subfaculteit der econometrie

RESEARCH MEMORANDUM

LBURG UNIVERSITY
:PARTMENT OF ECONOMICS
itbus 90153-5000 LE Tilburg
therlands

$\frac{\text { FEW }}{200}$

AN ALGORITHM FOR THE LINEAR COMPLEMENTARITY PROBLEM WITH UPPER AND LOWER BOUNDS
G. VAN DER LAAN ${ }^{1)}$ AND A.J.J. TALMAN ${ }^{2)}$ DECEMBER 1985

1) Department of Actuarial Sciences and Econometrics, Free University, Amsterdam, The Netherlands.
2) Department of Econometrics, Tilburg University, Tilburg, The Netherlands.

This research is part of the VF-program "Equilibrium and Disequilibrium in Demand and Supply", which has been approved by the Netherlands Ministry of Education.
by
G. VAN DER LAAN and A.J.J. TALMAN.

Abstract.

In this paper the so-called octahedral algorithm for solving systems of nonlinear equations is adapted to solve the linear complementarity problem with upper and lower bounds. The proposed algorithm generates a piecewise linear path from an arbitrarily chosen point z^{0} to a solution point. This path is followed by linear programming pivot steps in a system of n linear equations where n is the size of the problem. The starting point z^{0} is left in the direction of one of the 2^{n} vertices of the feasible region, depending on the sign pattern of the function value at z^{0}. The sign pattern of the linear function and the location of the points in comparison with z^{0} completely govern the path of the algorithm. We show that, at least for $n=2$, the proposed algorithm performs in general better than the generalized Lemke's algorithm.

An algorithm for the linear complementarity problem with upper and lower bounds.

1. Introduction.

The Linear Complementarity Problem (LCP) corsists in finding two vectors s and z in R^{n} such that for given $n \times n$ matrix M and n-vector q

$$
\begin{array}{ll}
\text { (i) } & s=M z+q \\
\text { (ii) } & s, z \geq 0 \\
\text { (iii) } s^{\top} z=0 .
\end{array}
$$

The LCP is an important problem in mathematical programming (see e.g. Garcia and Gould [2]). Lemke [6] first presented a solution for this problem. Lemke's algorithm is inttialized at $z=0$ and traces from this point a piecewise linear path of points until a solution is obtained or a ray is encountered. Talman and Van der Heyden [9] proposed an algorithm which allows for an arbitrary starting point in the non-negative orthant. When taking the starting point in the interior of this orthant there are $2 n$ different directions to leave this point. Along which direction the starting point is left depends on the component of s having the largest absolute value. In case $z=0$ is chosen to be the starting point the algorithm reduces to Lemke's algorithm.

The feature of allowing arbitrarily chosen starting points has obvious practical merit in such applications as parametric studies or solving a nonlinear complementarity problem through a sequence of approximating LCP's (see e.g. [4] and [7]). In Everts [1] the algorithm of Talman and Van der Heyden was generalized in order to solve the LCP with upper and lower bounds. This Generalized Linear Complementarity Problem (GLCP) consists of finding vectors s and z in R^{n} such that for given matrix M, n-vector q and n-vectors a and b with $a_{j}<b_{j}, j=1, \ldots, n$,

$$
\begin{aligned}
& \text { (i) } s=M z+q \\
& \text { (ii) } a \leq z \leq b \\
& \text { (iii) } z_{j}=a_{j} \rightarrow s_{j} \leq 0 \\
& a_{j}<z_{j}<b_{j} \rightarrow s_{j}=0 \quad j=1, \ldots, n \\
& \quad z_{j}=b_{j} \rightarrow s_{j} \geq 0 .
\end{aligned}
$$

When the path of the algorithm hits a boundary face of the feasible region

$$
c^{n}=\left\{z \in R^{n} \mid a \leq z \leq b\right\}
$$

the algorithm continues by tracing a path in this face. To each a solution point in a k-face of $c^{n}, 1 \leq k \leq n$, from an interior point of c^{n}, the algorithm needs at least $2 n-k$ (pivot) steps and $2 n-1$ if $k=0$, i.e. when one of the vertices of C^{n} is found as a solution point.

In this paper we propose a pivoting algorithm having 2^{n} rays, each of them leading to a vertex of c^{n}. The ray along, which the algorithm leaves the starting point depends on the sign pattern of the s-value at this point. More generally, the piecewise linear path of the algorithm is determined by the sign pattern of $s=M z+q$ and the location of z with respect to the starting point. The algorithm is such that a solution point is found as soon as the path of the algorithm hits a face of c^{n} not containing the starting point. From this we can conclude that if on the starting ray the sign pattern of s does not change the corresponding vertex of $C^{n 1}$ solves the GLCP and is found in just one step. In general, if $0 \leq k \leq n-1$, a solution on a k-face of c^{n} could be found in $k+1$ pivot steps, which is considerably less than for the algorithm with $2 n$ rays when k is small with respect to n. This motivates the presentation of the new algorithm. We notice that the algorithm with $2 n$ rays is an adaption of the so-called cubical algorithm for solving a system of nonlinear equations presented in [5] , see also [8]. The new algorithm with 2^{n} rays is a similar adaption of the octahedral algorithm introduced in Wright [10].

The paper is organized as follows. In section 2 a detailed description of the piecewise linear path followed by the algorithm is given. The steps of the algorithm are presented in section 3. Finally, in section 4 the algorithm is compared with the generalized Lemke's algorithm. Furthermore we present an adaption of the algorithm to solve the classical LCP.
2. Movements of the algorithm.

We consider points (s, z) in $\mathrm{F}^{\mathrm{n}} \times \mathrm{C}^{-\mathrm{n}}$ satisfying

$$
\begin{equation*}
s=M z+q \tag{2.1}
\end{equation*}
$$

where $C^{n}=\left\{x \in R^{n} \mid a_{i} \leq z_{i} \leq b_{i}, i=1, \ldots, n\right\}$ with $-\infty<a_{i}<b_{i}<\infty$ for all i. The case that some of the numbers $b_{i}\left(a_{i}\right)$ are infinite (minus infinite) is discussed in section 4. Starting at on arbitrary point z^{0}, the algorithm adjusts z by increasing z_{i} if $s_{i}>0$ (and $z_{i}^{0}<b_{i}$) and by decreasing z_{i} if $s_{i}<0$ (and $z_{i}^{0}>a_{i}$). More precisely, for each sign vector t in $\{-1,+1\}^{n}$ a direction $d(t)=v(t)-z^{0}$ is defined with $v(t)$ the vertex of C^{n} given by $v_{i}(t)=b_{i}$ if $t_{i}=+1$ and $v_{i}(t)=a_{i}$ if $t_{i}=-1$. Assuming that $s_{i}^{0} \neq 0$ for all i, the algorithm leaves z^{0} in the direction $d\left(t^{0}\right)$ towards the vertex $v\left(t^{0}\right)$ of c^{n} with $t^{0}=\operatorname{sgn} s^{0}$. So, the direction in which z^{0} is left is the direction associated with sgn (s ${ }^{0}$). The algorithm leaves this ray as soon as s_{i} becomes equal to zero for some i, say at the point \bar{z}. So for each point z between z^{0} and \bar{z} we have that $t=\operatorname{sgn} s=t^{0}$. Since z lies between \bar{z} and z^{0}, there is a $\lambda, 0<\lambda \leq 1$ such that

$$
\begin{array}{ll}
z_{j}=z_{j}^{0}+\lambda\left(b_{j}-z_{j}^{0}\right) & \text { for all } j \text { with } t_{j}=+1 \\
z_{j}=z_{j}^{0}+\lambda\left(a_{j}-z_{j}^{0}\right) & \text { for all } j \text { with } t_{j}=-1
\end{array}
$$

The algorithm maintains this property between z_{j} and t_{j} as long as $t_{j} \neq 0$. However, when s_{j} becomes equal to zero and the associated point z does not solve the problem, then the algorithm continues by decreasing z_{j}, away from $z_{j}^{0}+\lambda\left(b_{j}-z_{j}^{0}\right)$ if t_{j} was +1 and increasing z_{j} away from $z_{j}^{0}+\lambda\left(a_{j}-z_{j}^{0}\right)^{j}$ if t_{j} was -1 , while s_{j} is kept equal to zero. In general, the algorithm generates a path of points z such that for some $\lambda, 0<\lambda \leq 1$,

$$
\begin{align*}
& z_{j}=z_{j}^{0}+\lambda\left(b_{j}-z_{j}^{0}\right) \quad \text { for all } j \text { with } t_{j}=+1 \\
& z_{j}=z_{j}^{0}+\lambda\left(a_{j}-z_{j}^{0}\right) \quad \text { for all } j \text { with } t_{j}=-1 \tag{2.2}\\
& z_{j}^{0}+\lambda\left(a_{j}-z_{j}^{0}\right) \leq z_{j} \leq z_{j}^{0}+\lambda\left(b_{j}-z_{j}^{0}\right) \quad \text { for all j with } t_{j}=0
\end{align*}
$$

where $t=\operatorname{sgn} s$. These complementarity properties between z and s govern the algorithm and define a piecewise linear path of points in C^{n} connecting z^{0} with a solution to the problem. A solution point is reached as soon as $t_{j}=0$ for all j with $z_{j} \neq z_{j}^{0}$ or $\lambda=1$. In the first case we have that $s_{j}=0$ if $z_{j} \neq z_{j}^{0}$ while (2.2) implies that $z_{j}=z_{j}^{0}$ iff either $z_{j}^{0}=b_{j}$ and $t_{j}=+1$ or $z_{j}^{0}=a_{j}$ and $t_{j}=-1$. If $\lambda=1$ then $z_{j}=b_{j}$ if $t_{j}=+1, z_{j}=a_{j}$ if $t_{j}=-1$ and $t_{j}=0$ if $a_{j}<z_{j}<b_{j}$. In particular we may have that s does not change along the ray $d\left(t^{0}\right)$ when leaving z^{0}. Then λ becomes 1 at $z=v\left(t^{0}\right)$ and $v\left(t^{0}\right)$ is a solution point. In such a case a solution is found in just one step.

We will prove now that the points (s, z) in $R^{n} \times C^{n}$ satisfying (2.2) indeed induce a sequence of adjacent line segments in C^{n} connecting z^{0} and a solution point. Let T be the set of sign vectors in R^{n}, i.e.

$$
T=\left\{t \in R^{n} \mid t_{i} \in\{-1,0,+1\}, i=1, \ldots, n\right\} .
$$

Furthermore, let z^{0} be an arbitrary point in C^{n} which will be the starting point of the algorithm. Then for $t \in T$ we define the convex polyhedral set $A(t)$ by

$$
\begin{aligned}
A(t)=\emptyset \quad \text { if } z_{i}^{0} & =b_{i} \text { for all i with } t_{i}
\end{aligned}=+1 \text { and } \quad \begin{aligned}
z_{i}^{0} & =a_{i} \text { for all i with } t_{i}
\end{aligned}=-1, ~ l
$$

and, otherwise

$$
\begin{align*}
A(t)=\{ & z \in C^{n} \mid z_{j}=\lambda\left(b_{j}-z_{j}^{0}\right)+z_{j}^{0} \quad \text { if } t_{j}=+1 \\
& z_{j}=\lambda\left(a_{j}-z_{j}^{0}\right)+z_{j}^{0} \quad \text { if } t_{j}=-1 \\
& \lambda\left(a_{j}-z_{j}^{0}\right) \leq z_{j}-z_{j}^{0} \leq \lambda\left(b_{j}-z_{j}^{0}\right) \quad \text { if } t_{j}=0 \\
& \text { with } 0 \leq \lambda \leq 1 \tag{2.3}
\end{align*}
$$

For $t \in T$, let $I^{-}(t)=\left\{i \in I_{n} \mid t_{i}=-1\right\}, I^{0}(t)=\left\{i \in I_{n} \mid t_{i}=0\right\}$ and let $I^{+}(t)=\left\{i \in I_{n} \mid t_{i}=+1\right\}$. Then

$$
\operatorname{dim} A(t)=\left|I^{0}(t)\right|+1
$$

if $A(t)$ is nonempty. If $t \in\{-1,1\}^{n}$ then $\operatorname{dim} A(t)=1$ (unless $z^{0}=v(t)$) and $A(t)$ is the line segment connecting z^{0} with $v(t)$, i.e. $A(t)$ is the ray along which the direction $d(t)=v(t)-z^{0}$ points at z^{0}. So, if z^{0} is not a vertex of C^{n}, there are 2^{n} directions along one of which z^{0} is left. When z^{0} is a vertex of c^{n}, there are $2^{n}-1$ directions. The algorithm leaves z^{0} along the ray $A\left(t^{0}\right.$) for which $t^{0}=\operatorname{sgn}\left(s^{0}\right)$. Observe that z^{0} solves the problem if $z^{0}=v\left(t^{0}\right)$. In general, the algorithm generates points z in C^{n} such that for some t in T both z lies in $A(t)$ and $t=s g n s$. For $t \in T$, let $C(t)$ be defined by

$$
C(t)=C l\left\{z \in C^{n} \mid \operatorname{sgn}(M z+q)=t\right\}
$$

and let $B(t)=C(t) \cap A(t)$. A point z satisfies (2.2) if and only if z lies in $B(t)$ for some $t \in T$. We now introduce basic and nonbasic variables. Notice that z lies in $B(s g n ~ s)$.

Definition 2.1. For some $z \in C^{n}, z \neq z^{0}$, let $A(\bar{t})$ be the smallest set $A(t)$ containing z in its interior. Then the variable $z_{j}, j \in I_{n}$ is said to be nonbasic if $\bar{t}_{j} \neq 0$. With $s=M z+q$, the variable s_{j} is said to be nonbasic if $s_{j}=0$. Furthermore, let λ be defined as in 2.2 with $t=\bar{t}$. Then λ is said to be nonbasic if $\lambda=1$. Finally, for $z=z^{0}, \lambda$ is defined to be equal to zero and all variables $z_{j}, j \in I_{n}$ and λ are said to be nonbasic. When not nonbasic, a variable is said to be basic.

Definition 2.2. A pair (s, z) is called complementary if for each $j \in I_{n}$, either or both z_{j} and s_{j} are nonbasic.

Nondegeneracy assumption 2.1. For each z in $B(t), t \in T$, holds that among the $2 n+1$ variables (z, s, λ) with $s=M z+q$ and λ as defined in (2.2) $(\lambda=0$ if $z=z^{0}$) at most $n+1$ variables are nonbasic.

This assumption does not cause a loss of generality, since if degeneracy occurs a slight perturbation of the data (M, q) will restore the assumption.

By definition, the pair $\left(s^{0}, z^{0}\right)$ is complementary because at z^{0} all variables z_{j} are defined to be nonbasic. Since also λ is nonbasic at z^{0} assumption 2.1 implies that $s_{j}^{0} \neq 0$ for all j. Hence, z^{0} lies in
$B\left(t^{0}\right), t^{0}=\operatorname{sgn} s^{0}$ and in no other set $B(t), t \neq t^{0}$. The set $B\left(t^{0}\right)$ is obtained by increasing λ from 0 at z^{0}. Doing so a line segment of points z in $A\left(t^{U}\right)$ is qenerated while complementaritv between z and s is maintained. This movement is pursued until one -and just one, because of assumption 2.1-basic variable becomes nonbasic. At such a point z either λ becomes equal to one or $s_{j}=0$ for just one $j \in I_{n}$. In the first case a solution has been reached, as has been shown before. In the latter case the corresponding variable z_{j} becomes basic and the algorithm moves into the associated region $A(t), t=s g n s$, tracing a line segment of points z sign-complementary to t. clearly this line segment is $B(t)$. Under assumption 2.1 each nonempty $B(t)$ is a line segment in $A(t)$ having two endpoints. We now want to show that an endpoint of a line segment $B(t)$ is either z^{0}, or a solution point, or an endpoint of a line segment $B\left(t^{\prime}\right)$ with t^{\prime} differing from t in just one component. An endpoint is characterized by the fact that $n+1$ variables are nonbasic. More precisely, at an endpoint z of $B(t)$ either λ is equal to 0 or 1 and for all j either z_{j} or s_{j} is nonbasic, or λ is basic and for exactly one index h both z_{h} and s_{h} are nonbasic. If λ is equal to 0 then $z=z^{0}$ and z is an endpoint of the unique line segment $B\left(t^{0}\right)$ with $t^{0}=\operatorname{sgn}\left(M z^{0}+q\right)$.

In the following lemmas we consider the endpoints of line segments in case λ is not equal to 0 .

Lemma 2.1. Let z be an endpoint of a line segment $B(t)$. If λ is equal to 1 , then z is a solution point.

Proof. Since $z \in A(t)$ and $\lambda=1$ we have that

$$
\begin{aligned}
z_{j}=b_{j} & \text { if } t_{j}=+1 \\
z_{j}=a_{j} & \text { if } t_{j}=-1 \\
\text { and } & \text { if } t_{j} \leq z_{j} \leq b_{j}
\end{aligned}
$$

Moreover, $t=\operatorname{sgn}(M z+q)$ since z also lies in $C(t)$ and because of assumption 2.1. Hence z is a solution point.

In the next lemma, let $z^{b}\left(z^{a}\right)$ be the set of indices j for which $z_{j}^{0}=b_{j} \quad\left(z_{j}^{0}=a_{j}\right)$.

Lemma 2.2. Let z be an endpoint of a line segment $B(t)$ and let $s=M z+q$. If at the point z, s_{h} becomes nonbasic, then z is a solution point if $I^{+}(t) \backslash\{h\} \subset Z^{b}$ and $I^{-}(t) \backslash\{h\} \subset Z^{a}$.

Proof. The conditions of the lemma imply that $z_{j}^{0}=b_{j}$ for all $j \in I^{+}(t)$ and $z_{j}^{0}=a_{j}$ for all $j \in I^{-}(t), j \neq h$. Furthermore $t_{j}=s g n s_{j}$ for all $j \neq h$ and $s_{h}=0$. Therefore $j \in I^{+}(t)$ implies $s_{j}>0$ and $z_{j}=\lambda\left(b_{j}-z_{j}^{0}\right)+z_{j}^{0}=b_{j}$, and $j \in I^{-}(t)$ implies $s_{j}<0$ and $z_{j}=\lambda\left(a_{j}-z_{j}^{0}\right)+z_{j}=a_{j}$. Moreover, for all other indices j we have $s_{j}=0$ and $a_{j} \leq z_{j} \leq b_{j}$.

Lemma 2.3. Let z be an endpoint of a line segment $B(t)$ and let $s=M z+q$. If at z, S_{h} becomes nonbasic and $I^{+}(t) \backslash\{h\}$ contains at least one index $j, j \neq h$, not in z^{b} or $I^{-}(t) \backslash\{h\}$ contains at least one index j, $j \neq h$, not in z^{a}, then z is also an endpoint of $B\left(t^{\prime}\right)$ with $t_{h}^{\prime}=0$ and $t_{j}^{\prime}=t_{j}$ for all $j \neq$ h.

Proof. The conditions of the lemma imply that there is an index j, $j \neq h$, with $t_{j}^{\prime}=+1$ and $z_{j}^{0}<b_{j}$ or an index $k, k \neq h$, with $t_{k}^{\prime}=-1$ and $z_{k}^{0}>a_{k}$. Hence $A\left(t^{\prime}\right)$ is not empty. Moreover, since $t_{j}^{\prime}=t_{j}, j \neq h, t_{h}^{\prime}=0$ and $t_{h} \in\{-1,1\}, A\left(t^{\prime}\right)$ contains $A(t)$ as a boundary facet and therefore z is in the boundary of $A\left(t^{\prime}\right)$. Finally, since $t_{j}=s g n s_{j}, j \neq h$, and $s_{h}=0$ we have that $t^{\prime}=s g n ~ s$. Consequently z lies in $C\left(t^{\prime}\right)$ and is an endpoint of $B\left(t^{\prime}\right)$.

Lemma 2.4. Let z be an endpoint of a line segment $B(t)$ and let $s=M z+q$. If at z, z_{h} becomes nonbasic then z is also an endpoint of $B\left(t^{\prime}\right)$ with $t_{j}^{\prime}=t_{j}, j \neq h$ and t_{h}^{\prime} equal to either +1 or -1 .

Proof. At z the variable z_{h} becomes nonbasic, i.e. for the λ defined in (2.2) holds

$$
\lambda\left(a_{h}-z_{h}^{0}\right) \leq z_{h}-z_{h}^{0} \leq \lambda\left(b_{h}-z_{h}^{0}\right)
$$

with just one equality. If $z_{h}=z_{h}^{0}+\lambda\left(a_{h}-z_{h}^{0}\right)$ then $z_{\in} A\left(t^{\prime}\right)$ with $t_{h}^{\prime}=-1$ and $t_{j}^{\prime}=t_{j}, j \neq h$. On the other hand, if $z_{h}=z_{h}^{0}+\lambda\left(b_{h}-z_{h}^{0}\right)$ then z lies in $A\left(t^{\prime}\right)$ with $t_{h}^{\prime}=+1$ and $t_{j}^{\prime}=t_{j}$ for all $j \neq h$. Finally, since $t=s g n \quad s$ while $s_{h}=0$ we have that $z \in C l\left\{\bar{z} \mid \operatorname{san} \bar{s}=t^{\prime}\right\}=C\left(t^{\prime}\right)$. Hence z is an endpoint of $B\left(t^{\prime}\right)$.

The lemma's 2.3 and 2.4 say that if \bar{z} is an endpoint of the line segment $B(t)$ and \bar{z} is not a solution point, then \bar{z} is an endpoint of the line segment $B\left(t^{\prime}\right)$. The nondegeneracy assumption guarantees that at $\overline{\mathbf{z}}$ just one basic variable becomes nonbasic. This implies that t^{\prime} is uniquely determined. So, linking the line segments $B(t)$ for various $t \in T$ together, the set $B=U B(t)$ contains a piecewise linear path having the startin ${ }^{t \in T}$ point z^{0} as an endpoint. Since T consists of a finite number of elements t and since each $B(t)$ is either empty or a single line segment, the path in B originating at z^{0} consists of a finite number of linear pieces and ends at a solution point \bar{z}. This path is generated by the algorithm and can be followed by a sequence of linear programming steps in a system of n linear equations.
3. Performance of the algorithm.

We consider now a point z on the path traced by the algorithm. For such a point we have that $z \in A(t) \cap C(t)$ for some sign vector $t \in T$. So, with $t=s g n s=s g n ~ M z+q$ we have that

$$
\begin{array}{ll}
z_{j}=\lambda\left(b_{j}-z_{j}^{0}\right)+z_{j}^{0} & \text { if } t_{j}=+1 \\
z_{j}=\lambda\left(a_{j}-z_{j}^{0}\right)+z_{j}^{0} & \text { if } t_{j}=-1 \\
\lambda\left(a_{j}-z_{j}^{0}\right) \leq z_{j}-z_{j}^{0} \leq \lambda\left(b_{j}-z_{j}^{0}\right) & \text { if } t_{j}=0
\end{array}
$$

with $0 \leq \lambda \leq 1$. Let $t^{\prime} \in\{-1,1\}^{n}$ be a sign vector such that $t_{i}^{\prime}=t_{i}$ if $t_{i} \neq 0$. Then we can rewrite z as

$$
\begin{equation*}
z=(1-\lambda) z^{0}+\lambda v\left(t^{\prime}\right)-\sum_{h \in I}{ }^{0}(t) \delta_{h} t_{h}^{\prime} e(h) \tag{3.1}
\end{equation*}
$$

for certain $\delta_{h}, 0 \leq \delta_{h} \leq \lambda\left(b_{h}-a_{h}\right)$, where $e(h)$ is the $h-t h$ unit vector, $h=1, \ldots, n$. From (3.1) we obtain

$$
\begin{equation*}
s=M z+q=(1-\lambda) M z^{0}+\lambda M v\left(t^{\prime}\right)-\sum_{h \in I^{0}(t)} \delta_{h} t_{h}^{\prime} M e(h)+q . \tag{3.2}
\end{equation*}
$$

With $M z^{0}+q=q^{0}$ and $M e(h) \equiv M_{h}$ this reduces to

$$
\begin{equation*}
s+\lambda M\left[z^{0}-v\left(t^{\prime}\right)\right]+\sum_{h \in I^{0}(t)} \delta_{h} t_{h}^{\prime} M_{h}=q^{0} \tag{3.3}
\end{equation*}
$$

Since $t=\operatorname{sgn} s, s$ is equal to $\sum_{h \notin I}{ }^{0}(t) \quad \mu_{h} t_{h} e(h)$ with $\mu_{h}=t_{h} s_{h} \geqq 0$. All together we obtain that $z \in A(t) \cap C(t)$ if and only if

$$
\begin{equation*}
\lambda M\left[z^{0}-v\left(t^{\prime}\right)\right]+\sum_{h \in I}^{0}(t) \delta_{h} t_{h}^{\prime} M_{h}+\sum_{h \notin I}^{0}(t) \mu_{h} t_{h} e(h)=q^{0} \tag{3.4}
\end{equation*}
$$

for certain $0 \leq \lambda \leq 1,0 \leq \delta_{h} \leq \lambda\left(b_{h}-a_{h}\right)$ and $\mu_{h} \geq 0$. It will follow that t^{\prime} is generated uniquely by the algorithm. The nondegeneracy assumption implies that any solution to the system (3.4) of n linear equations has at most one of the $n+1$ variables $\left(\lambda, \delta_{h}, \mu_{h}\right)$ equal to its upper or lower bound. Hence, the linear path of points $B(t), t \in T$, can be followed by making a linear programming pivot step in the system (3.4). The performance of the algorithm to follow the piecewise linear path from z^{0} to a solution of (2.1) can therefore be described in the next procedure, where z^{0} is the initial point and $s^{0}=M z^{0}+q$.

Step 0 (Initialisation). Set $t^{\prime}=t=t^{0}=\operatorname{sgn}\left(M z^{0}+q\right)$. If $z^{0}=v\left(t^{0}\right)$ then $\left(s^{0}, z^{0}\right)$ solves the problem. Otherwise, set $I^{0}(t)=I^{0}\left(t^{0}\right)=\varnothing$ and make a l.p. pivot step with the vector $M\left[z^{0}-v\left(t^{0}\right)\right]$ into the system

$$
\sum_{h \nless J^{0}(t)} \mu_{h} t_{h} e(h)=M z^{0}+q=q^{0}
$$

If μ_{i} becomes zero for some i, goto step 1. Otherwise the variable λ associated to $M\left[z^{0}-v\left(t^{0}\right)\right]$ becomes equal to 1 and the vertex $v\left(t^{0}\right)$ is a solution point (lemma 2.1).

Step 1. (lemma 2.3.). Set $t_{i}=0, K^{0}(t)=I^{0}(t) u^{\{ }$i\} and make a 1.p. pivot step with $t_{i}^{\prime} M_{i}$ into the system

$$
\lambda M\left[z^{0}-v\left(t^{\prime}\right)\right]+\sum_{h \in I^{0}(t)} \delta_{h} t_{h}^{\prime} M_{h}+\sum_{h \notin K^{0}(t)} \mu_{h} t_{h} e(h)=q^{0} .
$$

If λ becomes equal to 1 , a solution is found (lemma 2.1.). Otherwise goto step 2.

Step 2. Set $I^{0}(t)=K^{0}(t)$. If δ_{i} becomes 0 for some $i \in K^{0}(t)$ goto step 3. If δ_{i} becomes $\lambda\left(b_{i}-a_{i}\right)$ for some $i \in K^{0}(t)$, set t_{i}^{\prime} equal to $-t_{i}^{\prime}$, adapt the column $M\left[z^{0}-v\left(t^{\prime}\right)\right]$ accordingly and make δ_{i} equal to 0 and goto step 3. If μ_{i} becomes 0 for some $i \nless K^{0}(t)$ and if for all other $h \nless K^{0}(t)$, $z_{h}^{0}=b_{h}$ if $t_{h}=+1$ and $z_{h}^{0}=a_{h}$ if $t_{h}=-1$, then a solution is found (lemma 2.2). Otherwise, return to step 1 .

Step 3. (lemma 2.4.). Set $t_{i}=t_{i}^{\prime}, K^{0}(t)=I^{0}(t) \backslash\{i\}$ and make a 1.p. pivot step with $t_{i} e(i)$ in

$$
\lambda M\left[z^{0}-v\left(t^{\prime}\right)\right]+\sum_{h \in K^{0}(t)} \delta_{h} t_{h}^{\prime} M_{h}+\sum_{h \notin I^{0}(t)} \mu_{h} t_{h} e(h)=q^{0}
$$

If λ becomes equal to 1 , a solution is found (lemma 2.1). Otherwise goto step 2.
4. Some examples.

In this section we compare the $2 n$-ray or cubical algorithm initiated by Talman and Van der Heyden with the 2^{n}-ray or octahedral algorithm described in this paper. Remember that the cubical algorithm reduces to Lemkes algorithm when $z^{0}=0$ (and there are no upper bounds). If the solution point is on the interior of c^{n} both algorithms may solve the problem in n pivot steps (best cases). However, if a vertex of C^{n} is found as a solution point, the octahedral algorithm may solve the problem in only one step, while the cubical algorithm needs at least $2 n-1$ l.p. pivot steps. This difference is shown in the next example for $n=2$. In Talman and Van der Heyden a measure $t_{0}(z)$ is defined, called the "leading infeasibility". With some adaptions and for z^{0} being an interior point, this measure is defined by
$t_{0}(z)=\max \left(\max \left\{s_{j}^{+}(z) \mid z_{j}<b_{j}\right\}, \max \left\{s_{j}^{-}(z) \mid z_{j}>a_{j}\right\}\right)$. A point \bar{z} is a solution if and only if $t_{0}(\bar{z}) \leq 0$. Now consider figure 1 in which the sign structure of problem 1 is given. The problem has three solution points namely the vertex $v=v\left((-1,+1)^{\top}\right)$ and the points x^{*} and x^{1}. The starting

Figure 1.
point is z^{0} in which $-s_{1}^{0}>S_{2}^{0}>0$ where $s^{0}=M z^{0}+q$. Clearly $t_{0}\left(z^{0}\right)=-s_{1}^{0}$ and the cubical algorithm decreases z_{1} by making a l.p. pivot step, until the point a is reached. For all points z on the line segment $\left[z^{0}, a\right), t_{0}(z)=-s_{1}$. However, at the point a we have $t_{0}(a)=s_{2}(a)$, causing a discontinuity in t_{0}. To overcome this, an additional l.p. pivot step is made at a to decrease t_{0} from $-s_{1}(a)$ to s_{2} (a). After this z_{2} is increased until the solution point v is reached, at which point t_{0} is decreased from s_{2} to 0 by making another $1 . p$. pivot step. Since the last step is redundant, the algorithm needs $2 n-1=31 . p$. steps. On the other hand, the octahedral algorithm reaches the solution point v in just one l.p. step, because the sign pattern does not change on the line segment between z^{0} and this vertex.

In figure 2 the solution points are x^{*}, x^{1} and x^{2}. Now the cubical algorithm goes from z^{0} to the point a, then makes a l.p. step to decrease t_{0} from $-s_{1}(a)$ to $s_{2}(a)$ and finally goes from a to x^{2}, so that again 3 l.p. steps are needed to find a solution. The octahedral algorithm goes from z^{0} to b and follows then the line $s_{2}=0$ until x^{2} is

Figure 2.
reached, implying that 2 steps are needed. In figure 3 both algorithms find the unique solution point x^{*} in just two steps. At z^{0} we have that $\mathrm{s}_{1}^{0}>\mathrm{S}_{2}^{0}>0$. The cubical algorithm follows the path $z^{0} \rightarrow a \rightarrow x^{*}$, and the octahedral algorithm follows the path $z^{0} \rightarrow b \rightarrow x$ *.

Fiqure 3.
In general, let k be the dimension of the face of c^{n} containing the solution found by the algorithm in its interior. Then the minimum number of steps (best cases) to find the solution point is $2 n-k$ for the cubical algorithm ($2 n-1$ if $k=0$) and $k+1$ for the octahedral algorithm (n if $k=n$). In particular if k is small compared to n, the best case for the cubical algorithm (or generalized Lemke's algorithm) is considerably worse than the best case for the octahedral algorithm. Of course, for both algorithms the minimum number decreases if the starting point is on the boundary of c^{n}. For instance, if in figure $2 z^{0}$ is chosen to be a, both algorithms need only 1 step.

We now consider the worst cases for $n=2$. This is done in the figures 4 and 5 . In figure 4 we show the maximum number of $1 . p$. pivot steps to find a solution for the cubical algorithm and in figure 5 we show this number for the octahedral algorithm. The cubical algorithm traces the path $z^{0}, a, b, c, d, e, f, g, v$, the latter point being the unique solution point. So, the algorithm initially increases z, until a is reached. Then z_{2} is increased until $s_{1}=s_{2}$. The latter line is followed as long as $z_{1}>z_{1}^{0}$. As soon as $z_{1}=z_{1}^{0}$, the algorithm continues by increasing z_{2} until $z_{2}=b_{2}$, then z_{1} is decreased until

Figure 4: The worst case for the cubical algorithm, $n=2$.
$s_{1}=-s_{2}$. Finally this line is followed until $z_{2}=z_{2}^{0}$, then z_{1} is decreased until $z_{1}=a_{1}$ and then z_{2} is increased until the solution point v is reached. Including the additional l.p. steps to overcome the discontinuity of $t_{0}(z)$ at the points a, d and g, this takes 11 l.p. steps. We now consider the worst case for the octahedral algorithm. This is shown in figure 5. In this figure there are 3 solution points, namely x^{*}, x^{1} and v. The algorithm traces the path z^{0}, a, b, c, d, v, which takes 5 l.p. steps. At z^{0} we have that $s_{1}^{0}>0$ and $s_{2}^{0}<0$, implying a search in the direction $d\left((+1,-1)^{\top}\right)$. Then $s_{2}=0$ is followed until the ray $A\left((+1,+1)^{\top}\right)$ is reached. This ray is followed until c is found where $s_{1}=0$. The line $s_{1}=0$ is followed until point d and finally $A\left((-1,+1)^{\top}\right)$ is followed until the solution point v is found. The examples above show the superiority of the octahedral algorithm above the cubical algorithm for $n=2$. It is our conjecture that the differences in the number of l.p. steps will increase dramatically if the dimension of the problem growths.

Figure 5: The worst case for the octahedral algorithm, $n=2$.

$$
A(+,-) \text { denotes } A(t) \text { with } t=(+1,-1) \text {, etc. }
$$

The algorithm described in this paper can easily be adapted for the case that some of the a_{i} 's or b_{i} 's are not finite. For simplicity, let us consider the classical LCP where $a_{i}=0$ and $b_{i}=+\infty$ for all i. Then we redefine the $\operatorname{sets} A(t), t \in T$, by

$$
\begin{gathered}
A(t)=\left\{z \in R_{+}^{n} \mid z_{j}=z_{j}^{0}+\lambda \text { if } t_{j}=+1, z_{j}^{0} \leq z_{j} \leq z_{j}^{0}+\lambda \text { if } t_{j}=0,\right. \\
\text { and } \left.z_{j}=z_{j}^{0} \text { if } t_{j}=-1, \lambda \geq 0\right\}
\end{gathered}
$$

if $t_{j}=+1$ for at least one index j, bv

$$
A(t)=\left\{z \in R_{+}^{n} \mid z_{j}=(1-\lambda) z_{j}^{0} \text { if } t_{j}=0 \text {, and } z_{j}=(1-\lambda) z_{j}^{0} \text { if } t_{j}=-1,0 \leq \lambda \leq 1\right\}
$$

if $t \leq 0$ and $t_{j}=-1$ for at least one index j for which $z_{j}^{0}>0$, and $A(t)=\varnothing$ otherwise. Again let $B(t)=A(t) \cap C(t)$ with $C(t)$ as before, then the set $B=u_{t} B(t)$ contains a piecewise linear path from z^{0} which can be followed by subsequent linear programming pivot steps in a system of linear equations similar to (3.4). The piecewise linear path originating at z^{0} leads within a finite number of steps either to a solution point or terminates with a half-line to infinity.

It can easily be shown that Evers'condition is sufficient for convergence of the algorithm if a solution exists (see Jones [3]). The case $\mathrm{n}=2$ is illustrated in figure 6 .

Figure 6: The sets $A(t)$ if $C^{n}=R_{+}^{n}, n=2$.

In case $z^{0}=0$ the algorithm differs from Lemke's original algorithm. The new algorithm leaves $z^{0}=0$ by increasing all the z_{j} 's for which q_{j} is positive whereas Lemse's algorithm increases only the z_{i} for which q_{i} is maximal. The latter algorithm therefore can leave the starting point $z^{0}=0$ in n directions and the algorithm described in this paper in $2^{n}-1$ directions. In the case that $z^{0}=0$ and all the b_{i} 's are plus infinite the worst case of the cubical algorithm needs one step less than the worst case of the octahedral algorithm $(n=2)$. In all other cases the new algorithm performs better.

References.
[1] I.D. Everts, "Het lineaire complementariteitsprobleem", LandbouwEconomisch Instituut, Den Haag, The Netherlands (1982).
[2] G.B. Garcia and F.J. Gould, "Studies in linear complementarity", Center for Mathematical Studies in Business and Economics, University of Chicago, Chicaqo, Ill. (1980).
[3] P.C. Jones, "A note on the Talman, Van der Heyden linear complementarity algorithm", Mathematical Programming 25 (1983), 122-124.
[4] N. Josephy, "Newton's method for generalized equations", Technical Summary Report 1965, Mathematics Research Center, University of Wisconsin, Madison, Wi. (1979).
[5] G. van der Laan and A.J.J. Talman, "A class of simplicial restart fixed points algorithms without an extra dimension", Mathematical Programming 20 (1981), 33-48.
[6] C.E. Lemke, "Bimatrix equilibrium points and mathematical programming", Management Science 11 (1965), 681-689.
[7] L. Mathiesen and T. Hansen, "An equilibrium model for an open economy with institutional constraints on factor prices", in: W. Forster, ed., Numerical Solution of Highly Nonlinear Problems (North-Holland, Amsterdam, 1980) pp. 337-360.
[8] P.M. Reiser, "A modified integer labelling for complementarity algorithms", Mathematics of Operations Research 6 (1981), 129-139.
[9] A.J.J. Talman and L. Van der Heyden, "Algorithms for the linear complementarity problem which allow an arbitrary starting point", in: B.C. Eaves et all,eds., Homotopy Methods and Global Convergence (Plenum Press, New York, 1983), pp. 267-285.
[10] A.H. Wriqht, "The octahedral alqorithm, a new simplicial fixed point algorithm", Mathematical Programming 21 (1981), 47-69.

138 G.J. Cuypers, J.P.C. Kleijnen en J.W.M. van Rooyen
Testing the Mean of an Asymetric Population:
Four Procedures Evaluated

139 T. Wansbeek en A. Kapteyn
Estimation in a linear model with serially correlated errors when observations are missing

140 A. Kapteyn, S. van de Geer, H. van de Stadt, T. Wansbeek Interdependent preferences: an econometric analysis

141 W.J.H. van Groenendaal
Discrete and continuous univariate modeliing
142 J.P.C. Kleijnen, P. Cremers, F. van Belle The power of weighted and ordinary least squares with estimated unequal variances in experimental design

143 J.P.C. K1eijnen
Superefficient estimation of power functions in simulation experiments

144 P.A. Bekker, D.S.G. Pollock
Identification of linear stochastic models with covariance restrictions.

145 Max D. Merbis, Aart J. de Zeeuw From structural form to state-space form

146 T.M. Doup and A.J.J. Talman A new variable dimension simplicial algorithm to find equilibria on the product space of unit simplices.

147 G. van der Laan, A.J.J. Talman and L. Van der Heyden Variable dimension algorithms for unproper labellings.

148 G.J.C.Th. van Schijndel
Dynamic firm behaviour and financial leverage clienteles
149 M. Plattel, J. Peil
The ethico-political and theoretical reconstruction of contemporary economic doctrines

150 F.J.A.M. Hoes, C.W. Vroom
Japanese Business Policy: The Cash Flow Triangle
an exercise in sociological demystification
151 T.M. Doup, G. van der Laan and A.J.J. Talman The $\left(2^{\text {n+ }} l_{-2}\right)$-ray algorithm: a new simplicial algorithm to compute economic equilibria

152	A.L. Hempenius, P.G.H. Mulder Total Mortality Analysis of the Rotterdam Sample of the KaunasRotterdam Intervention Study (KRIS)
153	A. Kapteyn, P. Kooreman A disaggregated analysis of the allocation of time within the household.
154	T. Wansbeek, A. Kapteyn Statistically and Computationally Efficient Estimation of the Gravity Model.
155	P.F.P.M. Nederstigt Over de kosten per ziekenhuisopname en levensduurmodellen
156	B.R. Meijboom An input-output like corporate model including multiple technologies and make-or-buy decisions
157	P. Kooreman, A. Kapteyn Estimation of Rationed and Unrationed Household Labor Supply Functions Using Flexible Functional Forms
158	R. Heuts, J. van Lieshout An implementation of an inventory model with stochastic lead time
159	P.A. Bekker Comment on: Identification in the Linear Errors in Variables Model
160	P. Meys Functies en vormen van de burgerlijke staat Over parlementarisme, corporatisme en autoritair etatisme
161	J.P.C. Kleijnen, H.M.M.T. Denis, R.M.G. Kerckhoffs Efficient estimation of power functions
162	H.L. Theuns The emergence of research on third world tourism: 1945 to 1970; An introductory essay cum bibliography
163	F. Boekema, L. Verhoef De "Grijze" sector zwart op wit Werklozenprojecten en ondersteunende instanties in Nederland in kaart gebracht
164	G. van der Laan, A.J.J. Talman, L. Van der Heyden Shortest paths for simplicial algorithms
165	J.H.F. Schilderinck Interregional structure of the European Community Part II: Interregional input-output tables of the European Community 1959, 1965, 1970 and 1975.

166 P.J.F.G. Meulendijks An exercise in welfare economics (I)

167 L. Elsner, M.H.C. Paardekooper On measures of nonnormality of matrices.

168 T.M. Doup, A.J.J. Talman
A continuous deformation algorithm on the product space of unit simplices

169 P.A. Bekker
A note on the identification of restricted factor loading matrices
170 J.H.M. Donders, A.M. van Nunen
Economische politiek in een twee-sectoren-model
171 L.H.M. Bosch, W.A.M. de Lange
Shift work in health care
172 B.B. van der Genugten
Asymptotic Normality of Least Squares Estimators in Autoregressive Linear Regression Models

173 R.J. de Groof
Geisoleerde versus gecoorrdineerde economische politiek in een tweeregiomodel

174 G. van der Laan, A.J.J. Talman
Adjustment processes for finding economic equilibria
175 B.R. Meijboom
Horizontal mixed decomposition
176 F. van der Ploeg, A.J. de Zeeuw Non-cooperative strategies for dynamic policy games and the problem of time inconsistency: a comment

177 B.R. Meijboom A two-level planning procedure with respect to make-or-buy decisions, including cost allocations

178 N.J. de Beer
Voorspelprestaties van het Centraal Planbureau in de periode 1953 t/m 1980

178a N.J. de Beer
BIJLAGEN bij Voorspelprestaties van het Centraal Planbureau in de periode 1953 t/m 1980

179 R.J.M. Alessie, A. Kapteyn, W.H.J. de Freytas De invloed van demografische factoren en inkomen op consumptieve uitgaven

180 P. Kooreman, A. Kapteyn Estimation of a game theoretic model of household labor supply

181 A.J. de Zeeuw, A.C. Meijdam On Expectations, Information and Dynamic Game Equilibria

Cristina Pennavaja
Periodization approaches of capitalist development.
A critical survey
183 J.P.C. Kleijnen, G.L.J. Kloppenburg and F.L. Meeuwsen
Testing the mean of an asymmetric population: Johnson's modified T test revisited

184 M.O. Nijkamp, A.M. van Nunen
Freia versus Vintaf, een analyse
185 A.H.M. Gerards
Homomorphisms of graphs to odd cycles
186 P. Bekker, A. Kapteyn, T. Wansbeek
Consistent sets of estimates for regressions with correlated or uncorrelated measurement errors in arbitrary subsets of all variables

187 P. Bekker, J. de Leeuw
The rank of reduced dispersion matrices
188 A.J. de Zeeuw, F. van der Ploeg
Consistency of conjectures and reactions: a critique
189 E.N. Kertzman
Belastingstructur en privatisering
190 J.P.C. Kleijnen
Simulation with too many factors: review of random and groupscreening designs

191 J.P.C. Kleijnen
A Scenario for Sequential Experimentation
192 A. Dortmans
De loonvergelijking
Afwenteling van collectieve lasten door loontrekkers?
193 R. Heuts, J. van Lieshout, K. Baken
The quality of some approximation formulas in a continuous review inventory model

194 J.P.C. Kleifnen
Analyzing simulation experiments with common random numbers
195 P.M. Kort
Optimal dynamic investment policy under financial restrictions and adjustment costs

196 A.H. van den Elzen, G. van der Laan, A.J.J. Talman Adjustment processes for finding equilibria on the simplotope

197 J.P.C. Kleijnen Variance heterogeneity in experimental design

198 J.P.C. Kleijnen Selecting random number seeds in practice

199 J.P.C. K1eijnen
Regression analysis of simulation experiments: functional software specification

Bibliotheek K. U. Brabant

17000010597418

