~ ( )

5 (kQ
Igkl)2tb

EIZll2ts ~

3. CLT's for decomposable arrays with bounded residual part

In Section 2 it was not explicitly assumed that X. -~ 0 in probabili-i,m(n)
ty. From now on we will do so. In fact we even assume that (Xin)) is de-
composable and that it satisfies an (e(n), b(n))-condition (1.4) for some
sequences (e(n)) and (b(n)). We intend to simplify Theorem 2.3 under addi-
tional assumptions on the process (X~n)).i
At first we assume that s(n) ) 0 exist such that

(3.1) max I ?Ci,m(n)I s s(n) wpl.
lsish(n)

As a consequence of (3.1) we obtain for y~ 0:

e(n) s(n)~
E~Xi m(n)~~ - fmP[~Xi m(n)I~ ) x]dx - f t f

0 0 E(n)X

(3.2) s e(n)~ t s(n)ys(n)~
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uniformly in i E {1,...,h(n)}.

Theorem 3.1. Suppose that (Xin)) ís decomposable and satísfies an

(E(n), b(n))-conditíon mith

(3.3) h nbe n~ 0 and h(n)2s~n)Zb(n) ~ ~~
n bn

r~here b2 .- Var(Lh(n)X~n)). Assume that (3.1) ís fulfilled and thatn i-1 t

(n) 2tS ,
~IXí I 1 l m(n)2}Z S 0 and

(a) Isish(n) bn.b - ~fh(n)1.5~2J' h(n) ~

h n s n 2b n 2~(2fb)
~

bn

(b) max 1 Varl E X(n) J -~I () J .
i~jsh(n) (j-í)bn ik-itl k lllh n

Then

1 h(n)
b i(X~n) -~X~n)) ~d N(0,1) as n~~.
n i-1

Proof. By Relation (3.2) we have:

h(n)1}~,2EIX. ~2;b l.b)2 2;b 2.ói'm(") s ~ h(n) (E(n) ts(n) b(n)) - p'(1)~b2tb b2tS
n n

h n j ~ l2Var ï }C ~(), s h n E( ï }C(j-i)b2 k-i}1 k m n (j-i)b2 k-i}1 k,m(n) J '
n n

2 -(1) for some b~ 0;

5 h 2 (j-i)(E(n)2 ~ s(n)2b(n))
bn
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2
S C h~~ (E(n)2 t s(n)2b(n)) ~ 0.

bn

Apply Theorem 2.3. o

In many relevant cases liminf bn~h(n) ~ 0, cf. Ibragimov ~ Linnik (1971;
Tti. 18.2.1)). Then Condition ( 3.3) and the last part of (a) are satisfied

-nif e(n) -~(h(n)-n) and b(n) -~(h(n) 1) with n ~} and ~1 such that
1-n

h(n) ls(n)2 ~ 0.
Next consider a sequence of functions (fn) for which a E R exists

such that

(3.4) Ifn(x) - fn(Y)I S Ah(n)o~x-Y~

uniformly in x, y E R. Note that this inequality is a Lipschitz condition.
Continuously differentiable functions fn with derivative bounded by Ah(n)~
satisfy this condition.
Suppose that (X~n)) is decomposable with X~n) - X, t X and1 i i m(n) i,m(n)
satisfies the (E(n), b(n))-condition. The array (fn(Xin))) can be decom-
posed as follows:

fn(Xin)) - fn(Xi m(n)) t Yi~m(n).

where Yi,m(n) :- fn(Xin)) - fn(Xi,m(n)). BY (3.4) we obtain:

P~~Yi m(n)~ 2 E(n)7 S P[~Xi m(n)~ 2 A-lh(n)-~E(n)]

s b(n) - ~(n),

if É(n) :- Ae(n)h(n)a and ~(n) :- b(n). So, (fn(Xin))) is decomposable and
satisfies the (é(n), ~(n))-condition if (e(n)) and 6 are such that
e(n)h(n)o ~ 0 as n~ m.
The following corollary follows immediately from Theorem 3.1.
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Corollary 3.2. Let (fn) be a sequence of functtons for r~hich (3.4) holds.
Let (Xzn)) be decomposable, sattsfying an (e(n), b(n))-condttíon r~ith

(e(n)) and (b(n)) such that h(n)6e(n) -~ 0,

(3-5)
h(n)btaE(n) ~ 0 and h(n)2t2n)2b(n) -~ ~,

n bn

mhere btt :- Var(ïh(1)fn(Xin)) and (t(n)) fs sueh that

(3.6) Ifn(Xtn)) - fn(Xf~m(n))I s t(n) mpl.

Assume aLso that

~Ifn(Xin))I2fb 1 m(n)2.2~b(a) max Ztb -~I Ztb~2J, h(n) ~ 0 and
lsish(n) bn lh(n)

h(n)t(n)Zb(n)2~(2tb) -~,(1)
for some ó~ 0;

b2n

~ (n) l - ( 1 1(b) max 1 2 Var F fn(Xk )J ~Ilh(n)J .
t~jsh(n) (j- t)bn k-tt1

Then

h(n)
b E (fn(Xin)) -~fn(X~n))) ~d N(0,1) as n~~.
n t-1

In view of Condition (3.5) and the last part of (a) it is desirable to
choose a and t(n) as small as possible.
If the residual part of (Xin)) satisfies (3.1), then (3.6) is fulfilled
with t(n) - Ah(n)os(n). If each of the functions ~fn~ is bounded by a
positive number vn, then (3.6) is also fulfilled (with t(n) - 2vn).

Theorem 3.2 can be generalized in several ways by considering more
decomposable arrays and~or more sequences of functions satisfying (3.4).
For instance, suppose that apart from (fn) there is another sequence (gn)
of functions satisfying (3.4) (with 6 and A replaced by T and A'). Suppose
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also that ~fn(x)~ s Bh(n)~C and ~gn(y)~ s B'h(n)~C for all x,y E R. Then
we have for x,y,a,b E R:

(3-7) Ifn(x)gn(Y) - fn(a)gn(b)I 5 Ifn(x)gn(Y) - fn(x)gn(b)I t
t ~fn(x)8n(b) - fn(a)gn(b)~

5 Ch(n)u(IY-b~ t ~x-a~),

where u:- max{6C t T, TC t 6}. Consequently, (fn(Xin))gn(Xit~)) is again
decomposable, and satisfies (3.1) and an (É(n), ~(n))-condition if
h(n)uE{n) ~ 0. Here ~C E ti is fixed. Set

bn :- Var(Fi~l)-~fn(Xin))gn(Xin~))-

Application of Theorem 3.1 yields a CLT for (fn(Xin))gn(Xit~)), provided
that Condition (b) and the moment condition of (a) in Theorem 3.1 are
satisfied with (Xin)) replaced by (fn(Xin))gn(Xi}~)), and

2t2(o t2 )
h(n)b}ue(n) ~ C h(n) 2 0 0 S(n) ~ U~

n bn

lt2(aC.iC)S(n)2~(24b)
~ 0 ~

b2n

Similar results can be obtained if more decomposable arrays are
involved. Asymptotic normality is always derived as a corollary of Theorem
3-1-

4. Some applications

In this section we will apply the results of Section 3 when some special
decomposable processes are considered.

Example 4.1. Let (Xi) be a stationary, decomposable sequence of Un(0,1)
rv's satisfying an (e(n), á(n))-condition with m(n) -[cnP], e(n) -~(n-~)
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-,~
and S(n) -~(n 1). Here c E(O,m), p E(0,1~2) and n,~,l ) 0. It is as-
sumed that for all h E tl (X1, X1}h) is positively quadrant dependent,
i.e.,

G(x,Y) :- P[X1 s x; Xl~h 5 Y] - P[X1 S x]P[Xlth S y] 2 0

for all x,y E(0,1) (cf. Lehmann (1966; p. 1137)). The score function J is
defined by

(4.1) J(x) :- 1
(1-x)~`~

x E (0,1),

where 0 ( a C}. Since EJ'(Xi) does not exist, we will consider (J (X.))n i
instead of (J(Xi)), where

(4.2) Jn(t) :- J(.in(t)) and ~n(t) :- n-~ t(1-2n-~)t, t E[0,1],

for ~) 0. We want to apply Corollary 3.2 to (Jn(Xi)). First we note that

(4.3) Jn(t) S Cn3(~}1), t E [0,1].

By the mean value theorem it is clear that (Jn) satisfies (3.4) with
o-~(~tl). Set bn :- Var(Fi-1Jn(Xi)) and crn(h) :- Cov(Jn(X1), Jn(Xl~h)),
h E{1,...,n-1}. Because of stationarity we have:

2 n-1
bn - n Var Jn(X1) i 2 ï(n-h)6n(h).

h-1

Since Jn is non-decreasing, (Jn(X1), Jn(Xlth)) is also positively quadrant
dependent. By Relation (3.1) of Lehmann (1966) we obtain:

.m tm
6n(h) - f f G(x,y)dx dy.

Consequently, 6n(h) Z 0 and

2b
(4.4) n z Var Jn(X1).
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Since 1- ,tn(X1) -- Un[n-~, 1-n-~], we obtain for o(~( l~a:

1-n-~

EJn(X1) - (1-2n-T)-1 f~ y-a~rdy
n

(4.5) - 1 ((1-n-T)1-a~r - n-3(1-a~r)).
(1-2n-~)(1-a~)

Hence

1 1Var Jn(X1) ~ 1-2a - 2 as n~ m
(1-a)

and (cf. Relation (4.4)) bn z nC ) 0 for n Z n~. We need a further as-
sumption about the parameters. Suppose that p, ~, n and nl can be chosen
such that

(4.6) 0 ~ p ~ ~ - k laa. ~ ) } . j(octl) and

nl ) max{1 i 2~a, ja ~}.
P

Then (3.5) and (3.6) are fulfilled (note that 6-~(atl), that
t(n) - Cn3a, and that h(n) - n). Choose á such that

2 1 Tll - 2;a
~ ~ á C min{a - 2, ~a }.

Then

E(J (X ))2tb
nl.b~2 b2ib1 5 CE(Jn(X1))2.b 5 C~.

n

since (4.5) holds for y- 24b as well. So, the conditions in (a) of Corol-
lary 3.2 are also satisfied. Further we note that for 1 s i~ j s n:

1 J j-i-1 h
~-i Var E Jn(Xk) - Var Jn(X1) t 2 E(1 - i)~n(h)

k-it1 h-1 ~-



n-1 h bn
s Var Jn(X1) . 2 ï(1 - n)on(h) - n,

h-1

which implies (b). Consequently,

(4.7) b F(Jn(Xi) - EJn(X1)) ~d N(0,1) as n~ m. o
n i-1

Let us next construct a sequence which satisfies the conditions of Example
4.1. Let (Zk)kQ be an iid sequence with P[Zk - 0] - P[Zk - 1] -~. Con-
sider the sequence (Xi)i~ defined by

Xi :- E 2-(k}1)Zi-k' i E Z,
k-0

cf. Bradley (1986; p. 180) and Nieuwenhuis ~ Ruymgaart (1990). This se-
quence is a, not strongly mixing, strictly stationary AR(1) process with
Un 0,1 mari n( ) gnals. Let (Xj)j-1 be n subsequent observations from this time
series. Define

m(n) -(ktl)
Xj m(n) :- kï0 2 Zj-k and -(ktl)

Xj~m(n) ~- k-m(n)t12 Zj-k'

j E{1,...,n}, where m(n) -[cnp] for some c E(O,m) and 0 C p(}. Then
Xj - Xj m(n) }-~Xj,m(n) and (Xj~m(n)) is m(n)-dependent. For E(n) -~(n-~)

and á(n) -~(n 1), ~ and nl arbitrary but positive, we have:

P[~Xi,m(n)~ 2 E(n)] - 0 s b(n) for n 2 n0.

Hence the sequence (Xi) is decomposable and satisfies an (E(n), b(n))-
condition. So, the parameters p, j, n and nl can be chosen as in (4.6).
Since

h-1

Xlth - 2-hXl } kL02-(k}1)Zl~h-k -: 2-hXl t Uh
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and X1 and Uh are independent, it can easily be proved that (X1, Xlth) is
positively quadrant dependent. Consequently, Relation (4.7) follows.

Another sequence with Un(0,1) marginals was already mentioned in
Example 1.1. Some additional conditions can be formulated such that (4.7)
is valid.

The approach presented in Sections 2 and 3 can be used to prove
central limit theorems for a special type of serial rank statistics. The
next example reflects the ideas of Nieuwenhuis 8~ Ruymgaart (1989), now
presented in the light of the results of the present research.

Example 4.2. Consider the following statistic:

T .- 1 nLhJ ~Rl'n J K IRl}h'nJ .n n-h n n n` ni-1

Here Rl,n ""'Rn,n are the ranks of a sample X1,...,Xn of n successive
observations from a general linear process. So, (Xi) has the form (2.1)
and is decomposable. It is assumed that it satisfies an (E(n), á(n))-con-
dition for some (e(n)) and (ó(n)). For Jn and Kn we assume that Jn(t) :-
J(.Ln(t)) and Kn(t) :- K(~n(t)), t E[0,1], with .~n(t) as in (4.2) and
J,K :(0,1) ~ R twice continuously differentiable functions such that

~J(1)(x)~ s C and ~K(1)(x)~ s C
(x( -x)) (x(1-x))a}1

1 atl

x E(0,1), i E{0,1,2}. Here a,á ) 0. In the above reference it is obser-
ved that Tn is a natural rank estimator of Tn :- E[Jn(~1)Kn(~lth)]~ where
~i :- F(Xi) with F the distribution function of Xi which is assumed to be
continuously differentiable with bounded derivative.
From the arguments of the authors it can be derived that

(4.8) ~(Tn - Tn) - An . Bn.

where Bn is some residusl term tending to 0 if some conditions about m(n),
E(n), á(n), o:, á and ~ are fulfilled. The main term An equals

f ii-1(Wn(~i. ~i~h) - in)~(n-h).
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where

Wn(~i. ~i~h) :- Jn(~i)Kn(~ith) t nnh Pn(~i).

Here ~on is the sum of the functions pl n and p2 n mentioned in the refe-
rence; Epn(~i) - 0. Although 9~n is not differentiable it can be proved
that it satisfies (3.4) with 6- j(a t á t 1). Relation (3.4) is also
valid for Jn (with 6-~(atl)) and Kn (wíth o-;(á.l)).
We want to apply Theorem 3.1 to (Wn(~i' ~i.h))' ~e sequence (~i) is de-
composable and satisfies an (e(n), b(n))-condition, see Eicample 1.1.

By arguments as in (3.7) it can be proved easily that
(~n(~i' ~ith)) is also decomposable and satisfies the (é(n), ~(n))-condi-
tion with

é(n) :- Cn~(atatl)e(n) and ~(n) :- C'b(n),

if s(n) ~ 0 fast enough. Hence, the assumptions in Theorem 3.1 can be
formulated in terms of (Y~n(~i' ~i.h)) such that as a conclusion:

n-h
(4.9) b i (Wn(~i. ~i~h) - 2n) ~d N(0,1),

n i-1

provided that the resulting conditions are fulfilled. Here b2 .-n
Var(Ei-1wn(~i' ~ith))' lf, moreover, f Bn~bn ~ 0 with Bn as in (4.8),
then (4.9) is equivalent to

f (T - ~ )n n
~d N(0,1) as n-~ m. o

bn~f
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