

RESEARCH MEMORANDUM

TILBURG UNIVERSITY

DEPARTMENT OF ECONOMICS
Postbus 90153-5000 LE Tilburg
Netherlands

AN EXTENSION OF KÖNIG'S THEOREM TO GRAPHS WITH NO ODD-K ${ }_{4}$ by
A.M.H. Gerards, Tilburg University, Tilburg, the Netherlands

Abstract

We prove the following min-max relations. Let G be an undirected graph, without isolated nodes, not containing an odd- K_{4} (a homeomorph of K_{4} (the $4-c l i q u e)$ in which the triangles of K_{4} have become odd cycles). Then the maximum cardinality of a stable set in G is equal to the minimum cost of a collection of edges and odd circuits in G, covering the nodes of G. Here the cost of an edge is 1 and the cost of a circuit of length $2 k+1$ equal to k.
Moreover, the minimum cardinality of a node-cover for G is equal to the maximum profit of a collection mutually node disjoint edges and odd circuits in G. Here the profit of an edge is 1 and the profit of a circuit of length $2 k+1$ is equal to $k+1$. Also weighted versions of these min-max relations hold. The result extends $\mathrm{König}^{\prime} \mathrm{s}$ well-known min-max relations for stable sets and node-covers in bipartite graphs. Moreover it extends results of Chvátal, Boulala, Fonlupt, and Uhry. A weaker, fractional, version of these min-max relations follows from earlier results obtained by Schrijver and the author.

1. Introduction

The subject of this paper is to give an extension of the following wellknown result.

```
(1.1) If G has no odd circuit,
    then }\alpha(G)=\rho(G)\mathrm{ and }\tau(G)=\nu(G
```

(König [1931, 1933])

Here, and in the sequel, $G=(V(G), E(G))$ denotes an undirected graph without isolated nodes. As usual, the parameters α, ρ, τ and v are defined by:
$\alpha(G)=$ the maximum cardinality of a stable set in $G .(S \subset V(G)$ is a stable set if $u, v \in S$ implies $u v \notin E(G)$.)
$\rho(G)=$ the minimum cardinality of an edge-cover for G. ($E^{\prime} \subset E(G)$ is an edge-cover if for each $u \in V$ there exists an $e \in E^{\prime}$ covering u_{0})
$v(G)=$ the maximum cardinality of a matching in $G .(M \subset E(G)$ is a matching if $e_{1}, e_{2} \in M, e_{1} \neq e_{2}$ implies $\left.e_{1} \cap e_{2}=\emptyset.\right)$
$\tau(G)=$ the minimum cardinality of a node-cover for $G .(N \subset V(G)$ is a node-cover if $u v \in E(G)$ implies $u \in N$ or $v \in N_{\text {. }}$)

We introduce two new parameters:
$\tilde{\rho}(G)=$ the minimum cost of a collection of edges and odd circuits in G covering the nodes of G. The cost of an edge is equal to 1 , and the cost of a circuit with $2 k+1$ edges is equal to k. The cost of a collection of edges and odd circuits is equal to the sum of the costs of its members.
$\tilde{\nu}(G)=$ the maximum profit of a collection of mutually node disjoint edges and odd circuits in G. The profit of an edge is equal to 1 and the profit of a circuit of length $2 k+1$ is equal to $k+1$. The
profit of a collection of edges and odd circuits is equal to the sum of the profits of its members.

The following inequalities are obvious:

$$
\begin{equation*}
\alpha(G) \leqq \tilde{\rho}(G) \leqq \rho(G), \tag{1.2}
\end{equation*}
$$

$$
\tau(G) \geqq \tilde{\nu}(G) \geqq \nu(G)
$$

König's Theorem (1.1) can be extended to the following result. (It follows from the more general Theorem 1.8 , which will be proved in section 2.)

Theorem 1.3

Let G be an undirected graph, without isolated nodes. If G does not contain any odd $-K_{4}$ as a subgraph, then $\alpha(G)=\tilde{\rho}(G)$ and $\tau(G)=\tilde{\nu}(G)$.

An odd- K_{4} is a homeomorph of K_{4} (the 4-clique) in which all triangles have become odd circuits. (See figure l, wriggled lines stand for pairwise openly disjoint paths: odd indicates that the corresponding faces are odd circuits.)

figure 1

To see that Theorem 1.3 extends König's Theorem (1.1), observe that a bipartite graph G has no odd $-K_{4}$, and satisfies $\tilde{\rho}(G)=\rho(G), \tilde{\tau}(G)=\tau(G)$ (as G has no odd circuits.)
The two equalities in (1.1) are equivalent, for any graph G. This follows from

$$
\begin{equation*}
\alpha(G)+\tau(G)=|V(G)|=\rho(G)+v(G) \tag{1.4}
\end{equation*}
$$

A similar equivalence for the equalities $\alpha(G)=\tilde{\rho}(G)$ and $\tau(G)=\tilde{\nu}(G)$ follows from the following result observed by Schrijver, analogous to Gallai's result above.

Theorem 1.5

Let G be an undirected graph without isolated nodes. Then $\tilde{\rho}(G)+\tilde{\nu}(G)=$ $|V(G)|$.

Proof:

First, let $e_{1}, \ldots, e_{m}, C_{1}, \ldots, C_{n}$ be a collection of mutually node disjoint edges and odd circuits such that the profit $m+\sum_{i=1}^{n} \frac{1}{2}\left(\left|V\left(C_{i}\right)\right|+1\right)$ of the collection is equal to $\tilde{v}(G)$.
Let $V_{1}:=V(G) \backslash \underset{i=1}{\cup} V\left(C_{i}\right)$, and let G_{1} be the subgraph of G induced by V_{1}. Then obviously $m=v\left(G_{1}\right)$. Let $f_{1}, \ldots, f_{\rho\left(G_{1}\right)}$ be a minimum edge cover for G_{1}. Then $f_{1}, \ldots, f_{\rho\left(G_{1}\right)}, C_{1}, \ldots, C_{n}$ is a collection of edges an odd circuits covering $V(G)$. The cost of this collection is (using Gallai's identity (1.4)):

$$
\begin{aligned}
\rho\left(G_{1}\right)+\sum_{i=1}^{n} \frac{1}{2}\left(\left|V\left(C_{i}\right)\right|-1\right) & =\left|V_{1}\right|-v\left(G_{1}\right)-\sum_{i=1}^{n} \frac{1}{2}\left(\left|V\left(C_{i}\right)\right|+1\right)+\sum_{i=1}^{n}\left|V\left(C_{i}\right)\right| \\
& =|V(G)|-\tilde{v}(G)
\end{aligned}
$$

Hence $\tilde{\rho}(G)+\tilde{\nu}(G) \leqq|V(G)|$.
The reverse inequality is proved almost identically. However there is a small technical difference, dealt with in the claim below.
Let $e_{1}, \ldots, e_{m}, C_{1}, \ldots, C_{n}$ be a collection of edges and odd circuits covering $V(G)$ such that the cost $m+\sum_{i=1}^{n} \frac{1}{2}\left(\left|V\left(C_{1}\right)\right|-1\right)$ of the collection is equal to $\tilde{\rho}(G)$, and n is as small as possible.

Claim: For each $1, j=1, \ldots, n(i \neq j) ; k=1, \ldots, m$ we have $v\left(C_{i}\right) \cap V\left(C_{j}\right)=\emptyset$, $v\left(C_{i}\right) \cap e_{k}=\emptyset$.

Proof of Claim: Suppose, $u \in V\left(C_{i}\right)(i=1, \ldots, n)$, such that u is also contained in another odd circuit among C_{1}, \ldots, C_{n}, or in one of the edges e_{1}, \ldots, e_{m} Let $f_{1}, \ldots, f_{p} \in E\left(C_{i}\right)$ be the unique maximum cardinality matching in C_{i} not covering u. Then $p=\frac{1}{2}\left(\left|V\left(C_{i}\right)\right|-1\right)$. Obviously e_{1}, \ldots, e_{m}, $f_{1}, \ldots, f_{p}, C_{1}, \ldots, C_{i-1}, C_{i+1}, \ldots, C_{n}$ is a collection of edges and odd circuits covering $V(G)$. Its cost is $\tilde{\rho}(G)$. However it contains only $n-1$ odd circuits, contradicting the minimality of n.
end of proof of claim.

As before we define $V_{1}=V(G) \backslash \bigcup_{i=1}^{U} V\left(C_{1}\right)$ and G_{1} as the subgraph of G induced by V_{1}. By similar arguments as used in the first part of the proof one gets:

$$
\left.\tilde{\rho}(G)=\rho\left(G_{1}\right)+\sum_{i=1}^{n} \frac{1}{2}\left(\left|V\left(C_{i}\right)\right|-1\right)\right)=\left|V_{1}\right|-v\left(G_{1}\right)-\sum_{i=1}^{n} \frac{1}{2}\left(\left|V\left(C_{i}\right)\right|+1\right)
$$

$+\sum_{i=1}^{n}\left|V\left(C_{i}\right)\right| \geqq|V(G)|-\tilde{v}(G)$.

Corollary 1.6

Let G be an undirected graph without isolated nodes. Then $\alpha(G)=\tilde{\rho}(G)$ if and only if $\tau(G)=\tilde{v}(G)$.

As mentioned, we prove Theorem 1.3 in section 2 . In fact we shall prove a more general weighted version of this theorem (Theorem 1.8 below).

Weighted versions

We define weighted versions of the numbers $\alpha, \rho, \nu, \tau, \tilde{\rho}$, and \tilde{v} and state the obvious generalizations of the results mentioned. Let $w \in \mathbb{Z}^{V(G)}$.
$\alpha_{W}(G)=\operatorname{maximum}\left\{\sum_{U \in S} W_{U} \mid S\right.$ is a stable set in $\left.G\right\}$,
$\rho_{W}(G)=$ the minimum cardinality of a w-edge-cover for G. (A w-edge-cover for G is a collection e_{1}, \ldots, e_{m} in $E(G)$ (repetition allowed) such that for each $u \in V(G)$ there are at least w_{u} edges among e_{1}, \ldots, e_{m} incident with u. The cardinality of e_{1}, \ldots, e_{m} is m.)

```
\mp@subsup{\nu}{W}{\prime}}(G)=the maximum cardinality of a w-matching in G. (A w-matching is a
    collection e }\mp@subsup{e}{1}{},\ldots,\mp@subsup{e}{m}{}\mathrm{ in E(G) (repetition allowed) such that for
    each u\inE(G) there are at most w
    dent with u.)
```

$\tau_{W}(G)=\operatorname{minimum}\left\{\sum_{u \in N} W_{u} \mid N\right.$ is node-cover for $\left.G\right\}$.

Moreover we define:
A w-cover (w-packing respectively) by edges and odd circuits is a collection e_{1}, \ldots, e_{m} of edges and C_{1}, \ldots, C_{m} of odd circuits (repetition allowed), such that for each $u \in V(G)$:
$\mid\left\{i=1, \ldots, m \mid u\right.$ incident with $\left.e_{i}\right\}\left|+\left|\left\{1=1, \ldots, n \mid u \in v\left(C_{i}\right)\right\}\right| \geqq w_{u}\left(\leqq w_{u}\right.\right.$ respectively).

The cost of $e_{1}, \ldots, e_{m}, C_{1}, \ldots, C_{n}$ is $m+\sum_{1=1}^{n} \frac{1}{2}\left(\left|V\left(C_{1}\right)\right|-1\right)$, its profit is $m+\sum_{i=1}^{\frac{1}{2}}\left(\left|V\left(C_{i}\right)\right|+1\right)$.
$\tilde{\rho}_{\mathrm{w}}(G)=$ the minimum cost of a w-cover by edges and odd circuits for G.
 G.

These numbers satisfy:

$$
\text { If } G \text { has no odd circuit, then } \alpha_{W}(G)=\rho_{W}(G) \text { and } \tau_{W}(G)=\nu_{w}(G)
$$

(Egervâry [1931]),

$$
\begin{align*}
& \alpha_{w}(G) \leqq \tilde{\rho}_{w}(G) \leqq \rho_{w}(G), \tag{1.7}\\
& \tau_{w}(G) \geqq \tilde{\nu}_{w}(G) \geqq \nu_{w}(G), \\
& \alpha_{w}(G)+\tau_{w}(G)=\tilde{\rho}_{w}(G)+\tilde{\nu}_{w}(G)=\rho_{w}(G)+\nu_{w}(G)=\sum_{u \in V(G)}{ }^{w_{u}} \cdot
\end{align*}
$$

(1.7) can be proved easily from the cardinality versions stated before (with w $\equiv 1$), using the following construction:

Define G_{w} by:
$V\left(G_{W}\right)=\left\{[u, i] \mid u \in V(G) ; i=1, \ldots, w_{u}\right\}$,
$E\left(G_{w}\right)=\left\{[u, i][v, j] \mid u, v \in V(G) ; u v \in E(G) ; i=1, \ldots, w_{u} ; j=1, \ldots, w_{v}\right\}$.
Then one easily proves that $\alpha_{w}(G)=\alpha\left(G_{w}\right), \rho_{w}(G)=\rho\left(G_{w}\right), \nu_{w}(G)=\nu\left(G_{w}\right)$, $\tau_{W}(G)=\tau\left(G_{W}\right), \tilde{\rho}_{w}(G)=\tilde{\rho}\left(G_{w}\right), \tilde{\nu}_{w}(G)=\tilde{\nu}\left(G_{w}\right)$, and $V\left(G_{W}\right)=\sum_{u \in V(G)} W_{u}$.
Moreover G_{W} is bipartite if and only if G is. These yield (1.7). Theorem 1.3 can be generalized as well.

Theorem 1.8

Let G be an undirected graph, without isolated nodes. If G does not contain any odd $-K_{4}$ as a subgraph, then $\alpha_{W}(G)=\tilde{\rho}_{W}(G)$ and $\tau_{W}(G)=\tilde{\nu}_{W}(G)$ for any $w \in \mathbb{Z} \quad \stackrel{V}{ }(G)$.

The proof of Theorem 1.8 is in section 2. It should be noted that Theorem 1.8 does not follow from Theorem 1.3 by using G_{w}. The reason is that it is possible that G_{w} contains an odd- K_{4} even if G does not. This is illustrated by the graph in figure 2. (The bold edges, in figure $2 b$ form an odd- K_{4}.)

$$
w_{x}=w_{y}=w_{z}=2
$$

(a)

(b)
figure 2

The statement $\alpha_{w}(G)=\tilde{\rho}_{w}(G)$ for each $w \in \mathbb{Z} V(G)$ " can be reformulated in terms of integer linear programming.
(1.9) Both optima in the following primal-dual pair of linear programs, are attained by integral vector if wis integer valued.

Primal:

$$
\begin{array}{rlr}
\tilde{\rho}_{w}^{*}(G):=\max \quad \sum_{u \in V(G)}{ }^{W_{u}} x_{u} & \\
\text { s.t. } x_{u}+x_{v} \leqq 1 & (u v \in E(G)), \\
\sum_{u \in V(C)} x_{u} \leqq \frac{1}{2}(|V(C)|-1) & (C \in C(G)), \\
x_{u} & \geqq 0 & (u \in V(G)) .
\end{array}
$$

Dual:

$$
\begin{aligned}
& \tilde{\rho}_{w}^{*}(G)=\min \sum_{e \in E(G)} y_{e}+\sum_{C \in C(G)}{ }^{\frac{1}{2}(|V(C)|-1) z_{C}} \\
& \text { s.t. } \sum_{e \in E(G)}^{y_{e}+} \sum_{C \in C(G)}{ }^{z} C \geqq w_{u} \quad \quad(u \in V(G)) \text {, } \\
& e \in u \quad V(C) \ni u \\
& y_{e} \geqq 0 \quad(e \in E(G)), \\
& \mathrm{z}_{\mathrm{C}} \geqq 0 \quad(\mathrm{C} \in C(\mathrm{G})) .
\end{aligned}
$$

((G) denotes the collection of odd circults $C=(V(C), E(C)$) in G.)

So Theorem (1.8) implies that if G has no odd- K_{4}, then $\tilde{\rho}_{W}(G)=\tilde{\rho}_{W}^{*}(G)$ for each $w \in \mathbb{Z}_{+}^{V(G)}$. In other words, the system of linear inequalities in the primal problem of (1.9) is totally dual integral (cf. Edmonds-Giles [1977]). Consequently (Edmonds-Giles [1977], Hoffman [1974]), if G has no odd $-K_{4}$, then $\alpha_{w}(G)=\tilde{\rho}_{w}^{*}(G)$ for each $w \in \mathbb{Z}_{+}^{V}(G)$. This means that the system of linear inequalities in the primal problem of (1.9) describes the stable set polytope of G. (The stable set polytope of G is the convex hull of the characteristic vectors of the stable sets of G, considered as subsets of $V(G)$.)
Obviously, also the statement " $\tau_{W}(G)=\tilde{\nu}_{W}(G)$ for each $W \in Z_{+}^{V(G)}$ ", can be formulated in a way similar to (1.9).

We conclude this section with some remarks. Section 2 contains the proof of Theorem 1.3 and 1.8 . Finally, in section 3, we consider some algorithmic aspects of the results in this paper.

Remarks

(i) Earlier results on this topic are:

- Chvátal [1975]: If G is series-parallel (i.e. G contains no homemorph of K_{4}), then $\alpha(G)=\tilde{\rho}(G)$.
- Boulala and Uhry [1979]: If G is series-parallel, then $\alpha_{w}(G)=\tilde{\rho}_{W}(G)$ for each $w \in \mathbb{Z}^{V(G)}$. (In fact they only emphasize $\alpha_{w}(G)=\tilde{\rho}_{W}^{*}(G)$ (which was conjectured by Chvátal [1975]). But their proof implicitly yields the stronger result. Recently Mahjoub [1985] gave a very short proof of $\alpha_{W}(G)=\tilde{\rho}_{W}^{*}(G)$ for each $w \in \mathbb{Z} V(G)$ for series-parallel graphs G.)
- Fonlupt and Uhry [1982]: If there exists a $u \in V(G)$ such that $u \in V(C)$ for all $C \in C(G)$, then $\alpha_{w}(G)=\widetilde{\rho}_{w}^{*}(G)$ for each $w \in \mathbb{Z}^{V(G)}$. Sbihi and Uhry [1984] give a new proof of Fonlupt and Uhry's result. This proof implicitly yields $\alpha_{w}(G)=\tilde{\rho}_{w}(G)$ for each $w \in \mathbb{Z}^{V(G)}$.
Obviously, the graphs considered by Chvátal, Boulala, Fonlupt, Sbihi, and Uhry do not contain an odd $-\mathrm{K}_{4}$.
- Gerards and Schrijver [1985]: If G has no odd- K_{4} then $\alpha_{W}(G)=\tilde{\rho}_{W}^{*}(G)$ for each $w \in \mathbb{Z}^{V(G)}$.
(ii) Theorem 1.8 (and 1.3) can be refined by allowing w-covers (w-packings) by edges and odd circuits only to use edges not contained in a triangle, and odd circuits not having a chord. In other words, if G has no odd $-K_{4}$, then the system:

$$
\begin{array}{rlrl}
x_{u}+x_{v} & \leqq 1 & & (u v \in E(G), \text { uv is not contained in a } \\
& \text { triangle) } \\
\text { (*) } \sum_{u \in V(C)} x_{u} \leqq \frac{1}{2}(|V(C)|-1) & & (C \in C(G), C \text { has no chord }) \\
x_{u} & \geqq 0 & & (u \in V(G))
\end{array}
$$

is a totally dual integral system defining the stable set polytope of G. In fact the unequalities in (*) are all facets of the polyhedron defined by (*) (for any graph G). So (*) is the unique minimal totally dual integral system (cf. Schrijver [1981]) for the stable set polytope of G, in case G has no odd- K_{4}.
(iii) Lovász, Schrijver, Seymour, and Truemper [1984] give a constructive characterization of graphs with no odd $-K_{4}: G$ has no odd $-K_{4}$ if and only if one of the following holds:

- There exists a $u \in V(G)$ such that $u \in V(C)$ for all $C \in C(G)$ (Fonlupt and Uhry's case mentioned in remark (i) above).
- G is planar, and at most two faces of G are odd circuits.
- G is the graph in figure 3.
- G can be decomposed into smaller graphs with no odd- K_{4}.

figure 3

2. The proof of Theorem 1.8

We first derive a special case of Theorem 1.8. To state and prove it we need some extra notions and an auxilary result (Theorem 2.1). An odd- K_{3}^{2} is a graph as indicated in figure 4 (wriggles and dotted lines stand for pairwise openly disjoint paths, dotted lines may have length zero, wriggles lines have always positive length, odd indicates that the corresponding faces are odd cycles).

figure 4

An orientation of an undirected graph G is a directed graph obtained from G by directing the edges. We say that a directed graph has discrepancy l if in each circuit the number of forwardly directed arcs minus the number of backwardly directed arcs is 0 or ± 1.

Theorem 2.1 (Gerards and Schrijver [1986])
Let G be an undirected graph. Then G does not contain an odd $-K_{4}$ or an odd $-K_{3}^{2}$ if and only if G has an orientation with discrepancy 1.

Using this theorem we obtain the following special case of Theorem 1.8.

Theorem 2.2

Let G be an undirected graph without isolated nodes. If G does not contain any odd $-K_{4}$ or any odd- K_{3}^{2}, then $\alpha_{w}(G)=\tilde{\rho}_{w}(G)$ and $\tau_{w}(G)=\tilde{\nu}_{w}(G)$ for each $w \in \mathbb{Z}^{\mathbb{V}}(G)$.

Proof:

According to Theorem 2.1, G has an orientation with discrepancy 1 . Let \vec{A} denote the set of arcs in this orientation. For each $\overrightarrow{u v} \in \vec{A}$ we add a reversely directed arc $\overrightarrow{v u}$ too. Denote $\AA:=\{\overrightarrow{\mathrm{vu}} \mid \overrightarrow{u v} \in \vec{A}\}$. Consider the following "circulation" problem:

```
(2.3)
```



```
\(\mathrm{f}_{\mathrm{a}} \geqq 0 \quad(\mathrm{a} \in \overrightarrow{\mathrm{A}} \cup \widehat{\AA})\),
```

and its linear programming dual:

```
(2.4) \(\quad \max \sum_{u \in V(G)}^{\sum}{ }^{W_{u} x_{u}}\)
    s.t. \(\pi_{v}-\pi_{u}+x_{v} \leqq\)
    \(\pi_{u}-\pi_{v}+x_{u} \leqq 0\)
        \(x_{u} \geqq 0\)
        \((\overrightarrow{u v} \in \vec{A})\)
\(\left(\overrightarrow{\mathrm{vu}} \in \AA \begin{array}{|}+ \\ (\mathrm{v} \in \mathrm{V}(\mathrm{G})) .\end{array}\right.\)
```

The theorem is proved by the following three propositions:

Proposition 1: The constraint matrix of (2.3) is totally unimodular. Consequently both (2.3) and (2.4) have integral optimal solutions (Hoffman and Kruskal [1956]).

Proposition 2: Let $\pi \in \mathbb{Z}^{V(G)}, x \in \mathbb{Z}^{V(G)}$ be a feasible solution of (2.4). Then x is a feasible solution of the primal problem of (1.9).

Proposition 3: Let $f \in Z^{\vec{A} \cup \AA}$ be a feasible solution of (2.3). Then there exists a $y \in \mathbb{Z}^{E(G)}$ and $a z \in \mathbb{Z}^{C(G)}$, which form a feasible solution of the dual problem of (1.9), such that:

Indeed, the three propositions together prove that $\alpha_{W}(G) \geqslant \tilde{\rho}_{W}(G)$. By (1.7), this yields $\alpha_{w}(G)=\tilde{\rho}_{w}(G)$ and $\tau_{w}(G)=\tilde{\nu}_{w}(G)$.

The three propositions above are shown as follows:

Proof of Proposition 1:

If we are given a directed graph $D=(V(D), A(D))$ and a spanning directed tree $T=(V(D), T(D)$) on the same node set (not necessarily
$T(D) \subset A(D))$, then the network matrix N of D with respect to T is defined as follows:
$N \in\{0,1,-1\}^{A(T) x A(D)}$. For $u, v \in V(D)$ let $P(u, v) \subset A(T)$ be the unique path in T from u to v. Then for each $a_{1} \in A(T), a_{2}=\overrightarrow{u v} \in A(D)$:
$N_{a_{1}, a_{2}}:= \begin{cases}1 & \begin{array}{l}\text { if } a_{1} \in P(u, v), \text { and } a_{1} \text { is passed forwardly going along } \\ P(u, v) \text { from } u \text { to } v\end{array} \\ -1 & \begin{array}{l}\text { if } a_{1} \in P(u, v), \text { and } a_{1} \text { is passed backwardly going along } \\ P(u, v) \text { from } u \text { to } v\end{array} \\ 0 & \left.\text { if } a_{1} \notin P(u, v)\right\} .\end{cases}$

Network matrices are totally unimodular (Tutte [1965]). We prove Proposition 1 by proving that the constraint matrix of (2.3) is a network matrix.

Indeed, let $V(D):=V(T):=\left\{V_{0}\right\} \cup\{[u, i] \mid u \in V(G), i \in\{1,2\}\}$,
$A(D):=\{[\overrightarrow{u, 1][v, 2]} \mid \overrightarrow{u v} \in \vec{A}\}$, and
$A(T):=\left\{\overrightarrow{v_{0}[u, 1]} \mid u \in V(G)\right\} \cup\left\{\overrightarrow{u_{1} u_{2}} \mid u \in V(G)\right\}$.

Proof of Proposition 2:

Since x is integral we only need to prove that $x_{u}+x_{v} \leqq 1$ for $u v \in E(G)$. Indeed $x_{v}+x_{u} \leqq\left(1-\pi_{v}+\pi_{u}\right)+\left(\pi_{v}-\pi_{u}\right)=1$ if $u v \in E(G)$ $(\overrightarrow{u v} \in \vec{A})$.

Proof of Proposition 3:

We can write f as $f=\sum_{D \in \Delta} \lambda_{D} f^{D}$, where Δ is a collection of directed circuits in $\vec{A} \cup \AA, f^{D} \in\{0,1\}^{\vec{A} \cup \AA}$ with $f_{a}^{D}=1$ if and only if $a \in D$, and
$\lambda_{D} \in \mathbb{Z}_{+}$for each $D \in \Delta$.
For every even circuit $D \in \Delta$, let M_{D} be an arbitrary maximum cardinality matching in $\{u v \in E(G) \mid \overrightarrow{u v} \in D$ or $\overrightarrow{v u} \in D\}$. (In particular if
$D=\{\overrightarrow{u v}, \overrightarrow{v u}\}$. then $\left.M_{D}=\{u v\}_{0}\right)$ Define $y^{D} \in \mathbb{Z}^{E(G)}$ by:

$$
y_{e}^{D}= \begin{cases}\lambda_{D} & \text { if } e \in M_{D} \\ 0 & \text { else }\end{cases}
$$

Next $y \subset Z^{E(G)}$ is defined by $y=\sum_{D \subset \wedge} y^{D}$.

> D even

For each odd circuit $D \in \Delta$, let $\left.C_{1}\right)\left(\because(G)\right.$ be defined by $C_{D}=\{u v \mid \overrightarrow{u v} \in D$ or $\vec{v} \vec{u} \in \mathrm{D}\}$. Define $\mathrm{z} \in \mathbb{Z}^{C^{\prime}(G)}$ by:

$$
z_{C}=\left\{\begin{array}{l}
\lambda_{D} \text { if } C=C_{D} \text { for some } D, D \in \Delta,|D| \text { odd } \\
0 \text { else. }
\end{array}\right.
$$

The vectors $y \in \mathbb{Z}^{E(G)}$ and $z \in \mathbb{Z}^{C(G)}$ form a feasible solution to the dual problem of (1.9). Moreover

$$
\begin{aligned}
\sum f_{a} & =\sum \lambda_{D}|\vec{A} \cap D| \\
a \in \vec{A} & \\
& \geqq \sum_{D \in \Delta} \lambda_{D}\left|M_{D}\right|+\sum_{D \in \Delta} \lambda_{D} \cdot \frac{1}{2}\left(\left|V\left(C_{D}\right)\right|-1\right) \\
& =\sum_{e \in E(G)}^{D \text { even }} y_{e}+\sum_{C \in C(G)} \sum^{\frac{1}{2}(|V(C)|-1) z_{C}}
\end{aligned}
$$

Before we prove Theorem 1.8 we state a result of Lovász and Schrijver [1984] (cf. Gerards-Schrijver. [1986, Theorem 2.6]). This result indicates that, in a sense, Theorem 2.2 is the core of Theorem 1.8 .

Theorem 2.5

Let G be an undirected graph, containing no odd $-K_{4}$. If G contains an odd $-K_{3}^{2}$, then one of the following holds
(i) G is disconnected or has a one node cutset
(ii) G has a two node cutset. Both sides of the cutset are not bipartite.

Using this we finally prove Theorem 1.8 .

Proof of Theorem 1.8

Let G be a graph with no odd $-K_{4}$. Assume that all graphs G^{\prime} with $\left|E\left(G^{\prime}\right)\right|<|E(G)|$ satisfy Theorem 1.8. We shall prove that then G satis-
fies Theorem 1.8. Obviously we may assume G to be connected. Let $w \in \mathbb{Z}^{V(G)}$. By the weighted version of Theorem 1.5 we only need to prove that $\alpha_{w}(G)=\tilde{\rho}_{w}(G)$. Obviously we may assume that $w_{u} \geqq 0$ for each $u \in V(G)$. According to Theorem 2.2 and 2.5 we may assume that G satisfies (i) or
(ii) of Theorem 2.5. So we have subsets V_{1}, V_{2} of $V(G)$ such that $\left|V_{1} \cap V_{2}\right| \leqq 2, V_{1} \cup V_{2}=V(G)$, and both $V_{1} \backslash V_{2}$ and $V_{2} \backslash V_{1}$ are non empty sets not joined by an edge in $E(G)$. Moreover, in case $\left|V_{1} \cap V_{2}\right|=2$, the subgraphs G_{1} and G_{2} in G induced by V_{1}, V_{2} respectively are not bipartite. In the sequel we shall use the following notation: For each stable set $U \subset V_{1} \cap V_{2}$ the number $s(U)\left(s^{1}(U), s^{2}(U)\right.$ respectively) denotes the maximum weight $\sum_{U \in S} W_{U}$ of a stable set in $G\left(G_{1}, G_{2}\right.$ respectively) satisfying $S \cap V_{1} \cap V_{2}=U$. Note that: $s(U)=s^{1}(U)+s^{2}(U)-\sum_{U \in U} W_{u}$ for each stable set U in $V_{1} \cap V_{2}$. We consider two cases.

Case I: $V_{1} \cap V_{2}$ induces a clique in G.
Define the following weight functions:

$$
\begin{aligned}
& w_{u}^{1}:= \begin{cases}w_{u} & \text { if } u \in v_{1} \backslash V_{2} \\
w_{u}+s^{1}(\emptyset)-s^{1}(\{u\}) & \text { if } u \in v_{1} \cap V_{2} ;\end{cases} \\
& w_{u}^{2}:= \begin{cases}w_{u} & \text { if } u \in v_{2} \backslash V_{1} \\
s^{1}(\{u\})-s^{1}(\emptyset) & \text { if } u \in v_{1} \cap v_{2} .\end{cases}
\end{aligned}
$$

Obviously G_{1} and G_{2} do not contain an odd- K_{4}. Moreover $\left|E\left(G_{1}\right)\right|<|E(G)|$, $\left|E\left(G_{2}\right)\right|<|E(G)|$. Hence there exist a w^{1} - and a w^{2}-cover by edges and odd circuits in G_{1}, G_{2} respectively, with $\operatorname{cost} s^{1}(\varnothing), \alpha_{w}(G)-s^{2}(\varnothing)$ respectively. The union of these two covers is a w-cover with edges and odd circuits in G with cost $\alpha_{w}(G)$. Hence $\alpha_{w}(G)=\tilde{\rho}_{w}(G)$.

Case II: $\left|v_{1} \cap v_{2}\right|=2, v_{1} \cap v_{2}=\left\{u_{1}, u_{2}\right\}$ say, and $u_{1} u_{2} \notin E(G)$. Define for $1=1,2 ; k=2,3$ the graph G_{i}^{k} by adding to G_{i} a path from u_{1} to u_{2} with k-edges. (See figures 5 and 6.)

Claim 1: We may assume that G_{i}^{k} does not contain an odd $-K_{4} \quad(i=1,2$; $\mathrm{k}=2,3)$. Moreover $\left|\mathrm{E}\left(\mathrm{G}_{\mathrm{i}}^{\mathrm{k}}\right)\right|<|\mathrm{E}(\mathrm{G})|$.

Proof of Claim 1: To prove the first assertion (for $i=1$), it is sufficient to prove that in G_{2} there exists an odd as well as an even path from u_{1} to u_{2}. Suppose this is not the case. Since G_{2} is not bipartite this implies the existence of a cutnode in G_{2} separating $\left\{u_{1}, u_{2}\right\}$ from an odd cycle in G_{2}. But such a cutnode is also a cutnode of G. In that case we can apply Case I to prove $\alpha_{W}(G)=\tilde{\rho}_{W}(G)$. So we may assume that G_{i}^{k} has no odd $-K_{4}$. If $\left|E\left(G_{i}^{k}\right)\right| \geqq|E(G)|$, then $\left|E\left(G_{2}\right)\right| \leqq 3$. Hence, since G_{2} is not bipartite, G_{2} is a triangle. So $u_{1} u_{2} \in E(G)$, contradicting our assumption that $u_{1} u_{2} \notin E(G)$.
end of proof of claim 1

Define $\Delta:=s^{2}\left(\left\{u_{1}\right\}\right)+s^{2}\left(\left\{u_{2}\right\}\right)-s^{2}\left(\left\{u_{1}, u_{2}\right\}\right)-s^{2}(\emptyset)$. Again we consider two cases.

Case IIa: $\Delta \geqq 0$.
Let b_{1}, b_{2} be the new nodes in G_{1}^{3}, b the new node in G_{2}^{2}. (See figure 5 below.) Moreover, let $e_{1}, e_{2}, \tilde{e}, f_{1}$, and f_{2} be the edges indicated in figure 5.

figure 5

We define the following weight functions:
$w^{1} \in \mathbb{Z} \quad V\left(G_{1}^{3}\right)$ by $w_{u}^{1}:= \begin{cases}w_{u} & \text { if } u \in V_{1} \backslash\left\{u_{1}, u_{2}\right\} \\ s^{2}(\{u\})-s^{2}(\emptyset) & \text { if } u \in\left\{u_{1}, u_{2}\right\} \\ \Delta & \text { if } u \in\left\{b_{1}, b_{2}\right\} ;\end{cases}$
$w^{2} \in \mathbb{Z} V\left(G_{2}^{2}\right)$ by $w_{u}^{2}:= \begin{cases}w_{u} \\ w_{u}+s^{2}(\emptyset)-s^{2}(\{u\})+\Delta \text { if } u \in V_{2} \backslash\left\{u_{1}, u_{2}\right\} \\ \Delta & \text { if } u \in\left\{u_{1}, u_{2}\right\}\end{cases}$

Claim 2: $\alpha_{w}\left(G_{1}^{3}\right)=\alpha_{w}(G)+\Delta-s^{2}(\emptyset)$ and $\alpha_{w_{2}}\left(G_{2}^{2}\right)=s^{2}(\emptyset)+\Delta$. Moreover, for $i=1,2$ there exists a stable set S in G_{2}^{2} with $\sum_{u \in S} w_{u}^{2}=\alpha_{w}^{2}\left(G_{2}^{2}\right)$, $\mathrm{u}_{\mathrm{i}} \notin \mathrm{S}$, and $\mathrm{b} \notin \mathrm{S}$.

Proof of Claim 2: Straight forward case checking.
end of proof of claim 2

By claim 1 there exists a w^{1}-cover E^{1}, C^{1} by edges and odd circuits G_{1}^{3} with cost $\alpha_{W}\left(G_{1}^{3}\right)=\alpha_{W}(G)+\Delta-S^{2}(\emptyset)$. Let γ_{1}, γ_{2} and $\tilde{\gamma}$ denote the multiplicity of e_{1}, e_{2}, \tilde{e} respectively in E^{l}. Let B denote the sum of the multiplicities of the odd cycles in C^{1} containing b_{1} (and b_{2}). Assume E^{l} and C^{1} are such that $\gamma_{1}+\gamma_{2}+2 \tilde{\gamma}+B$ is minimal.

Claim 3: $\gamma_{i}+\tilde{\gamma}+\beta=\Delta$ for $i=1,2$. Consequently, $\gamma_{1}=\gamma_{2}$.

Proof of Claim 3: $\gamma_{i}+\tilde{\gamma}+\beta \geqq \Delta$ since E^{1}, C^{1} is a w^{1}-cover. Suppose $\gamma_{1}+\tilde{\gamma}+\beta>\Lambda$. Then $\gamma=0$. Indeed, if not, then increasing γ_{2} by 1 and decreasing $\tilde{\gamma}$ by 1 would yield a w^{1}-cover with $\operatorname{cost} \alpha_{w_{1}}\left(G_{1}^{3}\right)$, and smaller $\gamma_{1}+\gamma_{2}+2 \tilde{\gamma}+\beta$. Moreover, $\gamma_{1}=0$. Otherwise, take some $u_{1} v \in E\left(G^{1}\right)$. Adding $u_{1} v$ to E^{1} (or increasing its multiplicity in E^{1}) and decreasing γ_{1} by 1 , again yields a w^{1}-cover with cost $\alpha_{w}\left(G_{1}^{3}\right)$, and smaller $\gamma_{1}+\gamma_{2}+2 \tilde{\gamma}+\beta$. Finally $\beta=0$, contradicting the fact that $\Delta \geqq 0$. Indeed if $\beta>0$ remove an odd circuit C with $b_{1} \in V(C)$ from C^{1}, and add the edges in the unique maximum cardinality matching $M \subset E(C)$ not cover ing b_{1} to E^{1}. Since $M=\frac{1}{2}(|V(C)|-1)$ this again yields a w^{1}-cover

end of proof of claim 3

By claim 1 , there also exists a w^{2}-cover E^{2}, C^{2} by edges and odd circuits in G_{2}^{2} with cost $\alpha_{w^{2}}\left(G_{2}^{2}\right)=S^{2}(\emptyset)+\Delta$. Let E^{2} and C^{2} be such that the sum, δ, of the multiplicities of the odd cycles in C^{2} containing b is minimal.

Claim 4: f_{1} and f_{2} do not occur (i.e. have multiplicity 0) in E^{2}. Moreover $\delta=\Delta$.

Proof of Clain 4: Since the cost of E^{2}, U^{2} is $\alpha_{W_{2}}\left(G_{2}^{2}\right)$ and there exists a stable set S in G_{2}^{2} with $\underset{U_{U} \in S}{ } W_{u}^{2}=\alpha_{W}{ }^{2}\left(G_{2}^{2}\right)$ and $u_{1}, b \notin S$ (Claim 2), the edge f_{1} does not occur in E^{2} ("complementary slackness"), Equivalently f_{2} does not occur in E^{2}. The proof that $\delta=\Delta$ is similar to the proof of claim 3.

Using E^{1}, C^{1} and E^{2}, C^{2} we are now able to construct a w-cover \tilde{E}, \tilde{C} in G by edges and odd circuits, and with cost $\alpha_{W}(G)$. Thus proving $\alpha_{W}(G)=$ $\tilde{\rho}_{W}(G)$. The construction goes as follows:

Step 1: The edges in E^{1} and E^{2}, except e_{1}, e_{2} and \tilde{e} are added to \tilde{E} (with the same multiplicity). The odd circuits in C^{1} and C^{2} not containing b_{1} $\left(b_{2}\right)$, or b are added to $\tilde{C}_{\text {. }}$

Step 2: Let $C_{1}^{2}, \ldots, C_{\Delta}^{2}$ be the odd circuit in C^{2} containing b. (Remind that some of them may be equal.)
(1) Let $C_{i}^{l}, \ldots, C_{\beta}^{l}$ be the odd circuits in C^{l} containing b_{1}, define for each $1=1, \ldots, \beta$ the odd circuit $C_{1} \in C(G)$ by
$E\left(C_{1}\right)=E\left(C_{1}^{1}\right) \cup E\left(C_{i}^{2}\right) \backslash\left\{e_{1}, e_{2}, \tilde{e}^{2}, f_{1}, f_{2}\right\}$. Add all the odd circuits C_{1}, \ldots, C_{B} to \tilde{C}.
Note that, for each $i=1, \ldots, B: \frac{1}{2}\left|V\left(C_{1}\right)\right|-1=\frac{1}{2}\left(\left|V\left(C_{i}^{1}\right)\right|-1\right)+$ $\frac{1}{2}\left(\left|v\left(C_{i}^{2}\right)\right|-1\right)-2$.
(ii) Define for each $i=\beta+1, \ldots, \beta+\gamma_{1}$ the collection of edges M_{i} as the unique maximum cardinality matching in $E\left(C_{i}^{2}\right)$ not covering b. Each edge occuring in $M_{1}\left(i=\beta+1, \ldots, \beta+\gamma_{1}\right)$ is added to \widetilde{E} (as often as it occurs in an M_{1}).
Note that, for each $1=\beta+1, \ldots, \beta+\gamma_{1}:\left|M_{1}\right|=\frac{1}{2}\left(\left|v\left(C_{1}^{2}\right)\right|-1\right)$.
(iii) Define for each $1=\beta+\gamma_{1}+1, \ldots, \beta+\gamma_{1}+\tilde{\gamma}=\Delta$ the collection of edges N_{1} as the unique maximum cardinality matching in $E\left(C_{1}^{2}\right)$ not covering u_{1} and not covering u_{2}. All the edges occuring in an N_{1} are added to \tilde{E} (as often as they occur in an N_{i}).
Note that, for each $i=\beta+\gamma_{1}+1, \ldots, \Delta,\left|N_{i}\right|=\frac{1}{2}\left(\left|V\left(C_{1}^{2}\right)\right|-1\right)-1$.

Claim 5: The collections \tilde{E}, \tilde{C} form a w-cover by edges and odd circuits in G.

Proof of Claim 5: It is not hard to see that each $u \in\left(V_{1} \backslash V_{2}\right) \cup\left(V_{2} \backslash V_{1}\right)$ is covered w_{u} times by \tilde{E}, \tilde{C}. (The matchings in step $2(i i)$ and in step 2 (iii) of the construction do not decrease the number of times that a node in $V_{2} \backslash V_{1}$ is covered.) The node u_{1} is covered at least $s^{2}(\{u\})-s^{2}(\emptyset)$ times by E^{2}, C^{2}, and at least $w_{u}+s^{2}(\emptyset)-s^{2}(\{u\})+\Delta$ times by E^{1}, C^{1}. So u_{1} is covered at least $w_{u}+\Delta$ times by E^{1}, C^{1} and E^{2}, C^{2} together. During the construction this amount is decreased with B by step 2(i), with γ_{1} by step 2(ii), and with $\tilde{\gamma}$ by step 2(iii). Since $\beta+\gamma_{1}+\tilde{\gamma}=\Delta, \tilde{E}$ and \widetilde{C} cover u_{1} at least w_{u} times. Similarly one deals with u_{2}, as $\gamma_{1}=\gamma_{2}$.
end of proof of claim 5

Claim 6: The cost of \widetilde{E}, \tilde{C} is $\alpha_{w}(G)$.
Proof of Claim 6: The cost of E^{1}, C^{1} plus the cost of E^{2}, C^{2} is equal to $\alpha_{w}\left(G_{1}^{3}\right)+\alpha_{{ }^{2}}\left(G_{2}^{2}\right)=\alpha_{w}(G)+\Delta-s^{2}(\emptyset)+s^{2}(\emptyset)+\Lambda=\alpha_{w}(G)+2 \Delta$. During the construction we lost exactly: $2 R$ In step $2(1), \tilde{\gamma}$ in atep 2(1i1), and $2 \gamma_{1}+\tilde{\gamma}$ by ignoring the edges e_{1}, e_{2}, $\tilde{\sim}$. So the cost of $\tilde{E}, \tilde{\zeta}$ is $\alpha_{w}(G)+2 \Delta-2 B-\tilde{\gamma}-\left(2 \gamma_{1}+\tilde{\gamma}\right)=\alpha_{w}(G)$. \quad end of proof of claim 6

Claim 5 and 6 together yield that $\alpha_{W}(G)=\tilde{\rho}_{W}(G)$.

Case IIb: $\Delta \leqq 0$.
The proof of this case is similar to the proof of case IIa. Therefore we shall only give the beginning of it.
Let b be the new node in G_{1}^{2} and let b_{1} and b_{2} be the new nodes in G_{2}^{3} (see figure 6).

figure 6

Define the following weight functions:

$$
\begin{aligned}
& w^{1} \in \mathbb{Z}^{V\left(G_{1}^{2}\right)} \text { by } w_{u}^{1}:= \begin{cases}w_{u} & \text { if } u \in v_{1} \backslash v_{2} \\
s^{2}(\{u\})-s^{2}(\emptyset)-\Delta & \text { if } u \in\left\{u_{1}, u_{2}\right\} \\
-\Delta & \text { if } u=b:\end{cases} \\
& w^{2} \in \mathbb{Z} \\
& V\left(G_{2}^{3}\right) \text { by } w_{u}^{2}:=\left\{\begin{array}{ll}
w_{u} \\
w_{u}+s^{2}(\emptyset)-s^{2}(\{u\}) & \text { if } u \in\left\{v_{1} \backslash v_{1}\right\} \\
-\Delta & \text { if } u \in\left\{b, b_{1}\right\}
\end{array}\right\}
\end{aligned}
$$

The first thing to be proved now is
Claim 7: $\alpha_{w}{ }^{1}\left(G_{1}^{2}\right)=\alpha_{w}(G)-\Delta-s^{2}(\emptyset)$ and $\alpha_{W^{2}}\left(G_{2}^{3}\right)=-\Delta+s^{2}(\emptyset)$. Moreover, for each $U \in\left\{\left\{u_{1}, b_{1}\right\},\left\{b_{1}, b_{2}\right\},\left\{u_{2}, b_{2}\right\}\right\}$ there exists a stable set S in G_{2}^{3} with $\sum_{u \in S} w_{u}=\alpha_{w}{ }^{2}\left(G_{2}^{2}\right)$, and $S \cap U=\emptyset$.

From this point it is not hard to see how arguements similar to those used in Case IIa prove that $\alpha_{W}(G)=\tilde{\rho}_{W}(G)$.

Remarks:
The proof of Case I of the proof above is identical with the proof of Theorem 4.1 in Chvatal [1975]. The techntques used in Case Ita and Case IIb of the proof are similar to the techniques used by Boulala and Uhry [1979]. However they restrict G_{2} to paths and odd cycles. Sbihi and Uhry [1984] also use the decompositions of Case II. In their case G_{2} is always bipartite. Recently, Barahona and Mahjoub [1986] derived a construction to derive all facets of the stable polytope of G, in case G has a two node cutset $\left\{u_{1}, u_{2}\right\}$, from the facets of the stable set polytopes of G_{1}^{+}, and G_{2}^{+}. (Here G_{1} and G_{2} are as in the proof above, G_{i}^{+}is derived from G_{i} by adding a five cycle $\left\{u_{1}, b, u_{2}, b_{1}, b_{2}\right\}$).

3. Computational Aspects

In this final section we give some attention to the computational complexity of the problems: Given G and $w \in \mathbb{Z}^{V(G)}$, determine $\alpha_{W}(G)$, $\tilde{\rho}_{\mathrm{W}}(G), \rho_{\mathrm{W}}(G), \tau_{\mathrm{W}}(G), \tilde{\nu}_{\mathrm{w}}(G)$, and $\nu_{\mathrm{W}}(G)$. Well known results are:

It is NP-hard to determine $\alpha_{W}(G), \tau_{W}(G)$, even if $w \equiv 1$ (Karp [1972]). There exists a polynomial time algorithm to determine a maximum cardinality w-matching, or a minimum cardinality w-edge-cover (Edmonds [1965] for $w \equiv 1$, Cunningham and Marsh [1978] for general w).

Pulleyblank observed that determining $\tilde{\rho}_{W}(G)$, or $\tilde{\nu}_{W}(G)$ is NP-hard, even is $w \equiv 1$. There is a reduction from PARTITION INTO TRIANGLES (cf. Garey and Johnson [1979]).
Indeed, given a graph G there is partition of $V(G)$ into triangles in G if and only if $|\tilde{\rho}(G)| \leqq \frac{1}{3}|V(G)|$. Since PARTITION INTO TRIANGLES remains NP-complete for planar graphs (Dyer and Frieze [1986]), determining $\tilde{\rho}(G)$, or $\tilde{\nu}(G)$ remains $N P-h a r d$ even if G is planar. If G has no odd- $K_{4} \tilde{\rho}_{W}(G)$ and $\tilde{\nu}_{W}(G)$ can be found efficiently (i.e. in polynomial time). Indeed, an algorithm can be obtained from the proofs in section 2 (proof of Theorem 2.2, proof of Theorem 1.8). The only difficulty is finding an orientation \vec{A} of descrepancy 1 , and solving (2.3) and (2.4).

Finding $\vec{A}:$ Using a constructive characterization of graphs with no oddK_{4} and no odd-K K_{3} (Lovasz, Schrijver, Seymour, Truemper [1984], cf. Gerards-Schrijver [1986]) similar to the result in remark (iii) of section 1 , one easily derives a polynomial time algorithm to find \vec{A}, or to decide that \vec{A} does not exist (i.e. that G has an odd $-K_{4}$ or an odd $-K_{3}^{2}$, Theorem 2.1).

Solving (2.3) and (2.4): Define the directed graph $D=(V(D), A(D))$ by: $V(D):=\left\{u_{1} \mid u \in V(G) ; i=1,2\right\} ; A(D):=\left\{\overrightarrow{u_{1} u_{2}} \mid u \in V(G)\right\} \cup\left\{\overrightarrow{u_{2} v_{1}} \mid \overrightarrow{u v} \in \vec{A}\right\}$. Then (2.3) is equivalent to the min-cost-circulation problem:

$$
\begin{aligned}
& \text { (3.2) } \quad \begin{array}{l}
\text { min } \underset{\overrightarrow{u v} \in \vec{A}}{\sum} g \xrightarrow[u_{2} v_{1}]{ } \\
\text { s.t. } g \text { is a non-negative circulation in } D, \\
\\
\quad g \xrightarrow[u_{1} u_{2}]{ } \geqq w_{u}(u \in V(D)) .
\end{array} .
\end{aligned}
$$

(3.2) can be efficiently solved by the out-of-kilter method of Ford and Fulkerson [1962]. (Note that since the cost function is $\{0,1\}$-valued,
there is no need to appeal to more sophisticated techniques as used by Edmonds and Karp [1972], Röck [1980] or Tardos [1985].)

Acknowledgement: I thank Alexander Schrijver for his support during the preparation of this paper. In particular for his help with the presentation and his suggestions for simplifying the proofs. I thank William R. Pulleyblank for his observation that determining $\tilde{\rho}$ or \tilde{v} is NP-hard.
[1986] F. Barahona and A.R. Mahjoub, "Composition of graphs and polyhedra", in preparation.
[1979] M. Boulala and J.P. Uhry, "Polytope des indépendants d'un graph série-parallèle", Discrete Mathematics 27 (1979) 225-243.
[1975] V. Chvátal, "On certain polytopes associated with graphs", Journal of Combinatorial Theory (B) 18 (1975) 138-154.
[1978] W.H. Cunningham and A.B. Marsh III, "A primal algorithm for optimal matching", Mathematical Programming Study $\underline{8}$ (1978) 50-72.
[1986] M.E. Dyer and A.M. Frieze, "Planar 3DM is NP-complete", Journal of Algorithms 7 (1986) 174-184.
[1965] J. Edmonds, "Paths, trees, and flowers", Canadian Journal of Mathematics 17 (1965) 449-467.
[1977] J. Edmonds and R. Giles, "A min-max relation for submodular functions on graphs", Annals of Discrete Mathematics 1 (1977) 185-204.
[1972] J. Edmonds and R.M. Karp, "Theoretical improvements in algorithmic efficiency for network flow problems", Journal of the Association for Computing Machinery 19 (1972) 248-264.
[1931] E. Egerváry, "Matrixok kombinatorius tulajdonságairol", Matematikai és Fizikai Lapok 38 (1931) 16-28.
[1982] J. Fonlupt and J.P. Uhry, "Transformations which preserve perfectness and h-perfectness of graphs", Annals of Discrete Mathematics 16 (1982) 83-95.
[1962] L.R. Ford and D.R. Fulkerson, "Flows in Networks", Princeton University Press, Princeton, N.J., 1962.
[1958] T. Gallai, "Maximum-minimum Sätze über Graphen", Acta Math. Acad. Sci. Hungar, 9 (1958) 395-434.
[1959] T. Gallai, "Uber extreme Punkt- und Kantenmengen", Ann. Univ. Sci. Budapest Eötvos Sect. Math. 2 (1959) 133-138.
[1979] M.R. Garey and D.S. Johnson, "Computers and intractability: a guide to the theory of NP-completeness" Freeman, San Francisco, 1979.
[1985] A.M.H. Gerards and A. Schrijver, "Matrices with the EdmondsJohnson property", Report No. 85363-OR Institüt für Okonometrie und Operations Research, University Bonn, 1985. To appear in Combinatorica.
[1986] A.M.H. Gerards and A. Schrijver, "Signed graphs-regular ma-troids-grafts", preprint.
[1974] A.J. Hoffman, "A generalization of max flow-min cut", Mathematical Programming 6 (1974) 352-359.
[1956] A.J. Hoffman and J.B. Kruskal, "Integral boundary points of convex polyhedra", in: "Linear Inequalities and Related Systems" (H.W. Kuhn and A.W. Tucker, eds.) Princeton University Press, Princeton, N.J., 1956, pp. 223-246.
[1972] R.M. Karp, "Reducibility among combinatorial problems", in: R.E. Miller and J.W. Thatcher. Plenum Press, New York, 1972, pp. 85103.
[1931] D. König, "Graphok és matrixok", Matematikai ês Fizikai Lapok 38 (1931) 116-119.
[1933] D. König, "Uber trennende Knotenpunkte in Graphen (nebst Anwendungen auf Determinanten und Matrizen)", Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae Franscisco-Josephinae (Szeged.), Sectio Scientiarum Mathematicaum 6 (1933) 211223.
[1984] L. Lovász and A. Schrijver, personal communication.
[1984] L. Lovász, A. Schrijver, P.D. Seymour, and K. Truemper, Unpublished paper.
[1985] A.R. Mahjoub, "A short proof of Boulala-Uhry's result on the stable set polytope", Research Report CORR 85-23, December 1985.
[1980] H. Röck, "Scaling techniques for minimal cost network flows", in: U. Page ed. Discrete structures and Algorithms, Carl Hanser, München, pp. 181-191.
[1984] N. Sbihi and J.P. Uhry, "A class of h-perfect graphs", Discrete Mathematics 51 (1984) 191-205.
[1981] A. Schrijver, "On total dual integrality", Linear Algebra and its Applications 38 (1981) 27-32.
[1985] E. Tardos, "A strongly polynomial mininum cost circulation algorithm", Combinatorica, $\underline{5}$ (1985) 247-255.
[1985] W.T. Tutte, "Lectures on matroids", Journal of Research of the National Bureau of Standards (B) 69 (1965) 1-47 [reprinted in: Selected Papers of W.T. Tutte, Vol. II (D. McCarthy and R.G. Stanton, eds.) Charles Babbage Research Centre, St. Pierre, Manitoba, 1979, pp. 439-496].

182 Cristina Pennavaja
Periodization approaches of capitalist development.
A critical survey
183 J.P.C. Kleijnen, G.L.J. Kloppenburg and F.L. Meeuwsen
Testing the mean of an asymmetric population: Johnson's modified T test revisited

184 M.O. Nijkamp, A.M. van Nunen
Freia versus Vintaf, een analyse
185 A.H.M. Gerards
Homomorphisms of graphs to odd cycles
186 P. Bekker, A. Kapteyn, T. Wans beek
Consistent sets of estimates for regressions with correlated or uncorrelated measurement errors in arbitrary subsets of all variables

187 P. Bekker, J. de Leeuw The rank of reduced dispersion matrices

188 A.J. de Zeeuw, F. van der Ploeg
Consistency of conjectures and reactions: a critique
189 E.N. Kertzman
Belastingstructur en privatisering
190 J.P.C. Kleijnen
Simulation with too many factors: review of random and groupscreening designs

191 J.P.C. Kleijnen
A Scenario for Sequential Experimentation
192 A. Dortmans
De loonvergelijking
Afwenteling van collectieve lasten door loontrekkers?
193 R. Heuts, J. van Lieshout, K. Baken
The quality of some approximation formulas in a continuous review inventory model

194 J.P.C. Kleijnen
Analyzing simulation experiments with common random numbers
195 P.M. Kort
Optimal dynamte fuvestment polley under flamelal restrictlons and adjustment costs

196 A.H. van den Elzen, G. van der Laan, A.J.J. Talman Adjustment processes for finding equilibria on the simplotope

197 J.P.C. Kleijnen
Variance heterogeneity in experimental design
198 J.P.C. Kleijnen
Selecting random number seeds in practice
199 J.P.C. Kleijnen
Regression analysis of simulation experiments: functional software specification

200 G. van der Laan and A.J.J. Talinan An algorithm for the linear complementarity problem with upper and lower bounds

201 P. Kooreman
Alternative specification tests for Tobit and related models

```
202 J.H.F. Schilderinck
    Interregional Structure of the European Community. Part III
203 Antoon van den Elzen and Dolf Talman
    A new strategy-adjustment process for computing a Nash equilibrium
    in a noncooperative more-person game
204 Jan Vingerhoets
    Fabrication of copper and copper semis in developing countries.
    A review of evidence and opportunities.
205 R. Heuts, J. v. Lieshout, K. Baken
    An inventory model: what is the influence of the shape of the lead
    time demand distribution?
206 A. v. Soest, P. Kooreman
    A Microeconometric Analysis of Vacation Behavior
207 F. Boekema, A. Nagelkerke
    Labour Relations, Networks, Job-creation and Regional Development
    A view to the consequences of technological change
208 R. Alessie, A. Kapteyn
    Habit Formation and Interdependent Preferences in the Almost Ideal
    Demand System
209 T. Wansbeek, A. Kapteyn
    Estimation of the error components model with incomplete panels
210 A.L. Hempenius
    The relation between dividends and profits
211 J. Kriens, J.Th. van Lieshout
    A generalisation and some properties of Markowitz' portfolio
    selection method
212 Jack P.C. Kleijnen and Charles R. Standridge
    Experimental design and regression analysis in simulation: an FMS
    case study
213 T.M. Doup, A.H. van den Elzen and A.J.J. Ta1man
    Simplicial algorithos for solving the non-linear complementarity
    problem on the simplotope
214 A.J.W. van de Gevel
    The theory of wage differentials: a correction
215 J.P.C. Kleijnen, W. van Groenendaal
    Regression analysis of factorial designs with sequential replica-
    tion
```

216 T.E. Nijman and F.C. Palm
Consistent estimation of rational expectations models
217 P.M. Kort
The firm's investment policy under a concave adjustment cost func-
tion
218 J.P.C. Kleijnen
Decision Support Systems (DSS), en de kleren van de keizer ...
219 T.M. Doup and A.J.J. Talman

A continuous deformation algorithm on the product space of unit

231 J.P.C. Kleijnen
Analyzing simulation experiments with common random numbers
232 A.B.T.M. van Schaik, R.J. Mulder On Superimposed Recurrent Cycles

233 M.H.C. Paardekooper
Sameh's parallel eigenvalue algorithm revisited
234 Pieter H.M. Ruys and Ton J.A. Storcken Preferences revealed by the choice of friends

235 C.J.J. Huys en E.N. Kertzman Effectieve belastingtarieven en kapitaalkosten

Bibliotheek K. U. Brabant

17000010597061

