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ABSTRACT

Using Monte Carlo investigations this paper analyzes the cost

differences between several alternative approximations for the lead time
demand distribution (LTDD) in a continuous review (s,Q) inventory model.

The information on LTDD is assumed to be build up by two components:
demand per time unit and lead time. Enumeration methods, simulation and
parametric approaches are used to obtain compound information on LTDD with

help of the above individual components. Three important conclusions
result:

a) The simulation approach is simple and still able to take into account
certain peculiarities in the lead time distribution in the most proper
way.

b) A lack of lead time information should be avoided as much as possible
by a good information system. It is shown that extending the lead time
information leads to drastical cost reductions in the inventory model.

c) The gamma distribution appears to be a good approximation for the LTDD
in many cases.
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1. INTRODUCTION.

The approximation of the lead time demand distribution (LTDD) is a
largely explored issue in the literature on inventory modelling (see e.g.
[1] for an overview). LTDD can be considered a single random variable when
the information process is such that it gathers information on demand
during lead time directly. It can also be estimated by a combination of
two variables, i.e. demand per time unit and lead time, or a combination
of three variables: order intensity, order size, and lead time. Even when
data are available, in most practical situations one is dependent on
relatively small sets of empirical data to estimate the LTDD. The
literature offers the practioner not much guidance in choosing a general
approach for a reliable estimation of the LTDD in case of certain
peculiarities such as thick-tailness or bi-modality. 5trijbosch and Heuts
[2] consider the situation where empirical data is available as a sample
of LTD-values and investigate parametric estimations of the LTDD versus a
specific non-parametric estimation, the so-called kernel-density
estimation. An extensive Monte-Carlo study indicated that always using a
carefully constructed kernel-density approximation is a save strategy.

This paper studies several alternatives to approximate the LTDD based
on empirical information on the demand per time unit and lead time. Let
the lead time demand be given by

LTD - ïiLl Di, (1)

where L is the lead time in periods and Di, is the demand in period i. L
is a positive discrete random variable and Di, i-1,..,L are independent
identically distributed non-negative discrete random variables. Empirical
information is supposed to be available as a sample of lead
times Zl,..,lt and a sample of demands per time unit dl,..,dk. The
advantage of having an information system yielding empirical information
on the lead time and the demand per time unit separately as compared with
gathering information on demand during lead time directly, is that the
LTDD can be approximated more precisely, since:
- Empirical information contained in the individusl components is taken

into account explicitly as advised by Bagchi et al. [1]. More detailed
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information of underlying processes is used in this way, but information
may also be lost when the compounding of the individual components has
to be restricted to certain distributions for convolution reasons. This
lack of information may be prevented by using suitable computer
generating routines as indicated in the next sections.

- Certain peculiarities especially in the lead time (lead times exhibit
significant variability in many cases, c.f. C3]), can be given the
importance they need.

The paper proceeds as follows. The next section presents several
estimation procedures for the LTDD. The third section provides information
on several Monte Carlo investigations, whereas the conclusions are
summarized in section four.

2. ESTIMATING THE LTDD.

2.1. The procedure of Lau and Zhao [4].
Lau and Zhao [4] (LZo for short) published an algorithm for the

determination of the true LTDD when the distributions of L and D are
given. Their procedure is based on an efficient enumeration of all
possible demand combinations ( 'index combinations') for each possible lead
time with corresponding probabilities, thus building the LTDD. It can also
be used with empirical distributions for L and D. With increasing
empirical information, the LTDD thus produced will approximate the true
LTDD ever better. Consequently, it is useful to analyse the computational
properties of this algorithm.

The practicability of the algorithm presented is mainly determined by
the number of index combinations ( NIC) involved. The required CPU-time is
proportional with NIC. NIC is determined by the number of different
periodic demands ( not the values) nD and the values of the possible lead
times. Consider a situation where the lead times can vary from LT1 to LT2.
The number of different index combinations is given by

LT2 ~nDti-11
NIC(LT1,LT2,nD) - Li-LT i J1

(2)

We used here the combinatorial property that there are In}r-1J unordered
samples of size r out of n with replacement. Propertieslllare NIC(LT,LT,nD)
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- NIC(nD-1,nD-1,LTt1), and NIC(1,I,J)-NIC(1,J,I). Table 1 presents some
values of NIC(LT,LT,nD) illustrating its explosive increase. Notice that
NIC(10,10,10)-92378 and not 85268 as mentioned by LZo.

We have run the LZo procedure with LT1-1, LT2-7,..,11, and
nD-LT2,..,11 leading to 15 observed CPU-times which turned out to be
almost perfectly linear related with the number of index combinatíons. A
linear regression (with intercept-0) of the required CPU-time on the
number of index combinations revealed that each 10,000 index combinations
costs approximately 2 seconds on a Vax-station 3100 (model 30). Thus the
evaluation of the LTDD corresponding to the case LT1-1, LT2-13 and nD-13
(1,13,13) costs approximately 2000 seconds, or 33 minutes, and, for
example, the cases (1,14,14) to (1,17,17) lead to CPU-times of 2.2, 8.6,
33.4 and 129.6 hours, respectively. LZo consider the very large case
(1,50,50) and conclude that the memory requirement for such a case is only
2500, not realizing, probably, that a complete determination of the
corresponding LTDD

Table 1. Values of NIC(LT,LT,nD) for LT-1,..,13, and nD-2,...,13.

LT nD

2 3 4 5 6 7 8 9 10 11 i2 13

i 2 3 4 5 6 7 8 9 l0 i1 12 13
2 3 6 10 15 21 28 36 45 55 66 78 91
3 4 l0 20 35 56 84 120 i65 220 286 364 455
4 5 i5 35 70 i26 210 330 495 715 1001 1365 1820
5 6 21 56 126 252 462 792 i287 2002 3003 4368 6188
6 7 28 84 210 462 924 1716 3003 5005 8008 12376 18564
7 8 36 l20 330 792 1716 3432 6435 11440 19448 31824 50388
8 9 45 165 495 1287 3003 6435 12870 24310 43758 75582 125970
9 l0 55 220 715 2002 5005 11440 24310 48620 92378 167960 293930
10 11 66 286 1001 3003 8008 19448 43758 92378 184756 352716 646646
li 12 78 364 1365 4368 i2376 31824 75582 167960 352716 705432 1352078
12 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156
13 14 105 560 2380 8568 27132 77520 203490 497420 1144066 2496144 5200300
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would require somewhere between a billion and a trillion years of CPU-tíme
on a VAX-station 3100, far most of the CPU-time spending to the
determination of negligible contributions to the LTDD. This discussion
makes clear that calculating the LTDD with the LZo procedure is infeasible
for most combinations of LT and nD. Since, however, the LTDD will only be
used in the context of a certain inventory model, it is not necessary to
perform such a calculation fully. Several studies indicate that using only
part of the information contained in the empirical data sets in an
inventory model with low stock-out risk can be satisfactory (c.f. [5]),
that is, not necessarily leads to larger average total relevant costs. LZo
suggest to reduce nD to at most 10 frequency classes, and converting the
lead time range (from days to weeks, e.g.) such that the maximum lead time
is 10 periods.

An alternative approach would be a modification of the LZo procedure
such that negligible contributions to the LTDD are skipped systematically.
It turns out, however, that such a modification leads to a much more
complicated algorithm, while underestimating the -most important- right
tail of the LTDD.

2.2. A simulation approach.

A procedure which automatically attains the required effect of
skipping negligible contributions to the LTDD is simulation. The less
probable an index combination, the more likely that no time is spended to
the corresponding contribution to the approximated LTDD. When using
standard procedures (e.g. of the NAG-library) a program for the
approximation of the LTDD by simulation can be very símple (see Appendix).
A sample of size m is drawn with replacement from the (empirical)
distribution for the lead time:
Z~,..,Zm. Then, for i-1,..,m, a sample of size li is drawn with

replacement from the (empirical) distribution for the demand per time
l:

unit: dil "" dil;' Accumulating frequencies of i,ildi., i-1,..,m, and
i ~- ~

dividing the frequencies by m, yields, already with relatively small
values of m, a very close approximation LTDDsim to the LTDDLZ which can be
obtained by employing LZo's procedure. Let, for example, Prob(L-5)-0.1,
and Prob(D-10)-0.1. Then, for some i, the probability of selecting ti-5
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and dij-10, j-1,..,5, equals 10-6 which is at the same time the
corresponding contribution to Prob(LTD-50). Some try-outs clarify that a
few minutes of simulation suffice to produce an LTDDsim showing a
remarkable likeness with the LTDDLZ based on the same data and obtained
after 50 hours calculating on a VAX-station 3100. In other words, as m
grows to infinity, LTDDsim converges to the LTDDLZ based on the same data,
but the convergence rate is very high.

Section 3.1 describes a Monte Carlo investigation which compares LZo's
procedure and the simulation approach in the context of an (s,Q) inventory
model.

2.3. A parametric approach.

Still another alternative is the fit of a standard theoretical
distribution e.g. based on estimated mean, variance, skewness and
kurtosis. Several papers have been published with formulas for the first
four moments of LTD, given the first four moments of L and D. Kottas and
Lau [6,~] give incorrect third and fourth central moments of LTD. In [4] a
reference is made to [8] where the correct third and fourth central
moments can be found, but nothing is said, however, about errors in [6,~]
as should have been done. Furthermore, the correct results of the first
four central moments of LTD were already obtained by [9], c.f. [10].
Carlson [9] used cumulant generating functions, and from his results it is
easy to derive the four central moments. An example of a distribution
which is characterized by four parameters is the Schmeiser-Deutsch (SD)
distribution (c.f. [11]). From empirical data these parameters can be
estimated using the first four empirical moments. Several authors have
studíed the SD distribution in the context of inventory modelling (c.f.
[2,5,12]). As the gamma distribution is widely used (c.f. [13,14,15,16],
personal communications with Philips managers) for the approximation of
the LTDD, we included in our study a strategy based on a gamma distributed
LTDD wíth parameters determined from the empirical data. Note that all
empirical information is reduced in this case to two figures: mean and
variance.

Section 3.2 describes a Monte Carlo investigation which compares LZo's
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procedure and the two parametric approaches mentioned above in the context
of an (s,Q) inventory model.

3. MONTE CARLO INVESTIGATIONS.

Via Monte Carlo methods we are going to analyze the effect of using
several alternative estimation procedures for LTD in an (s,Q) inventory
model of an expected average costs per unit time minimization type (see
[2,17] for a more detailed analysis), where s and Q are simultaneously
optimized. Thus, the following model is used:

EAC(s,Q.F) - kM~Q t cM t h(Q~2-M~ts) t(hQm~~Q)J (q-s)dF(q). (3)
s

where EAC(s,Q,F) is the expected average costs per time unit given the
decisions s and Q and F(q), the cumulative distribution of demand during
the lead time, M the expected demand per time unit, ~ the expected lead
time, h the ínventory holding cost per unit per unit of time, S the
backlogging cost per unit short just before a replishment order arrives,
ktcQ the ordering cost per order, Qm~-M(ha~2ts)~h. In practice one has to
work with a parametric or non-parametric estimation F of F on the basis of
empirical information. Minimizing EAC(s,Q,F) leads to the optimal values
N N

s and Q, while minimizing EAC(s,Q,F) leads to the estimations s and Q.
As an inventory model with a cost criterion is used, this paper

N N
investigates the cost-effect EAC(s,Q,F)-EAC(s ,Q ,F) of using a particular
estimator F instead of the true F, which is unknown in practice. For
detailed information on the determination of s and Q in various cases see
[2]. As an exact determination of the LTDD F in the case of a compound LTD
is mostly infeasible (c.f. section 2.1), F has been approximated very
accurately by the method of simulation (c.f. section 2.2).

Before setting up a Monte Carlo study, we have to reflect on the
situations to be simulated. Inspired by several real life data three
theoretical distributions are contructed for the lead time as mentioned in
Table 2. When only fast moving items are considered, it appears reasonable
to assume a normal or, for example, a gamma distributed demand per time
unit. Therefore we based the theoretical distribution for the demand per
time unit on a sample with size 10,000 from a normal distribution
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(ignoring negative sample values) with u-200,cs-~0 (A), or from a gamma
distribution with p-200,Q-14o (B). The six combinations A1,B1, A2,B2, A3
and B3 lead to 'true' LTDD's (LTDDAI to LTDDB3) which are approximated by
the method of LTDDsim with very large m(e.g. 500,000). It would have been
impossible of course to determine these LTDD's with the procedure of LZo.

Table 2. Theoretical distributions for L.

Prob(L-Z)

lead time Z 1 2 3

1 0.23 0.05 -
2 0.29 0.10 -
3 0.16 0.30 -
4 0.09 0.10 -
5 0.0~ 0.05 -
6 0.03 0.03 -
7 0.04 0.07 -
8 0.04 0.20 0.50
9 0.03 O.o7 0.50

10 0.02 0.03 -

Figure 1 displays these six LTDD's. The shape of the LTDD is determined
both by a central limit theorem effect and the shape oF the underlying
distributions for L and D.

INSERT FIGURE 1 ABOUT HERE

3.1. Comparing LTDDLZ and LTDDsim' a comparison between non-parametric
procedures.

The first part of this study is a Monte Carlo comparison between
LTDDLZ and LTDDsim' Consider the situation where observed lead times vary
from LT1 to LT2 and nD different periodic demands dl,..,dn (in increasing

D
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order) are registered with frequencies fl,..,fn . Often it will be
D

necessary to reduce nD to a smaller number nD for the determination of
LTDDLZ. Such a reduction can be performed in many ways. We chose for the
next method. Write nD-nD~atb, where O~b~nD, a~0, a,b integer. Then let

fj-ïi fi j-1,..,b: summation is from (j-1)(atl)tl to j(atl);

dj-ii difi~fj j-bf1,..,nD: summation is from b(atl)t(j-1-b)atl
to b(atl).(j-b)a.

(4)

The next numerical example with nD-16 and nD-~ (so that a-b-2) clarifies

this procedure:

f1,...,i6- 4 2 2 6 5 8 4 3 2 1 1 1 1 1 1 1,

d1,...,16- i0 1 2~i3 4 5~~1~,15 16, 2i 0 30ii60 100ii200 400i,

f1,..., ~- 8 19 7 3 2 2 2 ,

dl,..., ~- 3~~ 78~19 58~~ 46~3 25 80 300 .

Note that classifying original observations histogram-like (according to a
previously fixed classification) is not the same and would result in a
larger loss of information in general. Several interesting issues can be
formulated now:
(i) What is the cost-effect of reducing nD by the method described above;

(ii) Which strategy reduces the costs more:
- reducing nD such that the determination of LTDDLZ costs no more

than u CPU-seconds, or
- spending the same u CPU-seconds (controlled for by m) to obtain

LTDDsim'
The Monte Carlo setup for the comparison of LTDDLZ and LTDDsim will be

described now. For each of the six combinations the following is repeated
T times. A sample of lead times Zl,..,lt and a sample of demands per time

unit dl,..,dk, where k-Eitili, is taken. Vary the required CPU-time u from

0.04 to 1 second ( 1 second turns out to be sufficiently large). Calculate
for each pair of samples and each value of u both LTDDLZ and LTDDsim'
Based on these approximations of the LTDD and on the 'true' LTDDXi (X-A,B;
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i-1,2,3) the mean relative bias (MRB) of the expected total relevant costs
can be determined now for both the sim and the LZo approach. The MRB
characteristic is defined as follows:

MRB - T ïkTl[EACk - EAC]~EAC,

N M
where EAC-EAC(s ,Q ,F) is the true cost, k is the simulation step and

(5)

EACk-EAC(s,Q,F) is the cost corresponding with the (generally not optimal)

decisions s, Q based on the approximated LTDD F in that step. MRB for both
approaches is plotted against varying values of u and for three different
values of t, viz. 5,10,20, in Figure 2.

INSERT FIGURE 2 ABOUT HERE

We only present the results for combination A1 as the results for the
other combinations are compareble. The values for h, k and c are 0.2, 50
and 0, respectively. The value for g is such that the true service level
is approximately 90x. The values for t are taken small as lead time
information in practice tends to be sparse. T is chosen as 500 for this
Monte Carlo experiment. The results are partly surprising. Spending more
CPU-time to the approximation of the LTDD leads to lower average total
relevant costs ( as expected), but the effect of more CPU-time is
negligible after spending a few tenths of a second, which is (e.g. for
t-20) a very little fraction of the time required to obtain LTDDLZ based

on the same data ( with large nD). A second result is that the difference

between the approximations LTDDLZ and LTDDsim tends to disappear very fast

for increasing computation time u. The higher values for small u obtained
with LTDDsim indicate that the simulation approach should not be used with

small m (e.g.(500; m-500 roughly corresponds with 1~2 Cpu-second in our
study). For too small values of m the effect of the simulation error is
larger than the effect of the statistical error caused by the empirical
distributions of L and D. A conclusion of this investigation is that the
procedure of LZo is useful in practice but can be approximated very well
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by the much simpler simulation approach. Further, lead time information
appears to be very cost-effective. So, the information system ín practice
should be such, that enough lead time information is carefully collected
and updated.

3.2. Comparing LTDDLZ, LTDDy and LTDDSD, a comparison between a non-

parametric and two parametric procedures.

The second part of this study is a Monte Carlo comparison between
LTDDLZ, LTDDy and LTDDSD. For the determination of LTDDLZ in this case,

using the results of section 3.1, we reduce in all cases nD to a smaller

number nD such that calculation time is less than 1 CPU-second. Thus we

compare three strategies for handling the empirical data: LZo, a non-
parametric way of estimating the LTDD (within 1 second calculation time),
y, fitting a gamma distribution using the estimated mean and variance of
the LTD, and SD, fitting a Schmeiser-Deutsch distribution. Section 2.3
refers to the literature where formulas can be found for the estimation of
the first four empirical moments of LTD given the first four empirical
moments of L and D. In order to investigate the effect of various values
of h, ~ and k, we chose for h and k the combinations (0.1,10), (1,10),
(0.1,500) and (1,500) while, again, the value for S is such that the true
service level is approximately 90X and c is fixed at 0. The value for T is
200 for this Monte Carlo experiment. Analyzing Table 3, which reports the
results, we may formulate the next findings. The best of the LZo and ~
strategies is almost always better than the SD strategy. Obviously, the
advantage of a possible better fit through the 4-parameter character of
the SD distribution is destroyed by the typical properties of that
distribution. Furthermore, it turns out that applying the promising
procedure of LZo can enlarge the costs unnecessarily, especially when the
sample size of the empirical distribution for the lead time is small, or
when the LTDD can be very well approximated by a gamma distribution.
Always using the y strategy seems to be a save strategy, except for one
situation: when t is not too small and the LTDD is far from gamma-like,
then LZo's procedure can be advantageous (c.f. A2).
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Table 3. MRB vaZues for various tnventorR model settings and three

different approaches for the determination of the LTDD.

h-0.1

LTDD t k S LZo ~ SD

A1 5 10 3.4
500 8.8

10 l0 3.4
500 8.8

20 10 3.4
500 8.8

0.78 0.49 0.91
0.15 0.14 0.15
0.34 0.24 0.41
0.08 0.08 0.07
0.09 0.07 0.10
0.04 0.04 0.03

n2 5 l0 z.o 0.37 0.38 0.43
500 7.9 0.14 0.18 0.15

10 10 2.0 0.10 0.17 0.12
500 7.9 0.05 0.08 0.05

20 l0 2.0 0.04 0.13 0.06
500 7.9 0.02 0.04 0.02

A3 5 l0 1.3 0.08 0.07 0.07
500 7.3 0.03 0.03 0.02

lo l0 1.3 0.04 0.04 0.04
500 7.3 0.01 0.01 0.01

20 10 1.3 0.02 0.02 0.02
500 7.3 0.01 0.01 0.01

B1 5 10 4.1 0.65 0.45 0.83
500 9.3 0.18 0.18 0.18

10 10 4.1 0.20 0.16 0.27
500 9.3 0.08 0.07 0.07

20 10 4.1 0.09 0.07 0.12
500 9-3 0.04 0.04 0.04

s2 5 10 3.3 0.28 0.26 0.37
500 8.4 0.12 0.13 0.12

10 l0 3.3 0.11 0.12 0.14
500 8.4 0.06 0.07 0.06

20 l0 3-3 0.05 0.07 0.07
500 8.4 0.02 0.03 0.03

B3 5 10 2.5 o.i8 o.i5 0.17
500 8.3 0.08 0.07 0.07

l0 l0 2.5 0.10 0.08 0.09
500 8.3 0.04 0.04 0.04

20 10 2.5 0.04 0.03 0.06
500 8.3 0.02 0.02 0.02

h-1

LZo ~ SD

30.9 1.30 0.43 2.31
42.8 0.41 0.32 0.42
30.9 0.40 o.i8 0.92
42.8 0.20 0.18 0.20
30.9 0.12 0.08 0.30
42.8 0.07 0.06 0.06

15.3 0.57 0.42 0.92
30.1 0.26 0.30 0.28
15.3 0.11 0.17 0.19
30.1 0.08 0.14 0.09
15.3 0.05 0.13 0.10
30.1 0.03 0.10 0.04
12.8 0.11 0.09 0.14
24.0 0.06 0.05 0.05
12.8 0.06 0.05 o.io
24.0 0.03 0.03 0.03
12.8 0.03 0.02 0.07
24.0 0.01 0.01 0.01
40.9 1.17 0.56 2.75
50.5 0.41 0.34 0.42
40.9 0.27 0.18 0.77
50.5 0.15 0.13 0.16
40.9 0.11 0.08 0.27
50.5 0.08 0.06 0.08

29.6 0.34 0.28 0.90
40.5 0.21 0.21 0.22
29.6 0.12 0.12 0.28
40.5 0.09 0.10 0.10
29.6 0.05 0.07 0.16
40.5 0.04 0.06 0.05
21.8 0.20 0.16 0.34
34.2 0.14 0.12 0.12
21.8 0.11 0.08 0.16
34.2 0.08 0.06 0.07
21.8 0.05 0.04 0.10
34.2 0.03 0.03 0.04
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4. CONCLUSION.

In this study it is assumed that empirical data are available on both
the lead time in certain time units and on the demand per time unit. There
are many situations where a gamma distribution is a save choice to
approximate the LTDD based on the empirical data. When the empirical
diatribution for the lead time indicates that lead time is unimodal with a
relatively large mean, the central limit theorem applies strongly and the
LTDD can be reasonably fitted by a gamma distribution in general. One has
to be careful, however, in using the gamma distribution in some cases.
When the maximum lead time is relatively small, the shape of the LTDD is
mainly determined by the shape of the distribution for D, which may be far
from gamma-like. Further, peculiarities such as multimodality in the lead
time distribution will be reflected in the LTDD. Using a fitted gamma
distribution (or another parametric distribution) could have unwanted
effects on the costs. In all such cases where it is reasonable to doubt on
the Gauss or gamma-like shape of the LTDD, we recommend the LZo procedure
(or, equivalently, the corresponding simulation approach). Furthermore,
the Monte Carlo experiments indicate strongly that sample sizes for the
lead time should not be smaller than 10. Otherwise costs can be easily
more than 30X higher on the average as compared to the costs corresponding
with the optimal choices for the inventory parameters s and Q. Spending a
little more costs on improving lead time information will in general lead
to large costs reductions in the inventory model. So, this is an
investment which pays off.
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APPENDIX

An algorithm for the approximation of the 'true' LTDD via simulation
based on the theoretical distributions for L and D, or on the
corresponding empirical distributions can be very simple as the following
algorithm illustrates:

Algorithm for the approximation of an LTDD bv simulation:
k .- 0;
repeat

k :- ktl;

LT :- {a drawing with replacement from the distribution of L};
LTD :- 0;
for i:- 1 to LT do

begin
d:- {a drawing with replacement from the distribution of D}
LTD :- LTDtd;

end;
LTDD[LTD] :- LTDD[LTD]tl~m;

until k-m;

The drawings with replacement can be done easily by using the NAG-
procedures G05EXF and G05EYF, or other equivalent procedures.
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LEGENDS TO EIGURES

FIGURE 1.
Theoretical LTDD's A1,B1, A2,B2, A3 and B3 obtained by using the
simulation approach with large value of m.

FZGURE 2.
Comparison of the MRB for both LZo's procedure (dotted line) and the
simulation approach (solid line), three different sample values t, and
varying values of the required CPU-time. The LTDD of combination A1 is
used.
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