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Abstract

A situation in which players can generate certain pay-offs by cooperating
can be described by a coopemtive gnme with transferable utililies. In this paper
we assume that the players who are participating in such a game, are part
of some permission structure. This means that there are players who need
permission from one or more other players before they can act or cooperate
with other players to generate some pay-ofí. It is clear that such a permission
structure limits the possibilities of cooperation. We derive a modified game
that takes account of these limited cooperation possibilities. We then give
axiomatic characterizations of the Shapley value of this modified game.

1 Introduction

I'layers in a finite player set N w}ro are participating in a cooperative game with

LrausCerable utilities - or simply a TU-game - are mostly assumed to be socially

syrnnictric~. '1'hey only differ with respect Lo their abilities to Iet coalitions obtain

certain pay-offs as represented by a characteristicfunetion v: 2N --a R with v((~) - 0,

where R denotes the set of real numbers. In the sequel the collection of all TU-

games represented by their characteristic function is denoted by CN. Many authors

have developed models that introduce social asymmetries between players in such

TU-games. In, e.g., Aumann and Drèze (1974), Owen (1977), and Winter (1989),

the players are assumed to be part of some coalition structure which influences the

possibilities of cooperation and coalition formation. Another social difference that

can be considered is the introduction of limited communication possibilities of the

players. For this we refer to Myerson (1977), Kalai, Postlewaite and Roberts (1978),

Owen (1986), and Borm, Owen and Tijs (1990), where the limited communication

structure is represented by an undirected graph.

In this paper we consider another social feature of players which influences

the possibilities of cooperation in a TU-game. We assume that there are players

wlio have veto power over the actions undertaken by certain other players. Such a

social organisation is represented by a mapping which assigns to every player the

collection of players, whose actions he can veto, i.e., the. players that reyuire his

permission for their actions. A situation in which players can obtain certain pay-offs

by cooperation but in which some players need permission from their superiors before

they can cooperate is described by what we call a game with a permission structure.

These games are introduced in Gilles, Owen and van den Brink (1991). We assume
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tlrat every player needs permission from all oí his superiors. T}ris interpretation of

the permission structure is referred to as the Conjunctive approach'.

[n section 2 we describe games with permission structures. We derive a modi-

ficd TLJ-game frorn such a game with a pcrmission structure in which we take account

uf thc limited possibilitics of cooperation determined by the permission structure.

Furtherrnore we introduce an allocation rule for these games with permission struc-

tures. An allocation rule is a mapping which assigns to every game with a permission

structure a distribution of the pay-offs over the players. The allocation rule that we

consider assigns to every game with permission structure the Shapley value (Shapley

(1953)) oí the modified game. This allocation rule is referred to as the Conjunc-

tivc permission value and is shown to be an extension of the Shapley value to the

collection of games with permission structures.

In section 3 we give an axiomatizationof this Conjunctive permission value. In

this axiomatization an important role is played by the class of monotone TU-games.

A TU-game v is called monotone if for all E C F C N it holds that v(E) G v(F).

'i'he collcction of all monotone 'I'U-garnes is denoted by GNy.

We remark that there can occur `domination cycles' in permission structures.

Such a`domination cycle' is a group of players that can be ordered such that each

player, except the first one, needs permission from the previous player, while the first

player needs permission from the last one. In section 4 we concentrate on the subclass

of permission structures in which these `domination cycles' do not occur.

2 Games with a permission structure

In this paper we assume that the cooperation possibilities of a firrite group of players

are limited because some players might need permission from one or more other

players. Formally such a permission structure is described as follows.

Definition 2.1 Let N 6e a fináte player set. A mapping S: N-~ 2N is a permission

structure on N iJ it is asymmetric on N, i.e., jor every i, j E N it holds that

if j E S(i) then i~ S( j).

The collection oj all permission structures on N is denoted by SN.

'[n Gilles and Owen (1991) it is assumed that every player needs permission from nt teast one

of his direct superiors. This is referred to as the Disjunctiue approach.
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The players j E S(i) are called the successors of i E N in S E SN. (Note that

asymmetry of S implies that i~ S(i) for all i E N.) A permission structure S E SN

can be represented alternatively by the pair (N, RS) where RS is the óinary relation

given by

Rs:-{(i,j)ENxN~jES(i)}.

For each permission structure S E SN we now define the mapping S: N~ 2l`' as

follows:

S(i) :- {j E N ~ (i, j) E tr(RS)},

where tr(RS) indicates the transitive closure of Rst. The players in S(i), i E N, are

called the subordinates of i in S and the players in S-~(i) :- {j E N ~ i E S(j)}

are called the superiors of i in S. Furthermore we define for every E C N, S(E) :-

UiEE S( i) and S(E) :- ~J;EE S(i). Although a player cannot be a successor of himself

he can be a subordinate of himself. If we want to exclude these kind of `domination

cycles' then we must add another condition with respect to the mapping S.

Definition 2.2 Let N be a finite player set. A permission structure S E SN is

acyclic on N if for every i E N it holds that i~ S(i).

The collection of all acyclic permission structures on N is denoted by SÁ .

In the Conjunctive approach with respect to permission structures we assume that a

player needs permission from all his superiors before he can act. This means that a

coalition E C N is formable if and only if all superiors of the players in E are also

part of E, i.e., S-~(E) C E.

Definition 2.3 Let S E SN. The sovereign part of E C N according to S is the

coalitíon given by

a(E) :- E `S(N `E).

The authorizing set of E C N according to S is the coalition given 6y

n(E) :- E u S-'(E).

1The transit~ae closure tr(R) of a binary relation R C N x N is given by: (i, j) E tr(R) if and
only if there exists a sequence {hk}~~k~,,, such that hl - i, (hk,ht}1) E R for all 1 G k G m- 1
and h,,, - j. -
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The sovereign part of E consists of those players in E whose superiors are all part

of I;. '1'his meaus that Q(E) is thc largest subcoalition of E that is formable. The

authorizing set of E consists of E together with all its superiors. Thus o(E) is the

smallest formable coalition t}iat contains E. Using the notion of sovereign part we

can transform the game v E 9N so that we take account of the permission structure

S in the following way.

Definition 2.4 Let v E~N and S E SN. The Conjunctive restriction of v on S

is the game 1Z5(v) E G~ that is given 6y

TZs(v)(E) :- v(~(E)) for all E C N.

For properties of the inapping ~ZS: GN -~ ~N we refer to Gilles, Owen and van den

Brink (1991).
In the sequel a triple (N, v, S) with v E GN and S E S`~ will be indi-

cated as a game witla a permission structure. An allocation rule for games with

a permission structure is a mapping that assigns to every game with a permis-

sion structure (N, v, S) a distribution of the pay-offs that are attainable in the re-

stricted game RS(v). In the following sections we concentrate on the allocation rule

y~: N x GN x SN -~ R that is given by

cp(i, v, S) :- Sh;(7ZS(v)) for all i E N, v E ~N and S E SN,

where for every i E N, Sh;(v) is the 5hapley value of player i in game v E GN, i.e,

Sh;(v) - ~ (~N - ~E)!(~E - 1)! (v(E) - v(E ~ {i})).
r.:3~ (~N)~

The allocation rule y~ is referred to as the Conjunctive permission value. If we take

the trivial mapping S0 E SN which is given by S0(i) - 0 for all i E N, then it

is easy to see tliat the restriction 1ZSe(v) is equal to the original game v. Thus the

Conjunctive permission value y~ is a generalizationof the Shapley value for TU-games.

For computing the Conjunctive permission value of a game with permission structure

we derive the following formula.

Proposition 2.5 Let v E~N, S E SN and for every i E N

I'; :- {E c N ~ E n[S(i) u {i}] ~ 0}.
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Then

S~(~~ v, S) - ~ ~~(E)
EEr~ ~~(E)'

where the divídends 0„(E) are given by (see Harsanyi (1959JJ

Ov(E) .- ~ (- 1)~E-~FV(F).
FCE

PROOF

Let v E~`v and S E SN. In Gilles, Owen and van den Brink (1991) it is proved that

the restriction 7Zs(v) can be written as

~s(v) - ~ ~ 0~(E) ~ nF,
FCN ECN

F-a(F) a(E)-F

where uF is the unanimity game of F C N, i.e.,

- f I ifr~F
uF(l;)

Sl 0 else
From the additivity property of the Shapley value it then follows that

Sh;(~s(z')) - ~ ~
w(E)

F3~ ECN
~~~

.

F-a(F) a(E)-F

Since

(i) F- a(F) if and only if there is an E C N such that a(F,) - F, and

(ii) i E a(E) if and only if E E I';

it holds that

Dv(E)4~(i, v, S) - Sh;(7Zs(v)) - E~ ~~(E).

Q.E.D.

Example 2.6 Consider the permission structure S: N-~ 2N on N- { 1, ..., 5}

which is given by:
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S(1) -{2,3,4}, S(2) -{4,5}, S(3) - S(4) - S(5) - 0.

This acyclic permission structure can be represented by the following directed graph

Cousider the coalition {1,3,4}. The sovereign part and authorizing seL of this coali-

tion respectively are given by a({1,3,4}) -{1,3} and a({1,3,4}) -{1,2,3,4}.

Let v E~N be the additive game given by: v(E) -~E for all E C N.

It is easy to see that the Shapley value of this game is given by Sh;(v) - 1 for all

iEN.

The restriction of v on S is the game 7Zs(v) given by

~s(v)(E) - v(~(~)) - ~~(E).

So, for example, Rs(v)({1,3,4}) - v({1,3}) - 2.

The Conjunctive perrnission value of the game with permission structure (N, v, S) is

givcn by

~P(', v, S) - 6(16, 7, 3, 2, 2).

Comparing c,~ with the Shapley value of game v we see that a substantial shift in the

distribution of the pay-offs occurs. Especially the `topman', player 1, gets a lot more

because of his strong position in the permission structure S.

We conclude this section by introducing some concepts that will be used in the

axiomatizations that are discrrssed in the following sections.

Definition 2.7 The allocation rule f: N x CN x SN --~ R is efficient if for every

v E~N and every S E SN it holds that

~ f(i,v,S)-v(N).
iEN
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'I'hc allr~ralin,r rulr J: N X C~N X SN ~ R is additive if for evcry i E N, 7J,w E GN

and S E SN it holds that

f(i, v, S) f f (i, w, S) - f(i, v f w, S).

Finally we indicate a special class of players that play an important role in all ax-

iomatizations that we give in the following sections.

Definition 2.8 Let v E~N. A player j E N is necessary in v if for every E C

N~{ j} it holds that v( E) - 0.

"I'he next result shows that a necessary player in a monotone garne is assigned the

highest pay-ofl' in the Shapley value of that monotone game.

Proposition 2.9 Let v E~,y and let j E N be a necessary player in v. Then it

holds that

Shj(v) ~ Sh;(v) for all i E N.

PROOF

I.et j E N be a necessary player in the monotone game v. Then for every i E N the

following properties hold:

(i) Let E~{i, j}. Since v(E `{j}) - 0 by j being a necessary player in v and

v(E` {i}) 7 v(~) - 0 by monotonicity of v it holds that v(E) -v(E` {j}) -

v(E) ) v(E) - v(E ` {i}).

(ii) If i E E and j ~ E then v(E) - v(E `{i}) - 0.

(iii) If i ~ E and j E E then v(E) - v(E` {j}) - v(E) 1 0.

Using the fact that y(E) :- l~N-;íeEl~~~E-'~~ ) 0 for all E C N we can deduce that:
~~N).

Shj(v) - ~ g(E)(v(E) - v(E ~ {j})) f ~ g(E)(v(E) - v(E ~ {j}))
E~{i,j} Eï~~

E3i

1 ~ g(E)(v(E)-v(E`{j}))
E~{i,j}

1 ~ g(E)(v(E) - v(E ~ {i}))
E~{i,;}

~ g(E)(v(E) - v(E ~ {i})) -I- ~ g(E)(v(E) - v(E ~ {i})) - Sh;(v).
E~{i,j} E3~

E~j
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Q.E.D.

3 An axiomatization of the Conjunctive permis-

sion value

In this section we give a set of axioms that uniquely determine the Conjunctive

permission value for games with permission structures. First we introduce a special

type of player in games with a permission structure.

Definition 3.1 l,et v E r~N and S E SN. Player j E N is weakly inessential

in (N,v,S) if every h E S(j) U{j} is a dummy player in gaTne v, i.c., for every

Ic E S( j) U{ j} it holds that

v(E) - v(E `{h}) for all E C N.

A player thus is weakly inessential if he himself as well as all his subordinates have

no individual abilities because they are dummy players in the original game v. The

following lemma will be used in Theorem 3.3 as well as in Theorem 4.4.

Lemma 3.2 Let S E SN and let a(F,) be the sovereign part of E C N according to
S'. 'lhen

a(E) `[S(j) U{j}[ - o-(E` {j}) for all j E N.

PROOF

Let S E SN and j E N. Then

a(~;) ~ [S(j) U {j}] - [F, ~ S(N ~ E)] ~ [S'(j) U {j}]

- [E ` {j}] `[S(N ` E) U S(j)]

- [E~{j}]~S(N~[E~{j}])-Q(E~{j})

Q.E.D.

Theorem 3.3 The allocation rule f: N x G'~ x SN -~ R is equal to the Conjunctive

permission value cp if and only if it is ef,fccient, additive, and satisfies the following

three conditions:
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1. If v E~N, S E SN arcd j E N is a weakly inessential player in (N, v, S), then

(~)

(~~)

f(j,v,S)-0;

for every player i E N it holds that

f(z~v,S) - Ï(Z,v,S-i)~

eular.re S-~ E S~ is givcn Gy: S-~(i) :- S(i) ~{j} for all i E N

2. If S E SN and player j E N is such that S(j) ~ ~, then for every v E L~Ny it

holds that

f(j, v, S) ? max f(i, v, S)
iES(J)

.i. If v E G,f and j E N is a necessary player in v, then for every S E SN it holds

that

f( j, v, S) ? f(i, v, S) for all i E N.

PROOF

We first prove that ~p is efficient, additive and satisfies the three conditions. Let S

be a given permission structure.

~ Lct v E GN. It is easy to see that N - Q(N). Thus 1Z5(v)(N) - v(a(N)) -

v(N). From the efiiciency property of the Shapley value for TU-games it then

[ollows that ~;EN y~(i, v, S) -~,EN Sh;(RS(v)) - v(N). Thus ~p is efficient.

~ Let v, w E t~N. Then for all E C N it holds that

~s(v)(E) ~ ~s(w)(E) - v(~(E)) ~ w( ~(E)) -

- (v -~ w)(o(E)) - ~Zs(v ~ w)(E).

Additivity of ~ then follows from additivity of the Shapley value for TU-games.
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~ I,et v E ~N and let j E N be a weakly inessential player in (N, v, S). With

Lemma 3.2 and the fact that every h E S(j) U{j} is a dummy player in game

v it then follows that

~s(v)(E) - v(~(E)) - v(~(E) ~ ~S(j) U {j}~)

- v(v(E~ {j})) - Rs(v)(E~ {j}) for all E C N.

This implies that

(i) 4~(j, v, S) - Sh;(Rs(v)) - 0~

(ii) Rs(v)(E) - Rs-~(v)(E) for all E C N, and thus cp(i, v, S) - cp(i, v, S-j)

for all i E N.

Thus c,~ satisfies condition 1.

~ Let v E~,~, S E ~SN, j E N and i E S(j). Then we can state that

(i) Let F, ~ {i, j}. Since Q(E `{j}) C o(E `{i}) and v is monotone it

follows that

7Zs(v)(E) - 1Zs(v)(E ~ {j}) - v(a(E)) - v(a(E ~ {j}))

~ v(Q(E) - v(Q(E ~ {i}))

- ~s(v)(E) - ~s(v)(E ` {i}),

(ii) If i E E and j ~ E, then Rs(v)(E) - Rs(v)(E ` {i}) - 0.

(iii) If i ~ E and j E E then 1Zs(v)(E) - 1Zs(v)(E `{j}) ~ 0 by 1Zs(v)

being monotone.

With this and taking w- Rs(v) E ~Ny it follows that

Shj(w) - ~ g(E)(w(E) - w(E ~ {j})) f ~ g(E)(w(E) - w(E ~ {j}))
E~{i,j} Ei~

E3j

~ ~ y(E)(w(E) - w(E ~ {i})) } ~ g(E)(w(E) - w(E ~ {i}))
E~{i,j} E3~

E~j

- Sh;(w).
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Thus c,~ satisfies condition 2.

~ l.et v E ~M and let j E N be a necessary player in v. Because o(E) C E it

holds that 7ZS(v)(E) - v(v(E)) - 0 for all E C N`{j}. Thus j is a necessary

player in RS(v). Since ~ZS(v) E GNy as shown in Gilles, Owen and van den

Brink (1991) it follows from Proposition 2.9 that cp(j,v,S) - Sh~(1ZS(v)) 1

Sh;(RS(v)) - cp(i, v, S) for all i E N.

Now suppose that f: N x CN x SN --~ R is efficient, additive and satisfies the three

conditions stated in the theorem.

Consider the game wT - cTUT where uT is the unanimity game of T C N and cT ~ 0

is some non-negative constant, i.e.,

cT ifE~T
wT(E) -

0 else

and let S be a permission structure on N. Clearly wT is a monotone game. Then

~ ~ cT ifE~~(T)
~s(u'T)(E) 0 else

Thus

- I `T if i E a(T)
~P(2, wT, S) SI ~~IT10 else

We now show that f must be equal to cp. Consider the permission structure S': N-~

2N that is given by

S'(i) :- S(i) (1 ~(T) for all i E N.

Clearly S'(i) C S(i) for all i E N. Suppose that j E S(i) ~ S'(i) for some i E N.

Thcn j~ ~r('I')- This implies that

(i) j~ T and thus j is a dummy player in the game wT;

(ii) S(j) f1 T- 0. This means that for every h E S(j) it holds that h~ T and

thus h is a dummy player in wT.

Eac1i player j E N for which there exists an i E N such that j E S(i) `S'(i) thus is

weakly inessential in (N, wT, S). According to condition 1(ii) it then holds that
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f(1, ~T, S`) - f( i, wT, S) for all i E N. (1)

Next we determine f(i, wT, S"). Therefore we distinguish exactly three cases with

respect to playcr j E N.

1. Suppose that j E T.

Then j is necessary in the monotone game wT and thus, according to condition

3, f( j, wT, S') ? f(i, wT, S' ) for all i E N. Thus there exists a constant c~ 0

such that

f(j,wT,S')-c forall j ET

and (2)

f(i, wT, S') C c for all i E N`T

2. Suppose that j E a(T) `T.

Then S"(j) ~ 0. By definition of S' it holds that max;ES.(j) f(i,v,S`) -

max.ES,(j) f( i, v, S'). Because wT is monotone it follows with condition 2 that

f(?, wT, S~ ) J max f( i, wT, S` ).
~ES~(j)

1~ rom (2) and the fact that S`(j ) fl T~ 0 it then follows that f( j, uT, S') - c

for all j E a(T) `T.

3. Suppose that j E N`a(T).

Then j is a dummy player in wT and S'(j) -~. Thus j is weakly inessential

iu ( N, 2o-i~, S` ) and t,hus it follows fro~n condition 1(i) thaL f( j, wT, S') - 0 for

all j E N `a(7').

With (L) it then follows that

f(Z,~llT, S) - f(Z,wT,S~) - ~

I;(ficicncy implics t,hat c- ~n~T) and thus f(i, wT, ,S) - ip(i, wl., S) for all i E N.

Now let v E GN be an arbitrary game. As is known, v can be expressed as a weighted

sum of unanimity games:

c for all i E c~(T)

0 else
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v - ~ cTUT.
TCN

(3)

If c-r~ ~ 0 thcn cl~u-1 is monotou~r aud as we pruvcd abovc it holds that f(i, cf~uT, S) -

y~(i, cruT, S) for all i E N.

If cT G 0 then eTUT is not monotone. In that case, by defining cT :- -cT ) O, we

have that cTUT - vo - c~uT, where vo is the null-game, i.e., vo(E) - 0 for all E C N.

Both vo and c~uT are monotone games and thus as proved above

f(i, vo, S) - c,~(i, vo, S) - 0 and f(i, cruT, S) - cp(i, cruT, S) for all i E N.

From additivity of f, 1Z5, and Lhe Shapley value it then follows that for every i E N

f(i, cTUT, S) - f(i, vo, S) - f(i, cr71T, S) --c~(i, cTUT, S)

- - .SÍti(~S(CTUT)) - SÍti(~S(CTUT)) - ~(2,CTUT,s).

VVith ( 3) and additivity of f and the Shapley value it then follows that

f(2, 77, S) - ~ f(2, CT7L7~, S) -~(~(2, cTU7', S) -(P(2, v, S) for all 2 E N.
TCN TCN

Q.E.D.

Example 3A Cousider the gamc with permission structure (N, v, S), where N-

{ 1, ..., 9}, v- u{s,~} being the monotone unanimity game of {fi, 7} and S: N-. 2N

is given by:

S(1) - {2,3,4}, S(2) - {5}, S(3) - {6,7}, S(4) - {7},

S(5) -{8,9}, S(6) - S(7) - 0, S(8) -{2}, S(9) - 0.
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lt is casy to see that

t v, S) s
~( ' - 0 else

Let f: N x GN x SN --~ R be efficient, additive and satisfy the three conditions stated

in Theorem 3.3.

Every h E S(i) U {i}, i E {2,5,8,9} is a dummy player in the game v and thus every

i E {2, 5, 8, 9} is weakly inessential in (N, v, S). Therefore, according to condition

1, f(i, v, S) - 0 for all i E{2, 5, 8, 9} and the relations (1, 2), (2, 5), (5, 8), (5, 9)

and (8, 2) can be deleted without influencing the distribution oí the pay-offs. Thus

f(i, v, S) - f(i, v, S') for all i E~y~ where S' is represented by

Players 6 and 7 are necessary in the game v. From condition 3 it then follows that

there is a constant c) 0 such that

f(i, v, S') - c for i E{6, 7}

and

f(i,v,S') C c for i E {1,3,4}.

}.3y condition 2 it holds that f(i,v,S`) ~ c for i E {3,4}. From conditions 2 and 3 it

thus follows that f(i, v, S') - c, for i E {3, 4}.

I3y the sa~ue conditions it then holds that f(1,v,S') - c.

With condition 1(ii) and efficiency it then follows that

1 for all i E{ 1, 3, 4, 6, 7}
f(i, v, S) - f(i, v, S') -

0 else

~ for all i E{1,3,4,6,7} - a({6,7})

- c,~(i, v, S).
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4 Games with acyclic permission structures

Itr this section we focus on games with acyclic permission structures. The conditions

stated in Theorem 3.3 restricted to the class SÁ axiomatize the Conjunctive permis-

sion value on SÁ . We will see that we still carr axiomatize the Conj unctive permission

value for the class of acyclic permission structures by weakening the condition with

respect to inessential players.

Definition 4.1 Let v E GN and S E SN. Playerj E N is strongly inessential in

(N,v,S) if j is a dummy player in the game v and S(j) - 0.

Note that in determiuing whether a player is weakly inessential in a game with per-

mission structure we have to look at the game and the permission structure simulta-

ncously. In determining whcther a player is strongly inessential we can look at the

game and the permission structure separately. Also we remark that if a player is

strongly inessential then he also is weakly inessential.

Theorem 4.2 The allocation rule f: N x GN x SÁ ~ R is equal to the Conjunctive

permission value y~ restricted to the class N x GN x SA if and only if it is efficíent,

addilive and satisfies the following three conditions

1. If v E~N, S E SÁ and j E N is a strongly inessential player in (N, v, S),

then

(~) f(~,v,s) - o:
(ii) for every player i E N it holds that

f(z, v, S) - f(z, ~ S-i ).

2. IJ S E Sq and player j E N is such that S(j) ~~, then for every v E ráNy it
holds that

f(~, v, S) ~ max f(i, v, .S)
sES(j)

,?. If r E G~t and j E N ís a nccr,ssary playcr in v, then jor cvery S E SA it holds

thut

f( j, v, S) ~ f( i, v, S) for all i E N'.
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PROOF

That ~p is efficient, additive and satisfies conditions 2 and 3 follows directly from

Theorern 3.3.

Lct v E GN, S E SÁ and let j E N be a strongly inessential player in (N, v, S).

Because S( j)- ~ it holds that a(E `{ j})- Q(E) `{ j} for all E C N. But then

7Zs(v)(E) - v(a(E)) - v(a(E)~{j}) - v(a(E~{j}) - R.s(v)(E~{j}) forall E C N.

'I'his implies that

(i) ~p(j,v,S) - Sh;(1Zs(v)) - 0,

(ii) 1Zs(v)(E) - RS-~ (v)( E) for all E C N, and thus ~p(i, v, S) - yo(i, v, S-~) for

a11iEN.

Thus c,~ satisfies condition I.

Now suppose that f: N X~N X SÁ -ti R is effiicient, additive and satisfies the thcee

conditions stated in the theorem.

Like in the proof of Theorem 3.3 consider the games wT - c7.nr, T C N. Again

consider the permission structure S': N-~ 2N which is given by

S'(i) :- S(i) fl ~(T) for all i E N.

I~'irst we show that f(i, wT, S') - f(i, wr, S) for all i E N.

We clairn that if S(N) `a(T) ~ 0 then S(N) `rY(T) contains at least one player

who is strongly inessential in (N,rvT,S). Suppose to the contrary that S(N) `a(T)

does not contain a strongly inessential player. From the fact that each player in

S(N) `a(T) is a dummy player in the game wT and by assumption is not strongly

incsscntial, it follows that S(j) ~ 0 for all j E S(N) `a(T). Furthermore j~~(T)

implies that S(j) fl a(T) - 0. This means that for every j E.S(N) `~(T) there is an

h E S(N) `a(T) such that h E S( j). Thus there exists an infinite sequence of players

(hk)kEN such that hr E S(N)`a(T) and hktr E S(hk)`a(T) for all k E N. Acyclicity

of S implies that all h,k's in this sequence are distinct. But then S(N) `a(T) must

consist of an infinite number of players which contradicts the finiteness of N. Thus

S(N) `a(T) contains at least one strongly inessential player.

Let SI( N, wT, S) denote the collection of all strongly inessential players in ( N, wT, S).

Now we recursively define the following sequence of permission structures Sk: N--~

2N,kEN
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S'(z) :- S( )
for all i E N

Sk(2) :- S(i) `Sl(N,w7',Sk-1)

From condition 1(ii) it follows that for every k E N and every i E N there is some

constant c; E R such that f(i, wT, .Sk) - c;. From the discussion above and finiteness

of N it follows that there is some M G oo such that Sk(N) `a!(T) - ~ for every

k~ M. Furthermore, if i E a(T) then i ~ SI(N, wT, Sk) because Sk(i) ~~ for every

i E a(T) and every k E N. Therefore Sk - S' for all k 1 M and thus

f(i, wT, S) - f( i, wr, S`) for all i E N. (4)

Similarly as in the proof of Theorem 3.3 it follows from conditions 2 and 3 that there

is some constant c~ 0 such that f ( i, wT, S') - c for all i E a(T).

If i E N`a(T) then i is strongly inessenti~,l in (N,wT,S') and thus by condition 1

(i) f(i, wT, S') - 0 for all i E N~ a(T).
With (4) and efficiency it then follows that

- r `T for all i E cY(T)
f(z, wT, S) - f(z , wT, S` ) Sl ~Q(T)

0 else.

Ilcnc~~, f( i, i~r~', .4) - y~(i, ~u-~~, S) for all i E N.

If v E G`v then we can prove that f(i, v, S) - y~(i, v, S) for all i E N using additivity

in the same way as in the proof of Theorem 3.3.

Q.E.D.

Example 4.3 Consider the game with acyclic permission structure (N, v, S) where

N- { 1, ..., 9}, v- u{6,7} and S: N-~ 2N is given by

S(1) - {2,3,4}, S(2) - {5,8}, S(3) - {6,7}, S(4) - {7},

S(5) -{8,9}, s(s) - s(7) - s(8) - s(9) - 0.

t, ,



Is

This is the same permission structure as in Exarnple 3.4, except that the dominance

relation between players 2 and 8 is in the opposite direction. Suppose that the

allocation rule J: N x CJN x S,~ -~ R is e(rcient, additive and satisfies the three

conditions stated in Theorem 4.2. Players 8 and 9 are strongly inessential in (N, v, S).

Deleting the relations with them results in the following permission structure S2

In the new garne with permission structure (N, v, SZ), besides players 8 and 9, player

5 also ís strongly inessential and deleting the relations with player 5 results in the

permission structure 53. In (N, v, S3) player 2 also is inessential. If the relations

with player 2 also are deleted then no player has a strongly inessential player as a

successor anymore. The resulting permissíon structure S' is

. 5

This is the same S' as in F,xample 3.4 and the players 2, 5, 8 and 9 all are strongly

inessential in (N, v, S`). Condition 1(i) now implies that f(i, v, S`) - 0 for all

i E {2,5,8,9}.
Similarly as in Example 3.4 it follows that there is some constant c E R such that

f(i, v, S') - c for all i E{ 1, 3, 4, 6, 7}.

From condition I(ii) it then follows that

f(i, v, S) - f( í, v, S~) - f ( i, v, S3) - f(i, v, S') for all i E N.

Efficiency then implies that
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{ ' '- for all i E{1,3,4,6,7} - a({6,7})
J(2i vi S) - f(2v vi ~Sw)

- 5

0 else

- ~P(r, v~ S)~

In the following theorem we axiomatize the Conjunctive permission value for games

with acyclic permission structures by replacing the condition with respect to inessen-

tial players by some boundary condition.

Theorem 4.4 The allocation rule f: N x~N x SÁ ~ R is equal to the Conjunctive

perrnission value ~p reslricted to the class N x~N x Sq if and only if it is e~cient,

cedditive and satisfies the followirzg three conditions for every v E~,Ny and S E SA :

1. For every player i E N it holds that

0 C f(i, v, S) C C(S(i) U{i}, v),

where for every E C N, C(E, v) :- m N(v(F) - v(F `E)).

2. For every player j E N such that S(j) ~ 0 it holds that

J(,~ivi`S),;E
(
)flZivis)

~3. If j E N is a necessary player in v then

f(j, v, S) ~ f( i, v, S) for all i E N.

PROOF

'I'hat y~ is efHcient, additive and satisfies conditions 2 and 3 follows directly from

Theorem 3.3.

Let v E~h and S E SA . Since Rs(v) E~,~ it holds that cp(i, v, S) - Sh;(7Zs(v)) 1 0.

From the definition of the Shapley value it follows that Sh;(v) C C({i},v) for all

i E N. But. then it, follows from Proposition 3.2 that

~(i,v,S) - .Sh;(1Zs(v)) C C({ }, Rs(~'))

- ~3X (~s(ti')(E) - ~s(v)(E ` {i}))
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- E3X (v(a(E)) - v(o(E` {i}))

- Ë~x (v(Q(E)) - v(a(E) ~ (S(i) U {i}~)

C m~x (v(E) - v(E ~[S(ti) U {i}])) - C(S(i) U {i}, v) for all i E N.

max (v(E) - v(E ~ S(i) U {i}))
E Eo(E)

Thus cp satisfies condition 1.

Now suppose that f: N x CN x SÁ -~ R is effiicient, additive and satisfies the three

conditions stated in the theorc~m.

Again consider the monotone game wr - cTCIT, T C N, cT ) 0, and let S be an

acyclic pcrnrission structure on N.

Similarly as in the previous proves it follows from conditions 2 and 3 that there is

some constant c~ 0 such that f(i, wT, S) - c for all i E a(T).

If i E N~a(T) then [S(i)U{i}]f1T -[~1. This implies that wT(E)-wT(E~[S(i)U{i}]) -

0 for all E C N and thus C,(S(i) U{i},wT) - 0. With condition 1 it then follows

that f( i, wT, S) - 0 for all i E N`a(T).

With efficiency it follows that

f(2, 7UT, s) - 1 ~a(T )Ill 0 else

Hence, f(i., wT, S) - cp(i, wT, S) for all i E N.

If v E GN then we can prove that f( i, v, S) - y~(i, v, S) for all i E N using additivity

in the sarne way as in the proof of Thcorem 3.3.

Q.E.D.

Example 4.5 Consider the same game with permission structure as in F.xample 4.3.

rlpplication of condition 1 directly yields that

f(i, v, S) - 0 for all i E {2, 5, 8, 9}

`r for all i E c~(T)

Conditions 2 and '3 then Icad to
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f( i, v, 5') - c, for i E{ 1, 3, 4, 6, 7}

With efficiency it then follows that

( r
.f(~~v,S) - Jll s0

for all i E{ 1, 3, 4, 6, 7} - c~({6, 7})

else

- ~p(i, v, .S).
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