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ABSTRACT

This tutorial gives a survey of strategic issues in the statisti-
cal design and analysis of experiments with deterministic and random simu-
lation models. These issues concern what-if analysis, optimization, and so
on. The analysis uses regression (meta)models and Least Squares. The de-

sign uses classical experimental designs such as 2k-p factorials, which
are efficient and effective. If there are very many inputs, then special
techniques such as group screening and sequential bifurcation are useful.
Applications are discussed.

INTRODUCTION

Simulation is a mathematical technique that is applied in all
scientific disciplines that use mathematical modeling, ranging from socio-
logy to astronomy; also see Karplus [1]. It is a very popular technique
because of its flexibility, simplicity, and realism. By definition, simu-
lation involves experimentation, namely with the model of a real system.
Consequently it requires on appropriate design and analysis. For real
systems mathematical statistics has been applied since the 193o's: Sir
Ronald Fisher focussed on agricultural experiments in the 193o's; George
Box concentrated on chemical experimentation, since the 1950's; see [2].
Tom Naylor organized a conference on the design of simulation experiments
back in 1968; see [3]. In 19~4~~5 my first book [4] covered both the 'tac-
tical' and 'strategic' issues of experiments with random and deterministic
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simulation models. The term tactical was introduced into simulation by
Conway C5]; it refers to issues such as runlength and variance reduction,
which arise only in random simulations such as queuing simulations. Stra-
tegic questions are: which combinations of input variables should be simu-
lated, and how can the resulting output be analyzed? Obviously strategic
issues arise in both random and deterministic simulations. Mathematical
statatistics can be applied to solve these questions, also in determinis-
tic simulation; see the recent publications [6]. C7J, and [8]. This con-
tribution focusses on these strategic issues in simulation experiments.

Strategic issues concern problems that are also addressed under
names like model validation, what-if analysis, goal seeking, and optimiza-
tion; see table 1, reproduced from my recent book [6, p. 136]. We shall
return to this table.

REGRESSION METAMODELS

Before the systems analyst starts experimenting with the simula-
tion model, he (or she) has accumulated rior knowledge about the system
to be simulated: he may have observed the real system, tried different
models, debugged the final simulation model, and so on. This tentative
knowledge isformalized in a regression or Analysis of Variance (ANOVA)
model. ANOVA models are elementary in the statistical theory of experimen-
tal design: Sums of Squares (SS's) are compared through the F test to
detect significant main effects and interactions; see below. The simplest
ANOVA models can be easily translated into regression models; see [6, pp.
263-293]. Because regression analysis is more familiar than ANOVA is, we
shall use regression terminology henceforth.
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Table 1: Terminology

Computer Simulation Regression
program model

Output

Input

model
User
view

Response Dependent Result
variable y

Parameter Independent Environment
variable x

Variable

Enumeration Continuous Validation
Risk Analysis

Function Discrete Controllable
Scenario Binary Optimization

Goal output

(control)
Satisfy

(what-if)
Behavioral re-
lationship

So prior knowledge is formalized in a tentative regression model. In other
words, this model is tested later on to check its validity as we shall
see. The regression model specifies which in uts seem important, which
interactions among these inputs seem important, and which scaling seems
appropriate. We shall discuss these items next.

Table 1 showed that 'inputs' are not only parameters and variables
but may also be 'behavioral relationships'; that is, a module of the símu-
latíon model may be replaced by a different module. In the regression
model such a qualitative change is represented by one or more binary (0,1)
variables. Note that 'inputs' are called 'factors' in experimental design
terminology. 'Interaction' means that the effect of a factor depends on
the values (or 'levels') of another factor:
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where y is the simulation response; ~0 is the overall or grand mean; p. is
J

the main or first-order effect of factor j(j - 1,..., k); Sjg is the two-

factor interaction between the factors j and g(g - 1,..., k; g~ j); pjj

is the quadratic effect of factor j; pjgh is the three-factor interaction

among the factors j, g, and h(h - 1,..., k; h~ g~ j); and so on; e
denotes 'fitting 'errors' or noise. Under certain strict mathematical
condítions the 'response curve' in Eq. (1) is a Taylor series expansion of
the simulation model y(xl,...,xk). Unfortunately these conditions do not

hold in simulation. Therefore we propose to start with an initial model
that excludes interactions among three or more factors: such high-order
interactions are popular in ANOVA but they are hard to interpret. The
purpose of the regression model is to guide the design of the simulation
experiment and to interpret the resulting simulation data; a regression
model without high-order interactions suffices, as we observed repeatedly
in practice.

The regression variables x in Eq. (1) may be transformations of
the original simulation parameters and variables; for example, xl -

log(zl) where zl denotes the original simulation input. Scaling is also

important: if the lowest value of zl corresponds with xl --1 and its

highest value corresponds with xl - tl, then gl measures the relative

importance of factor 1 when that factor ranges over the experimental area.
In optimization we explore the response curve only locally if we use
Response Surface Methodology (RSM). Then the local regression model is a
first-order model:

Y- ë0 t E~j zj t e, (2)
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where the importance of factor j at zj, the midpoint of the local experi-
ment, is measured by ,yj zj; obviously zj - ï~-1 zi.~n - (L.tH.)~2 where L.J J J J
5 zij s Hj with local experimental area [L1, H1] X... X[Lk' Hk~' zij
denotes the value of factor j in simulation run or observation i. See [9]
and [2].

In any experiment the analyst uses a model such as Eq. (1), expli-
citly or implicitly. For example, if he changes one factor at a time, then
(implicitly) he assumes all interactions (~jg, gjgh,...) to be zero. Of
course it is better to make the regression model explicit and to find a
design that fits that model, as we shall see next. But first note that we
call the regression model a metamodel because it models the input~output
behavior of the underlying simulation model.

EXPERIMENTAL DESIGN

Based on a tentative regression (meta)model we select an experi-
mental design. The design matrix D-(dij) specifies the n combinations of

the k factors that are to be simulated. (In multi-stage experimentation
such as RSM that set of n combinations is followed by a next set.) Classi-
cal statistical theory gives designs that are 'efficient' and 'effective'.
Efficiency means that the number of combinations or simulation runs is
'small'. Suppose there are Q effects in the regression model. The number
of runs should satisfy the condition n 2 Q; for example, we need k t 1
runs if there are no interactions at all. So we may do one base run (say)
x'~ -(-1, -1,..., -1); and then we change one factor at a time: xi -(fl,
-1,.. , -1), x2 - (-1, tl, -1,.. , -1), . , xk - (-1,.. , -1, tl); see

table 2 for k- 3. However, to estimate the effects p' -(RC, A1,.. , Sk)
we fit a curve to the simulation data (X, y) where X-(1, D) in the
first-order model; 1 denotes a vector of n ones. The classical fitting
criterion is Least Squares. This criterion yields the estímator

P - (X' X)-1 X' Y. (3)



Now consider the classical 23-1 design of Table 2. The corresponding X is
orthogonal, so (3) reduces to the scalar expression

P~, - Fi-1 xi~, Yi~n (J~ - O,l,...,k).

Table 2. Two designs for three factors.

One at a time 23-1 Design

Run d d d d d d

1 z 3 1 2 3

1 - - - - - t

2 t - - t - -

3 - t - - t -
4 - - t t t .

(4)

How can we choose between the two designs of table 2? Classical theory
assumes that the fitting errors e are white noise: e is normally, and

independently distributed with zero mean and constant variance (say) d2.
Then (3) yields the variance-covariance matrix

cov(~) - (X' X)-1 02 . (5)

An orthogonal matrix X is optimal: it minimizes var (g.), the
J

elements on the main diagonal of Eq. (5); see [6, p.335]. There are

straightforward procedures for deriving design matrices, if n- 2k-p with
(p-0,1,...); for other n values results are tabulated; see [2] and [6].

So the classical designs are efficient under the white noise as-
sumption (recent research uses alternative assumptions; see Sachs et al.
[~]). Moreover, these designs are effective: they permit the estimation of
interactions. If we allow for two-factor interactions, then the number of



effects becomes Q- 1 t k. k(k-1)~2. If k is small, we may simulate n z Q

combinations; for example, if k- 5 then a 25-1 design is suitable. (If k
is large, then we may hope that some factors will turn out to give nonsig-
nificant main effects; we may assume that factors without main effects
have no two-factor interactions either; there are designs that yield un-
biased estimators for main effects with n- 2 k( 1 t k t k(k-1)~2; see
[6, pp. 303 - 309], [9].) If the factors are quantitative, then a second-
order regression model has k quadratic effects too. Then n must increase,
and more than two levels per factor must be simulated: RSM designs; see
[2] and [6].

SCREENING

For didactic reasons we discuss 'screening' designs after classi-
cal experimental designs. In practice the simulation model has a great
many factors that may be important; of course the analyst assumes that
only a few factors are really important: parsimony. So in the beginning of
a simulation study it is necessary to search for the few really important
factors among the many conceivably important factors: screening.

Classical textbooks do not discuss screening situations, because
in real-life experiments it is impossible to control (say) a hundred fac-
tors. In simulation, however, we perfectly control all inputs and we in-
deed use models with many inputs. One approach is group screening, intro-
duced in the early 196o's by Watson, Jacoby and Harrison, Li, and Patel.
This technique aggregates the many individual factors into a few group
factors. Some simulation applications can be found in [6, p.32~]. Recently
Bettonvil [10] further developed group screening into sequential bifurca-
tion, a very efficient technique that accounts for white noise and inter-
actions. He applied this technique to an ecological model with nearly 300
factors.
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REGRESSION ANALYSIS: TECHNICALITIES

Eq. (3) gave the Ordinary Least Squares (OLS) estimator ~. In
deterministic simulation that estimator may suffice, although Sachs et al.
[~] give a better estimator if the white noise assumption is dropped (and
replaced by a stationary covariance assumption). In random simulation the
classical assumptions seldom hold. If the response variances differ with
the inputs (as the response means do), then Weighted Least Squares (WLS)
is better. If common random numbers drive the various factor combinations,
then Generalized Least Squares (GLS) is best. See [6, pp. 161-175].

Once the regression model is calibrated (that is, the parameters ~

are estimated), the metamodel's validity must be tested. For deterministic
simulation models we propose cross validation: delete factor combination i
(x:, y.); reestimate ~ from the ramaining simulation data (X y);i i -i' -i

predict the deleted response yi through the reestimated regression model
n

(yi -~1ixi); "eyeball" the relative prediction errors yi~yi: are these
errors acceptable to the user?

In random simulation we prefer Rao's adjusted lack-of-fit F-test:
the estimated response variances and covariances are compared with the
residuals (y - y); see [11].

SOME APPLICATIONS

Applications of our approach are getting numerous. For example, a
simple - but realistic - case study concerns a Flexible Manufacturing

System (FMS). Input to the FMS simulation is the 'machine mix', that is,

the number of machines of type i with i- 1,...,4. Intuitively selected
combinations of these four inputs give inferior results when compared with

a classical design. The throughput predicted by the simulation is analyzed

through two different regression models. These models are validated. A

regression model in only two inputs but including their interaction, gives

valid predictions and sound explanations [12].

Another application concerns a decision support system (USS) for

production planning, developed for a Dutch company. To evaluate this DSS,

a simulation model is built. The DSS has 15 control variables that are to
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be optimized. The effects of these 15 variables are investigated, using a
sequence of classical designs. Originally, 34 response variables were
distinguished. These 34 variables, however, can be reduced to one crite-
rion variable, namely productive machine hours, that is to be maximized,
and one commercial variable measuring lead times, that must satisfy a
certain side-condition. For this optimization problem the Steepest Ascent
technique is applied to the experimental design outcomes. See [13].

A final case study concerns a set of deterministic ecological
simulation models that require sensitivity analysis to support the Dutch
government's decision making. First results for a model of the 'green-
house' effect are given in [14]; additional results are given in [10].

CONCLUSIONS

Experimental design and regression analysis are statistical tech-

niques that have been widely applied in the design and analysis of data
obtained by real life experimentation and observation. In simulation,
these techniques are gaining popularity: a number of case studies have
been published. The techniques need certain adaptations to account for the
peculiarities of deterministic and random simulations.
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