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Abstract

In this paper we deal with adjustment mechanisms whích lead to

an economic equilibrium starting from an arbitrarily chosen initial

point. This problem goes back to Walras, who was concerned with the pro-

blem to find for a pure exchange economy a price adjustment mechanism

leading from an initial price system to an equilibri~vn. It should be

noticed that convergence of the Walrasian tatonnement process can be
proved if certain conditions are satisfied, e.g., Revealed Preferences.

Althoiigh this condition may be satisfied for many excess demand function

in aperational economic models, it has been shown that any continuous

function on the unit price simplex satisfying Walras' law can be rea-

lized as the excess demand function for some pure exchange economy.

A more advanced method of price adjustment is the Global Newton
method. However, also for this method convergence may not hold for an
arbitrarily chosen initial point.

We give several adjustment processes which can start anywhere

and always lead to an equilibrium point. It appears that these processes

can serve as a convergent alternative for the classical Walrasian taton-

nement process. Along the paths traced by the various processes the com-

ponents of the excess demand function will satisfy certain conditions.

In particular we prove the existence of a path along which all compo-

nents successively become equal to zero. More precisely, by increasing

the prices of the commodities with excess demand, decreasing the prices

of the commodities with excess supply, and adjusting the prices of the

commodities in equilibrium in order to keep them in equilibrium, all

markets successively become in equilibrium. However, to assure conver-

gence, we allow that a market becomes in disequílibrium again when the

ratio of the current price and the initial price raises above (falls



below) the ratio of these prices for commodities with excess demand
(supply). So, also the initial price system is kept in mind. This pro-
tects the process from cycling or leaving the price space.
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1. Introduction

In this paper we deal with adjustment mechanisms which lead to

an economic equilibrium, starting from an arbitrarily chosen initial

point. This problem goes back to Walras, who was concerned with the pro-

blem to find for a pure exchange economy a price adjustment mechanism

leading from an initial price system to an equilibrium price system. A

straightforward choice for such a mechanism is the differential equation

in case z is a continuously differentiable function

á - z(P).

where, for an economy with n-F1 commodities indexed j- 1,...,ntl, z(p) ~
T T(zl(p),...,z~l(p)) i s the excess demand at prices p -( pl' "'~pnfl) '

TFrom Walras' law we know that the inner product p z(p) ~ 0 for all p and
hence z(p) is a vector field tangent to the set of prices

rr~ 1

P- ~P E R~1 I E p~ - 1}.
j-1

When starting at a point po in P, the differential equation has a solut-
ion curve of points on P. Unfortunately, the solution curve may fail to
converge to a vector of equilibrium prices, even when the set of initial
price systems i s restricted to points near the boundary or, on the con-
trary, to points close to an equilibrium price system. So, neither glo-
bal nor local convergence can be guaranteed. Otherwise stated, the me-
chanism is not effective in the sense of Saari and Simon [líi], who de-
fined a mechanism to be effective i f the solutions converge to an equi-
librium point for almost all initial price systems in some subset of the
manifold on which z(p) is given. Counterexamples have been given by

Scarf [19]. In these examples each solution curve leads in the limit to
a cycle around the unique equilibrium point p~, except the curve which
starts in p~ itself.

It should be noticed that convergence of the Walrasian tatonne-
ment process can be proved i f certain conditions are satisfied. For

T
example i f z(p) has the property of Revealed Preferences p~ z(p) ~ 0 for

p ~ nfl Z is monoto-all ~ p, then the Lyapunov function V(p) ~ Ej-1 ( pj - p~)
nically declining along the solution path of ( 1.1), implying that the
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path will converge to p~. Other sufficient conditions for convergency of

the tatonnement process are Gross Substitutability or Diagonal Dominance

(see e.g. Arrow and Hahn [1]). Although some of these conditions may be

satisfied for most of the excess demand functions in operational econo-
mic models, in this paper we want to give processes which will converge

for any excess demand function. Not only because it has been shown by

several authors (see e.g. Sonnenschein [23] and Debreu [2]) that any

smooth vector field on P satisfying Walras' law can be realized as the
excess demand function for some pure exchange economy, but also because

in the last ten years general equilibrium theory has been concerned with

the existence of equilibria under price rigidities. For instance, Drèze

[3] proved existence for a pure exchange economy with prices between
upper and lower bounds. In this proof a vector of variables q~

(ql~ "'~qn-F1)T defines for each j either a price pj (between the bounds)

or a quantity constraint on either the demands or supplies of the j-th

commodity. From these prices and quantities induced by q the excess de-
mand z(q) is obtained. Again, an equilibrium point is a vector q~ for
which z(q~) - 0. Also in this case we may consider the differential

equation

dt - z(q)

as a mechanism leading from an initial point po to an equilibrium point
q~. However, under which conditions will this mechanism converge? For
excess demand functions under quantity rationing we can not use the pro-
perties of for instance Revealed Preference or Gross Substitutability.

~
Suppose we say that z(q) prevails Revealed Preferences íf q z(q) ~ 0 for
all q~ q~. Even when this holds, it is not clear whether there exists a
Lyapunov function which monotonically declines along the solution path.
Because we do not have qTZ(q) - 0 as in the case of prices, the function

~
V(q) ~ E~1 (qj - qj)2 does not serve. So, it is hard to derive conver-
gence conditions for tatonnement processes which adjust quantities.

A more advanced method of price adjustment is the so-called Glo-
bal Newton method of Smale [22], which has the form

Dz(P)át ~ -a(P)z(P) (1.2)
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T
with Dz(p) the n x n Jacobian matrix of ( zl,...,zn) evaluated at

T
(pl~ "'~pn) with p~l - 1 the price of the numeraire commodity. The
scalar a(p) is a real valued function depending on the behavior of f

near the boundary of R}. A relevant choice is a(p) - det Dz(p). The Glo-
bal Newton process ( 1.2) is effective in the sense that when the eigen
val~ies of Dz(p) are non-zero at a zero of z, it converges to a solution

point starting from almost all points on the boundary of R}. In a more
recent paper, Keenan [6] showed that the Global Newton process also con-
verges locally. However, Keenan argued that convergence may not hold for
an arbitrarily chosen starting point. So the question arises whether

there are processes which will converge globally, in the sense that they

converge to an equilibrium point for any arbitrarily chosen initial
price system. In Saari and Simon [lfi], it is shown that for such proces-

ses not only knowledge of the excess demands z(p) is required ( as in the

tatonnement process) but also knowledge of the gradients of all of its

component functions, except for the numeraire commodity. Clearly in

(1.2) the Jacobian Dz(p) is used and hence the gradíents. On the other
hand, the Global Newton process can be rewritten as

dz(~ - -~z(P)~

So, along the trajectory of the process the prices are adjusted in such

a way that the changes in the excess demands in z(p) are proportional to

z(p) itself. This means that along the path traced by the process the

excess demands change proportionally. More generally, we conjecture that

for any convergent process the components of z(p) must satisfy certain

conditíons along the trajectory. This allows us to define processes by

stating conditions on the components to be hold along the path of the

process. In some sense, this is comparable with the observation that for

convergent mechanisms knowledge about z(p) and its gradients is requir-

ed. A well-known example of a path which leads to an equilibriimm price

is the path traced by the algorithm of Scarf [20, 21]. When starting in

the vertex (0, 0,...,0, 1)T of the n-dimensional unit simplex

nf 1
Sn -{P E R} I E Pj ~ 1}

j-1
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a path on Sn is followed which ís characterized by the condition that
for all prices p on the path

z~(p) L zk(p) for all j, k~ crHl.

So, as in the Global Newton method the changes in the components of z ís
proportional to z itself. It has been recognized by several authors that
the path followed by Scarf's algorithm coincides with the path traced by
the Global Newton process when the latter is started in an appropriately
chosen point on the boundary.
In this paper we will define several adjustment processes induced by
stating conditions on the components of both p and z(p). These processes
can start anywhere in (the interior of) Sn and will be shown to converge
to an equilibrium if the function z is continuously differentiable on Sn
and some regularity condition is satisfied. Much attention will be paid
to the economic interpretation of the processes when they are applied to
find a Walrasian equilibrium price vector in a pure exchange economy or
to reach a supply-contrained equilibrium. One of these processes will
have some similarities with the classical Walras tatonnement process in
the sense that at the starting point the prices of the commodities with
excess demand are increased whereas the prices of the commodities with
excess supply are decreased. These price changes will be not proportio-
nal to the excess demand but are relative to the initial price system.
In this way the starting point is left in one out of 2m1 - 2 directions
depending on the sign pattern of the excess demands at the starting
point. In general the process keeps the prices of the commodities with
excess demand relatively to the initial price system larger than all
other prices and keeps the prices of the commodities with excess supply
relatively smaller than all other prices. ~ther processes to be defined
in this paper leave the starting price system by increasing the price of
the commodity with the largest excess demand and by decreasing some or
all other prices in order to keep the sum of the prices equal to one. In
this way the intial price system can be left in n~l directions. Also the
process in which the price of the commodity with the largest excess sup-
ply is decreased and some or all other prices are increased will be dis-
cussed. All the processes to be defined in this paper can be approximat-
ely excecuted by so-called simplicial algorithms (see e.g. [5] and
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[15J). These algorithms follow a piecewise linear path in a simplícial

subdivlsion of Sn. The limiting path of these algorithms can be consi-

dered as the path of the corresponding adjustment process.

This paper is organized as follows. The notion of an excess de-

mand function and a supply-constrained equilibríum is treated in section

2. In the sections 3 and 4 the adjustment processes are defined. Section

3 discusses the processes in which the initial price system can be left

in rr~l directions and section 4 treats the process which has similari-

ties with the classical Walras tatonnement process. The existence proofs

of the paths of points followed by all these processes can be found in

section 5.

2. Excess demand functions

In this paper we deal with excess demand functions on the n-di-

mensional unit simplex Sn -{p E R~ll Eipi - I}. In case of a competi-

tive exchange economy with n-F1 commodities, Sn is the price simplex with

the sum of the prices normalized to one. Suppose we have an economy with

m consumers and for each consumer i- 1,...,m holds

a) the consumption set Xi is a compact, convex subset of R~1, contain-

ing the set

{x E R~1I0 t x~ c Eiwj, j ~ 1,...,~1},

i i iwhere w - (wl,...,wml)
sumer i;

b) wi ~ 0 for all i, j;
J

is the vector of initial endowments of con-

c) the preferences ~i of the consumers are continuous, monotonic and
strictly convex.

Let xi(p) be the demand of consumer i given price p E Sn, i.e. xi(p) is
i T T ia maxímal element for ~i subject to x E X and p x c p w. Then the to-



tal excess demand z(p) - Ei-1(xi(p) - wi) is a continuous function on Sn
and satisfies

i) for all p E Sn, pTZ(p) - 0( Walras' law)

ii) z~(p) ~ 0 if p E S~ -{p E Sn~p~ - 0} (nonnegative excess
demand if p~ - 0).

In the next sections we allow for more general excess demand functions.

Definition 2.1. A continuous function z: Sn t Rml is an excess demand
function if
i) for all p E Sn, there exists a nonnegative vector y(p) with y~(p) ~

0 if p~ ~ 0, such that yT(p)z(p) - 0
ii) z~(p) ~ 0 if p E S~.

Defining the continuous function f from Sn into itself by

f~(P) -[P~ f max{0, z~(P)}]~c(P) ~- 1,...,n-F1

with c(p) - 1 f E~ max{0, zj(p)}, it follows from Brouwer's fixed point
theorem that any excess demand function z: Sn -~ R~1 has a zero point
p~, i.e. z(p~`) 3 0. In case of the classical Walrasian excess demand
funtion p~ is the vector of equilibrium prices. In the next example we
consider an economy in which the prices are bounded.

Example. Let E s({Xi, ~i, wi})i~l be an exchange economy with m consu-
mers and ntl commodities. Suppose the conditions a)-c) above hold. Now
assume that the set of admissible prices is given by

P-{p E R~1~0 ~ p~ ~ p3 t p3 for all j}.

Clearly, P does not necessarily contain a vector p~ such that z(p~) - 0.
However, Drèze [3] defined an equilibrium concept with quantity con-
straints on the excess supplies and excess demands. The existence of an
equilibrium with quantity constraints on the supplies only is proven by
van der Laan [13, 14] and Kurz [11]. In addition we have that there is a



supply-constrained equilibrium with no rationing on at least one commo-

dity.

Definition 2.2. A supply-constrained equilibrium is an allocation xi,

i s 1,...,m, a príce vector p E P and a rationing scheme X. t(1 such that

i) for all i, xi is a maxímal element for ~i in the set

Bi(P.R) -{x E XiIP x G p wi, x- wi ~ R}

11) Eixi - Eiwi

iii) kj ~~ if pj ~ pj j- 1,...,crfl

i.v) Rj --m for at least one j.

We construct now an excess demand function such that a zero
point yields a supply-constrained equílibrium. For q E Sn, let p(q) and
R(q) be defined by

pj(q) - max[Pj. qjPj) j - 1,...,nfl

Rj(q) - -min[qjpj~Pj, llwj j ~ 1,...,nfl,

where q. - q.~maxhqh and
J J

maximal for ~i in the Bi(q) -{x E XiIpT(9)x ~ PT(9)wi and

wj - Eiw~, j- 1,...,ntl. Now, let xi(q) be

set

z(q) - Ei{xi(q) - wi}. From the conditions a)-c)x- wi ~ R(q)}, and let

it follows that xi(q) is a continuous function of q and satisfies

pr(q)xi(q) - pT(q)wi. Hence z is a continuous function from Sn into Rml

satisfying yT(q)z(q) - 0 for all q E Sn with y(q) - p(q) ~ 0. Finally,

qj - 0 implies Rj(q) - 0 and hence zj(q) ~ 0. So, z is an excess demand
~

function. Clearly xi(q~), i s 1,...,m, p(q~) and R(q ) induce a supply-

constrained equilibrium iff z(q~) - 0.
[1

The example shows that definition 2.1 covers excess demand func-

tions z which may arise both from an economy with flexible prices (Wal-

rasian) and an economy with bounded prices. Also the existence of a

Drèze equilibrium can be shown by constructing an excess demand function

on the unit simplex. In the next sections we deal with convergent pro-
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cesses to reach a zero point of z. These processes allow for an arbi-
trarily chosen starting point.

3. Convergent adjustment processes I

In this section we describe several adjustment processes to find
a zero point of an excess demand function on Sn which can start anywhere
and always lead to such an equilibrium point. Except describing the
paths of points followed by these processes we also discuss the economic
interpretation of them. It will appear that the processes can serve as a
convergent alternative for the classical tatonnement process in case of
a Walrasian economy. The existence of the paths we describe in this sec-
tion will be examined in section 5. Let v be the initial price system.

First we consider the homotopy function H from Sn X[0,1] to
On -{x E Rml l Eixi - 0} given by

H(P.t) - t~(P) f (1-t)(v-p).

where ~j(p) - zj(p) - Eizi(p)~n-F1, j- 1,...,crfl. Assuming that 0 is a
regular value of H, it can easily be shown that for continuously diffe-
rentiable excess demand functions z, H 1(0) contains a curve of points
( P. t) starting at (v,0). Adapting condition ii) of definition 2.1 for
zj(p) ~ 0 it follows that the curve cannot cross bd (Sn) x[0,1] and
reaches a point (p~`, 1). Clearly, H(p~,l) z 0 implíes

`L(P~) - 0,

so that for j z 1,...,n-H1, zj(p~) - Eizi(p~)~n-H1. According to
yT ( p) z( p) 3 0 for all p, we have that p~` must be a zero ( equilibrium)
point of z.

Since for a point ( p,t), 0~ t~ 1, in H 1(0) we have

z(P) - a(P-v)

with a-(1-t)~t ~ 0, in case of a Walras economy the path in H-1(0)
startíng in (v,0) can be economically interpreted as a path of prices
along which the difference of the current price system p and the initial



9

price v is proportional to the relative excess demand being the diffe-

rence between the excess demand and the average excess demands of the

goods. The path of points can be followed approximately by the so-called

Sandwich method due to Kuhn and MacKinnon [10] and independently propos-

ed for problems on Rn in Merrill [ 17 ]. In this algorithm the set Sn x

[0,1] is simplícially subdivided. Starting with the unique simplex con-

taining (v,0), a sequence of adjacent (nfl)-dimensional simplices is

generated which leads to a simplex yielding an approximate equilibrium

point (a,l). The path is followed more accurate according as the mesh of

the subdivision decreases. Therefore, if a more accurate approximation

is required, the algorithm can be restarted with a finer subdivision in

order to follow a new curve with v being the last found approximate so-

lution p.

An other so-called simplicial restart algorithm on Sn to find
economic equilibria on Sn was proposed by van der Laan and Talman [15].
Instead of a path of ( ni-1)-dimensional simplices in Sn x[0,1], their

algorithm generates a path of simplices in Sn of varying dimension. From

the starting point v, being a zero-dimensional simplex, for varying t a
path of adjacent t-dimensional simplices is followed, 0 t t t n, until

an n-dimensional simplex yielding an approximate solution is found.
Again the accuracy can be improved by restarting at the approximate so-

lution with a finer subdivision.
The path of points followed approximately by the simplicial al-

gnrithm leaves the startíng point into one of ni-1 different directions

or rays. To determine which ray the function value z(v) at v is calcu-

lated and the component j i s determined for which zj(v) is minimal. So,

in the case that z i s an excess demand function arising from a Walras'

economy, the good j i s determined with lowest excess demand (highest

excess supply) at prices v. Then the price of this good is lowered
whereas the prices of some other goods are raised in order to keep the

sum of the prices equal to one. The price of good j is lowered until for

another good, say k, zk is equal to zj. Since minhzh(p) c 0 for all p

and zj(p) ~ 0 if pj - 0, by lowering pj we must reach a price vector p

for which zk(p) - z,(p) t 0 for some k~ j. Then from this point the
J

price of good k is also lowered and a path of prices is followed on

which zk(p) - zj(p) - minhzh(p) until a price vector í s reached for
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which a third good has also minimal excess demand, etc. To be sure that
such a price vector indeed will be found we have to protect the proce-
dure against cycling or leaving Sn. To clearify this and the way in
which the process proceeds in general we formalize the description.
Therefore, let T be the collection of subsets of I~1 -{1,...,cN-1 } and
let a(1),...,a(nfl) be nF-1 vectors in On such that Eia(i) ~ 0 and any
set of n vectors a(j), j~ i, i a 1,...,nfl, is linearly independent.
For simplicity we assume v to be in the interior of Sn.

Definition 3.1. For any TE T, the subset A(T) of Sn is given by

A(T) z{p E Snl p- v i. E aja( j), aj ~ 0 for all j E T}.
jET

Observe that A(~) - v, A(I~1) ~ Sn and that for any T~ I~1,

A(T) is a t-dimensional convex polyhedron in Sn, where t- I TI denotes
the cardinality of the set T. Moreover, for any TE T, we define the set
C( T) by

C(T) -{p E Sn~zi(p) ~ minhzh(P), i E T},

Clearly C(~) - Sn and C(I~1) -{p E Sn~zi(p) 3 minhzh(p) for all
i E I~1} -{p~ E Snlz(p~) ~ 0}, since yT(p)z(p) z 0 for all p. So,
A(~) n C(~) -{v} and A(I~1) n C(I~1) is the set of all equilibrium
points. In section 5 we show that under some conditions the union B of
all sets B(T) ~ A(T) n C(T), T E T, contains a curve of points in Sn
starting in B(~) a{v} and ending with an element of the set B(I~1) of
equilibri~ points, if the vectors a(i), i~ 1,...,n-F1, are chosen to be
equal to b(i) - e(i) with e(i) the i-th unit vector in Rml and b(i)
some vector in Sn. The variable dimension restart algorithm follows this
curve approximately by a sequence of adjacent t-simplices in A(T) for
varying T E T. We consider the curve in B having v as one of its end-
points in more detail. Suppose that for some unique j, the starting
point v is in the set C({j}). Then the curve starting in v leaves v
along the one-dimensional set A({j}) lowering the price of good j, until
for some k~ j a point in C({j,k}) is reached. So, by increasing aj
from zero, the ray
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v ~- aj(b(j) - e(J)),

ís followed from v, until a point p is reached such that for some k~ j,

zk(P) - zj(P) - minhzh(P)~

Then the region A({j,k}) is entered by increasing the coefficient ~ of

b(k) - e(k) from zero and a path of prices p in A({j,k}) is followed by

the curve such that zk(p) is kept equal to zj(p) and less than the ex-

cess demand of the other goods, i.e. a path in R({j,k}) is followed

starting at p. Following this path, two cases can occur. Firstly, a

price ~f can be reached for which a third good, say R, has also minimal

excess demand. Then the process continues along the curve in B({j,k,R})

starting in ~i. Secondly, the curve can hit the boundary of A({j,k}).

From the definition of A(T) we have that on the boundary of A({j,k})

either one of the prices pj or pk is equal to zero, or one of the varia-

bles aj or ak is equal to zero. Since zi(p) , f1 if pi ~ 0 it ís not pos-

sible that the path in A({j,k}) on which zj(p) - zk(p) - minhzh(p) cros-

ses the boundary pj - 0 or pk - 0 without finding another index R

for which zR(p) - minhzh(p). So, if the curve hits the boundary of

A({j,k}) then either aj or ak is equal to zero, i.e. the path hits

either the ray A({k}) or A({j}). Suppose aj becomes equal to zero. Now,

a, ís not decreased further bu[ is kept equal to zero, and the process
J

continues in A({k}) with prices p such that zk(p) - minhzh(p).

Economically, decreasing the variable aj below zero is not very

appropriate, since a, ~ 0 implies an increase of the price of good j
J

whereas the excess demand of good j is negative. So decreasing aj below

zero should imply that the excess demand of good j is kept on the mini-

mum while increasing its price. Instead of doing so, aj is kept equal to

zero and the excess demand of good j is forced to become greater than

the minimum excess demands. This protects the process from cycling and

leavíng Sn.

In qeneral, for varying T c I~1, the process follows a path of

prices p in R(T) - A(T) n C(T). Clearly, if p E B(T) then we have the

complementarity condition
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and
ai ~ 0 and zi(p) - minhzh(p) for all i E T

ai ~ 0 and zi(p) ~ minhzh(p) for all i~ T,

where p- v f Ei-1~i(b(i) - e(i)). Since b(i) E Sn we have that the sum
of the prices of the goods with minimal excess demand is smaller than
the sum of the initial prices vi of these goods. As soon as a price p on
the path in B(T) is generated for which a good j, j~ T has excess de-
mand equal to the excess demand of the goods in T, the process continues
along a curve in B(T U{j}), i.e. also aj is increased from zero causing
a decrease in the price of good j. If on the other hand ak becomes zero
for some k E T, then the process continues along a curve of B(T`{k}),
keeping ak equal to zero and forcing the excess demand of good k to be-
come larger than the minimum excess demand. An example of the path fol-
lowed by this process is given in figure 1. Zn this example B contains
three curves. (hie curve is the loop L in B( { 1, 2}). The second curve is
the path c having two endpoints in B(I~1) - C(I~1), each being an
equilibrium point. The third curve is the path P having an endpoint in
B(~) - A(~) ~{v} and an endpoint in B(I~1) being an equilibrium

point. Starting in {v}, the latter path is followed by the process until
the equilibrium point is reached. Observe that the process cannot cycle
or reach bd Sn. Even when v should have been chosen withín the loop L,
cycling cannot occur because the curves in B depend on the starting
point v. If v lies inside L then each ray A( { j}), j E I~1, crosses L,
which prevents the process from cycling. In figure 2 the path followed
by the process is given in case v lies inside L.

The path P from v to p~ can be followed approximately by a se-
quence of adjacent simplices of varying dimension, where in a t-dimens-
ional region A(T) the path is followed by adjacent t-dimensional simpli-
ces. Therefore we need a triangulation or simplicial subdivision of Sn
which for each T induces a subdivisíon of A(T) in t-dimensional simpli-
ces. A well-known triangulation of Sn is the so-called Q-triangulation
(see e.g. Todd [24]). This triangulation subdivídes the sets A(T) íf and
only i f b(i) - e(j) for some j ~ i. Since any set of n vectors a(i) must
be linearly independent we have to require that b(il) ~ b(i2) for all il
~ i2. A typical choice is b(i) ~ e(ifl) with ifl - 1 if i~ cttl (see
[12] and [15]). In this case we have that a decrease of the price of a
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e (2)

Figure 1. n- 2. The sets C({i}) are denoted by i, i- 1,2,3;
C(T) - 1ÉTC({i}). The sets A({i}) and A{i,j} are denoted by

Ai and Aij resp., i,j E{1,2,3}. B consists of a path P from v

to p~, a path C from a to b and the loop L.
e (3)

e(1) e(2)
Figure 2. R consists of a path from v to p~ and one from a to b.
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good i with the smallest excess demand is compensated by an increase of
the price of good i-~1 in order to keep the sum of the prices equal to
one. Clearly, economically it is rather unsatisfactory that a decrease
of a price of one commodity is compensated by an increase of the price
of just one other good. Aowever, when defining the sets A(T) with re-
spect to the affine hull of Sn instead of Sn itself, i.e. by taking

A(T) -{p E Un~p - v tJÉTaj(b(j)-e(j))~ ~j ~ 0, j E T} (3.1)

with Un -{x E Rm1~Em ixi - 1} we can construct a triangulation of Un
which induces a triangulation in t-simplices of each region A(T) for any
admissíble choice of the vectors b(j), j- 1,...,nfl. A special choice

Tis given by b(j) ~(ntl)-le, where e~(1,...,1) . In this case the de-
crease of a price pi with an amount a i s compensated by increasing all
other prices with an equal amount a~n. So at the starting point the
price of the commodity with the smallest excess demand is decreased and
the prices of all other goods are equally increased. Not only this
choice makes more sense from an economic viewpoint, also the triangulat-
ion of Un induced by this choice of the vectors b(j), j- 1,...,n-F1 is
very appropriate for use in a simplicial algorithm, as has been shown in
[16].

Recently, Doup and Talman [4] found a simplicial subdivision of
Sn itself which gives a triangulation of the t-dimensional sets A(T) in
t-simplices when b(j) is chosen to be equal to v for all j. Then the
sets A(T) can be written as

A(T) ~{p E Sn~ p- v f EjETaj(v - e( j)), aj ~ 0 for all j E T}

-{p E sn~ p~ (ltb)v - E jaje( j), aj ~ 0 for all j E T}

with b- Ej~aj. So, leaving v along the ray A({j}) with j the index of
the commodity with the smallest excess demand, vj is decreased with
aj(1-vj)
that the

whereas all other prices are increased with a,~h, h~ i,
J

so
prices of all other goods are i ncreased proportionally with the

initial prices
general, for a

and are therefore kept relatively equal to each o[her. In
price vector p E A(T)
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pj t(lfb)vj if j E T

pj 3(lfb)vj if j~ T.

So, if p E B(T) - A(T) n C(T) we have that for all commodíties k not in

T

pk~vk ~ maxhph~vh and zk(P) ~ minhzh(P)

whereas for all k in T

pk~vk ~ maxhphlvh and zk(P) s mir~zh(P).

That means, relatively to the initial prices, the prices of the goods

with minimal excess demand are lower than the prices of the other goods.

From an economic viewpoint this seems to be rather attractive and ap-

pealing. Doup and Talman [4] showed that this is also computationally

efficíent. However they followed not the path obtained by decreasing the

price of the good with the smallest excess demand but by increasing the

price wíth the highest excess demand (see also e.g. van der Laan [12)).

In fact, for all choices discussed in this section the paths can be re-

versed, redefining A(T) and C(T) by

and
A'(T) ~{p E Snlp - v f EjE,l,aj(e(j)-b(j)), aj ~ 0 for all j E T}

C'(T) - {P E Snlzi(P) ~ maxhzh(P) for all i E T}

where again, b(j) lies in Sn, j- 1,...,n-F1.
Again, under some conditions the union B' of all sets B'(T) - A'(T) n
C' (T), T C I~1, contains a unique path P' going from v in B' (~) to an

equilibrium point in B'(I~1). However, we need an extra condition on z

to avoid that the curve crosses the boundary of Sn. Taking the sets A(T)

and C(T) this cannot happen because if z j( p) - minhzh( p) and pj- 0 we

must have that z(p) ~ 0. In other words, we have that for each subset J

of I~1, J~ Iml, the set {p E Snlpj - 0 for j E J} is covered by the

union of sets C({i}), i~ J. We remember that i f all sets C({j}) are
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closed this condition guarantees that the intersection of all sets
C({j}) is not empty (Lemma of Knaster, Kuratowski and Mazurkiewicz [7]).
Along the path P' at v, the price of the good with the highest excess
demand is increased while the prices of other commodities are lowered.
In general if p E B'(T) we have the complementarity conditions

ai ~ 0 and zi(p) - maxhzh(p) for i E T
and

ai - 0 and zi(p) c maxhzh(p) for i~ T

where p- v f E~iaj(e(j) - b(j)). Now suppose for some p E A'(T) we
have that pi - 0. Then T must contain an índex j~ i wíth pj ~ 0. Hence,
when pi - 0, then p E B'(T) if zi(p) ~ zh(p) for all h with ph ~ 0. So,
p E C'({i}) if pi - 0 is a sufficient condition to guarantee that the

curve in B' starting in v does not cross boundary Sn. As has been prov-
ed by Scarf [21], this condition is sufficient to guarantee that
C'(I~1) - rliC'{i}) is not empty.

Again we may take the vector b( j) equal to e( jfl) or (n-H1)-le.
However, the most interesting choice is b(j) a v for all j. Then the
sets A'(T) become

A'(T) ~{p E Sn~p ~ v f E jE,l,aj(e( j) - v), .1j ~ 0 for all j E T}

~{p E Sn~p 3(1-b)v f Ej~,aje(j), aj ~ 0 for all j E T}

with b- Ej~,aj. So, for any price vector p in some B' (T) we have for
some 0 c b c 1

pj ~(1-b)vj and zj(p) ~ maxhzh(p) if j E T
and (3,2)

pj -(1-b)vj and zj(p) c maxhzh(p) if j~ T,

i.e., for a point p on the curve from v to p~` all prices of the commodi-
ties with highest excess demand have been increased relative to the ini-
tial price system v whereas for all other commodities the relative pri-
ces have not been changed compared with the initial price system. As
soon as, relative to the starting price, the price of a good wíth high-
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est excess demand becomes equal to the prices of the commodities not

having maximum excess demand, that price is not further decreased but

kept relatively equal to these prices. In addition, the excess demand of

this good is forced to decrease from the maximal excess demands.

We have seen that in general the condition zi(p) ~ 0 if pi - 0

is not sufficient to be sure that the path in B'(T) starting in v does

not break down at a point p E bd Sn. However, when taking b(j) ~ v for

all j this condition is sufficient. For, if for some T a point p E B'(T)

with pi - 0 for some i is reached, then b- 1 in (3.2) i.e. pj - 0 for

all j not in T. So, if pk ~ 0 then k E T and zk(p) - maxhzh(p). However

this implies that maxhzh(p) - 0. Since zi(p) ~ 0 for all i with pi - 0

we obtain that z(p) - 0. Hence, if a point p on the boundary is reached

this point is an equilibrium point and hence an endpoint of the path

(see figure 3).

P

2

2

v A 2

A1 3
e (1) (2)

Figure 3. n- 2; the path in B' starting at v ends at an equilibríum
~

point p~` in bd Sn, C({1}) - C(I~1) -{p }

For all the processes discussed in this section we have seen

that during the process the index j E T is deleted from T as soon as aj

becomes zero, i.e. when the price of good j relative to the initial

price vj raises above (ín case of maximal excess demands) or falls below

(in case of minimal excess demands) a certain level. That means, during

the process the initial price system is kept in mind. This contrasts to

both the classical tatonnement process and the Global Newton method in

~
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which the initial price system is not kept i n mínd. In fact, to prevent
the process from cycling we have that during the process there are con-
ditions on both the excess demands (p E C(T)) and the prices (p E A(T)).
The latter does not hold for the Global Newton method, so that in the
Global Newton method the set of admissible starting points is restrict-
ed.

A drawback of the processes discussed in this section is that
either the prices of the commodities with the highest excess supplies or
the prices of the goods with the highest excess demands are adjusted,
but not simultaneously.
In the next section we give a process in which all prices are adjusted
simultaneously, increasing the prices of the commodities with positive
excess demand and decreasing the prices of the goods with negative ex-

cess demand.

4. Convergent adjustment processes II

In the previous section we described several adjustment process-
es to find an equilibrium point.Inthese processes the starting point can
be left into nfl directions, namely the nFl rays A({j}) (or A'({j})). In
this section we describe a process in which the starting point can be
left into 2~1 - 2 directions. Starting with the initial price system
all prices are adjusted simultaneously, increasing the prices of the
goods with the excess demand positive and decreasing the prices of the
goods with the excess demands negative.

To describe the process, let S2 be the set of all sign vectors in
R~1 having at least one component equal to fl and one component equal
to -1. Further, for s E S2 we define

I(s) ~{i E Iml Isi - 0}.

Each s E S2 induces an (II(s)I-F1)-dimensional subset of Sn given by

nlA(s) ~{p E S pi~vi - minhph~vh if si -- 1, and

pi~vi - maxhph~vh i f si - 1},
(4.1)
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where v is again the initial príce system in the interior of Sn. So,

A(s) is the set of prices in Sn such that relative to v, pi is minimal

if si is negative and pi is maximal if si is positive. When si - 0, the

price pi may vary between the relative lower and upper bounds. Observe

that the number of different sign vectors s in S2 for which I(s) is empty

is equal to 2~1 - 2, implying that there are 2~1 - 2 rays along which

the initial price system can be left. From v there is a ray to each face

of Sn. For n- 2 the sets A(s), s E S2, are illustrated ín figure 4.
.ec~I - --

e(1) Á(1,-1.-1) A(1,1,-1)
Figure 4. 1'ne sers A~s), s E S~, n- 2. A(s) is given by A(sl, s2, s3)

The process will leave v along the ray A(so) with so - sgn z(v),

causing a relative decrease of the prices of the commodities with nega-

tive excess demand (excess supply) and simultaneously a relative iir

crease of the prices of the commodities with positive excess demand. The

process continues along this ray until for one of the commodities, say

i, the excess demand becomes equal to zero. Then si becomes equal to

zero and the process continues in the corresponding region A(s), i.e.

the price of the commodity i is not further increased or decreased rela-

tive to v, but varies between the relative upper and lower bounds while

the excess demand is kept equal to zero. In general, for varying s in

S2, the process traces a path of prices p in A(s) such that

p E C(s) ~ C1{p' E Snlaign z(p') 3 s}
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where C1(S) is the closure of the set S and sign a- 0 if a~ 0. So, for

various s in R, a path of prices p in B(s) is followed with B(s) -

A(s) n C(s). Clearly, the set B(s) is equal to

~P E SnlPi~vi - minhph~vh

minhph~vh ~ pi,vi
pi~vi - maxhph,vh

and zi(p) t 0 if si ~-1
t maxhphwh and zi(p) ~ 0 íf si - 0
and zi(p) ~ 0 if si - fl}.

In words, the process follows a path of prices such that rela-
tive to the initial price system v, the price of a commodity with nega-
tive excess demand i s kept minimal and the price of a commodity with
positive excess demand is kept maximal while the prices of the commodi-
ties in equilibrium may vary between the relative bounds. As soon as the
process reaches a price p in B(s) for which the excess demand of a good
i becomes zero for some i with si ~ 0, then the process continues in
B(s') with si ~ 0 and s~ ~ s~ for all j~ i. On the other hand, when for
some p in B(s) the relative price pi~vi of a commodity i with zero ex-
cess demand ( si - 0) reaches the upper or lower bound, then the process
continues in B(s') with si - 1 respectively si --1, and s'. - s, for all

J J
j~ i. As will be proved in the next section, in this way the sets B(s)
can be linked together and the union B of B(s) over all sign vectors s
in S2 contains a curve leading from the initial price system v to an
e uilibrium rice s stem ~`q p y p( see figures 5 and 6). In the figures the
curves along which zi - 0 are drawn for i- 1, 2 and 3. Figure 5 shows
the simple case in which B consists of one curve going from v to the
equilibrium price p~. In figure 6, B consists of a curve P from v to p~,

a curve C between the two equílibria a and b in A(-1-1, -1, 0) and the

loop L in A(0, -1, fl). Observe that zi(p) ~ 0 íf pi - 0 and that sign
zi(p) changes if the curve zi ~ 0 is crossed. So corresponding to the
fact that C is in A(fl, -1, 0), along the curve C we have that zl ~ 0,
z2 ~ 0 and z3 - 0.
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e (3)

e(1)

z1-0 z2-0

x
Figure 5. A consists of a curve from v to p.

e (3)

1

z3-0

~3-C

e(2)

e(1) ~ ~ y Y ~ ~ e(2)

z1-0 z2-0 z1-0 ',
z2-0

Figure 6. B consists of a curve P from v to p~, a curve C in

A(fl, -1, 0) from a to b and the loop L in A(0, -1, fl).
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We show now that a path in B(s), s E~, cannot leave Sn. Suppose
that for some s in R, p is a point in B(s) on the boundary of Sn, ímply-
ing that pi - 0 for at least one i. Hence minhph~vh ~ 0 and therefore pj
- 0 for all indices j wíth sj --1. Since sj --1 implies z.(p) G 0 and

J
pj - 0 implies zj(p) ~ 0 we must have zj(p) - 0 for all j with sj --1.
For all h with sh - fl we have that zh(p) ~ 0 and ph ~ 0. Hence zh(p) ~
0 since yT(p)z(p) - 0 for all p. Finally we also have that zk(p) - 0 for
all k with sk - 0. Hence z(p) - 0 implying that p is an equilibrium
point. So, if the process reaches a point p on boundary Sn, then an
equilibrium point is reached.

In these two sections we have described convergent processes to
find an equilibrium point of an excess demand function. Along the path
traced by such a process the prices and excess demands satisfy certain
conditions. In particular the process described in this section is ra-
ther interesting. Analogeously to the classical tatonnement process, at
the starting point the prices of the commodities with positive excess
demand are increased and the prices of the commodities with negative
excess demand are decreased. As soon-as an excess demand becomes equal
to zero, this commodity is kept in equilibrium, unless the price of such
a commodity reaches the relative upper or lower bound on which the pric-
es of the commodities with positive respectively negative excess demands
are kept. In this case we could have increased (decreased) the price
further in order to keep the excess demand equal to zero. Instead of
doing that, the price ís kept on the relative upper or lower bound en-
forcing that the excess demand becomes positive respectively negative.
However, increasing (decreasing) the price of a commodity with zero ex-
cess demand above (below) the relative prices of the commodities with
positive (negative) excess demand does not seem to be very satisfactory.
Preventing this by keeping in
cess is protected from cycling

starting point v plays a very
of the process i s assured
process.

Finally we remark
given in this section can

mind the initial price system v the pro-
or leaving Sn. So, again we have that the
essential role. In fact, the convergence

by memorizing the starting point during the

that also the path followed by the process
be generated approxímately by a sequence of

simplices of varying dimension. For a detailed description we refer to
[5].
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Until now we only discussed the economic interpretation of the adjust-

ment processes in case of a Walrasian pure exchange economy. However,

the second application mentioned in section 2, the computation of a sup-

ply-constrained equilibrium, gives very similar interpretations of the

several adjustment processes. For example, in the last process, the ac-

counting prices qj are increased relatively to the initial accounting

price v~ if the corresponding excess demands zj(q) are positive while

the other accounting prices are relatively to the initial prices de-

creased. When a price pj(q) becomes equal to Pj the price pj is not fur-

ther decreased but is kept equal to pj and commodity j becomes rationed.

The rationing becomes stronger when the accounting price qj decreases

causing a decrease in the supply of the corresponding good j which has

an excess supply. On the other hand, the prices of the goods j with ma-

ximal accounting prices are kept equal to pj. In general, the accounting

prices of the goods with excess demand are during the process kept rela-

tively to the initial príce system maximal and the accounting prices of

the goods with excess supply minimal whereas the accountíng príces of

the goods having zero excess demand are allowed to vary between these

two bounds. When the accounting price qj induces a real price equal to

p, good j is rationed whereas the goods h with maximal accounting prices
J

have maximal real prices ph. Notice the important role of the starting

accounting price system v. If for some j qj is maximal at the initial

point, then pj(q) is set equal to pj although good j might have an ex-

cess supply. If so, then qj is immediately decreased, relatively to the

initial accounting price. (hi the other hand, when at the initial system

ph(q) -~ for some h, so that good h is rationed, this commodity might

have an excess demand. The process then will increase qh immediately in

order to relax the rationing and after that to increase the real price

ph(q) from p~.

Similar interpretations can be given for the adjustment process-

es given in section 3. In the process induced by definition 3.1 the ac-

counting price of the commodity j with the smallest excess demand is

decreased causing a decrease in the real price pj if this price is lar-

ger than the lower bound pj and causing a stronger rationing if the

price pj(q) is equal to Pj. All other accounting prices are relatively
increased in order to decrease the excess demands of these goods. In
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general, the process keeps the accounting prices of the commodities with

maximal excess supply, relatively to the initial price system, lower

than the accounting prices of the goods not having maximal excess sup-

ply. The accounting prices of these goods are kept relatively to the

initial price system equal to each other. The reverse interpretation

holds for the other adjustment process of section 3 in which the accoun-

ting prices of the commodities with maximal excess demand are kept re-

latively larger than those of the goods not having maximal excess demand

in order to reach an equilibrium. Increasing the accounting prices qj of

the goods with maximal excess demand causes a relaxation of the ration-

ing if the lower bound of the price is binding and an increase of the

príces if there is no rationing (anymore).

5. Existence proofs

In the previous sections we have described sets B and B' which
contain a path of points leading from an arbitrarily chosen starting
point v in the interior of the unit simplex Sn to an equilibrium point.
In this section we present the existence proofs of these paths. We will
assume that the function z is continuously differentiable. To give the
proofs we need the concept of a primal-dual pair of subdivided manifolds
abbreviated PDM. This concept has been introduced in Kojima and Yamamoto
[8). We will give here only the basic tools and some theorems. For a
complete discussion of the PDM-theory and the detailed proofs we refer
to [8] and (9]. The exístence of the paths is obtained by defining an
appropriate PDM. An m-cell in Rk is an m-dimensional convex polyhedral
set being the intersection of a finite number of closed half spaces in
Rk. If a cell D is a face of a cell E we write D ~ E. Letting M be a
(finite) collection of m-dimensional cells in Rk, the collection of fac-
es {D~D ~ E, E EM} is denoted by M and the union of all m-cells E,
E E M, by ~M~. The collection M of m-cells is called a subdívided m-ma-
nifold if

a) for all D, E EM, D n E- Q or D n E is common face of both D and E;
b) each (m-1)-cell in Á~ lies in at most two m-cells of M;
c) M is locally finite, i.e., each point x in IM~ has a neighborhood

which intersects with only a finite number of cells in M.
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Thr houndary of M, denoted by 6M, is the collection of all (m-1)-cells
of Di which lie in only one m-cell of M, A 2-manifold with 7 cells is
pictured in figure 7. Observe that we allow a cell to be unbounded.

Figure 7. A subdivided m-manifold
heavily drawn

of 7 m-cells, m -

Now let P and D be two subdivided m-manifolds and d a dual operator such

that

1) IDI is a bounded polyhedral set;
2) d is an operator from P x D into itself such that Xd E D for all

X E P and Yd E P for every Y E P:
3) if ZEP U D then ( Zd)d - Z and dim Z f dim 7.d - m;

4) if X1, X2E P and X1 ~ X2 then XZ ~ Xa;

5) if Y1, Y2 E D and Y1 ~ Y2 then YZ ~ Ya.

Then the triplet (P,D,d) is a primal-dual pair of subdivided manifolds

with deRree m. P and D are the primal and dual subdivíded manifolds re-

spectively of the PDM.

An example of a PDM is given ín figure 8.

Next we define the collection of m-cells L by L~~ P,D,d~ where

~P,D,d~ - {X x XdIX E~} -{Yd x Y IY E D}. (5.1)

Lemma 5.1. If ( P, D,d) is a PDM with degree m, then L is a subdivided m-

manifold with empty boundary. Moreover, ILI is a closed subset.
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P

x21

x31 x32 X33

x22 x23

x12

Y13

Y34 Y35

Y24 Y25

Y14

X34 X35 Y31 Y32

X24 X25 Y21

Y33

Y22 Y23

X15 Y11 Y12

X14

Figure S. A PDM with degree 2.

P d -{Xi~j~~ t i, j t S}, D-{Yi.j~~ t i, j c~} and
Xij ~ Yij, , G i, j G 5,

Y15

If D- X x Y í s an (m-1) cell of L with X EP and YED and E is an m-
cell of L having D as one of its faces, then either E m X x Xd or F, a
Yd x Y. With respect to the m-manifold L~ ~P,D,d~ defined in (5.1) we
define the subdivided (mfl)-manifold K by

K s {Z x R}IZEL }.

Since dL ~~, we must have ~dXl - IL~ x {0}, More precisely,

dK- {Z x {~}~Z EL } .

(5.2)

Finally, let h be a piecewise continuously differentiable, abbreviated
PC1, function from K to an m-dimensional linear subspace Lm of Rk such
that the restriction of h to each (mfl)-cell of K can be extended to a
continuously differentiable function on an open neíghbourhood of the
cell. A point c in Lm is called a regular value of the PC1 function h if
the dimension of the set h(E) -{h(x)~ x E E} equals m for all cells
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E in K for which c E h(E). If c in Lm i s a regular value of h, then the

set

h 1(c) -{x E ~ K I Ih(x) ~ c}

does not intersect with any face D in K of dimension less than m. From
Sard's theorem we know that almost every c in Lm is a regular value.

Theorem 5.2. Let X be a subdivided (mfl)-manifold as defined above and

let h: ~KI a Lm be a PC1 function on K. If c is a regular value of h,

then }i 1(c) is a disjoint union of piecewise smooth paths and loops sa-

tisfying
i) if E E K and li 1(0) n E ~~ then ti1(0) n E is a disjoint union of

smooth 1-manifolds;

ii) each loop has no intersection with IdK~;

iii) x E ti 1(0) is an endpoint of a path íf and only if x E ~dK~;
iv) every open or semiclosed path is unbounded.

We will apply theorem 5.2 for an appropriately chosen subdívided

(nfl)-manifold K and PC1 function h to deduce that ki 1(0) corresponds to

a set B(or B') defined in the sections 3 and 4 and that h-1(0) contains

a path in IKlcorresponding to a path from v to an equilibrium point.

First, let us considez the process described in section 3 where the

starting point v is left by only decreasing the price of the commodity

with the highest excess supply. The primal of the corresponding PDM is

completely determined by the sets A(T) defined in (3.1) being subsets of

Un whereas the dual is induced by the sets C(T), T C I~1. More precise-

ly, the subdivided n-manifold P is defined by

P-{A(T)~T C I~1 and ~T~ - n},

i.e. P is the collection of the crF.l n-dimensional cones A(T) ín Un.
Clearly, P-{A(T)~T C Iml} is the collection of all cones A(T),
~TI t n, in Un, The dual subdivided n-manifold D consists of the n-cell
Y~ defined by

Y~ -{Y E On~Yj ~ 1 for all 3 E In-F1}.
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Defining the sets Y(T), T C I~1, T~ Iml, by

Y(T) -{y E On~ yj - 1, j E T, and yj t 1, j~ T}

we obtain that D-{Y(T) ~ T C I~1 and ~ T I t n}. Observe that

The dual operator between P and D is defined by

YD - Y(~).

Ad(T) - Y(T) and Yd(T) 3 A(T) for all T~ I~1.

Notice that dim A(T) - I T ~ and that dim Y(T) - n- ~T~ so that dim A(T) f
dim Y(T) - n for all T C I~1, ~TI c n. By verifying all the conditions
of a PDM we immediately get the next corollary.

Corollary 5.3. The triplet (P,D,d) is a PDM with degree n.

The above defined PDM is illustrated in figure 9 for n- 2.

T

Figure 9. The PDM induced by the (ntl)-ray algorithm on minimal excess
demands.

~
Now let ~P,D,d~ be the n-manifold corresponding to (P,D,d) and let K be
defined as in (5.2), i.e.,

X~ {A(T) x Y(T) x R}~T
Clnfl' I T~ ~ nJ.
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Notice that d K- {A(T) x Y(T) x{0} IT C I~1, ~TI ~ n}. To define a PC1

function h on K we extend the function z from Sn to R~1 to a continu-

ously differentiable function from Un to R~1. Recall that we assume

that z is a continuously differentiable function on Sn. Then we define

the function h: ~K~ i R~1 bY

h(p.y.t) - y- tz(p) (p.y,t) E IKI (5.3)

where z~(p) - zm(p) - z~(p), j- 1,...,n-H1, with zm(P) a
ntlE~-1 z~(p)~(crfl) being the averge excess demand. Since y lies in YO and

therefore in On and since by definition L~i z~(p) a 0 implying that
also tz(p) lies in On, we must have that h is a PC1 function from the
(nfl)- manifold ~K~ to the n-dimensional linear subspace On. Therefore,
we may apply theorem 5.2 to obtain the next corollary.

Corollary 5.4. If z is a continuously differentiable function and íf 0

is a regular value of the function h defined in (5.3), then h-1(0) con-

sists of piecewise smooth loops and paths having 0, 1 or 2 endpoints

each of them lying in I6KI.

Lemma 5.5. The only endpoint of a path in li 1(0) is the point (v,0,~).

Proof. Since a point (p,y,t) in h-1(0) is an endpoint of a path íf and

only if (p,y,t) lies in IdK~ - I{A(T) x Y(T) x{0}~T C I~1}I we must

have t- 0 for any endpoint (p,y,t). However, (5.3) implies y~

tz(p) - 0 so that y lies in the interior of Y(~). Hence,
p E A(~) -{v}, i .e., p~ v, which proves the lemma.

The lemma says that the point (v,0,0) is the only endpoint of a path

ín h-1(0) so that this path is a semí-closed unbounded path whereas all

other paths in ti 1(0), if any, are open and unbounded, according to lem-

ma 5.1. The path in h-1(0) having the point (v,0,0) as endpoint will be

denoted by P. Observe that ~K~ is closed. Consequently, the path P goes

to infinity in at least one of the 2(ni-1)~-1 components of (p,y,t).
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Lemma 5.6. If the point (p,y,t) belongs to ii 1(0) then p~ bdSn.

Proof. Suppose that p lies in bdSn for some (p,y,t) in ti 1(0). Since v
lies in the interior of Sn and A(~) - {v}, there must exists a nonempty
set T in I~1 such that p E A(T). By definition pj - 0 only for some
j E T. Since y E Y(T) we have according to (5.3)

zh(p) - zm(p) - l~t for all h E T
and

zh(p) ~ zm(p) - l~t for all h~ T

so that, for all h E T, zh(p) ~ minkzk(p) C 0. However, pj 3 0 for some
j E I~1 implies zj(p) ~ 0, i.e., zh(p) - minkzk(p) - 0, for all h E T.
Since ph ~ 0 for all h~ T, this implies z(p) - 0 and so y- tz(p) - 0,
which contradicts the fact that T is nonempty and therefore that at
least one yj is equal to one.

From this lemma it follows that no path in h-1(0) can cross bdSn in p.
Therefore since the point v lies inside Sn, the path P in li 1(0) which
originates in the point (v,0,0) must stay in the compact Sn in the com-
ponents of p and in the compact YO in the components of y. Consequently,
along the unbounded semi-closed path P the variable t must go to infini-

~ ~ty whereas (p,y) converges to a limit point (p , y). However, h(p,y,t)
- 0 implies

zj(p) - yj~t c l~t for all j

~
so that if t goes to infinity zj(p ) c 0, j E Im 1 and hence z(p~) - 0.
The path P therefore approaches a limit point (p~, y~) in Sn x YO with
z(p~) - 0 when t goes to infinity, i.e., P leads from the point (v,0,0)
to an equilibrium point.
We now prove that if the point (p,y,t) lies in li 1(0) and p E Sn, then p
lies in the set B defined in section 3.

Theorem 5.7. Let (p,y,t) be a point in h-1(0) with p E Sn, then there is
a T C I~1, IT I c n, such that
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p E B(T) - A(T) n C(T).

Proof. Since (p,y,t) E I]{I , there is a T C I~1, ITI c n, such that

p E A(T) and y E Y(T). Consequently, since y- tz(p),

zj(p) ~ zm(p) - l~t for all j E T
and

zj(P) ~ zm(P) - l~t for all j ~ T

implying that zj(p) - minhzh(p) for all j E T. Hence p E C(T) n A(T).

We remark that we allow T to be empty in which case p 3 v E B(~),
0 t t t(minhzh(p))-1 and y- tz(v) E Y0.

From theorem 5.7 it follows that along the path P in h-1(0) starting in

(v,0,0) a path of prices p in B is traced. The latter path starts in v,

leads to an equilibrium price p~ and is the primal projection of the

path P in P. With the primal and dual projection of (a path in) h-1(0)

we mean the set of points {p E Sn~(p,y,t) E h-1(0)} and

{y E y0~(p,y,t) E h 1(0)} respectively.

Corollary 5.8. The set B is the primal projection of h-1(0) and contains

a path of prices leading from v to an equilibrium point p~. This path is

the primal projection of the path P. Moreover, any path or loop in

li 1(0) corresponds to a path with two endpoints or a loop in B, being

its primal projection.

Notice that we implicitely assume that the point v is not an equili-
brium. For, since v lies in the interior of Sn, the regularity assump-
tion on h implies that z(v) ~ 0. If, however, z(v) ~ 0, then the path P
stíll exists and is equal to the ray {(v,0,t)~t ~ 0} having the point v
as primal projection.
In the case that z(v) ~ 0, along the path P starting in (v,0,0) first yj
is increased from 0 to 1 with j the index for which the excess demand is
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minimal. Simultaneously t is increased from 0 to (zj(v))-1 to keep
yj - tzj(v) equal to zero while for i~ j the component yi is kept equal
to tzi(v). In this way, a(linear) path in A(~) x y(~) x R} is traced
from (v,0,0) to the point (v,z(v)~zj(v), l~zj(v)) in
A({~}) x Y({j}) x R}. Then the path P smoothly continues in
A({j}) x y({j}) x R} keeping yj equal to 1 and t equal to (zj(p))-1, un-
til a point (p,y,t) is reached for which zi(p) becomes equal to zj(p) -

minhzh(p) for some i~ j and so yi - yj - I. Then the path P continues
in A({i,j}) x y({i,j}) x R} keeping yi and yj equal to one and t equal
(zj(p))-1 -(zi(p))-1. In general, the path P in h-1(0) traces in
A(T) x y(T) x R} for various T C I~1 a smooth path of points (p,y,t)
such that yj - 1 for all j E T and so zj(p) ~ minhzh(p), j E T, whereas
t is equal to (minhzh(p))-1. Moreover, yi - zi(p)~minhzh(p) ~ 1 for all
i~ T. When I T~ ~ n, an endpoint in A(T) x Y(T) x R.~ is reached if ei-
ther yh becomes equal to 1 for some h~ T or p lies in A(T`{k}) for some
k E T. In the first case the path P continues in

A(T U{h}) x y(T U{h}) x R} keeping yh equal to 1 whereas in the second
case P continues in A(T`{k}) x y(T`{k}) x R} by decreasing yk away from
1. The latter case can also occur when IT ~ is equal to n. If ~ T ~ - n
the parameter t can go to infinity yielding an equilibrium point. Notice
that if ~T ~- n, then yj --n for the unique index j not in T whereas yi
- 1 for all i ~ j.
The path P in ti 1(0) i s illustrated in figure 10 for n- 2. In thís fi-
gure the path P lies in A(T) x Y(T) x R} for subsequently T-~,
{2}, {1,2}, {1} and {1,3}. When T - {1,2} or {1,3} the vector y on the

Tpath P i s equal to ( 1, 1, -2) and (1, -2, 1)T respectively.
The proof of the existence of the path from v to an equilibrium in the
set B' is very similar to the proof given above. We only need to replace
the function h from ~KI to On by

h'(Pry.t) - y f tz(P) (P.Y.t)E ~K~ .

Then again if z is a continuous differentiable function and 0 a regular
value of h', there exists a piecewise smooth path P' in h'-1(0) starting
in (v,0,0), which approaches an equilibrium point for t going to infini-
ty (under appropriate properness conditions on the boundary of Sn).
Moreover, the set B' is the primal projection of the set h'-1(0) and the
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primal projection of the path P' on Sn is the path in B' which connects
the point v with an equilibrium point.

Figure 10. The primal and dual projection of P, n- 2.

It remains to prove the existence of a path of points from v to
an equilibrium point in Sn as described in section 4. First we define

again the appropriate PDM and then a PC1 mapping whose zero points yield

the path. The primal subdivided n-manifold P of the PDM is completely

~letermined by the n-dlmensiona]. cones A(s), s E S2. More preclsely,

where

P~ {A(s) ~s E 52 and II(s) I~ n-1 }

nA(s) -{p E U ~pi~vi - minhph~vh for all i with si --1 and

pi~vi - maxhph~vh for all i with si - fl}.

Notice that s E S2 and II(s) ~- n-] imply that s is a signvector in R~1
with n-1 zero elements, one element equal to -1 and one element equal to

-1, so that índeed dim A(s) - n.

Clearly, the collection P of faces of P is equal to
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p-{A(s)Is E S2} U A(0)

where A(0) -{v}. The dual subdivided n-manifold D consists of the n-
cell Y(0) defined by

Y(0) ~{y E On~Ejy}j c 1},

where, for a E R, a} - max (O,a). Defining the sets Y(s), s E R, by

Y(s) -{y E Onlyj ~ 0 if sj - fl, yj - 0 if sj - 0, yj C 0 if

sj --1, j~ 1,...,nfl snd E y. --F1}

Each Y(s), s E 52, is an (n-II(s)I-1)-dimensional face of Y(0), whereas
each A( s) , s E S2, is an ( I I( s) ~ tl )-dimensional cone in Un so that, for
all s E Sto, dim A(s) f dim Y(s) - n.
Clearly, the triplet (p,D,d) is a PDM with degree n with the dual ope-
rator d defined by

{j~sj~tl} 3

we have that D- {Y(s) Is E S2o} where S2o - St U{0}.

Ad( s) - Y( s) and }id( s) - A( s) for all s E S2o.

We call this (p,D,d) the PDM with respect to the (2m1-2)-ray algorithm
on Sn. The PDM is pictiired ín figure 11. Recall that the number of one-
dimensional cones A(s) is equal to 2~1-2. T T

(0,-1,1) Y(-1,-1,1) (-1,0,1)

A(1,0,-1) I A(0,1,-1) ~ (1,0,-1)T Y(1,1,-1) (0,1,-1)T
Figure 11. The PDM of the (2ml-Z)-ray algorithm, n~ 2
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Again the collection L-{X x XdIX E p} of n-cells is a subdivided n-
manifold with empty boundary andlLl closed. Furthermore, the collec-
tion K-{Z x R}IZ E L} is a subdivided (n~4~1)-manifold with

dK ~{A(s) x y(s) x{0}I s E Sto}.

With z again being extended to a continuously differentiable function
from Un to R~1 we define the function g: IKI ; Rml by

8(P.y~t) - y- t[P-z(P)) ( P.y.t) E IKI (5.4)

where p.z(P) -[Plzi(P). P2z2(P)....,Pn{.lznf-1(P)]T~ P E Un. Since pTZ(P)

- 0 we obtain that Ej[p.z(p)]j - Ejpjzj(p) ~ 0. Hence, g is a PC1 map-

ping from IKI to On if z is a continuously differentiable function from

Un to R~1. If 0 is also a regular value of g, g 1(0) consists according

to theorem 5.2 of a disjoint union of piecewise smooth loops and paths.

Furthermore, analogously to lemma 5.5, the point (v,0,0) is the only

endpoint of a path in g 1(0) so that this path, denoted G, is a semi-

closed unbounded path whereas all other paths in g 1(0) are unbounded

and open.

Lemma 5.9. For all (p,y,t) in g 1(0) holds that p~ bdSn.

Proof. Suppose that p lies in the boundary of Sn. Then there is an s

in Sto such that p E A(s) and yE Y(s). Since p~ v we must have s~ 0.

Moreover, p E bdSn and p E A(s) imply that pj - 0 for all j with sj --1

and that pj ~ 0 for all j wíth sj - fl. However, this implies zj(p) a 0

for all j since yT( p) z( p) - 0, sign z( p) - s and z j( p) ~ 0 if pj - 0.

Therefore, since g(p,y,t) ~ y-tp.z(p) ~ 0, we also have y a 0, i.e. y

lies in the interior of Y(0) and in no other Y(s), s E S2. This contra-

dicts the fact that s~ 0.

[]

The lemma says that the paths in g 1(0) cannot cross bdSn in p.

Since both Sn and Y(0) are compact we must have that along the path G in
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g 1(0) originating in (v,0,0) the variable t goes to infinity and that
the ath G a roaches a limit oint ~ ~p pp p (p , y) in ~LI. According to (5.4)

~ ~
pjzj(p ) a 0 for j - 1,...,n-~1.

~
This implies that for all j pj - 0 or zj(p~`) - 0. Letting s~ be the sign
vector in n with the smallest number of nonzero elements such that p~

~ ~lies in A(s~), then p- 0 implies that s--1 and therefore
~ j~ j ~tzj(p ) C 0. However, pj 3 0 also implies zj(p )~ 0. Hence, zj(p~) - 0

for all j- 1,...,ntl. Consequently, the path G in g 1(0) starting at
(v,0,0) leads for t going to infinity to an equilibrium point p~ in Sn.
Moreover, as will be shown in the next theorem the set B being the union
of all sets B(s), s E S2, is the primal projection of g 1(0).

Theorem 5.10. Let (p,y,t) be a point in g 1(0) such that p lies in Sn.
There is an s E S2o such that

p E B(s) - A(s) n C(s).

Proof. Since ( p,y,t) E g 1(0) there is a signvector s in Sto such that

p E A( s) and y E Ad( s) - Y( s) .

Hence, pjzj(p) - 0 if sj ~ 0 and

pjzj(p) - yj~t ~ 0 when sj - fl,

pjzj(p) - yj~t ` 0 when sj --1.

From lemma 5.9 we know that p~ bdSn so that pj ~ 0 for all j. There-
fore, sgn pjzj(p) - sgn zj(p), j- 1,...,n-F1, and so p lies in C(s).

and

Corollary 5.11. The set B~ UsBís), where the union is over all s in
S2o, contains a path of poínts in Sn going from v to an equilibrium point
~ 1p. This path is the primal projection of the path G in g(0).
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The homotopy-parameter t is determined from the fact that if p~ v

crt 1 nf 1
t E p z}(P) - E Y} ~ 1jal j ~ jel j

for all points (p,y,t) E g 1(0), so that

t ~ (E~1 Pjzj(P))-1.

When p- v, then (p,y,t) E G for all t, 0 c t t(E~i vjz~(v))-1, and y

- tv.z(v) E Y(0). If t~(E~ivjz~(v))-1, then (v,y,t) E G with

y - v.z(v)~E~ivjz~(v) E Y(so)

0 0where s is equal to sgn z(v). Notice that we assume that s does not

contain any zero. In case z(v) - 0 the path G is the ray

{(v,0,t)~t ~ 0}. The primal and dual projection of the path G are illus-
trated in figure 12. The sequence of signvectors s for which G passes

(1,-1,0) , (1,-1,A(s) X Y(s) x R succesively is (0,0,0)T, (1,-1,1)T , T

-1)T and (1,0,-1)T . When p is equal to v, y goes from the point 0 to b,
while p goes from v to w if y goes from b to c. Notice that the point b
is equal to

b~ v.z(v)~(vlzl(v) f v3z3(v)) E Y(1,-1,1)

and that c~(1,-1,0) . When p goes from w to u, y is equal to c and so
z3(p) ~ 0. Finally, p goes from u to q if y goes from c to d and y~ d
if p goes from q to the equilibrium point p~`.
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Figure 12. The primal and dual projectíon of the path G, n- 2.

Finally we remark that the theory above can be easily generaliz-
ed when we allow v to lie on the boundary of Sn or when we drop the con-
dition that p~ - 0 implies z~(p) ~ 0. In the latter case a path of
points can be shown to exist from v to a point p~ for which z(p~) G 0.
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