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Abstract

We prove the following mitr-max relations. Let G be an undirected graph,
without isolated nodes, not containing an odd-K4 (a homeomorph of K4

(the 4-clique) in which the triangles of K4 have become odd cycles).

Then the maximum cardinality of a stable set in G Ss equal to the mini-

m~un ri~st uf a collectton uF edKeA and odd circults ln C, coverinR the
nodes of G. Here the cost of an edge is 1 and the cost of a circuit of

length 2kt1 equal to k.

Moreover, the minimum cardínality of a node-cover for G is equal to the
maximum profit of a collection mutually node disjoint edges and odd cir-
cuits in G. Here the rp ofit of an edge is 1 and the r~ ofit of a circuit
of length 2kf1 is equal to ktl. Also weighted versions of these min-max
relations hold. The result extends Kánig's well-known min-max relations
for stable sets and node-covers in bipartíte graphs. Moreover it extends
results of Chv~atal, Boulala, Fonlupt, and Uhry. A weaker, fractional,
version of these min-max relations follows from earlier results obtained
by Schrijver and the author.
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1. Introduction

The subject of this paper is to give an extension of the following well-

known result.

(1.1) If G has no odd circuit,
then a(G) a p(G) and T(G) - v(G) (KBnig [1931,1933])

Here, and i n the sequel, G z(V(G), E(G)) denotes an undirected graph
without isolated nodes. As usual, the parameters
ned by :

a. P. T and v are defi-

a(G) - the maximum cardinality of a stable set in G. (S C V(G) is a

stable set if u,v E S implies uv ~ E(G).)

p(G) - the minimum cardinality of an edge-cover for G. (E' C E(G) is an
edge-cover if for each u E V there exists an e E E' covering u.)

v(G) ~ the maxímum cardinality of a ma[ching in G. (M ~ E(G) is a mat-
ching if ei,e2 E M, el ~ e2 implies el;~ e2 ~~.)

t(G) - the minimum cardinality of a node-cover for G. (N C V(G) is a
node-cover if uv E E(G) implies u E N or v E N.)

We introduce two new parameters:

P(G) ~ the minimum cost of a collection of edges and odd circuits in G

covering the nodes of G. The cost of an edge is equal to 1, and

the cost of a circuit with 2kt1 edges is equal to k. The cost of

~ collection of edges and odd circuits is equal to the sum of

the cos[s of its members.

v(G) - the maximum profit of a collection of mutually node disjoint
edges and odd circuits in G. The rp ofit of an edge ia equal to 1
and the rp ofit of a circuit of length 2kt1 is equal to kfl. The
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rp ofit of a collection of edges and odd circuits is equal to the
sum of the profits of its members.

The following inequalities are obvious:

a(G) ~ p(G) ~ p(G),
(1.2)

t(G) ~ v(G) ~ v(G).

Kánig's Theorem (1.1) can be extended to the following result. (It fol-
lows from the more general Theorem 1.8, which will be proved in section
2.)

Theorem 1.3
Let G be an undirected graph, without isolated nodes. If G does not con-
tain any odd-K4 as a subgraph, then a(G) 3 p(G) and t(G) e v(G). L7

An odd-K4 is a homeomorph of K4 (the 4-clique) in which all triangles

have become odd circuits. (See figure 1, wriggled lines stand for pair-

wise openly disjoint paths; odd indicates that the corresponding faces

are odd circuits.)

To see that Theorem 1.3 extends Ki3nig's Theorem (1.1), observe that a

bipartite graph G has no odd-K4, and satisfies p(G) a p(G), i(G) ~ t(G)

(as G has no odd circuits.)

The two equalities in (1.1) are equivalent, for any graph G. This fol-
lows from
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(1.4) a(G) t r(G) - ~V(G)~ 3 p(G) t v(G) (Gallai [1958,1959j).

A similar equivalence for the equalities a(G) ~ p(G) and r(G) z v(G)
follows from the following result observed by Schrijver, analogous to
Gallai's result above.

Theorem 1.5

Let G be an undtrected graph without isolated nodes. Then p(G) f v(G) a
~V(G)~.

Proof:
Firs[, let el,...,em, CL,...,Cn be a collection of mutually node dis-

n
joint edges and odd circuits such that the profit m t F. }(~V(Ci)~ t 1)

i~ 1
of the collec[ion is equal to v(G).

n
Let VL :~ V(G)` u V(C1), and let GL be the subgraph of G induced by V1.

i~ 1
Then obviously m- v(G1). Let fl,...,fp(G ) be a minimum edge cover for

1
G1. Then fl,...,fp(G ), Cl,...,Cn is a collection of edges an odd cir-
cuits covering V(G)1 The cost of this collection i s (using Gallai's
identity (1.4)):

n n n
P(G1) t E}( ~V(Ci)~ - 1) ~ I Vll- v(Gl) - E}(~ V(Ci)~f 1) f E I V(C1) I

isl isl i-1

L ~v(c)~ - v(c).

Hence p(G) t v(G) ~ I V(G) I.

The reverse i nequality i s proved almost identically. However there is a
small technical difference, dealt with in the claim below.
Let el,...,em, CL,...,Cn be a collection of edges and odd circuits co-

n
vering V(G) such that the cost m t E íJ(~ V(C1) I- 1) of the collection

isl
is equal to p(C), and n ís as small as possible.

Claim: For each i,jal,..,n ( i~j); k-1,...,m we have V(Ci) ~~ V(Cj) 3 0.

V(Ci) n ek ~ ~l.
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Proof of Claim: Suppose, u E V(Ci) (i- 1,...,n), such that u is also con-

tained in another odd circuit among C1,...,Cn, or in one of the edges

el,...,em. Let fl,..,fp E E(Ci) be the unique maximum cardinality match-

ing in Ci not covering u. Then p-}(~V(C1)~ - 1). Obviously el,...,em,
fl,..,fp, C1' "''Ci-1' Citl' "-~Cn is a collection of edges and odd cir-

cuits covering V(G). Its cost is p(G), However it contains only n-1 odd

circuits, contradictíng the minimality of n.

end of proof of claim.

n
As before we define V1 ~ V(G)` U V(Ci) and G1 as the subgraph of G in-

1-1
duced by V1. By similar arguments as used in the first part of the proof
one gets:

n n
P(G) - P(G1) t E}(~v(ci)) - 1)) - ~v1~- v(cl) - E~F(IV(G1)I -~ 1)

i-1 i~ 1

n
f E ~V(Ci)I ~ IV(G)I - v(G).

i-1 a
a

Corollary 1.6
Let G be an undirected graph without i solated nodes. Then a(G) a p(G) if

and only if r(G) s v(G). ~

As mentioned, we prove Theorem 1.3 in section 2. In fact we shall prove
a more general weighted version of this theorem (Theorem 1.8 below).

Weighted versions

We define weighted versions of the numbers a, p, v, T, p, and v and
state the obvious generalizations of the results mentioned.
Let w E7LV(G).

aw(G) - maximum { E wu IS is a stable set in G},
uEs

pw(G) - the mínimum cardinality of a w-edge-cover for G. (A w-edge-cover
for G is a collection el,...,em in E(G) (repetition allowed)
such that for each u E V(G) there are at least wu edges among
el,...,em incident with u. The cardinality of el,...,em is m.)
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vw(G) - the maximum cardinality of a w-matching i n G. (A w-matching is a
collection el,...,em in E(G) (repetition allowed) such that for
each u E E(G) there are at most wu edges among el,...,em inci-
den[ with u.)

tw(G) - minimum { E wulN is node-cover for G}.
uEN

Moreover we define:
A w-cover ( w-packing respectively) by edges and odd circuits is a col-
lection el,...,em of edges and C1,...,Cm of odd circuits ( repetition
allowed), such that for each u E V(G):

~{i-1,...,mlu incident with ei}I t I{i-1,...,nlu E V(Ci)}I ~ wu(~ wu
respectively).

n
The cost of el,...,em, C1,...,Cn ís m f i: }(IV(Ci)I - 1), ite rp ofit is

n i- 1
m f F. }(IV(Ci) I f 1).

1-1

pw(G) - the minimum cost of a w-cover by edges and odd circuits for G.

vw(G) - the maximum profit of a w-packing by edges and odd circuits in
G.

These numbers satisfy:

If G has no odd circuit, then aw(G) a pw(G) and tw(G) ~ vw(G)
(Egerváry [1931]),

(1.7) aw(G) ~ pw(G) ~ Pw(G).

tw(G) ~ vw(G) ~ vw(G).
aw(G) f tw(G) ~ Pw(G) f vw(G) L pw(G) t vw(G) a E wu.

uEV(G)

(1.7) can be proved easily from the cardinality veraions stated before
(with w- 1), using the following construction:
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Define Gw by:

V(Gw) - {[u,i]lu E V(G); 1-1,...,wu},
E(Gw) -{[u,i][v,j]lu,v E V(G); uv E E(G); i- 1,...,wu; j~l,...,wv}.
Then one easily proves that aw(G) - a(Gw), pw(G) - p(Gw),vw(G) s v(Gw),
Tw(G) - T(Gw), pw(G) - p(Gw), vw(G) - v(Gw), and V(Gw) - E wu.

uEV(G)
Moreover Gw is bipartite if and only if G is. These yield (1.7). Theorem
1.3 can be generalized as well.

Theorem 1.8
Let G be an undirected graph, without isolated nodes. If G does not con-
tain any odd-K4 as a subgraph, then aw(G) - pw(G) and tw(G) 3 vw(G)
for any w E Tl V(G).

0

The proof of Theorem 1.8 is in section 2. It should be noted that Theo-
rem 1.8 does not follow from Theorem 1.3 by using Gw. The reason is that
it is possible that Gw contains an odd-K4 even if G does not. This is
íllustrated by the graph in figure 2. (The bold edges, in figure 2b form
an odd-K4.)

W -w -w -2x y z

(a)

figure 2

(b)

The statement "aw(G) - pw(G) for each w E~ V(G)" can be reformulated in
terms of integer linear programming.
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(1.9) Both optima in the followíng primal-dual pair of línear pro-
grams, are attained by integral vector i f w is integer valued.

Primal:

ti~p(G) :- max E w x
w uEV(G) u u

s.t. x f x ~ 1u v -
E x ~ }(IV(C)I - 1)

uEV(C) u s

Dual:

p~(G) 3 min E Y f E }(IV(C)I - 1)z
w eEE(G) e CEC(G) C

s.t. E y f E z~ w
eEE(G) e CEC(G)

C u

eEu V(C)~u
ye ~ 0

zC~O

(uv E E(G)),
(C E C(G)),

(u E V(G)).

(u E V(G)),

(e E E(G)),
(C E C(G)).

(~'(()) dc~nu[c:; th~ collecliun ciF add ~~ircults C~(V(C), R(C)) in

G.)

~r
So Theorem (1.8) implies that if G has no odd-K4, then pw(G) ~ pw(G) for
each w E 7L}(G). In other words, the system of linear inequalitíes in the
primal problem of (1.9) is totally dual integral (cf. Edmonds-Giles
[1977]). Consequently (Edmonds-Giles [1977], Hoffman [1974]), if G has
no odd-K4, then aw(G) - W(G) for each w E 7L ~(G). This means that the
system of linear inequalities in the primal problem of (1.9) describes
the stable set polytope of G. (The stable set polytope of G is the cotr-
vex hull of the characteristic vectors of the stable sets of G, conside-
red as subsets of V(G).)
Obviously, also the statement "Tw(C) a vw(G) for each w F7~ }(G)" can be

formulated in a way similar to (1.9).
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We conclude this section with some remarks. Section 2 con[ains the proof
of Theorem 1.3 and 1.8. Fínally, in section 3, we consider some algo-
rithmic aspects of the resul[s in this paper.

Remarks

(i) Eaclier results on this topic are:

- Chvátal [1975]: If G is series-parallel (i.e. G contains no homemorph
of K4), then a(G) ~ p(G).
- Boulala and Uhry (1979]: If G is series-parallel, then aw(G) s pw(G)

V(G) ~for each w E 7L .(In fact they only emphasize aw(G) - pw(G) (which

was conjectured by Chvátal [1975]). Bu[ their proof implicitly yíelds

the stronger result. Recently Mahjoub (1985) gave a very short proof of
~ V(G)aw(G) - pw(G) for each w~ 7L for series-parallel graphs G.)

- Fonlupt and Uhry [1982]: If there exista a u E V(G) such that u E V(C)
~ V(G)for all C E C(G), then aw(G) - pw(G) for each w E 7L . Sbihí and Uhry

[1984] give a new proof of Fonlupt and Uhry's result. This proof impli-

citly yields aw(G) - pw(G) for each w E 7l V(G).

Obviously, the graphs considered by Chvátal, Boulala, Fonlupt, Sbihi,

and Uhry do not contain an odd-K4.
~

- Gerards and Schrijver [1985]: If G has no odd- K4 then aw(G) - pw(G)
for each w E7LV(G).

(ii) Theorem 1.8 (and 1.3) can be refined by allowing w-covers (w-pack-

ings) by edges and odd circuits only to use edges not contained in a

triangle, and odd circuits not having a chord. In other words, if G has

no odd-K4, then the system:

(~) L x ~ }(IV(C)I - 1)
uEV(C) u -

x ~ 0
u ~

(uv E E(G), uv is not contained in a
triangle)
(C E ~(G), C has no chord)

(u E V(G))

is a totally dual integral system defining the stable set polytope of G.
In fact the unequalities in (~) are all facets of the polyhedron defined
by (~) (for any graph G). So (~) is the unique minimal totally dual in-
tegral system (cf. Schrijver [1981]) for the stable set polytope of G,
in case G has no odd-K4.
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(iíi) Lovász, Schrijver, Seymour, and Truemper [1984) give a construc-
tive characterization of graphs with no odd-K4: G has no odd-K4 if a nd
only if one of the following holds:

- There exists a u E V(G) such that u E V(C) for all C E C(G) (Fonlupt
and Uhry's case mentioned in remark (i) above).

- G is planar, and at most two faces of G are odd circuits.

- G is the graph in figure 3.

- G can he decomposed into smaller graphs with no odd-K4.

figure 3

2. The proof of Theorem 1.8

We first derive a special case of Theorem 1.8. To s[ate and prove it we

need some extra notions and an auxilary result (Theorem 2.1). An odd-K3

is a graph as indicated in figure 4(wriggles and dotted lines stand for

pairwise openly disjoint paths, dotted lines may have length zero, wrig-

gles lines have always positive length, odd indica[es that the cor-

responding faces are odd cycles).
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figure 4

An orientation of an undirected graph G is a directed graph obtained
from G by directing the edges. We say that a directed graph has discre-
pancy 1 if in each circuit the n~unber of forwardly directed ares minus
the number of backwardly directed ares is 0 or tl,

Theorem 2.1 (Gerards and Sc hrijver [1986])
Let G be an undirected graph. Then G does not con[ain an odd-K4 or an
odd-K3 if and only if G has an orientation with discrepancy 1.

Using this theorem we obtain the following special case of Theorem 1.8.

Theorem 2.2

a

Let G be an undírected graph without isolated nodes. If G does not con-
tain any odd-K4 or any odd-K3, then aw(G) - pw(G) and rw(G) L vw(G)
for each w E 7L V(G) ~

Proof:
According to Theorem 2.1, G has an orientation with discrepancy 1. Let
t~ denote the set of ares in this orientation. For each uv E Á we add a
reversely directed arc vu too. Denote í~ :- {vuluv E~}.
Consider the following "círculation" problem:
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(2.3)
aE A

s.t. E f - E f - 0
a a

min E faa

aEÁl1Á aE~.1Á
a enters u a leaves u

E f

aE ÁUA
a enters u

~ w- u

fa ~ 0

and its linear programming dual:

( E V(G))

(u E V(G))

(aE E~ Ut~),

(2.4) max E w x
uEV(G) u u

s. t, tr~ - nu t x~ ~ 1 ( uv E A)

nu- n~~-xu ~ 0 (uE A)

x ~ 0 (v E V(G)).u -

The theorem is proved by the following three propositions:

Proposition 1: The constraint matrix of (2.3) is totally unimodular.
Consequently both (2.3) and (2.4) have integral optimal solutions (Hoff-
man and Kruskal [1956]).

Proposition 2: Let n E~ V(G)~ x E n V(G) be a feasible solution of (2.4).
Then x is a feasible solutíon of the primal problem of (1.9).

Proposítion 3: Let fc-71.~~ be a feasible solution of (2.3). Then there

exists a y E7L E(G) and a z ETLC(G), which form a feasible solution of
the dual problem of (1.9), such that:

F. ye t E i(~V(C)I- 1)zC S E~fa.
eEE(G) CE~(G) a

a

Indeed, the three propositions together prove that aw(G) ~ pw(G). By

(1.7), this ytelds aw(C) ~ pw(G) and rw(G) ~ vw(G).

The three proposittons above are shown as follows:
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Proof of Proposition 1:

If we are given a directed graph D-(V(D), A(D)) and a spanning direct-
ed tree T-(V(D), T(D)) on the same node set (not necessarily

T(D) C A(D)), then the network matrix N of D with respect to T is de-
fined as follows:

N E{0,1,-1}A(T)xA(D). For u,v E V(D) let P(u,v) C A(T) be the unique
~

path in T from u to v. Then for each al E A(T), a2 ~ uv E A(D):

1 if al E P(u,v), and al is passed forwardly going along

P(u,v) from u to v

N .-
al,a2

if al E P(u,v), and al is passed backwardly going along
P(u,v) from u to v

if al ~ P(u,v)].

Network matríces are totally unimodular (Tutte [1965]). We prove Propo-
sition 1 by proving that the constraint matrix of ( 2.3) is a network ma-
t rix.
Indeed, let V(D) :- V(T) :- {VD} U{[u,i]lu E V(G), i E{1,2}},
A(D) :- {[u,l v, ]luv E ~}, and

A(T) :- {vD- [u,l']lu E V(G){ U{ulu2lu E V(G)}.

Proof of Proposition 2:
Sínce x is integral we only need to prove that xu t xv C 1 for
uv E E(G). Indeed xv f xu ~(1 - nv } ru) }(nv - nu) ' 1 if uv E E(G)

(uv E ~). -

Proof of Proposition 3:

We can write f as f- E aDfD, where ~ is a collection of directed cir-
DEe

cuits in t~ U~, fD E{0,1}~U~ with fá - 1 if and only if a E D, and

aD E 7l} for each D E A.

For every even circuit D E ~, let MD be an arbítrary maximum cardinality
matching ín }uv E F,(G)luv E D or u r D}. ( in particular if
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D-{uv,VU}. then MD -{uv},) Define yD E 7L E(G) by:

yD- J~Dif eEMD

0 else.e SI
Next y ~-IL h'(G) is defined by y- F, yD.

ix n
D i~ven

Hor each odd círcuít D ~. A, let C~~ i ~'(G) he defíned by CD -{uvluv C D

or v Ë D}. Defíne z ~71~~(G) by:

zC -
aD if C s CD for some D, D E ~, ~D~ odd

0 1e se.

The vectors y E 7l E(G) and z E7LC(G) form a feasible solution to the dual
problem of ( 1.9). 'ioreover

E fa - E aDl ~ n D I

aEt~ DE~

~ E aD ~MD~ f E aD.~íl ~(CD) I- 1)
DE~ DE~

D even D odd
- E y t F. }(~V(C)~- 1)z

eEE(G) e CEC(G) C.

Before we prove Theorem 1.8 we state a result of Lovász and Schri jver
[1984] (cf. Gerards-Schrijver. [1986, Theorem 2.6]). This result indi-
cates that, in a sense, Theorem 2.2 is the core of Theorem 1.8.

Theorem 2.5
Let G be an undirected graph, containing no odd-K4. If G contains an
odd-K3, then one of the following holds
(i) G is disconnected or has a one node cutset

(ii) G has a two node cutset. Both sides of the cutaet are not bipartite, p

Using this we finally prove Theorem 1.8.

Proof of Theorem t.8
Let G be a graph with no odd-K4. Assume that all graphs G~ with
~E(G~)I ~ IE(G)I satisfy Theorem 1.8. We shall prove that then G satis-
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fies Theorem 1.8. Obviously we may assume G to be connected. Let
w ~ ZI.V(G). By the weighted version of Theorem 1.5 we only need to prove
that aw(G) - pw(G). Obviously we may assume that wu Z 0 for each
u E V(G). According to Theorem 2.2 and 2.5 we may assume that G satis-
fies (i) or
(11) of Theorem 2.5. So we have subsets V1, V2 of V(G) such that
IV1 n V2 I~ 2, V1 u V2 - V(G), and both V1`V2 and V~`V1 are non empty
sets not joined by an edge in E(G). Moreover, in case ~V1 n V2~ - 2, the
subgraphs G1 and G2 in G i nduced by V1, V2 respectively are not bipar-
tite. In the sequel we shall use the following notation: For each
stable set U C V1 n V2 the number s(U) (sl(U), s2(U) respectively) de-
notes the maximum weight E wu of a stable set in G(G1, G2 respective-

~S
ly) satisfying S ~~ Viri V2 ~ U. Note that: s(U) a sl(U) t s2(U) -

for each stable set U in V1 n V2. We consider two cases.

Case I: V1 n V2 i nduces a clique in G.
Define the following weight functions:

1 wu if u E V1`V2

wu .- wu t sl(~) - sl({u}) if u E Vln V2;

2-(wu if u E V2`V1

wu . 111s1({u}) - sl(0) if u E V1 n V2.

F. w
u[ U u

Obviously G1 and G2 do not contaín an odd-K4. Moreover IE(G1)I ~ IE(G)~,

~ E(G2) ~ ~ ~ E(G) ~. Hence there exist a wl- and a w2-cover by edges and

odd circuits in G1, G2 respectively, with cost sl(~), aw(G) - s2(Q) res-

pectively. The union of these two covers is a w-cover with edges and odd

circuíts in C with cost aw(G). Hence aw(G) - pw(G).

Case II: I V1 n V2 ~- 2, V1 n V2 ~{ul,u2} say, and ulu2 ~ E(G). Define
for 1-1,2; k-2,3 the graph Gi by addíng to Gi a path from ul to u2 with

k-edges. (See figures 5 and 6.)

k
Claim 1: We may assume that Gi does not contain an odd-K4 (131,2;
k 2,3). Moreover I E(Gi)I ~ I E(G)I .
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Proof of Claim 1: To prove the first assertion ( for i-1), it is suffi-
cient to prove that i n G2 there exists an odd as well as an even path
from u~ to u2. Suppose this is not the case. Since G~ is not bipartite
thís im~ilies the existence oE a cutnode in G2 separating {ul,u2} from an
odd cycle in GZ. But such a cutnode is also a cutnode oE G. In that case
we can apply Case I to prove aw(G) - pw(G). So we may assume that Gi has
no odd-K4. IE I E(Gi)I ~ I E(G)I , then I E(GZ)I S 3. Hence, since G2 is not
bipartite, GZ is a triangle. So ulu2 E E(G), contradicting our assump-
tion that ulu2 ~ E(G). end of proof of claim 1

Define A:s s2({ul}) t s2({uZ}) - s2({ul,u2}) - s2(~). Again we consider
two cases.

Case Iía: A ~ 0,
Let bl,b2 be the new nodes in Gi, b the new node ín G2. (See figure 5
below.) Moreover, let el, e2, e, fl, and f2 be the edges indicated in
figure 5.

ftgure i

We define the following weight functions:

V(G3) ~u

w1E ZL 1 by wu :- s2({u}) - s2(~)

if u E V1`{ul,u2}

if u E {ul,u2}

if u E {bl,b2};

2 V(GZ) 2 `''u z Z if u E VZ`{u1,u2}

w E 7L by wil .- wu f s(Ql) - s({u}) f 4 if uE {ul,u2}

A if u E {b}.
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Claim 2: n 2(Gi) ~ aw(G) -F 0- sZ(Q) and a 2(GZ) a S2(ql) f A. Moreover,

for i-1,2 there exists a stable set S in GZwwith E wu n a 2(G2),
uES w

ui ~ S, and b~ S.

Proof of Claim 2: Straightforward case checking.
end of proof of claim 2

By claim 1 there exists a wl-cover E1, C1 by edges and odd circuits Gi
with cost a 1(Gi) - aw(G) t A- 52(~). Let yl,y2 and y denote the multi-

w
plicity of el,e2,é respectively in E1. Let R denote the sum of the mul-

tiplícities of the odd cycles in ~'1 containing bl (and b2). Assume E1

and C1 are such that yl f y2 -} 2y f s is minimal.

Claim 3: yi t y t B- ~ for i- 1,2. Consequently, yl - y2.

Proof of Claim 3: yi f y-} R~ ~ since E1, CL i s a wl-cover. Suppose
y~ f y} R ~ A. Then y~ ~. indeed, (f not, then íncreaslnK y2 by 1 and

decreasing y by 1 would yield a wl-cover wlth cost a 1(Gi), and smaller
w

yl } y2 t 2y f R. Moreover, yl - 0. Otherwise, take some ulv E E(Gl).
Adding ulv to E1 ( or increasing its multiplícíty in E1) and decreasing
yl by 1, again yields a wl-cover with cost awl(Gi), and smaller

yl t y2 f 2y f R. Finally R- 0, contradicting the fact that p~ 0.
Indeed if R~ 0 remove an odd circuit C with bl E V(C) from C1, and add
the edges in the unique maximum cardinality matching M c E(C) not cover-
ing bl to Ei. Since M-}(~V(C)~ - 1) this again yields a wl-cover
with cost a 1(Gi), and smaller yl f y2 t 2y f R.

w
end of proof of claim 3

By claim 1, there also exists a w2-cover E2, C2 by edges and odd cir~

cuits in GZ with cost a 2(G2) - S2(~) f A. Let E2 and C2 be such that
w

the sum, d, of the multiplicities of the odd cycles in C2 containing b

is minimal.
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Claim 4: E1 and f~ do not occur ( i.e. have multiplicity 0) in EZ. More-
over 6 - ~.

Proof of Claím 4: Since the cost of F,2, t'2 ís a 2(GZ) and there exists a
w

stable set S in GZ with E wu - a z(GZ) and ul,b ~ S(Cla1m 2), the edge
uES w

fl does not occur in EZ ("complementary slackness"), Equivalently f2
does not occur in E2. The proof tliat g- p is similar to the proof of
claim 3. end of proof of claim 4

Using E1, C.'1 and E2, C2 we are now able to construct a w-cover É, ~ in G
by edges and odd circuits, and with cost aw(G). Thus proving c~(G) 3

pw(G). The construction goes as follows:

Step 1: The edges in E1 and E2, except el,e2 and é are added to É(with

the same multiplicity). The odd circuits in C1 and C2 not containing bl

(b2), or b are added to ï;.

Step 2: Let Ci,...,CQ be the odd circuit in C2 containing b. (Remind
that some of them may be equal.)
(i) Let Ci,...,C~ be the odd circuits in C1 containing bl, define for

each i-1,...,R the odd circuit CiE C(G) by

E(Ci) - E(Ci) U E(Ci)`{e1,e2,é,fl,f2}. Add all the odd circuits
C1,...,CR to C.
Note that, for each 1-1,...,R: ~~V(Ci)I- 1-~}(IV(Ci)I - 1) f
}(IV(Ci) ~ - 1) - 2.

(ii) Define for each i-R-F1,...,RtY1 the collection of edges Mi as the

unique maximum cardinality matching in E(Ci) not covering b. Each

edge occuring in Mi (i~Rf1,...,RfY1) is added to F(as often as it

occurs in an Mi).

Note that, for each 1-Rt1,...,RfY1: IMiI -}(IV(Ci)I- 1).

(iii) Define for each 1-RtYlfl,...,Rtylfy - ~ the collection of edges Ni

as the unique maximum cardinality matching in E(Ci) not covering

ul and not covering u2. All the edges occuring in an Ni are added

to É(as often as they occur in an Ni).

Note that, for each i-sfY1-}1,...,~, ~Nil -}(I V(Ci)I - 1) - 1.
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Claim 5: The collections F, ~'form a w-cover by edges and odd circuits
in G.

Proof of Claim S: It is not hard to see that each u E(V1`V2) u(V2`V1)

is covered wu times by É, x. (The matchings in step 2(ii) and in step

2(iii) of the construction do not decrease the number of times that a

node in VZ`~Vl is covered.) The ncde ul is covered at least

sZ({u}) - sZ(0) times by EZ, c,'Z, ar.d at least wu f s2(g) - s2({u}) f n

times by E1, C1. So ul is covered at least wu t n times by E1, C1 and

E2, C2 together. During the construction this amount is decreased with

g by step 2(i), with Y1 by step 2(ii), and with y by step 2(iii). Since
S f Y1 f Y- ~, É and C cover ui at least wu times. Similarly one deals
with u2, as Y1 - Y2. end of proof of claim 5

Claim 6: The cost of É, C is aw(G).

Proof of Claim 6: The cost of E1, Cl plus the cost of E2, C2 is equal to
a~(ci) t a z(cz) a aw(G) t n- sz(0) t sz(?~) t n~ aw(G) f zn. During
w w

thr ~~unstrurtion wc lu5t ex:~ctly: ZR tn step 2(t), y tn step 2(tii), r~nd
2Y1 t y by ignoring the edges el, e2, e. So the cost of F, c; is

aw(G) t 2~ - 2S - y-(zY1fY) - aw(G). end of proof of claim 6

Claim 5 and 6 together yield that aw(G) - pw(G).

Case IIb: ~ ~ 0.
The proof of this case i s similar to the proof of case IIa. Therefore we
shall only gíve the beginning of it.
Let b be the new node in Gl and let bl and b2 be the new nodes in GZ

(see figure 6).

figure 6
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Define the following weight functions:

V(GZ)
wl ` 7L i by wl .

u
- ~ if u - b;

if u E V1` V2

({u}) - s2((D) - 0 if u E{ul,u2}

V(G3) rwu i f u E VZ`V1
w2 E TL 2 by wu :- wu f s2((D) - s2({u}) if u E{ul,uz}

- n if u E {bl,b2}.

The fírst thing to be proved now is

Claim 7: a 1(Gi) - aw(G) - A- s2(Q1) and a 2(GZ) --4 t s2(~). Moreover,
w w

for each U E{{ul,bl}, {b1,b2}, {u2,b2}} there exists a stable set S in
G2 with E wu - a 2(GZ), and S n U-~.

uES W

From this point it is not hard to see how arguements similar to those

used in Case IIa prove that aw(G) - pw(G).

Remarks:
The~ prnof oE Case I of the proof above ls identical with the proof of

'Ptu~uri~m 4. I 1 n Chv(ita 1 ~ 1975 ~. Th~~ techniqueN uHed 1 n Caae 1 Tn and Cnse

IIb of the proof are similar to the techniques used by Boulala and Uhry

[1979]. However they restrict G2 to paths and odd cycles. Sbihi and Uhry

[1984] also use the decompositions of Case II. In their case G2 is al-

ways bipartite. Recently, Barahona and Mahjoub [1986] derived a con-

struction to derive all facets of the stable polytope of G, in case G

has a two node cutset {ul,uz}, from the facets of the stable set poly-

topes of Gi, and GZ. (Here G1 and G2 are as in the proof above, Gi is

derived from Gi by adding a five cycle {ul,b,u2,bl,b2}).

3. Computationa] Aspects

In this final sectíon we give some at[en[ion to the computational com-

plexity of the problems: Given G and w E 7L V(G), determine aw(G),

pw(G), pw(G), Tw(G), vw(G), and vw(G). Well known results are:
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It is NP-hard to determine aw(G), Tw(G), even 1E w- 1(Karp [1972]).
There exists a polynomial time algorithm to determine a maximum cardina-

lity w-matching, or a minimum cardinality w-edge-cover (Edmonds [1965]
for w- 1, Cunningham and Marsh [1978J for general w).

Pulleyblank observed that determining pw(G), or vw(G) is NP-hard, even

ís w- 1. There is a reduction frnn PARTITION INTO TRIANGLES (cf. Garey

and .fohnson [ 1979] ).
Indeed, given a graph G there is partition of V(G) into triangles in G

íf and only íf Ip(G)I C 3IV(C)~. Sínce PARTITION INTO TRIANGLES remains
NP-complete for planar graphs (Dyer and Frieze [1986]), determining

p(G), or v(G) remains NP-hard even if G is planar.

If G has no odd-K4 pw(G) a nd vw(G) can be found efficiently (i.e. in
polynomial time). Indeed, an algorithm can be obtained from the proofs
in section 2(proof of Theorem 2.2, proof of Theorem 1.8). The only dif-
ficulty is findíng an oríentation ~ of descrepancy 1, and solving (2.3)
and (2.4).

Finding ~: Using a constructive characterizatíon of graphs wíth no odd-
K4 and no odd-K3 (Lovasz, Schríjver, Seymour, Truemper [1984], cf.

Gerards-Schrijver [1986J) similar to tlie result in remark (iii) of sec-

tion 1, one easily deríves a polynomial time algorithm to find ~, or to
decide that r~ does no[ exist (i.e. that G h.3s an odd-K4 or an odd-K3,

Theorem 2.1).

Solving ( 2.3) and ( 2.4): Define the directed graph D-(V(D),A(D)) by:
v(D) :- {~i~u c v(c); 1-t,z}: A(D) : - ulu2~u E v(c)} u{u~~~ E.~{.
Then ( 2.3) is equivalent to the min-cost-circulation problem:

(3.2) min E g -~
vÉÁ u2v1

s.t. g is a non-negative circulation in D,

g u ui ~ wu
(uEV(D)).

1 2

(3.2) can be efficiently solved by the out-of-kilter method of Ford and

Fulkerson (1962]. (Note that since the cost function is {0,1}-valued,
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there is no need to appeal [o more sophisticated techniques as used by
Edmonds and Karp [1972], RSck [1980] or Tardos [1985].)

Arknowlyd~;ement: i thank Alexander Schri,jver Eor his support during the
preparation uf this paper. In particular for his help with the presenta-

tion and his suggestions for simplifytng the proofs. I thank William R.

Pulleyblank for his observation that derermining p or v is NP-hard.
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