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AN ALGORITHM FOR THE LINEAR COMPLEMENTARITY PROBLEM WITH UPPER AND LOWER BOUNDS

by

G. VAN DER LAAN and A.J.J. TALMAN.

Abstract.

In this paper the so-called octahedral algorithm for solving systems

of nonlinear equations is adapted to solve the linear complementarity

problem with upper and lower bounds. The proposed alqorithm generates

a piecewise linear path from an arbitrariiy chosen point z~ to a solution

point. This path is followed by linear programming pivot steps in a system

of n linear equations where n is the size of the problem. The starting

point zU is left in the direction of one of the 2n vertices of the feasible

region, depending on the sign pattern of the function value at z0. The

sign pattern of the linear function and the location of the points in

comparison with zU completely govern the path of the algorithm. We show that,

at least for n-2, the proposed algorithm performs in general better than the

generalized Lemke's algorithm.



An algorithm for the linear complementarity problem with upper and lower bounds.

1. Zntroduction.

The Linear Complementarity Problem (LC~) cor.sists in finding two

vectors s and z in Rn such that for given nxn matrix M and n-vector q

(i; s - Mztq

(ii) s,z ' 0

(lli) STZ - Q.

The LCP is an important problem in mathematical programmincJ (see

e.q. Garcia and Gould [?~). Lemke [6~ first presented a solution for this

problem. Lemke's algorithm is inttialized at z-(1 and traces from this

point a piecewise linear path of points until a solution is obtained or

a ray is encountered. Talman and Van der Heyden C9] proposed an algorithm

which allows for an arbitrary starting point in the non-negative orthant.

When taking the starting point in the interior of this orthant there are

2n different directions to leave this point. Along which direction the

starting point is left depends on the component of s having the largest

absolute value. In case z-0 is chosen to be the starting point the

algorithm reduces to Lemke's algorithm.

The feature of allowing arbitrarily chosen starting points has obvious

practical merit in such applications as parametric studies or solving

a nonlinear complementarity problem through a sequence of approximating

LCP's (see e.g. C4~ and [7]) . In Everts [1] the algorithm of Talman and

Van der Heyden was generalized in order to solve the LCP with upper and

lower bounds. This Generalized Linea.r Complementarity Problem (GLCP)

consists of finding vectors s and z in Rn such that for given matrix M,

n-vector q and n-vectors a and b with aj~b~, j-1,...,n,

(i) s - Mztq
(ii) a ~ z ~ b

(iii) zj - aj -~ sj ~ 0

a. ~ z. ~ b. ; s. - 0 j-1,...,n
J J ] J

z. - b, -~ s. ? 0.
7 J J
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When the path of the algorithm hits a boundary face of the feasible

region

Cn -{zeRn~a ~ z ~ b}

the algorithm cor.tinues by tracing a path in this face. To each a solution

point in a k-face of Cn, l~k~n, from an interior point of Cn, the algorithm

needs at least 2n-k (pivot) steps and 2n-1 if k-~~, i.e. when one of the

vertices of Cn is found as a solution point.
n

In this paper we propose a pivoting algoritYim havinq 2 rays, each of

them leading to a vertex of Cn The ray along ,which the algorithm leaves the

starting point depends on the sigr. pattern of the s-value at this point.

More generally, the piecewise linear path of the algorithm is determined

by the sign pattern of s-Mztq and the location of z with respect to the

starting point. The algorithm is such that a solution point is found as

soon as the path of the algorithm hits a face of Cn not containinq the

starting point. From this we can conclude that iE on the starting ray the

sign pattern of s does not change the corresponding vertex of Ct~ solves

the GLCP and is found in just one step. In general, if OskSn-1, a solution

on a k-face of Cn could be found in ktl pivot steps, which is considerably

less than for the algorithm with 2n rays when k is small with respect to n.

This motivates the presentation of the new algor~thm. We notice that the

algorithm with 2n rays is an adaption of the so-called cubical algorithm

for solving a system of nonlinear equations presented in C~ , see also [8).

The new algorithm with 2n rays is a similar adaption of the octahedral

algorithm introduced in Wright [10}.

The paper is organized as follows. In section 2 a detailed description

of the piecewise linear path followed by the algorithm is given. The steps

of the algorithm are presented in section 3. Finally, in section 4 the

algorithm is compared with the generalized Lemke's algorithm. Furthermore

we present an adaption of the algorithm to solve the classical I.CP.
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2. Movements of the algorithm.

We consider points (s,z) in ftnxCn satisfying

s - Mz t q

where Cn-{xERn~a.5z,5b,, i-1,...,n} with -~~ai~bi~~ for all i. The case that
i i i

some of the numbers bi (ai) are infinite (minus infinite) is discussed in

section 4. Starting at un arbitrary point z~, the algorithm adjusts z by

increasing z, if s.~0 (and z~~b,) and by decreasing zi if s1~0 (and z~~ai).
i i i i

More precisely, for each sign vector t in {-l,tl}n a direction d(t)-v(t)-z~

is defined with v(t) the vertex of Cn qiven by vi(t)-bi if ti-f1 and vi(t)zai

if t,--1. Assuming that s~~0 for all i, the algorithm leaves zC in the
1 1

direction d(t~) towards the vertex v(t~) of Cn with t~-sgn s0. So, the

direction in which z~ is left is the direction associated with sgn (s~).

The algorithm leaves this ray as soon as si becomes equal to zero for some

say at the point z. So
0

for each point z

t- sgn s- t. Since z lies

between z~ and z we have that

i,

between z and z~, there is a a, O~asl such that

z7 - z~ t~(bj-z~) for all j with tj - tl

z. - z~ t a(a.-zo) for all j with tj --1.
7 7 7 i

The algorithm maintains this property between zj and tj as long as

t.~0. However, when sj
J

not solve the problem,

from z~ta(bj-z~)

was -1, while sj

a path of points

becomes equal to zero and the associated point z does

then the algorithm contínues by decreasing zj áway

if tj was tl and increasing zj away from z~ta(aj-z~) if tj

is kept equal to zero. In general, the algorithm qenerates

z such that for some a, O~a~1,

z, - zo t ~(b.-z~)
J J ] J

z, - z~ t a(a.-z0)
] 7 7 J

for all j with tj - tl

for all j with tj --1

z~ t 1(a.-z~) ~ z. ~ z~ t a(b.-z~)
7 J J 7 J J 7

for all j with tj - 0

(2.2)



where t- sgn s. These coug~lementarity properties between z and s

govern the alqorithm and define a piecewise linear path of points in

Cn connecting z~ with a solution to the problem. A solution point is
0

reached as soon as tj-0 for all j with zj~zj or 1-1. In the fizst case
0 ~

we have that sj-0 if zj~zj while (2.2) implies that zj-zj iff either
0

z~-b, and t.-t1 or z,-a. and tj--1. If a-1 then z.-b, if t.-t1, z.-a.
J J J l J J J J J J

if t.--i and t,-0 if a.~z.~b.. In particular we may have that s dces
J J J J J

not change along the ray d(tC) when leaving zo. Then ~ becomes 1 at

z-v(t~) and v(t~) is a solution point. In such a case a solution is

found in just one step.
We will prove now that the points ( s,z) in RnxCn satisfying (2.2)

indeed induce a sequence of adjacent line segments in Cn connectinq z~

and a solution point. Let 7 be the set of sign vectors in Rn, i.e.

T - {t~gnlt,e{-l,p,tl}, i-1, ..,n}.
i

Furthermore, let z~ be an arbitrary point in Cn which will be the

starting point of the algorithm. Then for teT we define the convex

polyhedral set A(t) by

~ - t 1 andA(t) -(D if zi - bi for all i with ti

z~ - a, for all i with ti -
i i

and, otherwise

-1,

A(t) - {zeCnlz.-a(b.-z~)fz~ if t. - }1
J J J J J

z.-a(a,-z~)tz~ if t. - -1
J J J J J

a(aj-z~;5zj-z~5a(bj-z~) if tj - 0

with O~a~l

FOr tET, let I-(t)-{iEI It.--1} , IO(t)-{1EI ~t.-~}
n i n i

tI (t)-{ieInlti-tl}. Then

and let

(2.3)

dim A(t) - IId(t) I} 1



if A(t) is nonempty. If tE{-1,1}n then dim A(t)-1(unless z~-v(t)) and
0

A(t) is the line segment connecting 2 with v(t), i.e. A(t) is the

ray along which the direction d(t)-v(t)-zD points at zo. So, if z~

is not a vertex of Cn, there are 2n directions along one of which z~

is left. when z~ is a vertex of Cn, there are 2n-1 directions. The

algorithm leaves z~ along the ray A(t0) for which t0-sgn (s0).

Observe that z~ solves the problem if z~-v(t~). In general, the
n

algorithm generates points z in C such that for some t in T both

z lies in A(t) and t-sgn s. For tET, let C(t) be defined by

C(t) - C1{z.~Cnlsgn(Mztq) - t}

and let B(t) - C(t)f1A(t). A point z satisfies (2.2) if and only if

z lies in B(t) for some tET. We now introduce basic and nonbasic

variables. Notice that z lies in B(sgn s).

n 0
Definition 2.1. For some zEC , z~z , let A(t) be the smallest set A(t)

containing z in its interior. Then the variable z., jEIn is said to
J

be nonbasic if tj~0. With s-Mztq, the variable sj is said to be non-

basic if s.-0. Furthermore, let a be defined as in 2.2 with t-t. Then
7

a is said to be nonbasic if a-1. Finally, for z-zD, ~ is defined to

be equal to zero and all variables zj, jeZn and x are said to be

nonbasic. When not nonbasic, a variable is said to be basic.

Definition 2.2. A pair (s,z) is called complementary if for each jeIn,

either or both z. and s, are nonbasic.
7 J

Nondegeneracy assumption 2.1. For each z in B(t), teT, holds that among

the 2nt1 variables (z,s,1) with s-Mztq and a as defined in (2.2)(a-0 if

z-z~) at most ntl variables are nonbasic.

This assumption does not cause a loss of generality, since if

degeneracy occurs a slight perturbation of the data (M,q) will restore

the assumption.

By definition, the pair (s~,z~) is complementary because at z0

all variables z, are defined to be nonbasic. Since also a is nonbasic
p ~ 0 0

at z assumption 2.1 implies that sj~0 for all j. Hence, z lies in
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B(tU), tD-sgn s~ and in no other set B(t), t~tU. The set A(to) is
obtained by increasing a from 0 at z~. Doing so a line segment of
points z in A(tU) is qenerated while complementaritv between z and s
is maintained. This movement is pursued until one -and just one,
because of assumption 2.1- basic variable becomes nonbasic. At such

a point z either a becomes equal to one or s.-0 for just one jeIn.
J

In the first case a solution has been reached, as has been shown

before. In the latter case the corresponding variable z, becomes
]

basic and the algorithm moves into the associated reqion A(t) , t- sgn s,
tracing a line segment of points z sign-complementary to t. Clearly
this line segment is B(t). Under assumption 2.1 each nonempty B(t)

is a line segment in A(t) having two endpoints. We now want to show
that an endpoint of a line segment B(t) is either z~, or a solution
point, or an endpoint of a line segment B(t') with t' differing from

t in just one component. An endpoint is characterized by the fact
that n}1 variables are nonbasic. More precisely, at an endpoint

z of B(t) either a is equal to 0 or 1 and for all j either zj or sj

is nonbasic, or a is basic and for exactly one index h both zh and

sh are nonbasic. If ~ is equal to 0 then z-zD and z is an endpoínt

of the unique line segment B(t~) with t~-sgn(t4z~tq).
In the following lemmas we consider the endpoints of line

segments in case a is not equal to 0.

Lemma 2.1. Let z be an endpoint of a line segment B(t). If a is equal

to 1, then z is a solution point.

Proof. Since zEA(t) and a-1 we have that

zj - bj if tj - tl

zj - aj if ti - -1

and a. ~ z, s b, if t. - 0
] 7 7 ]

Moreover, t-sgn(Mztq) since z also lies in C(t) and because of

assumption 2.1. Hence z is a solution point.
0



In the next lemma, let Zb (Za) be the set of indices j for which
zo-b . ( zo-a . ) .

J J J J

Lemma 2.2. Let z be an endpoint of a line segment B(t) and let
s-Mztq. If at the point z, sh becomes nonbasic, then z is a solution
point if I}(t)~{h}cZb and I-(t)~{h}cZa

Proof. The conditions of the lemma imply that z~-bj for all jeI}(t)

and z~-a, for all jeI-(t), j~h. Furthermore t.-sgn s, for all j~h
J J t J J 0 0and sh-0. Therefore jeI (t) impliesg sjó0 and zj-~(bj-zj)tzj-bj, and

jEI-(t) implies sj~0 and zj-a(aj-zj)tzj-aj. Moreover, for all other

indices j we have s.-0 and a,~z.~b..
J J J J

Lemma 2.3. Let z be an endpoint of a line segment B(t) and let s-Mz}q.
tIf at z, sh becomes nonbasic and I (t)~{h} contains at least one

j, j~h, not in Z or I-(t)~{h} contains at least one index j,index b
aj~h, not in Z, then z is also an endpoint of B(t') with th-0 and

t;-t, for all j~h.
J J

Proof. The conditions of the lemma ímply that there is an index j,
j~h, with t'-t1 and z~~b. or an index k, k~h, with tk--1 and

J J J0zk~ak. Hence A(t') is not empty. Moreover, since t~-tj, j~h, th-0

and thE{-1,1}, A(t') contains A(t) as a boundary facet and therefore

z is in the boundary of A(t'). Finally, since tj-sgn sj, j~h, and

sh-0 we have that t'-sgn s. Consequently z lies in C(t') and is an

endpoint of B(t').
a

Lemma 2.4. Let z be an endpoint of a line segment B(t) and let s-Mztq.

If at z, zh becomes nonbasic then z is also an endpoint of B(t')

with t:-t,, j~h and th equal to either tl or -i.
7 J

Proof. At z the variable zh becomes nonbasic, i.e. for the a defined

in (2.2) holds

a (ah-zh) ~ zh-zh ~ a ( bh-zh)
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with just one equality. If zh-zhta(ah-zh) then zEA(t') with

th--1 and t:-t., j~h. On the other hand, if zh-zhta(bh-z})
J 7

then z lies in A(t') with th-t1 and t~-tj for all j~h. Finally,

since t-sgn s while sh-0 we have that z~Cl{~~san s-t'} - C(t').

Hence z is an endpoint of B(t').

The lemma's 2.3 and 2.4 say that if z is an endpoint of the

line segment B(t) and z is not a solution point, then z is an

endpoint of the line segment B(t'). The nondegeneracy assumption
guarantees that at z just one basic variable becomes nonbasic. This

implies that t' is uniquely determined. So, linking the line segments
B(t) for various tET together, the set B- U B(t) contains a

tET o
piecewise linear path having the startin 4 point z as an endpoint.

Since T consists of a finite number of elements t and since each B(t)

is either empty or a single line segment, the path in B originating

at z~ consists of a finite number of linear pieces and ends at a

solution point z. This path is generated by the algorithm and can

be followed by a sequence of linear programming steps in a system

of n linear equations.

3. Performance of the algorithm.

We consider now a poínt z on the path traced by the algorithm.

For such a point we have that zeA(t)f1C(t) for some sign vector tE7.

So, with t- sgn s- sgn Mztq we have that

z, - a(b.-z~) t z~ if t. -}1
J J J J J

z. - a(a.-z~) t z~ if t, --1
) J J J J

a(a.-z0)~z.-z~~a(b.-z~) if t, - 0
J J J J J J J

with Osasl. Let t'E{-1,1}n be a sign vector such that ti-ti if ti~0.

Then we can rewrite z as

z - (1-a)z~tav(t')-E ~ 6hthe(h) (3.1)
hEI (t)
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for certain dh, 05dh5~(bh-ah), where e(h) is the h-th unit vector,

h-1,...,n. From (3.1) we obtain

s- Mztq -(1-a)MzOtaMv(t') - E p dhthMe(h) t q. (3.2)
he I (t)

With Mz~tq-q~ and Me(h)-Mh this reduces to

staM[z~-v(t')] t E ~ dhth~ - qo. (3.3)
h EI (t)

Since t-sgn s, s is equal to
~h I~(t)Vhthe(h)

with uh-thsh?0.
~

All together we obtain that zeA(t)f1C(t) if and only if

~M(z~-v(t')] t 0 dhth~ thEI (t)
E u t e(h) - q (3.4)

h~I~(t)
h h

for certain O~a51, 056h~a(bh-ah) and uh?0. It will follow that t' is

generated uniquely by the algorithm. The nondeqeneracy assumption

implies that any solution to the system (3.4) of n linear equations

has at most one of the ntl variables (a,dh,Uh) equal to its upper

or lower bound. Hence, the linear path of points B(t), teT, can be

followed by making a linear programming pivot step in the system

(3.4). The performance of the algorithm to follow the piecewise

linear path from z~ to a solution of (2.1) can therefore be described

in tkie next procedure, where z~ is the initial point and s~-Mz~tq.

0 0 0 0
Step 0(Initialisation). Set t'-t-t -sgn (Mz tq). If z-v(t )

0 0 0
then (s~,z~) solves the problem. Otherwise, set I(t)-I (t )-~d

and make a l.p. pivot step with the vector M[z~-v(t~)] into the

system

E ~ uhthe(h) - MzOtq - qo-
h~l.I (t)

If u. becomes zero for some i, qoto step 1. Otherwise the variable
i ~

a associated to M(z0-v(t~)] becomes equal to 1 and the vertex v(t )

is a solution point (lemma 2.1).
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0 0 f
Step 1. (lemma 2.3.). Set ti-0, K(t)-I (t)u,i} and make a l.p. pivot

step with t.'M, into the systemi i

aM[z0-v(t')] t L 0 dhth~ } E 0 uhthe(h) - 4.
hei (t) h~ic (t)

If a becomes equal to 1, a solution is found ( lemma 2.1.). Otherwise

goto step 2.

Step 2. Set IO(t)-K0(t). If di becomes 0 for some ieKO(t) goto step 3.

If d, becomes a(b.-a,) for some ieKO(t), set ti equal to -ti, adapt
1 0 1 1

the column M(z -v(t')] accordingly and make di equal to 0 and goto

step 3. If ui becomes 0 for some i~KO(t) and if for all other h~KO(t),

z~-bh if th-}i and zh-ah if th--1, then a solution is found ( lemma 2.2).

Otherwise, return to step 1.

0 0
Step 3. (lemma 2.4.). Set ti-ti, K(t)-I (t)~{i} and make a l.p. pivot

step with t.e(i) ini

~M(z0-v(t')] t E 0 dhth~ t E 0 Vhthe(h) - q0-
heK (t) h~éI (t)

If a becomes equal to 1, a solution is found (Lemma 2.1). OtherWise

goto step 2.

4. Some examples.

In this section we compare the 2n-ray or cubical algorithm

initiated by Talman and Van der Heyden with the 2n-ray or octahedral

algorithm described in this paper. Remember that the cubical algorithm

reduces to Lemkes algorithm when z0-0 (and there are no upper bounds).

If the solution point is on the interior of Cn both algorithms may

solve the problem in n pivot steps (best cases). However, if a vertex

of Cn is found as a solution point, the octahedral algorithm may solve

the problem in only one step, while the cubical algorithm needs at

least 2n-1 1.p, pivot steps. This difference is shown in the next

example for n-2. In Talman and Van der Heyden a measure t0(z) is

defined, called the "leading infeasibility". With some adaptions and

for z0 being an interior point, this measure is defined by



}
t~(z)-max(max{s.(z)Iz.~b,}, max{s-(z)~z.~a.}). A point z is a solution

J J J J J J
if and only if tp(z)~0. Now consider figure 1 in which the sign

structure of problem 1 is given. The problem has three solution points
r ~ 1

namely the vertex v-v((-1,}1) ) and the points x and x. The starting

Figure 1.
sl-s2

point is z~ in which -s~~s~~0 where so-MZ~tq. Clearly t~(z~)--s~ and

the cubical algorithm decreases zl by making a l.p. pivot step,

until the point a is reached. For all points z on the line segment
0[z ,a), t~(2)--sl. However, at the point a we have t~(a)-sz(a),

causing a discontinuity in t~. To overcome this, an additional l.p.

pivot step is made at a to decrease t0 from -sl(a) to sZ(a). After

this z2 is increased until the solution point v is reached, at which

point t~ is decreased from s2 to 0 by making another l.p. pivot step.

Since the last step is redundant, the algorithm needs 2n-1-3 l.p.

steps. On the other hand, the octahedral algorithm reaches the

solution point v in just one l.p. step, because the sign pattern

dces not change on the line segment between z~ and this vertex.
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.
In figure 2 the solution points are x, xl and x. Now the cubical

algorithm goes from z~ to the point a, then makes a l.p. step to
2

decrease t~ from -sl(a) to sz(a) and finally goes from a to x, so

that again 3 l.p. steps are needed to find a solution. The octahedral

algorithm goes from z~ to b and follows then the line s2-0 until xz is

-0

s1-0

Figure 2.

sl-s2

reached, implying that 2 steps are needed. In figure 3 both algorithms

find the unique solution point x~ in just two steps. At z~ we have that
~

s0~s~~0. The cubical algorithm follows the path z-~a-~x , and the
1 2 ~ „

octahedral algorithm follows the path z -ib-~x .
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s1-0

FiqurP 3.

s1--s2

In general, let k be the dimension of the face of Cn containing

the solution found by the algorithm in its interior. Then the

minimum number of steps (best cases) to find the solution point is

2n-k for the cubical algorithm (2n-1 if k-0) and ktl for the

octahedral algorithm (n if k-n). In particular if k is small

compared to n, the best case for the cubical algorithm (or generalized

Lemke's algorithm) is considerably worse than the best case for the

octahedral algorithm. Of course, for both algorithm s the minimum

number decreases if the starting point is on the boundary of Cn.

For instance, if in figure 2 z~ is chosen to be a, both algorithms

need only 1 step.

we now consider the worst cases for n-2. This is done in the

figures 4 and S. In figure 4 we show the maximum number of l.p.

pivot steps to find a solution for the cubical algorithm and in

figure 5 we show this number for the octahedral algorithm. The cubical

algorithm traces the path z~, a, b, c, d, e, f, g, v, the latter point

being the unique solution point. So, the algorithm initially increases

2, until a is reached. Then z2 ió increased until ó1-s2. The latter

line is followed as long as zl~zl. As soon as z1-z1, the algorithm

continues by increasing zz until z2-b2, then zl is decreased until
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52-~

Figure 4: The worst case for the cuSical algorithm, n-2.

s1--sZ. Finally this line is followed until z2-z~, then zl is

decreased until z1-a1 and then z2 is increased until the solution

point v is reached. Including the additional l.p. steps to overcome

the discontinuity of t~(z) at the points a, d and g, this takes 11

l.p. steps. We now consider the worst case for the octahedral

algorithm. This is shown in figure 5. In this figure there are
~

3 solution points, namely x, x and v. The algorithm traces the

path z~, a, b, c, d, v, which takes 5 l.p. steps. At z~ we have

that s~~0 and s~~0, implying a search in the direction d((tl,-1)T).

'Chen s2-0 is followed until the ray A((tl,}1)T ) is reached. This

ray is followed until c is Eound where s1-0. The line s1-0 is

followed until point d and finally A((-l,tl)T) is followed until

the solution point v is found. The examples above show the

superiority of the octahedral algorithm above the cubical algorithm

for n-2. It is our conjecture that the differences in the number

of l.p. steps will increase dramatically if the dimension of

the problem growths.
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s2-0
Figure 5: The worst case for the octahedral algorithm, n-2.

A(t,-) denotes A(t) with t-(tl,-1) , etc.

The algorithm described in this paper can easily be adapted for

the case that some of the ai's or bi's are not finite. For

simplicity, let us consider the classical LCP where ai-0 and

b.-t~ for all i. Then we redefine the sets A(t), tET, by

n 0 0. 0
A(t) -{zeR Iz,-z.t~ if t.-}1, z.~z.~z.fa if t,-0,

t J J J J J J J
0

and zj-zj if tj--l,a~}

if t.-t1 for at least one index j,
J

n 0 0A(t) -{zER}Iz.-(1-a)z, if t.-0, and z.-(1-a)z, if t,--1,O~x~1}
7 J J l J J

0
if t50 and tj--1 for at least one index j for which zj~0, and

A(t)-(á otherwise. Again let B(t)-A(t)f1C(t) with C(t) as before,

then the set B-utB(t) contains a piecewise linear path from z0

which can be followed by subsequent linear programming pivot steps

in a system of linear equations similar to (3.4). The piecewise

linear path originating at z0 leads within a finite number of steps either

to a solution point or terminates with a half-line to infinity.



It can easily be shown that Evers'condition is sufficient for

convergence of the alqorithm if a solution exists (see Jones [3]).

The case n-2 is illustrated in figure 6.

zZ

A(-,t) ~ A(t,})

n n
Figure 6: The sets A(t) if C-Rt,n-2.

In case z~-0 the algorithm differs from Lemke's original algorithm.

The new algorithm leaves z~-0 by increasing all the z~'s for which

q, is positive whereas Len:.:e's algorithm increases only the zi for
7

which qi is maximal. The latter algorithm therefore can leave the

startinq point z~-0 in n directions and the algorithm described in

thís paper in 2n-1 directions. .Ln the case that zU-O and all the

b.'s are plus infinite the worst case of the cubical algorithm
i

needs one step less than the worst case of the octahedral algorithm

(n-2). In all other cases the new algorithm performs better.



References.

[1] I.D. Everts, "Het lineaire complementariteitsprobleem", Landbouw-

Economisch Instituut, Den Haag, The Netherlands (1982).

[2] G.B. Garcia and F.J. Gould, "Studies in linear complementarity",

Center for Mathematical Studies in Business and Economics,

University of Chicago, Chicaqo, I11. (1980).

[3] P.C. Jones, "A note on the Talman, Van der Heyden linear

complementarity algorithm", Mathematical Programming 25 (1983),

122-124.

[4] N. Josephy, "Newton's method for generalized equations", Technical

Summary Report 1965, Mathematics Research Center, University of

wisconsin, Madison, Wi.(1979).

[5]

[6]

[7]

[8]

[9]

G. van der Laan and A.J.J. Talman, "A class of simplicial

restart fixed points algorithms without an extra dimension",

Mathematical Programming 20 (1981), 33-48.

C.E. Lemke, "Bimatrix equilibrium points and mathematical

programming", Management Science 11 (1965), 681-689.

L. Mathiesen and T. Hansen, "An equilibrium model for an open

economy with institutional constraints on factor prices", in:

W. Forster, ed., Numerical Solution of Highly Nonlinear Problems

(North-Holland, Amsterdam, 1980) pp. 337-360.

P.M. Reiser, "A modified integer labelling for complementarity

algorithms", Mathematics of Operations Research 6(1981), 129-139.

A.J.J. 'Palman and L. Van der Heyden, "Algorithms for the linear

complementarity problem which allow an arbitrary starting point",

in: B.C. Eaves et a1L,eds., Homotopy Methods and Global Convergence

(Plenum Press, New York, 1983), pp. 267-285.

[10] A.H. Wriqht, "The octahedral alqorithm, a new simDlicial fixed point

algorithm", Mathematical Programming 21 (1981), 47-69.



i

IN 1984 REEDS VERSCHENEN

138 G.J. Cuypers, J.P.C. Kleijnen en J.W.M. van Rooyen
Testing the Mean of an Asymetric Population:
Four Procedures Evaluated

139 T. Wansbeek en A. Kapteyn
Estimation in a linear model with serially correlated errore when
observations are missing

140 A. Kapteyn, S. van de Geer, H. van de Stadt, T. Wanabeek
Interdependent preferences: an econometric analysis

141 W.J.H. van Groenendaal
Discrete and continuous univariate modelling

142 J.P.C. Kleijnen, P. Cremers, F. van Belle
The power of weighted and ordinary least squares with estímated
unequal variances in experimental design

143 J.P.C. Kleijnen
Superefficient
experiments

estimation of power functions in simulation

144 P.A. Bekker, D.S.G. Pollock
Identification of linear stochastic models with covariance
restrictions.

145 Max D. Merbis, Aart J. de Zeeuw
From structural form to state-space form

146 T.M. Doup and A.J.J. Talman
A new variable dimension simplicial algorithm to find equilibria on
the product space of unit simplices.

147 G. van der Laan, A.J.J. Talman and L. Van der Heyden
Variable dimension algoríthms for unproper labellings.

148 G.J.C.Th. van Schijndel
Dynamic firm behaviour and financial leverage clienteles

149 M. Plattel, J. Peil
The ethico-political and theoretical reconstruction of contemporary
economic doctrines

150 F.J.A.M. Hoes, C.W. Vroom
Japanese Business Policy: The Cash Flow Triangle
an exercise in sociological demystification

151 T.M. Doup, G. van der Laan and A.J.J. Talman
The (2~7-2)-ray algorithm: a new simplicial algorithm to compute
economic equilibria



11

IN 1984 REEDS VERSCHENEN (vervolg)

152 A.L. Hempenius, P.G.H. Mulder
Total Mortalíty Analysis of the Rotterdam Sample of the Kaunas-
Rotterdam Intervention Study (KRIS)

153 A. Kapteyn, P. Kooreman
A disaggregated analysis of the allocation of time within the
household.

154 T. Wansbeek, A. Kapteyn
Statistically and Computationally Efficient Estimation of the
Gravity Model.

155 P.F.P.M. Nederstigt
Over de kosten per ziekenhuisopname en levensduurmodellen

156 B.R. Meijboom
An input-output like corporate model including multiple
technologies and make-or-buy decisions

157 P. Kooreman, A. Kapteyn
Estimation of Rationed and Unrationed Houaehold Labor Supply
Functions Using Flexible Functional Forms

158 R. Heuts, J. van Lieshout
An implementation of an inventory model with stochastic lead time

159 P.A. Bekker
Comment on: Identification in the Linear Errors in Variablea Model

160 P. Meys
Functies en vormen van de burgerlijke staat
Over parlementarisme, corporatisme en sutoritair etatisme

161 J.P.C. Kleijnen, H.M.M.T. Denis, R.M.G. Kerckhoffs
Efficient estimation of power functions

162 H.L. Theuns
The emergence of research on third world touriam: 1945 to 1970;
An introductory essay cum bibliography

163 F. Boekema, L. Verhoef
De "Grijze" sector zwart op wit
Werklozenprojecten en ondersteunende instanties in Nederland in
kaart gebracht

164 G. van der Laan, A.J.J. Talman, L. Van der Heyden
Shortest paths for aimplicial algorithms

165 J.H.F. Schilderinck
Interregional structure of the European Community
Part II:Interregional input-output tables of the European Com-

munity 1959, 1965, 1970 and 1975.



iii

IN (1984) REEDS VERSCHENEN (vervolg)

166 P.J.F.G. Meulendijks
An exercise in welfare economics (I)

167 L. Elsner, M.H.C. Paardekooper
On measures of nonnormality of matrices.



iv

IN 1985 REEDS VERSCHENEN

168 T.M. Doup, A.J.J. Talman
A continuous deformation algorithm on the product space of unit
simplices

169 P.A. Bekker
A note on the identification of reatricted factor loading matrices

170 J.H.M. Donders, A.M. van Nunen
Economische politiek i n een twee-sectoren-model

171 L.H.M. Bosch, W.A.M. de Lange
Shift work in health care

172 B.B. van der Genugten
Asymptotic Normality of Least Squares Estimators in Autoregressive
Linear Regression Models

173 R.J. de Groof
Geisoleerde versus gecoárdineerde economische politiek in een twee-
regiomodel

174 G. van der Laan, A.J.J. Talman
Adjustment processes for finding economic equilibria

175 B.R. Meijboom
Horizontal mixed decomposition

176 F. van der Ploeg, A.J. de Zeeuw
Non-cooperative strategies for dynamic policy games and the problem
of time inconsistency: a comment

177 B.R. Meijboom
A two-level planning procedure with respect to make-or-buy deci-
sions, including cost allocations

178 N.J. de Beer
Voorspelprestaties van het Centraal Planburesu in de periode 1953
t~m 1980

178a N.J. de Beer
BIJLAGEN bij Voorspelprestaties van het Centraal Planbureau in de
periode 1953 t~m 1980

179 R.J.M. Alessie, A. Kapteyn, W.H.J. de Freytas
De invloed van demografische factoren en inkomen op consumptieve
uitgaven

180 P. Kooreman, A. Kapteyn
Estimation of a game theoretic model of household labor supply

181 A.J. de Zeeuw, A.C. Meijdam
On Expectations, Information and Dynamic Game Equilibria



V

182 Cristina Pennavaja
Periodízation approaches of capitaliat development.
A critical survey

183 J.P.C. Kleijnen, G.L.J. Kloppenburg and F.L. Meeuwsen
Testing the mean of an asymmetric population: Johneon's modified T
test revisited

184 M.O. Nijkamp, A.M. van Nunen
Freia versus Vintaf, een analyse

185 A.H.M. Gerarda
Homomorphisma of graphs to odd cycles

186 P. Bekker, A. Kapteyn, T. Wansbeek
Consistent sets of estimates for regreasions with correlated or
uncorrelated measurement errors in arbitrary aubseta of all
variables

187 P. Bekker, J. de Leeuw
The rank of reduced diepersion matrices

188 A.J. de Zeeuw, F. van der Ploeg
Consistency of conjectures and reactions: a critique

189 E.N. Kertzman
Belastingstructuur en privatisering

190 J.P.C. Kleijnen
Simulation with too many factors: review of random and group-
screening designs

191 J.P.C. Kleijnen
A Scenario for Sequential Experimentation

192 A. Dortmans
De loonvergelijking
Afwenteling van collectieve lasten door loontrekkers?

193 R. Heuts, J. van Lieshout, K. Baken
The quality of some approximation formulas in a continuous review
inventory model

194 J.P.C. Kleijnen
Analyzing simulation experiments with common random numbers

195 P.M. Kort
Optimal dynamic investment policy under financial restrictions and
adjustment costs

196 A.H. van den Elzen, G. van der Laan, A.J.J. Talman
Adjuatment processes for finding equilibria on the simplotope



vi

197 J.P.C. Kleijnen
Variance heterogeneity in experimental deóign

198 J.P.C. Kleijnen
Selecting random number seeds in practice

199 J.P.C. Kleijnen
Regression analysis of simulation experimenta: functional software
specification



V I~ I ~ ~V NN ~Y V~I~I~BW~RWI NW''' I


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28

