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Abstract

Iri this paper we consider a number of always converging price
adjustment processes, which have been introduced recently, in a homotopy
setting. The main feature of these processes is that they memorize the
starting vector along the path. Here we show that the paths followed by
the processes can be viewed upon as being projections of zero point sets
of appropriate homotopies. By doing so we put the processes in a unifying
and familiar framework. This makes it easy to derive for example condi-
tions under which the processes converge monotone to an equilibrium. Be-
sides, we propose a new price adjustment process related to a very simple
homotopy.
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1. lntroduct.iun

Recently, some price adjustment processes have been introduced,
which always converge to an equilibrium price vector in a pure exchange
economy (see [4]). These processes can start at an arbitrary price vector
and find equilibrium prices via a sequence of price adaptions. The most

important feature of these processes is that they memorize the starting

vector. In this paper we consider these processes in a homotopy framework.
Solving the equilibrium problem via the homotopy approach means that we
start in a solution of a trivial problem on an artificial set. The trivial

problem is then continuously deformed to the real problem on the set of

interest. By following a path of solutions for these intermediate prob-
lems, which starts with the trivial solution, eventually an equilibrium is
reached. We show that the price adjustment processes mentioned above can
be viewed upon as being projections of such a homotopy path on the price

space. By doing so, we put all these processes in a unifying framework.
Since the homotopy approach is a standard tool in mathematics and has a

large theoretical background it is rather easy to derive conditions under
which the processes exist and converge (monotonically) towards an equilib-
rium. Furthermore, it appears that the homotopy parameter induces a
measure for the accuracy of approximation. Another contribution of this
paper is the presentation of a new price adjustment process resulting from
a very elegant and simple homotopy.

As already indicated, the problem is the search for an equilibrium
price vector in a pure exchange economy. In such an economy there are a
finite number of commodities, say ntl, and of consumers each having a
vector of initial endowments. Exchanges of goods are based on relative
prices. All consumers in this economy exchange goods in order to maximize
their utility under the constraint imposed by their initial wealth. An
equilibrium price vector is a vector of prices at which for all goods
demand equals supply while no consumer can improve upon his situation. All
relevant information of such an economy can be captured in an excess de-
mand function which relates to each price vector the corresponding vector
of excess demands. Thus, an excess demand function, denoted by z, can be
seen as a function from the set R}tl .- {p E Rn}l~pj ~ 0, j- 1,...,nfl}
to Rn}1. Standard conditions on z are
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i) zÍ~P) ' z(P) . `d~ ) 0 and vp E R}}1 (homogeneity)

r ntlii) p z(p) - 0, Vp E R}} (complementarity) (1.1)

iii) dp E bd Rn}1`{0} ~ó ) 0 vp' E{x E R;}l~~p-x~ ~ b}

CPj - 0 ~ zj(P') ) 0] ,

with Rt}1 .- {p E Rn}l~pj z 0, j- 1,...,n41} and ~.~ the Euclidean norm.
Furthermore, we assume that z is continuously differentiable (C1) on Rntl.

.~
To guarantee the latter certain conditions on the preference relations of
the consumers are needed. The economic interpretation of (1.1) is
straightforward. Condition i) indicates that only relative prices matter.
Condition ii) is also known as Walras' law and says that all consumers
spend their total income. Condition iii) is a desirability condition,
roughly stating that if the price of a good is (relatively) small, the
demand for it exceeds its supply. Of course, an equilibrium price vector
ís a vectoc- p` for which z(p~`) - 0, and such an equilibrium always exists
(see [1]).

Well-known price adjustment processes for finding an equilibrium
are the standard Walras tatonnement process and the Newton-like method of
Smale (see [7]), which both follow the path of solutions to a differential
equation. However, these methods can fail to converge. This is illustrated
by Scarf [6] for the Walras process and by Keenan [2] for the process of
Smale. Recently, a class of always converging price adjustment processes
has been introduced. These processes do not operate on R}}1 but on the n-

dimensional unit simplex Sn, defined by Sn .- {p E Rt{l~i~'ipj - 1}. This
restriction is allowed because of condition i). Another common feature of
these processes is that they memorize the starting vector. Thus, these
processes are not completely myopic as the processes of Walras and Smale.

Here we consider three price adjustment processes discussed in van
der Laan and Talman [4]. They all follow the set of solutions to a system
of complementary equations involving the starting vector v in Sn. For
convenience we take v in the relative interior int(Sn) of Sn. The first
process focusses on minimal excess demands and follows a path of vectors p
in Sn satisfying for j E Intl :- {1,...,n31},
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pj~vj - maxhph,~h

if zj(p) - minhzh(p) 'pj~vj s maxhph,~h

if zj(p) ~ minhzh(p)

In economic terms, along the path the prices of the commodities not having
minimal excess demand are kept maximal relative to their initial values.
Initially at v, the price of the commodity with the lowest excess demand
is decreased whereas all other prices are increased proportionally and
kept relatively equal.
The second process focusses on maximal excess demands and generates from v
a path of vectors p in Sn satisfying for j E Intl'

pj~vj - minhph,~h

pj~vj 2 minhph,~h

if zj(P) C maxhzh(P)

if zj(p) - maxhzh(p) .
(1.3)

The third process is slightly more sophisticated and takes the signs of
the excess demands into account. It follows a path of price vectors p from
v satisfying for j E In~l,

pj~vj - maxhph~vh if zj(P) ) 0

minhph~vh S pj~vj 5 maxhph~vh if zj(P) - 0

pj~vj - minhph~vh if zj(P) ( 0.

(~.4)

In economic terms, this process initially increases ( decreases) the prices
of the commodities having positive (negative) excess demand. In general,
the prices of the commodities with positive (negative) excess demand are,
relative to their initial values, maximal (minimal), whereas the relative
prices of goods in equilibrium vary between these bounds.

The paths originating at v and satisfying (1.2), (1.3), or (1.4)
are generically piecewise C1 and can be followed arbitrarily close by a
simplicial algorithm. To apply such an algorithm the simplex Sn is tri-
angulated into simplices. The algorithm then operates with the same system
of complementary equations but with z replaced by its piecewise linear
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npproximul ion. Vnn dcr I,utin nnd 9'nlmnn ( 3( ~;huw~~d LhaL for Lhe fixcd poihL
problem on Sr~ the piecewise línear path generated by such a simplicial
algorithm can be considered as the projection of the zero point set of a
homotopy. In this paper we present a homotopy settíng for the piecewise
C1 paths of each of the three processes defined above. The underlying
homotopy functions are all functions from the convex hull V of UX{0} and

X n'1 ntlW{1} to R , where U and W are n-dimensional subsets of R and
int(Sn), respectively. Both U and W contain v and for all u E U, ïi4iui -
1. The general form of such a homotopy function h is given by

h(x,b) - (1-b)(v-u) 4 bg(p) , (x,b) E v , (1.5)

where (x,b) uniquely determines u E U and p E W such that x-(1-b)u t bp.
The C1-function g: W-~ {x E Rnr1~Ei}ixi - 0} is related to z in such a
way that g(p) - 0 iff z(p) - 0. Then, h will be a(piecewise) C1-function
from an (n.l)-dimensional set in RnalX[0,1] into an n-dimensional subset
of Rn41. Furthermore, the set h-1(0) on level zero (b-0) equals {(v,0)}
while h-1(0) on level one (b-1) is the set of points (p`,1) for which

.z(p`) - 0. If 0 E Rn is a regular value of h then the set h-1(0) in
general consists of disjoint piecewise C1 paths and loops (see Milnor
C5]). For each process we prove that the set h-1(0) of the corresponding
homotopy contains a path connecting (v,0) and a(pM,l) with z(pw) - 0. The
projection of this path on W then equals the path followed by that pro-
cess.

In this paper we also introduce a price adjustment process opera-
ting on the positive part of the ball in Rn41 with centre }v and passing
through the starting vector v in R}~1. In fact this set yields a different
normalization of the price space. The homotopy function related to this
process is a function h: R}}lx[0,1] ~ Rn;l, defined by

h(P.b) -(1-b)(v-p) t bz(P) , (P.b) E R4tlx[0,1] . (1.6)

A homotopy function as in (1.6) is also known as the homotopy in standard
form. Observe the differences between (1.5) and (1.6). The path of zero
points induced by (1.6) leading from (v,0) to (p~`,1) with z(p`) - 0 can be
followed by a simplicial algorithm operating in R~}lx[0,1].
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This paper is organized as follows. In Section 2 we discuss the
new adjustment process derived from the standard homotopy. Section 3 con-
siders how the price adjustment processes related to the maximal and mini-
mal excess demands can be put into a homotopy framework. In Section 4 the
same is done for the process focussing on the sign pattern of the excess
demands.



2. The standard homotop~

In this section we consider the price adjustment process induced
by the set of zero points of the homotopy function h in standard form,
i.e.,

h(P,S) -(1-S)(v-P) t bz(P) . ( P.5) E Rt~lX[0.1~ .

where z is a continuously differentiable excess demand function and v is
an arbitrarily chosen point in Rn}1. Because z is assumed to be a C1-func-
tion, the homotopy function h is a C1-function from an (nt2)-manifold with
boundary into an (ntl)-manifold. Throughout this paper we use the short-
hand notation k-manifold for k-dimensional manifold. The boundary of the
domain of h is equal to (Rt}lX{0}) u(Rn}lx{1}). So, if 0 E Rn}1 is a
regular value oF h then h-1(0) is a C~ 1-manifold, i.e., a collection of
disjoint paths and loops. Moreover, an end point of a path in h-1(0)
either lies in Rn'1X{0} or in Rn`lx{1}. Clearly, (p,0) E h-1(0) implies.t tt
p- v and so there is only one end point on level 0. Furthermore, (p~,l) E
h-1(0) if and only if z(p") - 0. We will now show that the path having the
point (v,0) as end point on level 0 also has an end point in Rn`lx{1}. The
projection of this path on R}}1 then gives the path of an}adjustment
process from v to a zero point of z. We remark that we cannot take the
homotopy function h on the relative interior of the unit simplex Sn, since
for any á E(0,1) the set h-1(0) n(SnX{b}) is in general empty.

In order to show that h-1(0) contains a path from (v,0) to a point
in Rn'lx 1 first notice that h Tt4 {} (p,b) - 0, 0 s b C 1, implies p(v-p) - 0,

Tsince p z(p) - 0 and b~ 1. Hence, let B be the part of the ball in Rntl
around ~v and passing through v, which lies in the positive orthant, i.e.,

B :- {p E Rtt1I(P-~v)T(P-~V) - LVTV} .

then all zero points of h between the levels 0 and 1(and on level 0) lie
in BX[0,1). Since the closure of B is a compact subset of Rt}1`{0} and
because of the continuity and the desirability condition on z, there ex-
ists an E, 0 C e~ minhvh, such that zi(p) ) 0 whenever pi 5 E and p E B.
Now let B(E) be the compact subset of Rn~l defined by
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B(E) :- {p E B~pi 2 e for all i E In41} ,

0
then the next lemma guarantees that all zero points of h in Bx[0,1] lie in
B(E)X[0,1].

Lemma 2.1. Let (p,ó) be a point in B x[0,1]. Then hi(p,ó) ~ 0 if pi S e.

Proof. By definition we have for all (p,ó) E BX[0,1]

h~ÍP,S) -(1-b)(v~-P~) t bz~(P) . J E In}1 .

If p. s e we obtain since v. ~ e that v. - p. ~ 0 whereas from above wei i i i
know that zi(p) ) 0.

Consequently, if 0 is a regular value of h, then the path P, having (v,0)
as an end point cannot cross the boundary of B(E) between the levels 0 and

1 and therefore remains in the compact set B(6)x[0,1]. Thus P must have
another end point on B(E)x{0} or B(E)X{1}. Since (v,0) is the only zero
point of h on level 0, the other end point is a point (p",1) on level 1 at
which z(p~) - 0. Moreover, all other paths in h-1(0), if any, also lie in

B(E)x[0,1] and connect two zero points of z on level 1, whereas all loops
in h-1(0) lie in B(E)X(0,1).

For 0 to be a regular value of h, it is required that the Jacobian
matrix of h is of full rank at all zero points of h. The first ntl co-
lumns, DPh, of this (ntl)X(nt2) matrix contain the derivatives of h with
respect to p while the last column, Dbh, is the derivative of h with re-
spect to b. More precisely, the Jacobian matrix at (p,ó) is equal to

Dh(P.b) - [-(1-á)I . bDz(P)iP - v ' z(P)] .

where I is the (ntl)X(ntl) identity matrix and Dz(p) is the (n41)x(n41)
matrix of derivatives of z at p. Thus, the value 0 is regular for h if the
matrix Dh(p,b) is of rank ntl for all (p,b) E B(e)X[0,1] for which
h(p,b) - 0. If 0 5 S~ 1, in general this holds. However, due to the com-
plementarity condition the rank of Dh(p,b) cannot be equal to ntl if
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h(p,b) - 0 and b- 1, since pTDz(p) - 0 and [p-vtz(p)]Tp - 0 and hence
Tp Dh(p,l) - 0. More precisely, if the path P reaches level 1 at the point

(p~`,1), then bifurcation takes place, since then h(ap`,1) - 0 for all ~)
0. Because (p,b) E h-1(0) lies in Bx[0,1] when 0 5 b~ 1, it is sufficient
to require the regularit,y of 0 for h only on the set B x[0,1]. In that
case the set B can be seen as a specific normalization of the domain of z
and there is no bifurcation in B on level 1.

We conclude this section with an illustration of h-1(0) and pro-
vide an interpretation of the path P, when projected on R}41, as an ad-
justment process. In Figure 2.1 the set h-1(0) consists of the path P and
a path Q connecting two zero points of z on level 1. Notice that h-1(0)
cannot contain loops when n- 1.

Y'

Figure 2.1. Illustration of h-1(0) in B(E)X[0,1], n- 1.
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Now let P' be the projection of P on Rt}1, then (assuming z(v)~0)
P' must be a C1 curve in B(e) connecting v and a zero point p' of z. This

follows from the fact that (p,bl) E h-1(0) and (p,b2) E h-1(0) imply bl -

b2. More precisely, the derivative Dbh(p,b) - p-vtz(p) has rank 1 along

the path P. Observe that this only does not hold when at p- v we have

z(p) - 0. But then P is the line segment {v}x[0,1] and P' -{v}. So, if v
is not a zero point of z, the path P' is a C1 curve in B(e). For any point
p, p~ v, along the path P', we have that z(p) - S(p-v) for some S~ 0.
Thus, in economic terms, at prices p on the path induced by the set of
zero points of the standard homotopy, the excess demand is a multiple of
the difference between p and the initial price vector v. Notice the
similarity to the classical Walrasian adjustment process when we replace
initial by previous (in time). An illustration of this interpretation is
given in Figure 2.2.

Figure 2.2. Illustration of P' for n- 2.

Notice further that, if h(p,b) - 0, (p,b) ~(v,0), and so z(p) -
S(p-v) for some ~ Z 0, we must have ~- (1-b)~ó. Thus, ~ decreases if b
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increases and b gives an indication for how close z(p) is equal to zero.
We say that the process converges monotone if b increases monotone from 0
to 1 along the path P. The latter only holds if D h(p,b) --(1-b)I tP
bDz(p) always has rank n;l along P.

Finally, we remark that the path of zero points of h can be
followed approximately by a simplicial homotopy method on Rn}lX[0,1].~
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j. HomoLc~functions based on minimal or maximal excess demands

In this section we describe how the paths of points generated by
the adjustment processes induced by (1.2) and (1.3) can be interpreted as
the projection on Sn of a path of zero points of some homotopy function.
Again, Lhe sCarting vector is an arbitrary point in int(Sn) and is denoted
by v. Furthermore, from the conditions on z we derive the existence of an
n~ 0 such that for all p in int(Sn) and all i E In;l' zi(p) ) 0 if pi s
n. For the process related to (1.2) we obtain a homotopy on the convex
hull V of UnX{0} and Sn(n)X{1}. The set Un is the convex hull of the n;l
vectors u(j) :- v-(ntl)-le t e(j), j E In}1, where e is the (ntl)-vector
of ones while e(j) is the ntl nj-th unit vector in R . The set S(n) is de-
fined by

Sn(n) :- {P E Sn~Pi 2 t~,vi, i E Intl} .

The set of zero points of this homotopy function will induce a path P' of
points in Sn connecting the arbitrarily chosen starting point v and a zero
poirit p' of z. Vectors p along the path P' satisfy (1.2), i.e.,

pj~vj - maxhph~vh if zj(P) ~ minhzh(p) . (3-1)

In the second part of this section we consider the homotopy which induces
the path followed by the (price) adjustment process focussing on the maxi-
mal excess demands. This homotopy is defined on the convex hull V of
Unx{0} and Sn(n)x{1}, where Un is the convex hull of the vectors u(j) :-
v t(ntl)-le - e(j), j E Inrl. The set of zero points of this homotopy
induces a path of points P' in Sn connecting v and a zero point of z. The
points p on this path satisfy (1.3), i.e.,

pj~vj - minhph~vh if zj(P) C maxhzh(p) . (3.2)

Let us start with the first homotopy. The set Un is an n-dimensio-
nal simplex congruent to Sn, lying in the affine hull of Sn, and having v
as its barycentre. In order to define the homotopy h on the convex hull V
of Unx{0} and Sn(~,)x{1}, we have to subdivide V in an appropriate way into
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cell~. ln fact, Lhis subdivision is n~~edr-~d Lo relate each (x,b) in V to a
unique pair u E Un on level 0 and p E Sn(~) on level 1(see (1.5)). The
subdivision of V is completely determined by the subdivision of Sn(n) on
level 1 into subsets A(T), T~ In{1, defined by

A(T) :- {p E Sn(Ti)~pj~vj - maxhph~vh, j f~ T} .

This subdivision of Sn(~) is illustrated in Figure 3.1 for n- 2 and
corresponds to the left part of expression (3.1). Notice that A(~) is
equal to {v}. Moreover, for i E In}1, the set A({i}) is a segment of the
line through v and the vertex en(i) of Sn(n), where e~(i) - nvj if j~ i
and e~(i) - 1-(1-vi)n if j- í. In general, the dimension of A(T) is
equal to t- ITI, being the number of elements in T.

n(2)

Fi~ire .1. Subdivision of Sn(n) into subsets A(T), n- 2.

Furthermore, let Un(T), T C~ In}1, be the face of Un defined by

Un(T) :- conv({u(j)~j~i'}) .

The set V is now subdivided into sets C(T), T~ In~l, where C(T) is the
convex hull of A(T)X{1} and Un(T)x{0}. In particular, C((b) is the convex
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liull of the point v on level 1 and the set Unx{0}. For general T, the set

C(T) is a cell of dimension nil (see Figure 3.2).

Figure 3.2. Subdívision of V into cells C(T), n- 2.

In Theorem 3.1 we prove that the sets C(T) indeed form a subdivi-
sion of V. More precisely, we show that for any (x,b) E V with 0 C b C 1,
there exists a unique (possibly empty) proper subset T of Intl such that
for unique vectors p and u

x - (1-b)u , Sp, (3.3)
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with p in A(T) and u in the relative interior int(Un(T)) of Un(T). We call
p and u the projection of the point (x,b) on level 1 and level 0, respec-
Lively.

Now we are ready to define an appropriate homotopy function on V.
This function is defined by

hlx.b) -(1-b)(v-u) ' b(z(P)-z(P)e), Íx.b) E V,

where z(p) -(nfl)-1 E~}izj(p) and x-(1-b)u t bp with u and p as in
(3.3). Because u and p are uniquely determined by (x,b), the function h is
well-defined on V. Moreover, h is a piecewise C1-function from V to Rntl

deforming the trivial function f with f(u) - v-u on level 0 into the func-
ntion z with z(p) - z(p) - z(p)e on level 1.

Let h-1(0) be the set of zero points of h in V, then h-1(0) n
n(U x{0}) consists of the unique element (v,0). Because of conditions ii)

and iii) on z we also obtain that h-1(0) n(Sn(~)x{1}) is equal to the set
of zero points of z. Furthermore, (x,b) E h-1(0), 0( b~ 1, implies ac-
cording to (3.3) that there is a unique set T such that x-(1-b)u t bp,
with p E A(T) and u- ih~Zy,hu(h) E int(Un(T)), while

z(P) - z(P)e t (1-b)b-1( F N e(h)-(n.l)-le) .
(3.4)

haT h

Hence,

z(P) - ~e ~ E N'e(h)
h~T h

for some numbers S and Nh ~ 0, h~ T. Thus, to each (x,b), b~ 0,1, with
h(x,b) - 0, there corresponds a unique p in Sn(n) for which (3.1) holds.
From (3.4) we also obtain that

minhzh(P) - zÍP) - (1-b)IÍb(ntl)) .

Thus, the homotopy parameter b at (x,b) E h-1(0) induces a measure for the
difference between the minimal and the average excess demand at the pro-
jection p of (x,b) on level 1. The difference decreases when b increases
and is equal to zero when b- 1.
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We would like to have that the set h-1(0) contains a path P in V
connect.ing the unique zero point (v,0) of h on level 0 with a zero point
p~` of z on level 1. Projected on Sn, this path would then give a path P'
of points connecting v and p~ and satisfying (3.1), since according to
(3.4) for p E P' there is only one (x,b) E V such that h(x,b) - 0 and x-
(1-b)u { bp.

We first rove that a ath in h-1p p (0) cannot cross the boundary of
V between the levels 0 and 1. So, let (x,b), 0~ b~ 1, with h(x,b) - 0,
be a point in the boundary bd V of V, i.e., xi -(1-b)(vi-(ntl)-1) t b~vi,
for some i E Intl. Let T be such that x-(1-b)u t bp with p E A(T) and
u E int(Un(T)). Clearly, pi - nvi and ui - vi -(ntl)-1, and hence i E T.
However, i E T implies that zi(p) - minhzh(p) 5 0, whereas pi - nvi (~
implies zi(p) ~ 0, yielding a contradiction. Consequently, if (x,b) E
h-1(0) n bd V, then either x- v and b- 0 or x- pN with z(p") - 0 and
b - 1.

What remains to be proved is that the set of zero points of h
indeed consists of paths and loops, one path therefore connecting (v,0)
and a(p~`,1) with z(p~) - 0. For each T C~ Intl the function h is C1 on
C(T). Furthermore, h is a function from the (ntl)-dimensional set V to the
n-dimensional manifold On defined by

On - {q E Rn`l~ïn}lq. -i-1 i 0}

Hence, if 0 is a regular value of h restricted to C(T), then h-1(0) n C(T)
is a C1 1-manifold, i.e., a collection of paths and loops. An end point of
a path lies in the boundary of C(T). It is a generic property ~t,at a path
in h-1(0) n C(T) intersects the boundary transversally in the interior of
a facet. The latter guarantees that an end point of a path in h-1(0) n
C(T) is also an end point of a path in h-1(0) n C(T) for some unique T~
T. More precisely, since a facet of C(T) not in the boundary of V is equal
to either the convex hull of Un(Tu{k})x{0} and A(T)X{1} for some k a T or
to the convex hull of A(T`{h})x{1} and Un(T)x{0} for some h E T, the set T
is equal to either T u{k} or T`{h}. Linking the paths in h-1(0) n C(T)
for different T, T C~ In}1, in this way, we obtain that if 0 is a regular
value of h on each C(T) and nondegeneracy on the boundaries is assumed
then h-1(0) consists of piecewise C1 loops and paths. One path, P, has



(v,0) as end point on level 0 ín C(Q). The other end point of P lies on
]evel 1 and induces a zero point of z. The path P is C1 on each C(T) it
intersects. As argued above, the projection P' of P on Sn(r~)X{1} yields
the path of points of the adjustment process induced by (3.1). Notice that
h-1(0) n C(Q) is a line segment connecting (v,0) and a point in bd C({k}),
where k is the (unique) index for which zk(v) - minjzj(v).

We conclude the description of the homotopy h on V by proving the
following theorem.

Theorem 3.1. Given (x,b) E V, 0 C b( 1, there exist unique T C~ Intl, p E
A(T), u E int(Un(T)) such that x-(1-b)u t bp.

Proof. Given an (x,b) in V with 0 C b C 1, we construct a unique set T of
indices such that there is a vector p in Sn(n) and a vector u in Un with

1xj - bpj t(1-b)uj , uj - vj -(ntl)- if j E T

and

xj - bpj . (1-b)uj . Pj~vj - maxhph,vh ,

and uj ) vj -(ntl)-1 if j f~ T.

(3.5)

We first order the elements (xit(1-b)(ntl)-1)~vi, i E In~l, in decreasing
magnitude. Without loss of generality we assume

(x~t(1-b)(ntl)-1) wl z...z (xn41t(1-b)(ntl)-1) wn}1 . (3.6)

In the sequel of this proof we denote the expression ( xit(1-b)(nal)-1)~vi
by ai, i E In}1. Note that aj equals bpj~vj t(1-b) if j E T, while aj ~
bpj~vj t ( 1-b) if j~ T. Together with pj~vj - maxhph~vh, j~ T, we obtaín
from ( 3.6) that either T- Q or T-{h{1,...,ntl} for some h E In. Clear-
ly, T-(b, p - v and u E int(Un) if and only if an~l ~ 1. If an~l 5 1, we
successively check for h- 1,...,n whether for T- {htl,...,ntl} there
exist p E Sn(r~) and u E int(Un) such that ( 3.5) holds. If in step h, ah -
ah}1 we may proceed with T-{h.2,...,nt1}. This because ah - ah}1 with
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h Q T and htl E T is impossible. If ah ) ah41, we deduce from (3.5) that
pj -(aj-(1-b))vj~b, j- hfl,...,ntl, and together with Fk-1pk - 1-
~jETpj and pk - vk.ph~vh, k- 1,...,h-1, we obtain a vector p. If ph~vh (

phtl~vhtl we proceed with step h t 1, otherwise we can stop with p E A(T)
and u - (x-bp)~(1-b) E int(Un(T)).

We now show that this procedure terminates. Suppose that we reach
step h- n, i.e., T- {n}1}, and that an ) an}1. Hence, from (3.5) we
obtain pntl -(anfl-(1-á))vn}l~ó and because of an41 5 1(step 0) also

pnfl s vn;l. Furthermore, we have that ijpj - 1 and pl~vl -...- pn~vn. Now
suppose that pn,vn ~ pntl,vntl, implying that p~ A{(ntl)}, But then
ïjpj C Ljvj - 1, which contradicts ijpj - 1. Next, suppose that an - antl'
Then the procedure would have been terminated earlier as can be seen as
follows. If all aj's are equal then an}1 - 2- b) 1 and therefore T-~.
If not, then let j be the index for which aj-1 ~ aj while ak - ak~l for
k- j,...,n. In step j- 1 of the procedure we then obtain that pk~vk ( 1,
k- j,...,ntl, since anal S 1. Moreover, iRp~ - 1 and pl~vl -...-
pj-l~vj-1. If pj-l~vj-1 ( pj~vj, implying that p~ A({j,...,ntl}), then

~hph ~~hvh - 1, yielding a contradiction. From the construction it imme-
diately follows that T is uniquely determined.

a

The theorem implies that the collection of cells C(T) forms a
subdivision of V into cells. The intersection of C(T) and Sn(n)x{1} is
equal to A(T)x{1}, and the one of C(T) and Unx{0} is equal to Un(T)x{0}.
For n- 2, these sets have already been illustrated in Figure 3.2. More
generally, we can consider the sets Cb(T) :- {x E Rn}ll(x,b) E C(T)}, 0~
á~ 1. The union VS of Cb(T) over all T is equal to the convex hull of the
vectors es~(j) :- (1-b)u(j) t ben(j), j E In}1. In Figure 3.3 the sets
CS(T) are illustrated for three different ó's.
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ó - 1~5

esn(1)
- 9~10

a - f~2

Figure ~.~. Subdivision of Vb into subsets CS(T) for b- 1~5, 1~2, 9~10,
v- (1~4,1~4,1~2)T, and n- 2. The set C~(T) with T-{tl,...,tt} is
denoted by tl,...,tt.

Now we turn to the homotopy inducing the adjustment process on Sn
focussing on the maximal excess demands, as described in (3.2). The idea
and reusoning are similar t,o those for the first adjustment process. This
homotopy ís defined on the convex hull V of Unx{0} and Sn(~)X{1}, where Un
is the convex hull of u(j) :- v t(ntl)-le - e(j), j E In;l. In order to
define the homotopy on V we have to subdivide V into sets C(T) for T C~
lnrl' First we subdivide the set Sn(n) on level 1 into subsets A(T), T~
Intl, defined by

A(T) :- {p E Sn(n)~pj~vj - minhph~vh, j a T} .
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Observe that A(T) is the set of vectors in Sn(~) satisfying the left part
of (3.2). In particular, A(~) -{v} and A({i}), i E In;l, is equal to [v,
e~(i)]. For n- 2 the sets A(T) are illustrated in Figure 3.4.

A({3})

A({1,3}) A({2,3})

v

e~(I) en(2)

A(ili) A({1,2}) A({2})

Figure 3.4. Subdivision of Sn(n) into subsets A(T), n- 2.

Next, let Un(T) be the face of Un defined as the convex hull of u(j), j)~
T. Then V is subdivided by the (ntl)-dimensional cells C(T), T~ In~l'
where C(T) is the convex hull of A(T)X{1} and Un(T)X{0}. In particular,
C(~) is the convex hull of the point v on level 1 and Un on level 0. In
Theorem 3.2 we prove that if (x,S) E V then there is a unique subset T
such that

x - (1-b)u t bp (3.7)

holds for some unique p E A(T) and u E int(Un(T)). For n- 2, the subdivi-
sion of V into subsets C(T) is illustrated in Figure 3.5.



zi

Unr:{p}

S"(„),-Itl

u(2 )

Figure 3.5. Subdivision of V into cells C(T), n- 2.

1'he homotopy function h from V to Rn~l is now defined by

h(x.~) -(1-b)(v-u) 4 S( z(P) - z(P)e) , (x.~) E V.

where u E int(Un(T)) and p E A(T) are defined as in (3.~). Notice that the
homotopy function is identical to the one on V. Let h-1(0) again be the
set of zero points of h in V. Clearly, if (x,b) E h-1(0), then x- v if
b- 0 and x- p" with z(p~) - 0 if b- 1. Moreover, when 0 C ó C 1, we
obtain from h(x,b) - 0 that there is a unique subset T such that x-
(1-b)u t bp for some p E A(T) and u- Lh~,~u(h) E int(Un(T)) whereas
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z(P) - z(P)e t (1-b)b-1[(ntl)-le - Fh~T~he(h)~ . (3.8)

Thus, h(x,b) - 0, 0 C b( 1, if and only if there is a set T and a p E
A(T) such that x-(1-b)u t bp for some u E int(Un(T)) and

zj(P) - maxhzh(P) - z(P) t(1-b)~(b(n.l)) if j E T.

From this it follows that p satisfies (3.2) and hence that the projection
of h-1(0) on Sn(n) is equal to the set of vectors p satisfying (3.2).

Moreover, for any p satisfying (3.2) there is, according to (3.8)~ only one
(x,b) E h-1(0) such that x-(1-b)u t bp with u E Un. This implies that
when h-1(0) contains a path P from the unique zero point on level 0,

(v,0), to a point (p~`,1) on level 1, then its projection on Sn(~) yields
the path P' from v to p~ in Sn followed by the adjustment process induced

by (3.2). Again, at (x,b) along the path P the homotopy parameter b
induces a measure for the difference between the maximal and the average

excess demand at p, the latter being the projection of x on level 1.

That h-1(0) is indeed a 1-manifold containing a path connecting
level 0 and 1 can be argued in a way similar to the reasoning for the
homotopy on V. Again, we first show that a path in h-1(0) cannot cross the
boundary of V between the levels 0 and 1. So, let (x,b), 0 ~ b( 1, be a
point in the boundary bd V of V, i.e., for some i, i E In}1, either

xi - (1-b)(vit(ntl)-1) t b(1-(1-vi)n)
or (3.9)

xi - (1-b)(vi.(ntl)-1-1) t b~vi .

Let T, p E A(T), and u E int(Un(T)) be such that x-(1-b)u t bp. In the

first case, pj - nvj for all j~ i and i E T since ui - vi t(ntl)-1 and
pi -(1-(1-vi)r~). However, i E T implies zi(p) - maxhzh(p) ~ 0, whereas
pj -~vj ( r~, j~ i, implies zj(p) ~ 0 also for j~ i, contradicting con-
dition ii) in (i.l). In the second case of (3.9), pi - nvi and i~ T, and
hence pj -~vj ~~, for all j~ T. Therefore, j~ T implies zj(p) ~ 0,
whereas j E T implies zj(p) - maxhzh(p) ~ 0. This also contradicts condi-

tion ii) on z. Consequently, if (x,b) E h-1(0) n bd V, then either x- v

and b- 0 or x- p` wi th z( p~ )- 0 and b- 1.
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Since h is a C1-function from each (n~l)-dimensional cell C(T) to
thr n-rlim,.n~;ir,ruil Se,t nn, i,-1((1) n 1'('f) r~,n,;iyln r,f Cl ~intlrr, rrnd ]ru,tiv if
0 is a regular value oF h on C(T). Again, assuming that each path in
-1h(0) n C(T) hits the boundary transversally in a facet, the paths in

h-1(0) n C(T) for different T can be linked to piecewise C1 paths and
loops in V. Each path has exactly two end points. Each end point lies
either on level 0 or on level 1 since a path cannot have points in common
with the boundary of V between the two levels. Hence there is one path, P,
in h-1(0) which connects (v,0) and a(p~`,1) for which z(p~`) - 0.

We still have to prove (3.7). This is done similar to the proof of
Theorem 3.1. Therefore we only state the theorem.

Theorem 3.2. Given (x,b) E V, 0 ~ b( 1, there exist unique T~ In}1, p E
A(T) and u E int(Un(T)) such that x-(1-b)u ~ bp.

Finally, in Figure 3.6 the sets Cb(T) :- {x E Rn}1~(x,b) E C(T)}
are illustrated for three different á's. Notice that C~(T) is equal to
A(T) if b- 1 and equal to Un(T) if b- 0. The union of Cb(T) over all T
is equal to the set Vb :- {x E Rn{1~(x,b) E V}. Observe that for n- 2 and
0( b~ 1, V~ is a hexagone.
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5 - 1~5

d - 9~10

Figure 3.6. Subdivision of VS into subsets Cb(T) for á- 1~5, 1~2, 9~10,
v- (1~4,1~4,1~2)T, and n- 2. The set Cb(T) with T-{tl,...,tt} is
denoted by tl,...,tt.



25

4. A homotopy function based on the sign pattern of the excess demands

In this section we consider a homotopy function related to the
price adjustment process on Sn which focusses on the sign pattern of the
excess demand function. More precisely, the process connects an arbitrary
starting vector v E int(Sn) with an equilibrium price vector pN through a
sequence of prices p satisfying

pi~vi - maxhph~vh if zi(P) ~ 0

minhph~vh - Pi~vi if ziÍP) ~ 0.

For the process given by (4.1) we obtain a homotopy function on the convex
hull V of Ux{0} and Sn(n)x{1}. The set U is given by

U - conv({vte(i)-e(j)Ii,jEln}1, i~j}) .

The set of zero points of the homotopy function induces a path P' of
points in Sn satisfying (4.1). This path connects the point v with a zero
point p~ of the function z.

Tn order to define the homotopy function h on the set V we have to
subdivide V in an appropriate way into cells. Again, this subdivision is
needed to relate each (x,b) in V to a unique pair u in U on level 0 and p
in Sn(n) on level 1. The subdivision of V is completely determined by the
subdivision of Sn(r~) on level 1 into subsets A(s), where s- (sl,.. ,
sn}1)T E{-1,0,;1}n`1 is a sign vector in Rn}1 containing at least one tl
and one -1. For such a feasible sign vector s the set A(s) is given by

A(s) :- {p E Sn(T1)~minhPhlvh - Pi~vi if si --1

pi~vi - maxhph~vh if si - tl} .

(4.1)

Observe that the definition of A(s) corresponds to the left part of ex-
pression (4.1). The subdivision of Sn(r,,) into sets A(s) is illustrated in
Figure 4.1.



26

Figure 4.1. Subdivision of Sn(~) into sets A(s), n- 2. The set A(-1,-1,
tl) is denoted by A(-,-,t), etc.

Next, let the set C(~) be given by

C(~) :- conv(Ux{0},{v}X{1}) ,

i.e., C(~) is equal to the set {(x,b) E Rn}lx[0,1]~Lnrlx. - 1, -(1-b) si-1 i
xi-vi s 1-b, iEIn;l}. Furthermore, for a feasible sign vector s let the
face U(s) of U be given by

U(s) :- conv({vte(i)-e(j)~si - fl, sj --1, i,jEIn~l}).
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It is easy to show that U(s) is equal to the set {u E Rn}l~u - v 4
~h{1Nhshe(h), uh ~ 0 for h E Inil' and Fsh-tl~h -~sh--1N`h - 1}. The set V

is now subdivided into C(~) and sets C(s), s a feasíble sign vector, where
C(s) is the convex hull of U(s)X{0} and A(s)x{1}. Observe that the cells
C(s) all have dimension n;l and that also C(~) is a cell of dimension n;l.
These cells are illustrated in Figure 4.2.

Figure 4.2. Subdivision of V into cells C(s), n- 2.
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In Theorem 4.1 we prove that C(Q) together with all the C(s) in-
deed form a subdivision of V. More precisely, we show that for any (x,b) E

V with 0 C b C 1, there either exists a unique sign vector s such that for
unique vectors p in A(s) and u in int(U(s))

x - (1-b)u t bP . (4.2)

or (4.2) holds with p- v and u E int(U) uniquely defined by u-(1-b)-1

(x-bv). We call p and u the projection of the point (x,b) on level 1 and
level 0, respectively.

Now, we are ready to define an appropriate homotopy function on V.
This function is given by

h(x,b) - (1-b)(v-u) t bz(p) ,

where zi(p) - pízi(p), i E Intl, and u and p are given by (4.2). Because u
and p are uniquely determined by (x,b), the functíon h is well-defined on
V. Moreover, h is a piecewise C1-function from V to Rn}1 deforming the
trivial function f with f(u) - v- u on level 0 into the function z on

level 1. Again, we are interested in the set h-1(0), i.e., the set of
points (x,b) in V such that for some feasible sign vector s, x- (1-b)u t
bp with p E A(s) and u- v t ïhuhshe(h) E int(U(s)) (or p- v and u E
int U -1()), while z(p) -(1-b)b ïhuhshe(h). Hence, if p~ v, we have zi(p) -
(1-b)b-1Nisi,pi' i E In}1, i.e., p satisfies (4.1). Observe that z(p) - 0
when b- 1 and that x- v when b- 0.

We would like to have that the set h-1(0) contains a path P in V
connecting the unique zero point (v,0) of h on level 0 with a zero point
p" of z on level 1. The projection of the path P on Sn(~) then yields a
path P' of points connecting v and p' such that for all points p on P'
(4.1) holds. We first prove that a path in h-1 (0) cannot cross the boun-
dary of V between the levels 0 and 1. It is easy to see that the boundary
of V consists of Ux{0}, Sn(n)x{1}, and us(conv(U(s)X{0}, {pEA(s)~pi-nvi if
si--1}x{1})). So, let (x,b), 0 C b C 1, be a point in the boundary of V,
i.e., x-(1-b)u t bp with u in int(U(s)) for some sign vector s and with
p such that pi -~vi if si --1 and pi 2 nvi if si ~-1. The point u can
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be written as u- v t ïn}lu s e{h) for some positive numbers y~ such thath-1 h h
~s -tl~h -~s --luh - 1. Let i be an index with si --1. Hence, ui - vi-ui

h h
and therefore vi-ui - ui ) 0. Since pi - qvi, we also have that zi(p) ~ 0.
Consequently, hi(x,ó) -(1-b)(vi-ui) t ópizi(p) ) 0, so that (x,b) Q
h-1(0).

What remains to be shown is that the set of zero points of h in-
deed consists of paths and loops, one path, P, connecting (v,0) and a
(p4,1) wíth z(p~`) - 0. Along the same line of arguing as described in
Section 3, we can prove that h-1(0) consists of piecewise C1 loops and
paths. The projection P' of P on Sn(r~)x{1} yields the path of points of
the adjustment process induced by (4.1). Notice that in C((p), h-1(0) is a
line segment connecting (v,0) with a point in bd C(s0) where s~ - sgni
zi(v), i E Intl.

We conclude the description of the homotopy h on V by proving the
following theorem.

Theorem 4.1. Given (x,b) E V, 0 C b~ 1, there either exists a unique
feasible sign vector s and vectors p E A(s) and u E int(U(s)) such that
x-(1-b)u t Sp, or there exists a unique u E int(U) such that x- (1-b)u
t Sv, i.e., (x,á) E int(C((b)).

Proof. First we verify when (x,b) E int(C(~)). This is clearly the case if
and only if -(1-b) ~ xi-vi ((1-b) for all i E In}1. The corresponding u E
int(U) and p are given by u-(1-b)-1(x-bv) and p- v.

In the remaining of the proof we show that when (x,ó) (~ int(C(~))
we can find an s as stated in the theorem. First we rank the numbers (xi-
(1-b)vi)~bvi, i E In}1, in increasing order. Without loss of generality we
may assume that

(xl-(1-b)~1)~bvl s (x2-(1-b)~Z)~bv2 s...s (xn41-(1-b)~ntl)~S~ntl'

In the sequel we often replace the expression (xi-(1-b)vi)~bvi by ai, i E
In;l. From the definition of C(s) we derive that if (x,á) E C(s) then xi -
(1-b)(vi~Nisi) a bpi, i E In}1, with p E A(s) and the Ki's defined as
above. Thus, ai - pi~~i }(1-b)uisi~á~i' 1 E In,l' Combined with the defi-
nition of A(s) we get that for all i E In;l'



ai 5 plwi - minhph,~h

ai - pi,~i

if s. - -1i

ai 2 pi~vi - maxhph~vh if si - tl .

(4.3)

Since al 5...5 an}1, the sign vector s must be such that there are two
indices k, ~ E Intl with k C.L such that si --1 if i s k, si - 0 if k~
i C~, and si - tl if i 2,L.

After this first observation we determine the index k and the
value f of minhph~vh. The values f and k have to be such that ïi-1~i - 1
and ak ( f s ak~l. We find f by gradually increasing minhph~vh from al and
therefore increasing ik- u., for k- 1,2,..., from 0. Let us suppose thati-1 i
we can not find such an f. Then we must meet the situation that pi~vi -
minhph~vh for i- 1,...,n and antl - minhph,~h - pntl,vn41. Therefore p-
v and antl - 1. We argue that in this situation xi-vi C 1-á for all i E
In}1' Let us suppose that xk-vk Z 1-á for some k E In}1. Then ak -
(xk-(1-b)vk)~bvk 2 1 t (1-5)~bvk ) 1. But this is in contradiction with
1- an41 Z ai, i- 1,...,n. Thus, we obtain that we can not find an
appropriate minhph~vh if and only if xi-vi C 1-b for all i E Intl. 5imi-
larly, we can search for the value of maxhph~vh by decreasing the maximum
from an~l. We then get that this procedure does not succeed if and only if
xi-vi ~ -(1-b), i E Intl'

Since we consíder the case that (x,ó) ~ int(C((D)), there must
exist an index i E In}1 such that xi-vi z 1-b or xi-vi s-(1-á). Let us
consider the first case. From above we obtain that we can find an index k
and a value f of minhph~vh such that ak ~ f s aktl. We now show that we
always find an appropriate value g of maxhph~vh by increasing the maximum

from f. Indeed, g must be such that for some ~C ) k, ii}~ui - 1 and aR-1 s
g~ a~. Because this sum decreases if we increase maxhph~vh and equals
zero if maxhph,~h - an}1, it suffices to show that ii}~ui z 1 when

kmaxhph~vh - f. Since ïi-1ui - 1, we obtain in case maxhph~vh - f,
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ïi}k~lui - E1}kt1Íai-f)bvi~(1-b) - ïi4k}1(xi-(1-b)vi-bfvi)IÍ1-b)

- (1-(1-b)-bf)I(1-b) . Fk- (-x..(1-b)v.tbfv,)I(1-b)i-1 i i i

- b(1-f)I(1-ó) t Fi-1ui - b(1-f)IÍ1-b) t 1.

Now suppose ïnrl N ~ 1. But then f) 1. Because f- minhphlvh this is ini-k~1 i
contradiction with the fact that both p and v E Sn(rt).

Along the same lines we can treat the case in which x. - v. 5i i
-(1-b) for some i E In41. Then we know that there exists a suitable max-
imum and from that we can show the existence of an appropriate mirrimum.

Thus, in the foregoing we proved, given an (x,b) ~ int(C(~)), the
existence of a feasible sign vector s such that (x,b) E C(s). Besides, we
found a related p E A(s). From the construction above it follows that the
point u:- (x-bp)(1-b)-1 lies in int(U(s)). Consequently, x-(1-b)u a bp
with p E A(s) and u E int(U(s)) uniquely determined.

The theorem implies that the collection of cells C(s), s a feasible sign
vector in Rn}1, and C(~) form a subdivision of V into cells. The intersec-
tion of C(s) with Sn(n)X{1} is equal to A(s)x{1} and the intersection of
C(s) with UX{0} is equal to U(s)x{0}. The intersection of C(~) with Sn(~)X
{1} is equal to {(v,l)} and the intersection of C(~) with Ux{0} is equal
to Ux{0}. These sets have been illustrated in Figure 4.2. More generally,
we can consider on level b, 0 5 b 5 1, sets Cb(s) :- {x E Rn}1~(x,b) E
C(s)} and Cb(~) :- {x E Rn}1~(x,b) E C(Q)}. The union of Cb(~) and the
sets Cb(s), s a feasible sign vector, equals the set Vb :- {x E
ntlR ~(x,b) E V}. In Figure 4.3 the set Vb is illustrated for three

different ó's.



ó - t~2

ó - i~s

ó - 9~10

Figure ~. Subdivision of Vb into subsets CS(s) and Cb(Q) for b- 1~5,
1~2, 9~10, v-(1~4,1~4,1~2)T, and n- 2. The set C~(s) is denoted by s.
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