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ABSTRACT

The paper deals with a problem in the area of 'The Dynamics of the
Firm'. Over a finite planning period a firm has two shareholders who may
trade shares at a fixed price but external transactions are not allowed.
The total amount of shares is fixed and the majority shareholder decides
on the rate of dividend payout. Each shareholder wishes to maximize a
profit functional comprised of (i) total earnings from share transactions
plus dividends and (ii) capital gains at the horizon date. The sharehol-
ders are subject to personal taxation on dividends as well as capital
gains. Decisions on investments and borrowing~lending are made by the
manager who seeks to maximize accumulated profits after corporate taxa-
tion.

The problem is modelled as an open-loop Stackelberg differential
game such that the manager acts as the leader; the shareholders are fol-
lowers and play a Nash game. We discuss some conceptual problems related
to this formulation. The solution of shareholders' Nash game is derived by
standard techniques of optimal control theory. Owing to linearity, the
controls become bang-bang. The analysis of the manager's problem is done
by using a path-connecting procedure.
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1. Introduction

This paper deals with the influence of corporate as well as per-
sonal taxation on the optimal investment, financing and dividend policies
of a firm. Recent contributions in this area include Ludwig (1978), Ylg-
Liedenpohja (1978), Van Loon ( 1983). and Van Schijndel ( 1985, 1986ab,
1987). See also the survey article by Lesourne and Leban ( 1982). These
studies, however, assume no separation of ownership and management, i.e.
the shareholders are also the managers of the firm. The main topic in this
research is the determination of optimal policies for capital investments,
dividend and debt. In this connection, the question of corporate taxation
is important and was the first to receive attention in the literature.
Later works ( for instance, van Schijndel ( 1986ab, 1987)) also considered
the impact of different personal tax rates of the shareholders.

The purpose of this paper is to relax the assumption of non-se-
parated ownership and management. Within the framework of a financial
model of the firm we consider a company with a msnager and (for mathemati-
cal convenience) only two shareholders. The latter have different personal
tax rates which, in turn, differ from the corporate tax rate. The manager
controls the investment rate and is in charge of debt management too. The
shareholders control the rate of divident pay-out and can buy and sell
shares from each other. No emissions of new stock are undertaken during
the time period under consideration and there are no external transactions
with shares. Thus, in this respect, the company is viewed as a closed
system.

To model a situation with multiple decision makers we apply the
theory of differential games. Various conceptual problems arise here, and
we shall briefly discuss some of them. The main body of the paper is de-
voted to the analysis of a non-cooperative game where the manager is a
Stackelberg leader, announcing at the start of the game an investment
policy and the stockholders respond rationally (as followers) by choosing
a dividend policy as well as the amount of internal trade with shares.
Because of the complexity of the model, a closed-form solution is appa-
rently not attainable but a number of qualitative results csn be stated.

The paper is organized as follows: in Section 2 we establish a
differential game model as an open-loop Stackelberg game. This section
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also contains our reflexions on some conceptual difficulties in the
modelling process. In Section 3 the Stackelberg game is analyzed; we char-
acterize the structure of optimal policies and discusa their economic
implications. Section 4 concludes the paper with a brief summary of our
main results and contains also some suggestions for further research.

2. Model formulation

2.1. Preliminaries

In this section we develop a deterministic dynamic model of a
corporate firm with a manager ( M) and two shareholders (P1 and P2, respec-
tively). Let t denote time and [O,T] a planning period of fixed duration.

To construct the firm's balance equation, we introduce the follow-
ing variables and constants.

K- K(t) - stock of capital goods.
K(0) - Ko ~ 0 and fixed.
Y - Y(t) - debt (Y~0); lending (Y~0)
Z- common stock at nominal value; Z~ 0 and constant.
R- R(t) - cumulative retained earnings.
R(0) - Ro ) 0 and fixed.

This yields the balance equation

K(t) - Y(t) t Z ~ R(t) (1)

such that the shareholders' total equity capital equals Z} R.
Notice that we have assumed that isaue of new shares is not allowed. i.e.
Z is constant.

To construct the equation for the evolution of the firm's retained
earnings we introduce the following assumptions.
- The firm operates under decreasing returns to scale.
- Corporate tax is proportional to profit.
- Depreciation is proportional to the stock of capital goods.
- Borrowing~lending do not carry any transactions costs.
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Then the flow of retained earnings is given by

E - (1-f)[G(K) - aK - rY] - D (2)

where

D- D(t): dividend pay-out rate
E- E(t): retained earnings rate
G- G(K(t)): gross revenue; G ~ 0, G' ) 0, G" ~ 0
a: depreciation rate; a~ 0 and constant
f: corporate tax rate; 0( f~ 1 and constent
r: interest rate on debt - interest rate received from lending;

r ) 0 and constant.l)

We assume that dividends are paid in cash, not in shares. Notice that
cumulative retained earnings, R(t), are given by

t
R(t) - Ro t f E(s)ds.0

From (2-3) we obtain the state equation for R:

(3)

R - E - (1-f)[G(K) - aK - rY] - D. (t})

Define

I- I(t): rate of (gross) investment in the capital stock

Then the state equation for K is given by

K - I -aK.

Next we turn to the division of common stock, Z, between P1 and P2. Let

-------------------------------------------------------

(5)

1) That is, we assume a perfect capital market.
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Zi - Zi(t) - Pi's part of Z, i- 1,2

Zi(0) - Zio ~ 0

such that

Z - Zl t Z2.

Note that if Zi ) Z~2, then Pi is the majority shareholder. If Z~ - 0 then
shareholder Pi (i~j) is the sole owner of the firm. Since Z is constant we
have

(6)

In (6), and in the sequel, we have i- 1,2; j- 1,2; i~ j. Suppose that
P1 and P2 may trade shares (but not sell to or buy from others) end define

Bi - Bi(t) - purchase rate of Pi

Si - Si(t) - selling rate of Pi.

Hence

Z1-B1 -S1 -S2-Sl.

From ( ~a), and because of (6), we have

Z2 - S1 - S2.

(7a)

(7b)

Eqs. (7) are state equations for the pair (Z1,Z2). But under the assump-
tions we only need one of these equations and we take (~a) as our third
state equation. Henceforth we refer to this equation as (~).

Assume that the shareholders have the following contractual agree-
ment: If Pi wants to sell, then P~ must buy. (Note that Pi can sell to P~
only). Hence a stockholder always has the option to leave the company. On



5

the other hand, no stockholder can be forced to sell, i.e. nobody can be
forced to give up a majority position or to leave the firm. This implies
that only the selling rates are controls.
For the sake of simplification, let the price at which share transactions
take place be fixed as p- constant ) 0.2)

To construct the payoffs of the shareholders define the following
tax rates.

2i - tax rate on personal income for Pi; 0 C 2i ~ 1

Tg - tax rate on capital gains for P{;

Suppose that the shareholders are characterized in the following way. P1
is in a high tax bracket with respect to personal taxation whereas P2 is
in the opposite situation. We shall asaume that

T1 ) ig ~ T2. (8)

Dividends are paid out continuously as a fraction of common stock and
total dividends amount to

D - C Z.

Hence, shareholder Pi receives dividends in amount of

Di - C Zi

such that D1 ~ D2 - D.

The payoff functionals of the two shareholders can now be specified. As-
sume that each ahareholder wishes to maximize (i) his net income stream

-------------------------------------------------------
2) This ( rather strong) assumption may be relaxed by letting the share
price be determined as the result of a bargaining process between the two
shareholders, or by letting the price be dependent on cumulative retained
earnings, i.e. p- p(R) such that p' ) 0.
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from share transactions plus dividends and (ii) his ahare of the company's
equity capital at t- T after capital gains taxation.

()
J1 - Of [P(S1-S2) t(1-tl)C Z1]dt ; L(1-ig)R(T) . Z] Z1ZT (9a)

Z T)(
J2 - ó [P(s2-sl) t(1-T2)C Z2]dt '[(1-Tg)R(T) t Z] 2Z .(9b)

Let us also define the payoff functional of the manager. The mana-
ger has the following objective functional.

T
J - J (1-f)[G(K) - aK - rY]dt.

0
(10)

His objective is simply to maximize total profits after corporate taxa-
tion.

We have not incorporate discounting in the objectives (9-10). For
the shareholders we can assume a zero discount rate because the possibil-
ity of lending money offers the shareholders an alternative investment
opportunity with a rate of return equal to r. Hence, a shareholder has a
time preference rate of (1-~ri)r. For the manager it turns out that incor-
poration of a discount rate in (10) does not change qualitatively our
results; this is contrary to what is known from models of the same struc-
ture, but where management and ownership are not separated (see e.g. van
Loon (1983)). The reason is, briefly stated, that the discount rate in
such models (only) influences the dividend policy. However, in the present
model where management and ownership are separated the dividend policy is
not a control instrument of the manager.

In what is to follow we consider the following scenario.3) Assume
that the manager is the leader in a Stackelberg game where the sharehol-
ders are followers playing Nash vis-a-vis each other. For reasons of
tractability we suppose that all players employ open-loop strategies.

-------------------------------------------------------
3) A motivation for the choice of this particular case can be found in
Section 2.2 which also contains some alternative possibilities.
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Assume that Zlo ~ Z~2 which means that shareholder P1 initially is
in control of the dividend policy, C(t), and suppose that P1 wishes to
maintain this control throughout the game. Hence impose the state con-
straint

Z1(t) ~ Z~2 Vt

for which P1 is responsible. Shareholder P2 must guerantee the satisfac-
tion of

Z1 C Z e~ Z2 ) b~t. (12)

As to the controls C, Si and I we impose non-negativity conditions
as well as upper limits

0 C C C CM - const.

0 C Si ( SM - const.

0 C I C IM - const.

(13a)

(13b)

(13c)

Notice that we have assumed the same upper bound on the Si's.

Hence, by (~), Zi - 0 whenever S1 - S2 - 0 or S1- S2 - SM. The assumption
is motivated partly by mathematical convenience, partly by lack of reason
for supposing SM ~ SZ.

The state variable K is constrained by the natural non-negativity
condition

K ) 0 (14)

which is satisfied whenever I~ 0 holds. This is easily seen from (5).
It can be argued ( see, for instance, van Loon (1983)) that debts

must not exceed a certain fraction of equity capital, that is

Y C k(RtZ) k- constant ~ 0.
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This inequality is equivalent to

K C (lfk)(RtZ).

Using (14) yields

K- Y} Z t R~ 0~-Y ~ Z t R

(15)

which means that, in case of lending (i.e. Y~ 0), then the total amount
lended cannot exceed total equity capital. Notice that satisfaction of
(14) guarantees that this will actually hold. Since debt management is a
responsibility of the manager, we assume that he guarantees satisfaction
of (15).

In summary, we have posed an open-loop Stackelberg differential
game with the following components.

K- I- aK K(0) - Ko ~ 0

R-(1-f)[G(K) - aK - r(K-Z-R)] - CZ R(0) - Ro ) 0

Z1 - S2 - S1 Z1(0) - Zlo ~ Z~2

and P1, P2 play - for a fixed I(t) - the Nash game

T
P1: max J1 - f [P(S1-S2) t (1-T1)CZ1]dt t

O(C~CM 0

OCS1(SM

subject to (4), (5), (~) and

Z1 - Z~2 ) 0.

P2: max
O~S2(SM

C(1-Tg)R(T) } Z]Z1(T)~Z

T
J2 - ,~ [p(S2-S1) a (1-T2)C(Z-Z1)]dt 4

0

[(1-Tg)R(T) t Z](Z-Z1(T))~Z
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subject to (4), (5), (~) and

Z - Z1 ) 0.

M solves the optimízation problem

T
M: max J- f(1-f)[G(K) - aK - r(K-Z-R)]dt

O(I(IM 0

subject to (4), (5), (~) and

K ( (lfk)(R}Z)

and the followers' rational reactions.

2.2. Discussion of some open issues

Apart from analytical difficulties we encounter in the analysis of
above model, there are some conceptual difficulties that deserve some
consideration. The model essentially has five control variables; Y(debt~
lending), I(investment), C(dividends), S1,S2 (share trading), and it is
not obvious, for instance, how to 'divide the roles' between the three
decision makers.

2.2.1. Hierarchical Relationshios

(1) Assume that ownership and management are divided such that the
shareholders have delegated to a manager (M) the daily operations of the
firm (Aoki (1980, p. 604)). M decides upon the investment plan, I(t). Then
we could take M as the leader in a Stackelberg game. Assuming open-loop
controls, M announces, at the start of the game, hís control I(t). The
shareholders, P1 and P2, are the followers and we may assume that they
play an open-loop Nash game. Hence we solve (first) a Nash game for P1 and
P2 who must choose C, S1, and S2, taking I as given. This results in reac-
tion functions C(I) and Si(I) where I is considered a time-varying parame-
ter. Next we solve the leader's problem with regard to I.
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(2) A reverse case may also be considered (Bagcrii (1984)) where we
have a hierarchical solution with P1 and P2 as the two leaders and, hence,
one follower, M. Here, Pi and P2 play a Nash game when deciding on C and
S1,S2. Thus, M decides on the investment rate, I, taking C, S1 and S2 as
given. This yields M's reaction function Z(C,S1,S2). Next, the Nash game
between P1 and PZ is played.

In case (1), the manager is in a stronger position since he is
able to impose his strategy upon the shareholders. This scenario could
emerge when the manager is suthorized to control the firm's investment
plan, without interference from the part of the shareholders. The latter
behave rather passively by adjusting their decisions (in particular, the
dividend policy) to the manager's investment plan. In the reverse case,
(2), the shareholders announce their decisions (in particular, the divi-
dend policy) and the manager reacts rationally by choosing an appropriate
investment program.

(3) A third case may be envisaged where there are three levels of
hierarchy with, for example P1 at the highest level, P2 at the middle
level, and, consequently, M at the lowest level.

(4) Assuming that the owners also manage the firm, the sharehol-
ders control, C,I and their selling rates. The game then becomes an opti-
mal control problem and has been studied by van Schijndel (198~). In that
work, however, no share transactions take place.

(5) In a case where Zlo - Z2o, no shareholder can unilaterally
decide on C and hence, some cooperation must be established in order to
reach a decision. There is a rich literature on bargaining solutions in
cooperative differential games which possibly could be put into use in the
problem at hand.

As already mentioned (cf. Section 2.1) we have chosen in this
paper to consider case (1).
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2.2.2. Control of Dividend Policy

There are also open questions regarding the determination of the
dividend rate, C. If Zi is greater than Z~2, then Pi has the voting power
to fix C.4) Hence, in this sítuation Pi has two control variables: C and
Si while Pj only controls his selling rate, Sj. However, Zi may change as
a result of buying and selling and Pi may lose control of C if, at some
instant, Zi~Z goes below one half.5) Thus, it may happen that C changes
from being a control of Pi to being a control of Pj at some instant during
the play, and maybe switches back again to Pi at a later instant. Such a
situation has not been treated in the differential game literature (to our
best knowledge), and it is not quite clear how to handle it in an appro-
priate way. Let us briefly look at some proposals.

(A) Change the dividend term, CZ, to CiZ and let Ci (i - 1,2) be a
control variable of the majority shareholder. This implies (among other
things) that the dynamics for the state variable R will switch as majority
switches and calls for the use of control theory with switching dynamics
(see Luhmer (1983)). Assume, for instance, that there is only one switch
in the control of the dividend policy such that on the interval [O,tl)
shareholder P1 controls the dividend policy. On [t1,T], P2 is in control.
Hence

R - (1-f)[G(K) - aK - rY] - C1Z [O,tl)

R - (1-f)[G(K) - aK - rY] - C2Z [t1,T]

where tl is given by Z1(tl) - 2~2.

4) We assume that all shares have equal voting rights, although in prac-
tice some shares may have limited voting rights (or no voting rights at
all).

5) But notice that P. cannot be forced to give up a majority position
since he does not havé to sell if he does not want to. This follows from
the above rules for buying end selling.
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(B) An approximative formulstion with nice properties is the fol-
lowing.6) Let dividend payout rate, C, be determined as

C - aul t (1-a)u2

where a- Z1~Z and ul,u2 are continuous control variables of P1 and P2,
respectively. This formulation means that each shareholder's possibility
of influencing the dividend policy depends on his voting power, expressed
by the number of shares in his possession.

(C) We could argue that if P1 initially controls C, then he would
be reluctant to give up his control. Hence, he wants the constraint Z1 ~
Z~2 to be satisfied for all t. Formally, we add this constraint to the
model and make P1 responsible for its satisfaction.

The proposal (A) offers an intuitively appealing and flexible way
to deal with the problem of switches in majority but is also technically
the most complicated. Proposal (B) gives a smooth, but not quite realis-
tic, approximation. In what follows we will use proposal (C). Recall that
it was assumed that P1 has initially the majority and we might suppose
that P1 wants to maintain his control of the dividend policy. If P2 could
decide on dividends then he would certainly pursue a completely different
dividend policy than the one of P1, due to P2's low personal tax rate.

2.2.3. Information Structure

As already mentioned, we suppose in this paper that M is the lea-
der in a Stackelberg open-loop differential game. At the initial instant,
M announces (toward the shareholders) his investment plan, I(t). Taking
this plan for given, the followers P1 and P2 seek to determine an optimal
reaction in terms of theír controls C, S1 and S2. If the followers choose
time-functions C(t), S1(t) and S2(t), we have the case of an open-loop
Stackelberg game.

-------------------------------------------------------
6) We are indebted to Paul van Loon for this suggestion.



Another choice of information structure is the feedback Stackel-
berg solution where all players know (the time as well as) the current
state of the game, summarized in the state vector (Z1,K,R).~) Additional-
ly, the followers know the announced strategy I(Z1,K,R,t) of the leader.
Note that in the feedback Stackelberg case, the leader announces a control
law based on time and current state.
Thus, the leader tells the followers the rule by which he will adjust his
investment rate, contingent on the current state (and time). (It should be
noticed that playing feedback strategies coulá cause problems in the defi-
nition of the follower's rational reaction set, since the variable I is
not a(simple) time-function. However, in a case where the followers use
feedback strategies, but the leader plays open-loop, no such conceptual
problems arise).
Obviously, s feedback solution is more satisfying than an open-loop solu-
tion; for a large value of T, i.e. a long planning period, it is not very
reasonable to believe that whatever happens, each player will stick to his
predetermined, fixed plan. Moreover, the open-loop Stackelberg solution is
not in general time-consistent.8)

Playing an open-loop Stackelberg game which constitutes an equi-
librium (in the sense that the leader does not wish to deviate from his
announced strategy) demands that the leader agrees to stick to his an-
nounced time-function, I(t). This agreement is usually viewed as a rule of
the game, being enforced by some independent arbitrator, or by reasons of
punitive action from the followers. In the problem at hand we may imagine
that the manager can be forced to stick to his announced time-function
I(t) by threats that are in the hands of the shareholders (the followers);

~) For recent approaches to the feedback Stackelberg solution, see
Papavassiloupoulos and Cruz ( 1979), Basar and Cruz ( 1982), Basar et al.
(1985).

8) By time-consistency of a solution, say uw, with associated state x~`,
we mean that the restriction of u~` to any subinterval (t,T) also consti-
tutes a solution to the game on (t,T), starting with an initial state x~.
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the latter can ultimately dismiss the manager if het does not adhere to
their stipul3tions.9)

To relax (partially) the assumption of no deviations from an-
nounced strategies throughout the game, one could consider the possibility
that the leader does not commit himself to a fixed policy for the entire
interval [O,T] but only for a shorter period. More precisely, let z be the
length of time over which the leader makes such a commitment (Reinganum
and Stokey (1985)). Then the policy I(t) is chosen as follows: at t- 0
the leader chooses {I(t), 0 C t ~ z}, at t- z he chooses {I(t), z( t~
2z}, and so forth. With K periods we have T- Kz. Note that the open-loop
case is obtained for K- 1.

In this paper we assume that all players use open-loop controls.
The manager controls the investment rate and each shareholder controls his
selling rate. We study the case where P1 (the shareholder with the high
personal tax rate) initially has more than half of the shares and P1 does
not intend to give up his control of the dividend policy.

3. Analysis of the differential game

3.1. The Shareholders' Problem

In this section we solve the Nash open-loop game for the sharehol-
ders, taking the investment policy I(t) as a fixed time function.
Using (1) we eliminate the variable Y.

For P1 define the Hamiltonian H1 and the Lagrangian L1 as fol-
lows,l0)

H1 -~ó[P(S1-S2) t(1-T1)CZ1] t~1(S2-S1) t~2(I-aK) t

~3[(1-f)[G(K) - aK - r(K-Z-R)] - CZ]
(16)

9) In other situations, the leader in a Stackelberg game may try to cheat
the follower. This is because the follower is not supposed to know the
payoff functional of the leader, and the latter can implement a strategy
which differs from the one he announced at the start of the game. See, for
example, Hgmëlhinen (1981).

10) See e.g. Feichtinger and Hartl (1986).
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where ~i -~1(t) (i - 1,3) are piecewise continuously differentiable co-
state variables and al - const. ) 0.o -

L1 - H1 t vl(Z1-Z~2).

We have adjoinded the state variable constraint Z1 ~ Z~2 directly to the
Hamiltonian by a piecewise continuous multiplier function vl - vl(t). If
an optimal solution exists it satisfies the necessary conditions:

w M 1 r w M M 1 1 1 1(C ,S1) - arg max H (Z1,K ,R ,C,S1,S2,I,~o,~1,~2,~3).
OCC~CM
O~S1~SM

Condition (18) yields

1 ~ 1 ~ ' CM
~o(1-~rl)Z1 - a3 Z~ 0~ C - unspecified

0

and

M

(18)

(19)

(20)~op -~1 C 0~ S1 - j unspecified.
l0

The costate variables and the multipliers satisfy

M
ai - -ao(1-T1)C - V1

~2 - a J~Z - ~3(1-f)[G'(K~) - a - r]

~3 - -~3(1-f)r

1 1 ~ -v ) 0; v (Z1-Z~2) - 0

~1(T) - ~oL(1-Tg)R~(T) t Z]~Z t ~1

(21a)

(21b}

(21c)

(22)

(z3a)
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~2(T) - 0

a3(T) - a~(1-Tg)Z1(T)~z
.yl ~ 0; X1(Z1(T)-Z~2) - 0; à'1 - const.

(23b)

(23c)

(24)

The costate function ~i is continuous except at junction instants where
jumps may occur. The costates a2 and ~3 are everywhere continuous.

It should be noticed that the (constant) multiplier ~á cannot
automatically be put equal to one. This is because of the state variable
constraint Z1 ~ Z~2 which must be satisfied at t- T. However, the follow-
ing lemma can be proved.

Lemma 1. ~ó ) 0, and we may put ~ó - 1.

Proof. See Appendix 1.

From (21a) we obtain

~i ( 0

and integration in (21a), using (23a), yields

(25)

~1 -[(1-Tg)RM(T) ; Z]~Z t fT [(1-T1)CN(s) t vl(s)]ds t~rl (26)
t

which is positive for all t E[O,T]. Note that ~i has the interpretation
of the shadow price of a unit of Z1, as assessed by P1. Hence this shadow
price is positive but non-increasing.

From (20) and (25-z6) it is obvious that an optimal S1-policy must
be of one of the following types:

M
(A) S1 ~ 0 which occurs if ~i ~ p vt E[O,T]
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(B) S,~ - 0 on [O,tl) and Sl - SM on [t~,T] which occurs if

ai ) p for t E[O,tl), ai - P at t- tl and al ~ p for (27)
t E (t1,T]

M
(C) S1 o SM which occurs if ~i ~ p vt E[O,T].

It will suffice to give an economic interpretation of the selling policy
of type (C).

Using (26) and (27) yields the result that P1 should sell shares
at the maximal rate for all t, iff

[(1-2g)RN(T) t Z]~Z t fT[(1-T1)C~(t) t ~1(t)]dt t ól ~ p. (28)
0

This amounts to saying that P1 should sell at the maximal rate if the
marginal value, at the initial instant, of keeping a share is less than
what could be obtained by selling the unit. (Since ~i(t) ( ai(0) vt E
(O,T] the argument applies equally well for all t E (O,T]). Inequality
(28) can also be written as

[(1-Tg)RN(T) t Z ] Z1o t JT(1-T1)CM(t)Zlodt t fT~l(t)ZlodtZ 0 p

~ zlo(p-~1).
(29)

Recall that Zlo ) Z~2. On the left-hand side of (29) the first term is the
capital gain to be collected at t- T if P1 does not sell shares. The
second term is the accumulated dividend in the case of no selling. The
last term is non-negative, and identically zero if the constraint Z1 ~ Z~2
never binds. The term on the right-hand side is the (adjusted) sales value
of Zlo. Hence, if (29) holds, then P1 will be better off by selling all
his initial stock of shares since the sales value exceeds what can be
collected in capital gain and dividends. But notice that he cannot sell
his initial amount of shares instantaneously; the best to do is to de-
crease Zlo as fast as possible by selling at the maximal rate.

Now we turn to a characterization of the dividend policy. Integra-
tion in (21c), and using (23c), yields
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a3 - exp{(1-f)r(T-t)}[(1-ig)Z1(T)~Z] (30)

which is positive for all t E[O,T]. T`he costate A3 represents the shadow
price of a unit of R, as assessed by Pi. Using (21c) yields

~3 ~ o vt E [o,T]. (31)

Hence the shadow price of a unit of R(evaluated by Pi) is positive but
strictly decreasing. We get the following types of C-policies:

CM
w

C
Z

C E [O,CM] if (1-T1) 1~ J~3 r~
Z

Z1 ~ Zi(T)
(1-Ti) - z (1-T ) -exp{(1-f)r(T-t)} (32)

Z g Z

0

where the following lemma can be proved.

Lemma 2. A singular C(t) is infeasible.

Proof. See Appendix 2.

The expression (32) can be economically interpreted in the follow-
ing way. At any instant the firm has the possibility of using a dollar of
its cash-flow to pay out as dividend or, alternatively, to retain the
dollar and
- pay back a dollar of debt (or, if debt is already negative, to lend one
dollar more)

- to finance a dollar of investment
Notice that payment of interest on debt and corporate tax, i.e. rY and
f[G(K) - aK - rY], is mandatory and leaves no choice to the firm. To
shareholder P1 the investment policy is given; hence Pi can only choose
between dividends and~or reducing debt~increasing lending. In (32), the
term (1-Ti)Z1~Z represents the net amount which P1 receives if one dollar
of dividend is paid out at time t. Recall that ~3 has an interpretation as



19

the marginal contribution to optimal profits, caused by a marginal in-
crease in retained earnings (R). Hence, as long as the net benefit from
one present dollar of dividend exceeds the value of retaining the dollar,
dividends should be paid out, and vice versa. The second expression in
(32) can also be interpreted economically. The right-hand side represents
the (net of capital gains tax) amount which P1 collects at t- T if the
dollar at hand is used for decreasing the debt. If debt is decreased by
one dollar then the instantaneous interest cost is reduced by (1-f)r; the
value of this saving over the interval [t,T] equals

T
j (1-f)r exp{(1-f)rs}ds - exp{(1-f)r(T-t)?.

t

Hence the term (1-Tg)Z1 exp{{1-f)r(T-t)}~Z represents P1's share of the
interest cost saved by not paying out a dollar of dívidend at time t. (If
the firm lends money, an additional dollar yields interest income in
amount of exp{(1-f)r(T-t)} on [t,T], and similar arguments as for the debt
case apply).

In order to characterize in further detail the dividend policy we
need to determine S2 since the pair (Si,S2) determines Z1, cf. (~).

Hence, for P2, define a piecewise continuous multiplier function

v2 - v2(t)

and the Hamiltonian and the Langrangian, respectively:

H2 -~ó[P(S2-S1) t(i-T2)c(Z-zl)] t~1(s2-sl) t~2(I-ax) t

~3[(1-f)[G(K) - aK - r(K-Z-R)] - CZ]
(33)

where ~i (i - 1,2,3) are piecewise continuously differentiable costate
variables; ~~ - const. ~ 0.

L2 - H2 f v2(Z-Z1). (34)

Since the necessary conditions for the problem of P2 resemble those for P1
(cf. (18)-(24)), they are not stated here.
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As for P1 we prove that the problem is normal.

Lemma . ~ó ) 0.

Proof. See Appendix 3.

H2-maximization requires that

r SM
S2 - S E[O,SM] if ~i ~- p

0

and it holds that

~i ) 0.

By integration of the costate equation for ~i we get

(35)

(36)

Ai --[(1-Tg)R~(T) f z]~Z - r2 -.fT[(1-T2)C~(s) t v2(s)]ds (37)
t

which is non-positive for all t E[O,T]. Note that J~i is the shadow price
of a unit of Z1, as assessed by P2. Hence, this shadow price is non-posi-
tive but non-decreasing. We obtain selling policies of the following
forms:

(A) S2 ~ 0 which occurs if, for sll t, ~i (-p r~ ~~i~ ~ P

(B) S2 - 0 on [O,t2) and S2 - SM on [t2,T] which occurs if
ai ( -p for t E [O.t2). ~i(t2) - -p and ~i ~ -p for (38)
t E [t2,T]

(C) S2 ~ SM which occurs if, for all t, ~i ~-p b ~~il ~ p.

~ The results so far obtained for the optimal selling policies S1
and S2 are summarized in Table 1.

.
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Player P1 Player P2

(A) (A)
x

Sl ~ Oif
M

S2~ Oif

x ~ yl ) p x t ~r2 ) p

(B) (B)w
S1 - 0 on [O,tl) and

R
S2 - 0 on [O,t2) and

S1 - S`~ on [t1,T] if S2 - SM on [t2,T] if

(xtól~p) ~ (xtà'2~p) n

(xty
T

lfó [(1-il)CN(s) t vl(s)]ds)p) Íxtà~
T

2to [(1-i2)C~(s) t v(s)]ds)P)

(C) (C)
S1 ~ Sm if S2 ~ SID if

xtlll
T

J [(1-T1)C~(s) t vl(s)]ds ~ pt xf~r2rÓT[(1-Y2)C~(s) t v2(s)]ds ( pO

Mx :- [(1-Tg)R (T) t Z]~Z

.
Table 1. Summary of conditions for occurrence of Si-policies
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w w
In Table 2 we have listed the possible combinations of S1 and S2 policies.

P2 (A) (B) (C)
M

S2 ' 0
w

S2-
0 on [O,t2)
M M MS ~ SS on [t2~T] 2

P1

(A) (1) (2) (3).
S1 ~ 0 The zero-selling Infeasible Infeasible

case (t1-t2-T)

(B) (4) (5) (6)
„ 0 on [O,tl)

S1 - SM on [t ,T]1
Infeasible The general case Case (5) with

t2- 0 (tl~t2)

(~) (7) (8) (9)~
S1 ~ SM Infeasible Case (5) with The maximum-

tl - 0 (tl~t2) selling case

(t1-t2-~)

r r
Tabel 2. Summary of (S1,S2)-regimes

Notice that in the zero-selling case as well as the maximum-selling case
we have Z1 - Zlo for all t E[O,T]. (Whenever S1 - S2 - SM on an interval,
then there is de facto no trade; the shareholders simply exchange equal
amounts of shares which meens that the net amount of trade is zero).

We can prove the following lemma.

Lemma 4. The regimes depicted in cells (2), (3), (4), and (7) of Table 2
are infeasible.

Proof. See Appendix 4.
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The lemma atates that it is never optimal for a player to sell at the

maximal rate for all t if the other player does not sell at all, and vice

versa. The lemma also states that it is never optimal for a player to use

a switching policy against a zero selling policy of the other player, and

vice versa.

The remaining regimes (6) and (8) (as well as (1) and (9)) are all
subsumed under regime (5). Therefore, we confine our interest to regime
~. The switching instants (tl and t2, respectively) are determined by

T ~
~i(ti) - yl } K T ~ C(1-ii}C ( s) t ~1(s)]us - P i- 1.2 (39)ti

Notice that if tl - t2 then Z1 ~ Zlo as in regimes ( 1) and (9).
The following lemma can be established, implying that it suffices to con-
sider regime (5) for the case of tl ( t2.

Lemma If in regime (5) the switching instants are such that tl ~ t2
then regime ( 5) reduces to regime ( 1) or (9).

Proof. See Appendix 5.

Consider regime (5) with tl C t2 and the following inequality

zlo - sM(t2-tl) ) Z~2 e~ sM(t2-tl) ~ zlo - á~2 (40)

which is satisfied if, for example, Zlo is much larger than Z~2 (i.e. P1
has initially a comfortable majority), SM is relatively small, or tl ís
close to t2. It turns out that the policy S1 depends on whether (40) is
satisfied or not. Obviously, Z1 ~ Zlo on [O,tl) and no constraints are

binding. On [tl,t2) we have Z1 ( 0 implying that (12) cannot be binding;
hence v2 - 0. The same holds true on the interval [t2,T] : v2 - 0 on
[t2,T] and y2 - 0. It may happen, however, that (11) becomes tight for
some t in the interval [tl,t2). But note that if (11) does not become
binding in [tl,t2) it never does. For t E[tl,t2) we have
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Z1 - Zlo - SM{t-tl)

and suppose that Z1 hits its lower bound (Z~2) at t- tl (tl)tl). There
are two subcases to consider.

(I) If tl ~ t2 then Z1 ) Z~2 bt E[tl,t2] and the policy for S1 is policy
(B) given by (2~). It is easy to see that this situation occurs if
(40) is satisfied.

(II) If tl ~ t2 then Z1(tl) - Z~2. Since we have made P1 responsible for
the satisfaction of the constraint (11), this player must switch from
S1 - SM to S1 - 0 on the interval [tl,t2). This will keep Z1 equal to
its lower bound on [tl,t2). When P2 switches (at t- t2) from S2 - 0
to S2 - SM, then P1 resumes his policy S1 - St~. This situation occurs
if (40) is not satisfied.

To summarize: for tl ~ t2 and if (40) does not hold, then the S1
policy should be modified such that

M
S1 - 0 ~ Z1 - Zlo on [O,tl)

r
S1 - SM ~ Z1 - Zlo - SM(t-tl) on [tl,tl)

.sl - o ~ zl - z~2 on [tl,t2)
(41)

S1 - SM ~ Z1 - Z~2 on [t2,T].
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The instant tl is an entry time; the costate ai remains continuous at t-
t 11)

i
Now we are ready to establish what types of dividend policies, C,

can occur under the optimal selling policies S1 and S2. Using (32) and
Table 2 we can conclude the following.

M
Regime (1) and (9): C ~ 0.

~r a
Regime (5) (tl~t2): Recall that C- 0 on [t1,T]. The C-policy is one of
the types given by:

x
1. C- 0 for t E[O,tl).

~
2. C- 0 for t E[O,ti)

C~ - CM for t E[ti,ti')w
C- 0 for t E[tl''tl)'

3. C~ - CM for t E[O,tl)
~ n
C- 0 for t E[tl'tl)'

The policies stated in (42) can be derived from (32); see also Figure 1.

11) This is because the entry to the boundary arc Z1 - Z~2 is nontangen-
tial, cf. Feichtinger and Hartl (1986).
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Z~, F(t)Z~(T)

Z

Zto

0
T

t; t~ t~ t' ~~ t2 T
~ t

Í-T
F(t) :- 9 exp{(1-f)r(T-t)}

Í-T~

M
Figure 1. Possible C-policies on an initial interval.

In Figure 1 we have F C 0 for all t E[O,T]; F(t) )(1-Tg)~(1-T1) ) 1 for
all t E[O,T]. Consider the interval [O,tl) and refer to Figure 1 where
the three curves depict possible paths for F(t)Z~2; the solid line repre-
sents Z1(t). If, for example, F(t) Z1(T) ) Z1(t) for t E [O,tl) thenM
policy C ~ 0 is obtained.
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It is easy to establish some qualitative conditions for the occur-
rence of the three dividend policies in (42). In Table 3 such conditions
are stated.

~
C-policy type Tax rates Initial amount of shares Net cost of debt

1 T1 )) Tg Zlo - Z~2 (1-f)r large
2 T1 - ~g Zlo )) Zj2

3 T1 - Tg Zlo )) Z~2 (1-f)r small

Table . Qualitative conditions for occurrence of various dividend poli-
cies

Under policy 1, no dividends are paid out since the decision is msde by
the majority shareholder (P1) who suffers from a high personal tax rate on
dividends (~[1), has only a small majority and the net cost of debt is
large. In view of his objective, dividends are discouraged by the high
value of ~[1 and the relatively small amount of shares in possession (Z1).
The net cost of debt being large implies that a high value of R(T) (which
is desirable) should be achieved by a cautious dividend policy rather than
expanding K through debt financed investments. Under policy 3, dividends
are initially paid out, motivated by a relatively small personal tax rate
of P1, a comfortable amount of shares (which increases the total amount of
dividends received, CZ1), and a net cost of debt being small. Here, a
certain amount of dividends can be defended since taxation on dividends
now, and retained earnings later, is approximately the same. Moreover, the
loss of retained earnings incurred by the dividend payout can be counter-
balanced by attracting debt money (to invest and increase K) since the
cost of such funds is relatively low.

3.2. The manager's problem

In this section we turn to the manager's problem. Recall that we
consider the manager as the leader in an open-loop Stackelberg game. In
Section 3.1 we characterized the solution of the Nash,game for the fol-
lowers P1 and P2 whose rational reaction sets are (implicitly) given by
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. ,~c - c (zl)

sl - sl(ai)

where Z1 and ~i are determined by (7) and (26), and

S2 - S2(~i)

where ~i is determined by (37) 12)

(32)

(20)

(35)

The optimization problem of the manager consists of selecting a
piecewise continuous inveatment rate I(t), guch that 0~ I(t) ~ IM, to
maximize the payoff functional J given by (10), subject to- the original
state equations (4), (5), (~), the six costate equations of the followers
with their appropriate boundary conditions, and the state variable in-
equality constraint (15).

Let u(t), ~,1(t) and n2(t) be piecewise continuous multiplier func-
tions and let al(t), ~2(t),...,a9(t) be piecewise continuously differen-
tiable costate variables. Let ~o be a non-negative constant.

It may be convenient to transform the payoff (10). Using (4) we
obtain

J- fT(1-f)[G(K) - aK - r(K-Z-R)]dt - fT R dt t Z fTCN dt.
0 0 0

Integrating on the right-hand side yields

-------------------------------------------------------
12) Notice that these rational reactions do not involve (explicitly) the

M M Mcontrol, I, of the leader. However, the trajectories C, S1 and S2 do
i

depend on Z since I determines K which, together with C, determine R. On
N

the other hand, R(T) and C determine ~1 and ~2 which, in turn, determine„ w 1 1 N
S1 and S2. The latter yield the path of Z1 which determines C.
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T N-J- f C Z dt f P,(T) ~ R
0 0

where the term Ro can be disregarded since i t is constant. The Hamiltonian
becomes

M- N N
H- ao C Z t~1(SZ-S1) t~2(I-aK) t

a3[(1-f)[G(K) - aK -r(K-Z-R)] - CNZ] t

~4(-(1-T1)CN-vl) t ~5[aa2 - a3(1-f)(G'(K)-a-r)] ~- (43)

~6(-~3(1-f)r) t ~,~((1-T2)CNtv2) ~

a8[aa2 - a3(1-f)(G'(K}-a-r)] ; a9(-~3(1-f)r)

and the Lagrangian is given by

L- H t u[(ltk)(R}Z) - K] ' n1I t n2(IM-I).

The set of necessary conditions is as follows:

N
I - arg max H

O~I~IM

~L
~I - ~2 t ~il - n2 - 0

N

~1 - áZ [z(a3-~o) t a4(1-T1) - ~~(1-T2)]
1

(44)

(45)

(46)

(47a)

~2 - a~2 - (1-f)(G'(K)-a-r)~3 t (1-f)G "(K)(~5~3t~8~3) } x (47b)

a3 - -(1-F)r a3 - x(ltk)

N
dSl

~4 - ~1 d~l
1

(4~c)

(47d)
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(47e)

~6 - (1-f)r ~6 ~ ~5(1-f)(G'(K)-a-r) (47f)

r
dS2

~7 - -~1 da21

~8 - -aa8

(47g)

(47h)

~9 - (1-f)r ~9 f ~8(1-f)(G'(K)-a-r) (47i)

u? o u[(ltk)(R;Z) - K] - o (48a)

nll - o, nl ~ o n2(1M-r) - o, n2 ~ o (48b)

~1(T) - L~9(T) - a6(T)](1-Tg)~Z (49a)

a2(T) - -a (49b)

a3(T) - a(l;k) t [~7(T) - ~4(T)](1-ig)~Z t ~o (49c)

a) 0, a[(ltk)(R(T);Z) - K(T)] - 0 (50)

~4(0) - ~5(0) - a6(o) - ~7(0) - ~8(0) - ~9(0) - o. (51)

From (47e,f,h,i) and (51) it appears that

~5 - ~6 - ~8 - ~9 ' 0 for 0 C t ( T ( 52 )

which is intuitively reasonable since the followers' costates a2, ~3, a2,
a3 do not have direct significance for the manager's problem.

We shall make some assumptions that will facilitate the analysis
of the necessary optimality conditions.

First, we assume that, loosely speaking,
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IM is sufficiently large.

This assumption is made for mathematical convenience but seems reasonable
in the light of the model's financial structure. The model ep r se imposes
a natural upper bound on the investment rate since the firm cannot finance
unlimited investments, neither by borrowing funds nor by retaining pro-
fits. The implications of the assumption are the following.

- Whatever control, I~ 0, we choose, it holds that I~ IM.
- The multiplier n2 is identically zero. Let ~,1 -~,.

Second, assume that

G'(K) ) afr for K- Ko. (53)

It may be appropriate to make some remarks on the state variable inequal-
ity constraint (ltk)(ZtR) ) K. Define

h(R,K) (ltk)(ZtR) - K

which yields

dh~dt - (l;k)R - K - (ltk)[(1-f)[G(K) - aK - r(K-Z-R)] - C~Z] -

(I-aK). (54)

This expression shows that h~ 0 is a first order constraint.
Denote an arc having h- 0 as a boundary arc and recall that the adjoint
variables associated with K and R are a2 and a3, respectively. If entry
to~exit from s boundary arc occurs in a non-tangential way, then ~2, ~3
are continuous at the point of entry~exit (Feichtinger and Hartl (1986)).
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Notice that non-tangentisl entry~exit means that h(R,K) as a function of
time has a kink. Hence, at such junction points dh~dt is discontinuous.l3)
Also notice that a discontinuity in dh~dt at some t- t' occurs only if a
control is discontinuous at t- t'. However, in the problem at hand, con-r
trol discontinuities are not only those in I but also in C, cf. (54).
(Obviously, if the controls are continuous then dh~dt is continuous too.)
When dh~dt is continuous at a junction point, then the adjoint variables
will normally also be continuous.i4j The constant multiplier a(in (49-
50)) vanishes whenever the adjoint variables ~2, ~3 are continuous at t-
T. This follows from the (necessary) jump conditions for the adjoint vari-
ables. (Of course, if the state constraint is not effective at t- T, then
by (50) we have a- 0. Hence the problem concerning a occurs only if the
state constraint is binding at t- T).

We start the analysis with some remarks about an optimal invest-
ment rate. From (43) and (45) we see that I will be singular whenever a2 -
0. Notice that the costate ~2 has the interpretation of a shadow price of
a unit of K, as assessed by the manager.

Obviously, for ~2 ~ 0 no investment occurs. A necessary condition for
optimality of a singular control is given by the generalized Legendre-
Clebsch condition which requires that

2k
(-1)k ~I d2k HI C 0 for k- 0,1,2,...

dt -

Obviously the condition is satisfied for k- 0. For k- 1 we obtain

(1-f)a3 G" (K) ~ 0

which holds only if ~3 ~ 0.

13) Eq. (54) shows that discontinuity of dh~dt implies discontinuity of K
and~or R.

14) Seierstad and Sydsmter (1987, p. 318)
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On a singular path it hoïds that A2 -~2 - 0. Hence

a2 - -~3(1-f)(G'(K)-a-r) t u - 0

and, whenever u is differentiable,

(55)

~2 - u - (1-f)~3(G'(K)-a-r) - ~3(i-f)G "(K)(I-aK) - 0. (56)

Substituting from (5) and (47c) into (56) yields

Is - ~ } ~3(1-f)G " (K) t

a3(1-f)G,~(K) L(1-f)ra3 t x(ltk)~
(57)

which shows that Is equals aK (i.e. investment is just at the replacement
level) if the state constraint ( 14k)(ZiR) ) K does not bind. For Is - aK,
the corresponding value of K, say, Ks, is implicitly given as the (unique)
solution of

G'(Ks) - a t r (58)

which follows from (55).~5) Hence, Is - aKs is constant.
Next we characterize the four possible paths by using the comple-

mentary slackness conditions.

PA'rt-t i 2 3 4

N t ~ 0 t

n 0 0

15) Stricktly speaking, G'(K) - a ; r does not need to hold in (55) if
a3 - 0.
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Path 1
This is a boundary path: K-(1}k)(Z~R). Moreover ~2 - 0 and the control I
is singular: Is is given by (5~). The control, say, Ib, which will main-
tain K equal to (ltk)(ZtR) is given by

Ib - aK t(ljk)[(1-f)[G(K) - aK - r(K-Z-R)] - C~Z]. (59)

From ~2 - ~2 - 0 we obtain

N - (1-f)(G'(K)-s-r)~3 ) 0 ~ G'(K) ) atr (60)

whenever a3 ) 0. (Notice that if ~3 - 0 then ~,ath 1 cannot occur). Next,
observe that

Ib z aK e~ K,R z 0.

M .
It is easy to show that if C- 0 for all t on path 1, then R ) 0. How-
ever, R) 0 may not hold in general, but R) 0 on a final interval sincew
C- 0 in such an interval. Path 1 is a feasible final path since the
transversality condition ~2(T) - 0 is satisfied. However, if K) 0 then
G'(K) decreases and if path 1 is extended on a sufficiently long interval
it may happen that G'(K) ) afr is violated.

Path 2
On this path, where k- n- 0, we have (ltk)(Z}R) ) K and I ) 0. Then (57)
yields Is - aKs and Ks is given by (58) whenever a3 ) 0.16j To satisfy
(46), ~2 - 0 must hold which makes path 2 a feasible final path. Notice
that K- 0 and hence Y- R- 0 or sgn(Y) -- sgn(R},

-------------------------------------------------------
16) If a3 - 0 on an interval then Ks is not uniquely determined by (55),
that is, G'(K) - a~r does not necessarily hold. This could cause difficul-
ties in the coupling procedure to follow since the arguments employed
require that G'(K) - a;r be satisfied. In Appendix 6 this issue is dis-
cussed in more detail.



35

Path ]

On this path we have u- 0 and (14k)(ZtR) ~ K. Moreover, n) 0 implies I-
0 and hence K C 0. It must hold that at least one of R,Y is negative.
Notice that path 3 is infeasible as a final path since a2 --n C 0.

Path 4

This is a boundary path and I- 0. F~rthermore, K,R,Y C 0 and ~2 --n C 0
makes path 4 infeasible as a final path. Notice that R decreases irrespec-
tive of whether C- 0 or C) 0.

An initisl feasible path is a path which satisfies the fixed ini-
tial conditions. If we assume that the firm has maximal debt at t- 0,
then the initial values K(0), R(0) must satisfyl7)

(ltk)(ZtR(0)) - K(0). (61)

Van Loon (1983) argues that if we in (61) had strict inequality (i.e. debt
less than maximal) then the firm would instantaneously attract the missing
amount of debt and invest it. After that, the firm starts on a feasible
path. A mathematically stringent argumentation for assumption (61) can be
found ín Feichtinger and Hartl (1986, p. 378).

Recall that paths 3 and 4 are infeasible as final paths; path 2 is
a feasible final path and path 1 may be a feasible path. The procedure is
now to work backwards from t- T and consider a feasible final path. A
first question to answer is the following: is path 1 or path 2 a candidate
for an optimal solution for the entire planning period? Path 1 is a candi-
date for an optimal solution for all t only if G'(K) ) atr holds through-
out the interval [O,T]. It is, however, questionable if this actually will
be satisfied. Path 2, on the other hand, can never be optimal on [O,T] if
~3(0) ~ 0 since (53) is then violated.

The next step is to determine which path can precede a final path.
Therefore we test for each feasible final path which paths can precede
those final paths. The testing procedure utilizes the properties of paths

-------------------------------------------------------
17) See van Loon (1983), van Schijndel (1987).
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1-4 described above as well as continuity properties of state and costate
variables. If the set of feasible preceding paths is not empty then we
repeat the coupling procedure. The procedure stops when no more paths can
precede a feasible string of policies. Note that the initial condition
(61) must hold. (A more precise description of the coupling technique can
be found in Appendix ~; see also van Loon (1983)). It turns out that there
is only one coupling satisfyíng all necessary conditions. We can prove the
following proposition.

Proposition 1: The only policy strings consisting of paths 1-4 that satis-
fy the necessary optimalit~~ conditions are

" PATH 1 ~ PATH 2
w~ PATH 1 throughout [O,T]

Proof: See Appendix ~.

In Figures 2 and 3 we have depicted the evolution of some key
variables for the case of C-policies of type 1 and 3, (cf. Table 3) for
the case of a policy string Path 1-~ Path 2.
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Figure 2. Optimal policies for capital stock (K) and debt~lending (Y) when
no dividends are paid out.

Zn Figure 2 we have the case of zero dividends. It occurs if,
among other things, the majority shareholder's personal tax rate is high
and~or the net cost of debt is large. Initially (on path 1) K, R and Y are
all increasing and debt is maximal. Gross investment, I, is greater than
the depreciation, aK, which implies an increasing stock of capital goods.
Retained earnings, R, increase since no dividends are paid out and G'(K) ~
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atr on path 1. The latter condition means that a marginal unit of invest-
ment gives the firm a return, G'(K) - a, being greater than the interest
rate. This justifies that debt is increased (maximally). However, since K
increases, G'(K) decreases and at t- t12 G'(K) reaches its stationary
level where G'(K) - a4r, and we get on path 2. Here, K is constant and R
is increasing. Investment is at the replacement level and since retained
earnings still increase, the remaining cash is used to pay off debt, i.e.
Y decreases. Depending on the parameters of the problem, lending may occur
from some instant, say, to. On path 2 the evolution of Y is given by

Y - -(1-f)(G(Ks)-alts-rY}

which has the solution

G(Ks) - aKs r G(Ks) - aKs1
Y- r } LY12 - r J exp{-(1-f)r(t12-t)}

where Y12 is the level of debt at the coupling instant t- t12. In Figure
2 the instant to (where lending starts) is given by

to - t12 - ( 1-f)r ln(G(Ks)-aKs-rY12)~(G(Ks)-aKs)). (62)

Notice that if to ~ T then Y) 0 for all t E[O,T] and lending does not
occur. Eq. (62) shows that a no-lending case emerges if t12 and Y12 are
large, i.e. the expansion period is long compared to the period of sta-
tionary evolution, and the level of debt incurred after the expansion
period is large. This seems to be intuitively reasonable.

In Lemma 6 we prove that if the interest rate, r, is sufficiently
large (which implies that the net cost of debt, (1-f)r, is large) then
lending is unlikely to occur. Notice that we still consider the case of
zero dividends.

Lemma 6. The instant to given by (62) is increasing as a function of the
parameter r, i.e. dto~dr is positive.

Proof. See Appendix 8.
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The lemma states that for increasing values of r, then t íncreases and0
to ) T is likely to be the case, implying that Y is positive for all t E
[O,T]. Hence, if debt is very costly, no dividends will be paid out (cf.
Table 3) and, moreover, lending is unlikely to occur.

In Figure 3 we turn to the case of maximal dividend payment on an
initial interval, followed by zero dividends for the rest of the planning
ep riod. This case occurs if, for example, the majority shareholder's per-

sonal tax rate is comfortable low, see also Table 3, consider Figure 3
where the dividend policy switches before the coupling instant t12.

t

Fi re . Optimal policies for capital stock (K) and debt~lending (Y) when
maximal dividends are paid out on an initial interval ending at

n nt- tl such that tl S t12.
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~
On the intervals [t1,t12) and [t12,T] the evolution of K, R and Y are the
same (qualitatively speaking) as in Figure 2. Notice that if r is very
low, lending (on the intervel (to,T]) could occur here. Depending on the
actual value of CM, two situations can be distinguished.

M '(a) If C is sufficiently low, then R- (1-f)(G(K)-aK-rY) - CMZ remains
positive on [O,t12) and Figure 2 applies.

(b) For CM sufficiently large, R becomes negative and K as well as Y de-
crease on the interval [o,tl). See Figure 3. In such a situation the
firm initially follows a contraction policy. Investment is below the
replacement level, implying a decreasing K. Even if investment is low,
the cumulative retained earnir.gs decrease since large amounts of divi-
dends are distributed and debt is paid off at the same time.

If the dividend policy switchea after the coupling instant, i.e.
tl ~ t12, then the value of CM again becomes significant.

M(a) For C sufficiently low, the situation will be as in Figure 2.
M '(~B) For large values of C, R becomes negative, implying that K decreases.

But K) 0 must hold on some interval before the coupling instant t12,cf. Appendix ~. Hence, for tl ) t12 and in case of a large value of
CM, the feasibility of the string "path 1-~ path 2" may be lost.

4. Concluding remarks

In this paper we studied a problem in the areas of 'The Dynamics
of the Firm' and 'Corporate Finance'. A deterministic, dynamic model was
set up with the purpose of characterizing optimal investment, financing
and dividend policies of a firm with separation of management and owner-
ship. In the latter respect, the present work differs from, for instance,
Van Loon (~983), Van Schijndel (1987) where no such separation exists. To
model the possible conflicts between management and shareholders a
Stackelberg differential game approach was applied and with a view to
tractability we assumed open-loop controls.

More specifically, within the framework of a financial model of
the firm we assumed that a manger controls the firm's investment policy
over a fixed planning period. With the manager being the Stackelberg
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leader, the shareholders respond rationally to the announced investment
policy by choosing a dividend polícy and policies for the internal trade
with shares. The dividend policy is decided by the majority shareholder
and each shareholder receives dividends ir. proportion to the fraction of
shares he possesses. At the end of the game the owners receive their re-
spective parts of the corporate assets.

An important aspect of the scenario is the presence of taxation.
Here, we considered corporate as well as personal taxes; the latter being
charged on the streams of income and on the terminal capital gains.

The solution of the Nash game played by the shareholders was ob-
tained by standard methods of optimal control. Due to linearity, the divi-
dend policy as well as the share trading policies turned out to be bang-
bang policies. The manager's problem was only solvable in a qualitative
way and we applied a path-connecting procedure designed by Van Loon
(1983). Here, the optimal string of paths was a simple two-path sequence.
At a terminal interval the investment policy is designed to maintain the
stock of capital goods at an optimal stationary level and debt is gradual-
ly paid off. Depending on the parameters of the problem even lending may
occur during this final phase. The initial phase is an expansion phase if
no dividends are paid out; for a sufficiently large rate of dividend pay
out, an initial time interval of contraction can occur, hpwever.

In order to obtain our results a number of assumptions were made.
Those we find most crucial are the following:
(1) The firm is in some respects 'a closed system'. Although debt money

can be attracted~paid off, and lending is possible, the amount of
common stock is f'ixed. This means that funds cannot be obtained by
emissions of new shares. Moreover, the existing shareholders were not
permitted to buy~sell shares from~to investors outside the firm.

(2) The price of a share traded between the shareholders was considered
fixed and constant. This assumption obviously deprives the sharehol-
ders from a range of interesting options.

(3) Control of the dividend policy cannot switch during the play. This
means that the shareholder who initially has the majority of shares
will continue to be in this position throughout the planning period.
Here we assumed that the high-taxed shareholder had the majority of
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shares. Of course, different results would have been obtained if the
low-taxed shareholder has had the majority.

(4) The strategies of the manager as well as the shareholders are open-
loop, implying that the players are supposed to stick to predetermined
plans that are independent of the current state of the game.

An obvious tssk for future research would be to relax these as-
sumptions. However, one should be prepared to face considerable difficul-
ties in the set-up as well as the analysis of such a model.
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Appendix 1

Proof of Lemma 1: We show that Aó - 0 leads to a contradiction. Assuming
aó - 0 implies

T
~i - ál t f vl(s)ds ) 0,

t -

by using (21a), (23a). Integration in (21c), using ~3(T) - 0 from (23c),
yields a3 ~ 0. To maximize H1 with respect to (S1,C) we choose

Í ~M

S1 - S1 E[O,SM] if al ~ 0
0

CM
C~ - C E[O,CM] if ~3 ~ 0.

0

M N
Hence S1 is either zero or unspecified in the interval [O,SM]; C E
[O,CM]. On an interval where ai - OMH1 does not depend on S1 and we can
choose any S1 in [O,SM], e.g. S1 - 0. By a similar reasoning, since al. . . 3vanishes identically, we put C~ 0. In conclusion, S1 - C- 0 vt E
[O,T]. by (~) we have Z1 ~ 0 which means that Z1 ) Z~2 for all t E[O,T].
This implies, by (22) and (24), that vl ~ 0 and yl - 0. From (A.1.1) we
then obtain ~i ~ 0. Rewrite the payoff in (9a) by using (~).

T
J1 --p Of (S2-S1)dt ~~[(1-Tg)R~(T) f Z][Zlo } ~T(S2-S1)dt]

and calculate

aJ1~aZlo - C(1-tg)Ri(T) 4 Z]~z. (A.1.2)

It is known that ~J1~~Zlo -~i(0). Since ~i . 0 we have ~i(0) - 0 but in
that case (A.1.2) cannot be satisfied since Z t R~ 0 is a constraint
which must be satisfied as a part of the necessary conditions. Q.E.D.
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Appendix 2

Proof of Lemma 2: For a singular C it must hold that

1 Z ' '1 ZZi -~3 1-T1 and Z1 -~3 1-ti.

Using (21c) yields

Z1 - -~3 (1-f)r 1Zt - -(1-f)rZi
1

which implies, by (~), that

S2 - S1 - -(1-f)rZl.

Since for C~ 0 the S.'s are strictly bang-bang, and Zi ) 0, it must hold
that SZ - 0 and S1 - S~. Thus,

SM - (1-f)rZl ~ Zi - SM~((1-f)r)

which yields Z1 - 0 and S1 - S2. But this contradicts S1 - SM, SZ - 0 and
we conclude that a singular C is not feasible. Q.E.D.

Appendix 3

Proof of Lemma 3: The proof follows the same lines as the proof of Lemma 1
and is omitted.

Appendix 4

Proof of Lemma 4: We shall prove that the regimes (2), (3), (4), and (~)
in Table 2 are infeasible.

Consider regime (3): It occurs if

x ' ~i ~ p (A.4.1)



47

and

T
x'?l2 t f[(1-T2)CM(s) ' v(s)]ds ( p.

0
(A.4.2)

If ~rz ) 0 then yl - 0 and the inequalities ( A.4.1-2) cannot be satisfied.
(This is also true for yl - ~r2 - 0.) We conclude that regime ( 3) occurs
only if ~rl ) 0. This implies Z1(T) - Z~2,

and

T
x t f[(1-T2)C~(s) t v2(s)]ds ~ p.

0

By a similar reasoning, regime (7) occurs only if y2 ) 0 implying
zl(T) - z.

and

T
x t f[(1-T1)C~(s) ; vl(s)]ds ~ p.

0

Consider regime (2) which occurs if

and

{x t y2 C p} ~{x f y2 ; fT[(1-~[2)C~(s) t v2(s)]ds ) p}.
0

This case occurs only if yl ) 0,

x',yl ) p
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and

T „
{x C p} ~{x f f[(1-T2)C ( s) f v2(s)]ds ) p}.

0

Similarly, regime (4) occurs only if ~r2 ) 0,

and

T ,~
{x ~ p} ~{x f f[(1-T1)C ( s) ; vl(s)]ds ) p}.

0

(Note that regimes (2) and (3) occur only if ~1 ) 0, implying Z1(T) - Z~2.
This makes some economic sense since regimes (2)-(3) both have S1 ~ 0.
Hence, knowing that his majority could ultimately be lost, P1 prefers not
to sell at all. A similar interpretation applies to regimes (4) and (~)
where ~2 ) 0, implying Z1(T) - Z, i.e. Z2(T) - 0).

For both regimes (2) and (3) we have Z1 ) 0, implying Z1(T) )
Z ) Z~2 (implyin 1 -lo B ó - 0) which contradicts Z1(T) - Z~2 (being implied
by ~fl ) 0). Hence these two regimes are infeasible.

For both regimes (4) and (~) we have Z1 ( 0, implying Z1(T) ~ Z2 - Z )(implying ~r - 0) which contradicts Z1(T) - Z(being implied by y) 0.
Hence these regimes are infeasible too. Q.E.D.

Appendix ~y

Proof of Lemma 5: First notice that having tl ) t2 in regime (5) implies
athat Z1 ) 0 for all t. When Z1 is non-decreasing, then C is identically

equal to zero (cf. (32)). Moreover, the constraint (11) cannot become
binding; hence vl - 0 for all t, and ~1 - 0. Using (21e) shows that ~i - 0
for all t, implying that ~1 . x.
Using (26)-(2~) and Table 1 we observe that S1 cannot switch and Table 1
shows that
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. „if x) p, then S1 ~ 0, and we conclude that S2 ~ G, i.e. Z1 . 0.
In summary, we have t- t - T as in regime (1)

1 s Z M sif x C p, then S1 ~ S, and S2 must be identically equal to SM in
order to have Z1 ) 0. Hence Z1 . 0, and tl - t2 - 0 as in regime (9).

Q.E.D

Appendix 6

In this appendix we deal with the expression (55) which uniqely
determines Ks and Is on path 2 iff ~3 ~ 0 throughout this path. In rela-
tion to the coupling procedure described in Appendix ~ the crucial ques-
tion is the following. What difference in the results of Appendix ~ does
it make if, roughly speaking, ~3 - 0 at the instant where path 2 is
coupled (before or after) another path? From Appendix 7 it appears that
the following cases must be dealt with.

(A) Path 2 ~ Path 1.
(B) Path 4~ Path 2; Path 3~ Path 2; Path 1~ Path 2.

~: First notice that on path 2 we have ~3(G'(K)-a-r) - 0 from (55). Let
t21 denote an instant just before the coupling instant t21 and let
~3(t21) - 0. Hence G'(K)-a-r is undetermined at t- t21 and we may have

or

or

(1) G' ~ atr

(2) G' - a}r

(3) G' ~ afr.

If (1) holds then path 2 cannot be coupled before path 1 since this would
require a jump in K. Recall that G' ) atr on path 1.
If (2) holds then the arguments of Appendix ~(Path 2~ Path 1~ Path 2)
show that this coupling is impossible. If (3) holds then consider the
costate equation (4~c) just before and just after the coupling instant
t21. Assume that t21 is not a switching point of the dividend policy, C.
On path 2 we have



~3(t21) 3 ~3(t21) ' 0

whereas on path 1( t21 denoting 'just after' t21)

~3(t21) - -(1-f)r~3(t21) - H(1`k).

Whenever a3 is continuous at t- t21 then
~3(t21) -~3(t21), implying

~3(t21) --~(1}k) ~ 0 and ~3(t21) ~ 0. This, however, violates the neces-
sary Legendre-Clebsch condition that a3 be nonnegative. Hence, if ~3 - 0
at t- t21 then path 2 car.not be coupled before path 1. Following
Feichtinger and Hartl (1986, Corollary 6.3) we know that ~3 is continuous
if

(i) I is continuous at t21 and the following constraint qualifica-
tion (CQ) is satisfied:

vectors (1,I,0) and (-1,0,(ltk)(RtZ)-K)

be linearly independent. CQ is satisfied for I~ 0, but not for I- 0. The
latter case is dealt with below.

(ii) I is discontinuous at t21 and t21 is an entry point where
entry is non-tangential. Obviously, by (54), entry will be nontangential.
If I(t21) - 0 then CQ is not satisfied and continuity of ~3 is not guaran-
teed. For this case we apply the following argument to prove infeasibility
of the coupling Math 2~ path 1. We need to distinguish the cases C(t21) -0 and C(t21) - C .

(a) C(t21) - 0. From (59) we have

0 - aK ~ (ltk)(1-f)[G(K) - (a ; ikk)K]. (A.6.1)

But G'(K) ~ atr ~ G(K) ) G'(K)K ~(atr)K ~( a t ikk)K which shows that
(A.6.1) cannot be satisfied. Hence, with I(t21) z 0 the coupling 1s in-
feasible.
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(b) C(t21) - CM. From ( 59) we have

CMZ - aK t (ltk)(1-f)[G(K) - ( a ~ ikk)K]. (A.6.2)

We choose to regard (A.6.2) as a borderline case; it would only be by
coincidence that K(t21) would satisfy (A.6.2). Hence, with I(t21) - 0
coupling is infeasible.

~: Path 2 as final path
From (47c) we obtain that on path 2

~ - ~ (T)e(1-f)r(T-t).
3 3

Recall that ~3 ) 0 is necessary for a singular path. Hence a3 ) 0 a

a3(T) ) 0. Eq. (47c) shows that a3 ( 0 for ~3 ) 0. If a3(T) ) 0 then, at a
coupling instant tj2 (j - 1,3,4), we have A3(tj2) ) 0 and Is, Ks are well
defined on path 2. We choose to disregard the borderline case where
a3(T) - o, cf. (49c).

Appendix 7

Proof of Proposition 1:
First consider aP th 2 as the final path. Let tij be the coupling

instant between path i and path j(such that path i precedes path j).

Path 4 ~ Path 2
On path 2, G'(K) - atr; on path 4 G'(K) increases since K decreases.
Hence, for a coupling 4~ 2 it must hold that G'(K) C a{r on path 4. This
makes path 4 infeasible as an ínitial path (cf. (61)) and it must preceded
by some other path. Path 4 cannot be preceded by neither path 1 not path 2
since on these paths we have G'(K) ) atr and G'(K) - atr, respectively.
Could path 4 be preceded by path 3? Only if G'(K) ( atr on path 3. But
then the initial condition (61) cannot hold.

Path 3 ~ Path 2
The same conclusions as for path 4~ path 2 apply.
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Path 1 ~ Path 2

This coupling is feasible. Notice that on path 1 it must hold that K) 0
since G'(K) ) a;r and G'(K) must decrease to G'(K) - e;r. Hence, on path
1, K) 0 at least on some interval before the coupling instant t12.

Now we have to check if path 2, 3 or 4 could precede the string
path 1~ path 2. We will do this checking for the dividend policies of
type 1, type 2, and type 3(cf. (42)).

Path 4~ Path 1~ Path 2
M ADepending on the dividend policy we can have C- 0 or C-

coupling instant t41'

CM at the

A
c (t4i) - o:
From ( 5) we have R -( 1-f)[G(K) - eK - rY]. Since Y- K - Z- R, and the
state variables K and R are continuous, we have Y and R continuous. On
path 4, R C 0~ R(t41) C 0. But on path 1, R) 0~ R(t4i) ) 0, which con-
tradicts the continuity of R. Notice that both paths 1 and 4 are boundary
paths. We conclude that the coupling Path 4~ Path 1 is infeasible.

~A(t41) - CM:
For Apath 4 it holds that R(t41) C 0. Since C- CM across t41, R will be
continuous at t- t4i. Hence R(t41) C 0 must hold on path 1. On path 4 we
have I- 0~ K--aK C 0, and on path 1 we have K- Ib - aK C 0 for t~
t4i (from the right) since R(t41) C 0. If Ib ) 0, then K will be discon-
tinuous at t41.i8) Assume that Y is continuous. Then K- Y t R should be
continuous too, which contradicts what has just been stated. Hence Y is

-------------------------------------------------------
18) We can safely take Ib ) 0 since if Ib - 0, then path 4 and path 1
coincide and the coupling problem is irrelevant.
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discontinuous but this contradicts that Y must be cor.tinuous since Y- kR.
In conclusíon, the coupling Path 4~ Path 1 is infeasible.

Path 3-~ Path 1~ Path 2
Depending on the dividend policy we can have C~(t31) - 0 or C~(t31) - CM.

w
C (t31) - o:

On path 3 i t holds that ~2 ) 0 and a2 - a~Z -(1-f)[G'(K) - a- r]~3,
whereas on path 1 we have a2 -~Z - 0. Consider the coupling instant t31.
Since path 1 is singular we must have a.,(t} )) 0 and a-(t; )- ~(t} )-~ 31 r 31 2 31
0. Hence, on path 3 it must hold that

~2(t31) - -( 1-f)[G'(K)-a-r]a3(t31) ~ 0.

Thus, G'(K)-a-r ( 0 on path 3 as K~ K(t31). However, on path 1(which is
to follow) G'(K(t31)-a-r ~ 0 and to retain continuity of K it must hold

that G'(K(t31)) - atr. But K) 0 on path 1, implying that G'(K) becomes
less than a;r as t increases. This contradicts the requirement (60).
Hence, the coupling Path 3~ Path 1 is infeasible.

C~(t31) - Cm:
Consider the coupling instant t31 and recall that (ltk)(ZtR) - K~ 0 on
path 3 whereas (ltk)(Z.R) - K- 0 on path 1. If t31 is an entry point,
then (ltk)(ZtR) - K~ 0 on some interval (t31-e,t3~), E) 0.19) But then
path 3 violates the initial condition (61).
Hence, if t3~ is an entry point, then we must have a path which precedes
path 3. Such a path can only be path 1. Consider the following policy
string.

19) If t31 is not an entry point, then ( ltk)(ZtR) - K- 0 on some interval
(t31-ó,t3~). We return to this case later on.
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Path 1 Path 3

0 t13 t31

Path 1

At t- 0 it holds that G'(K) ) a4r and this can continue to hold on path 1
if K does not increase so much that G'(K) ~
at t~3 we must have G'(K(t13)) ~ atr. Working
have G'(K(t31)) ~ afr by the same argument as- r
3~ Path 1 in the case where C(t31) - 0. The

Since K C 0 on path 3, G'(K) will increase as
It only remains to consider the policy string 1~ 3~ 1

is not an entry point.
Hence (ltk)(ZtR) - K- 0 on some interval to the left of t31.

when t31

But then
path 3 as well as path 1 are boundary ares on an interval containing t31
and the arguments stated for the coupling Path 4-~ Path 1-~ Path 2(C~-CM)
apply. In conclusion, the coupling Path 3-~ Path 1 is infeasible.

Path 2~ Path 1-~ Path 2

w
C (t21) - 0:

On path 2, G'(K) - a;r and K- 0. On path 1, G'(K) ~ atr and K~ 0, imply-
ing that G'(K) decreases. Obviously this coupling is infeasible.

C~(t21) - CM:

On paths 1 and 2 we have ~2 - ~2 - 0. Hence

0 - (1-f)(G'(K)-a-r)~3 on path 2

0 - -(1-f)(G'(K)-a-r)J~3 t u

afr occurs. To couple path 3
backwards from t- T we must
stated for the coupling Path
contradiction now follows.

t increases from t13 to t31.

on path 1.

Furthermore, ~3 ~ 0 on path 1, G'(K) - a4r on path 2, and G'(K) ) afr on
path 1. By continuity of K we must have G'(K) - atr on path 1 at t- t21.
But then K(t21) - 0 in (A.~.1). Now, R(t21) - 0, and since R must be con-
tinuous across t21, we must have R(t21) - 0. This implies K(t21) - 0 and
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Ib - aK on path 1. Notice that I- aK and K(t21) - 0 on path 2. Hence I-
aK is continuous across t21. Extending by continuity of the control, I-

aK on an interval [t21,t21 ' e] implies K- 0 and hence G'(K) - e4r. This,
however, violates the condition G'(K} ) a4r on path 1. In conclusion, the
coupling Path 2~ Path 1 is infeasible.

We have now established that no path can precede the string path
1-~ path 2. Our analysis also shows that when we take path 1 as the final
path, no paths can be coupled before path 1. Fience, we have only two can-
didates for an optimal policy, namely

M Path 1~ Path 2
~w Path 1 throughout [O,T]. Q.E.D.

Appendix 8

Proof of Lemma 6
Define

A - - (1-f)r ln G(Ks} - aKs
1 G(Ks) - aKs - rY12

and note that A) 0. Eq. ( 62) can be written as

to- t12;A

which yields

dto dt12 dA
dr - dr 4 dr'

First we note that

(A.8.1)

(A.8.2)

dA 1 G(Ks) - aKs - rY12 rY12 )ln . 0dr -(1-f)r2 GÍKs) - aKs G(Ks) - aKs - rY12 ~

for
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ln G(Ks) - aKs - rY12 } rY12 ~ o (A.8.3)
G(Ks) - aKs G(Ks) - aKs - rY Z.

To simplify the notation define

a- rY12 and p- G(Ks) - aKs.

Hence, (A.8.3) becomes

ln~ . a ~ Or~ln(1 -a) ~-a
( p) ~B-a Z g Z g-a'

Defining z- a~g yielda in (A.8.4)

ln(1-z) ~ 1-Z ~ ln(1~(1-z) ~ z~(1-z).

Define

Y - 1~(1-z)

which yields in (A.8.5)

ln y ~ y-1.

12

(A.8.4)

(A.8.5)

(A.8.6)

But y-1 ~ ln y for all y) 0 except at y- 1 where ln y- y-1. However,
y- 1 cannot occur since y- 1~ z- 0~ a- 0~ r- 0 and~or y12 - 0.
Comparing (A.8.3) with (A.8.6) we conclude that dA~dr ~ 0.

The second step is to calculate dt12~dr. On path 1, K) 0 implies
N( 0 and k decreases from u(o) to zero at the start of path 2. The multi-
plier u may jump, at t- t12, from some positive u(t12) to zero. From (56)
we know that whenever N is differentiable then

u - (1-f)a3(G'(K)-a-r) t (1-f)~3G " (K)K

and ~3 is given by (4~c), i.e.
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N - (1-f)(G'(K)-a-r)!u(lfk)-(1-f)ra3) ~ 11-f)a3G " ( K}K. (A.8.7)

In (A.8.7) define

~ - -(1-f)2(G'(K)-a-r)r ~3 t (1-f)a3G " (K)K

w - (1-f)(G'(K)-a-r)(l;k)

and notice that ~ C 0 and w~ 0 on path 1. Then (A.8.7) can be written

N t wu - ~. (A.8.8)

By integration in (A.8.8) we obtain

t t s
u- exP(- I v(s)ds){u(~) t f~(s)exP( f v(2)dT)ds}. (A.8.9)

0 0 0

At t- t12 we have

u(t12) - exP(- f12W(s)ds){u(0) ' J12~(s)eXP( fsW(T)dT)ds1 ~ 0
0 0 0 -

(A.8.10)

tFrom (A.7.1) (and the remarks below that equation) we know that u(t12) - 0
and (A.8.10) holds with equality. Let

t12 s
F(t12,r) - u(0) ; f ~(s)exp( j y(T)d~)ds - 0 (A.8.11)

0 0

and recall that y and ~ depend on r. Hence, by (A.8.11), t12 is implicitly
given as a function of r. By the implicit function theorem we obtain
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dt12
dr

- -~FI~rI(~FI~t12) -

t12 ( s s~ s
f i~(s)exP( f W(T)dt) f ádT . exP( f w(T)dT) ~~~da

0 l 0 0 0 JJ
- t12 -

4~(t12)exP( f Y(T)d2)
0

t12
- lI(9~(t12)exP( f W(t)dT)) x ( A.8.12)

0

t12 s
f exP( f y(i)di){-~(s)(1-f)(ltk)s - (1-f)(G'(K)-e-r)(1-f)~3

0 0

t (1-f)2r ~3}ds.

In (A.8.12) we have q~(t12) ( 0 and

p(s)(ltk)s t ( 1-f)(G'(K)-a-r)~3 - (1-f)r ~3 ( 0 (A.8.13)

is sufficient for dt12ldr ~ 0. But G'(K(t12)) - air must hold to guarantee
continuity of K(cf. the remarks below (A.~.1)). Then (A.8.13) holds since
p ( 0.

We have shown that dAldr ~ 0, dt12ldr ) 0 and using (A.8.2) com-
pletes the proof. Q.E.D.
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