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Abstract

The likelihood of an exact ARMA model under the assumption of normality is

investigated. Using a closed form expression of the covariance matrix the

elements of the matrix oi second derivatives of the concentrated likelihood

function are derived. These elements consist in general of four or five

terms. Two terms come from the determinant, one of them belonging to the

information matrix. These terms are sums of the elements of the covariance

matrix or its inverse. The next two terms are quadratic forms of the error

vector. The last term is based on the matrix of independent variables, and

thus only present in a regression model and not in the pure time series

model.

The general form of second derivative does not permit conclusions about the

existence of global maximum of the likelihood function.

JEL code: C22

Keywords : Autoregressive moving average process; exact ARMA covariance

matrix; concentrated likelihood; second derivative.

1. Introduction

In Van der Leeuw (1993) it was shown how first order conditions for the

parameters of a linear model with ARMA-errors can be derived and solved.

lI am indebted to H.H. Tigelaar for many suggestions and comments on an
earlier draft.
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Under the assumption of normality and using a closed form for the exact

covariance matrix the (concentrated) likelihood function can be regarded as

a function of the ARMA parameters and the error vector. The exact

covariance is written in the form of lag matrices, which can simply be

differentiated. This was done for the pure MA case, the pure AR case and

the general ARMA model. The resulting first order conditions have at least

one solution.

The solutions for the AR and MA parameters depend on the (computed) values

of the error vector, which in turn is based upon the covariance matrix.

Only in the pure MA and AR case of a time series model without explanatory

variables direct solutions are found. In the general ARMA model the results

for the MA part depend on the AR parameters and vice versa.

Supposing a linear model of the form y-X~te, with normally distributed

errors, we maximize the likelihood function, which is equivalent to

minimizing S-1VI1~Te~V-le (Judge et al., p.284). Here e-y-Xb, b being the

Aitken estimator of ~, X a matrix of independent variables and ~2V-Eee~. It

is clear, that this model reduces to a pure time series model in case X is

zero: e is identical to e and y(see, e.g., Anderson and Mentz, 1982). A

convenient way to start with is to use T, the number of observations, times

the logarithm of S: S.-TXlogS. It consists i.a. of the covariance matrix

and the error vector. The first derivative is simple enough to permit a

useful expression for the second derivative.

First we will give a general expression of the second derivative, next we

will discuss the details for the different cases: MA, AR and ARMA. It will

become clear that conclusions about the existence of a global minimum

cannot be based solely upon the behavioral of the second derivative.
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Before we start, let us make clear what we mean when we use some

expressions. Let A and B be two matrices. Then element (i,j) of matrix A

is denoted as A(i,j]. If A[i,itkl-A[i,i-k] for every i we will write A[k].

Furthermore dAB should be read as d(A)B and not d(AB) and dA;B as (dA)tB.

Llhen we use trAB it should be understood as tr(AB), not (trA)B.

2. First and second differential

As S~-TX1ogS, its differential becomes

dS~- d(loglV[ tT log(e~V-~e))

or

d5.- trV-1dV tT (e~V~~e)-le~dV-le

because e~V-lde- (y -Xb)~V-ld(y -Xb)- -(y~V-1X -b~X~V-1X)db- 0. This is

(1)

what Magnus (1978) called the 5-equation(s). This expression shall be our

starting point. It has the advantage above using S, that the number of

terms will be less, while it has the same stationary points.

Putting e~V-le~T equal to sz we have d5~- trV-1dV te~dV-le~s2.

In case an expression for V and its differential is available we rewrite

dV 1 as -V-1dVV-1 and have s2trV-1dV- e~V-1dVV-le as first order condition.

When we have at our disposal the inverse of V- as in the AR case - we use

VdV-1- -V-1dV and get sztrVdV-1- e~dV-le.

Before we differentiate (1) again we first take the differential of

e- y-Xb:

de- -Xdb- -Xd((X~V-1X)-1X~V-ly)-

- X(X~V-1X)-1X~dV-1X(X~V-1X)-~X~V-ly -X(X~V-1X)-1X~dV-ly-

- -X(X~V 1X) 1X~dV-1(y -X(X,V-1X)-1X~V-ly)

- -X(X~V-IX) 1X~dV-le.

Hence e~dV-lde is -e~dV-1X(X~V-1X)~1X~dV-le.
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Straightforward differentiation of (1) gives for the second differentiai:

dzS~- d(trV-1dV tT ( e~V-le)-le~dV-le)

- trdV-1dV ttrV-1dzV }Td(e~V-le)-le~dV-le tT(e~V-le)-1(e~d2V-le }2e~dV-lde)

- trdV-1dV ttrV-1dzV -T(e~V-le)-2(e~dV-le)d(e~V-le)

tT(e~V-le)-le~d2V-le t2T(e~V-le)-le~dV-lde

or

z
z~ -i -i z 1 (e~dV-le) e~dzV-le e~dV-1X(X~V-1X)-1X~dV-le

d S- trdV dV ftrV d V
-T z } z -2 2

s s s

(2)

Of course the last term is not present in the pure time series model. The

derivative corresponding to the first part of this expression, trdV-1dV, is

equal to minus the information matrix as shown by Magnus (1978).

Therefore it has to be negative:

trdV-~dV- -trV~1dVV-1dV- -vec(V-IdVV-1)vec(dV)

- -vec(dV)~(V-loV-1) vec(dV)

~0.

Furthermore it is obvious that the third term and the last one, if present,

are always negative. This is a far from encouraging situation as we are

looking for a minimum. On the other hand the sign of the second and fourth

term are not clear without any information about the structure of V. We

will show that at least in the MA case these expressions are always

positive.

When V is known, rewrite dV-1 and d2V-1.

dV-1- -V-1dVV-1

dzV-1- d(dV 1)- d( -V-1dVV~~)- 2V-1dVV-1dVV-1 -V-1dzVV-1.

Substituting in (2) we get
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2

z~ -i -i -i z 1 e~ V-1dVV-le e~ V-1dW-~dW-le
d S--trV dVV dV ttrV d V-T z } 2s s

-e~ V-~dzVV-le -2e~ V-idW-~X(X~ V-iX)-1X~ V-1dW-ie
z zs s

or

z
2~ -i -i -i z 1 e~ V-1dW-le e~ V-1dzW-led S--trV dVV dV }trV d V-T z - z }s s

2e~
V-1dV(V-1 -V-1X(X~ V-1X)-1X~ V-1 )dW-le

.
2

S

(3)

Here the last expression at the right hand side is positive, while the sign

of the fourth one is not clear.

On the other hand, when V-1 is known we rewrite dV and dzV:

dV-1- -V-1dVV-1 or dV- -VdV-1V,

dzV-1- 2V-1dVV-1dVV-1 -V-1dzVV-1 or dzV- 2VdV-1VdV-1V -VdzV-1V.

Substitution in (2) gives

z
dzS~- -trdV-1VdV-1V ttrV-1(2VdV-1VdV-1V -VdzV-1V) -T e~d2-le t

e~dzV-le -2e~dV-1X(X~V-1X)-1X~dV-le
z zs s

or
z

2~ -t -i z-t 1 e~dV-le e~dzV-le e~dV-1X(X~V iX)-1X~dV-led S- trdV VdV V-trVd V -T z } z -2 Zs s s

(4)

Observe that the first term is positive and that the third and last one are

always negative. The sign of the second and fourth one are unknown.

Next we will use these expressions to give a more detailed description of

the second derivatives for the different ARMA cases.
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3. The ARMA covariance matrix

The ger.eral form of ARMA distributed errors is given by

P 9
ec- -l~l~icc-it~ctiElai~c-f~ t-1,..,T,

where vt is a sequence of independently and identically distributed random

variables. S denotes the vector (~91,~92,..,~P)~ of AR-parameters, a is the

vector (al,a2,..,aq)~ of MA-parameters. We assume that the invertibility

conditions are fulfilled. By definition ~9o and ao are equai to 1. Use v2V

to denote the covariance matrix of e: v2V-Eee~.

Following Pagan (1974), we introduce two matrices for both the AR

parameters and the MA parameters. We define a(square) lower band matrix P

of dimensions TxT, and a Txp matrix Q as follows:

1
~1 '

P-

~9P . . ~91 1

Q-

~P ~P-1 ' ~~
~ . . .

0 ~9P
0 . . 0

0 . . 0

The upper triangular part of a lower band matrix consists of zeros and the

lower part has off -diagonals with the same elements. Q consists of an upper

pxp part with an upper band matrix and a lower (T-p)xp part, which consists

of only zeros. Like P and Q will be used to describe the AR part of the

error vector, so are M and N defined for the MA part, where ~9 is replaced

by a and p by q. As is proven elsewhere (Van der Leeuw, 1992) the exact

covariance matrix for ARMA errors is equal to V-[N M][P~P-QQ~]-1[N M)~,

where P is like P, but of order (T;p)x(Ttp) and Q like Q, but of order

(Ttp)xp. In the MA case this expression reduces to V-(N M][N M]~ and in the

AR case it becomes [P~P-QQ~]-1.
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For our purpose it is obvious to rewrite the matrices of which the

covariance matrix consists in such a way that they can be differentiated

easil;~. To do this we introduce the lagmatrix, as described in Van der

Leeuw (1993). Define ~h as the Txl vector of which all elements are zero,

except element h, being 1. Then the lagmatrix, for which we shall use the

T-m~k

symbol L, is Lk(n,m)- ~ ~h~h-k. n,m~max(O,k). If both n and m are zero we

n-nt1

write Lk and if n is equal to m Lk(n). Lo is the unit matrix, LT the null

matrix. Its transpose, Lk(n,m), is equal to L-k(n-k,m-k).

P P

Using lag matrices we write P as ~ L; ( i),91 and Q as (~ L;-P~9; )[ IP 0] ~,

1-0 1-0

where IP is the pxp unit matrix: forms which are linear in the parameters

and that can be differentiated easily. Of course M and N are rewritten in a

similar form.

4. The Moving Average case

In the pure MA case we have V-[N M][N M]~-NN~tMM~. Its first differential

is dV-dNN~tNdN~tdMM~tMdM~. As M and N are linear functions of a d2M-dZN-O

and the second differential becomes d2V-2dNdN~t2dMdM~. First we will show

that the parts containing the second differential of V(of which the sign

was not clear) are positive. Define the matrices of derivatives to aí:

N1:-~á and M;:-~á . Then dN- ~~~a;- ~ N;dal
1 t 1

1 t

A quadratic form like ~~d2V~ is positive:

~~d2V~- 2~~dNdN~~t2~~dMdM~~

2~ ~~N;da; ~ N~~dalt2~ ~~M;da; ~ M~~das

s ~ 1 1
2n~nt2m~m ~ 0.

and dM- ~ ~áa1- ~ Mlda;.
1

1 1
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Here n-~ nJ, n1- N~mdaJ and m-~ mJ, m1- Mj~daJ, all (Txl)-vectors. The term

1 1
containing the second differential is also positive:

trV-1d2V- trV-1(2dNdN~t2dMdM~)- 2tr(dN~V-1dNtdM~V-1dM)~0, as both terms

within parentheses are TxT positive definite matrices.

Using lagforms, we write the MA-covariance matrix as

q f q

V- ~ ( ~ LJ-taJ} ~ Lt-JaJ)a1.
1-0 1-0 1-t~1

Its differential is

v 1 9

dV- ~ ( ~ (L1-t}L1-1)aJt ~ (L1-J}L1-1)aJ)da1.

1-1~1

The corresponding derivatives are :

4
av -
aai- ~ (L-I1-11 tL-11-t1)a},

and
1-0

a2v

i- 1,..,q

L-I1-il 'L~I1-11~ i- 1...,q. J- 1...,q.aaiaaJ

From (3) we obtain the second derivative of the modified

function:

Theorem 1

Second derivafive MA-case.

a2s' -~ av -1 av -1 a2v
aataaJ- -trV datV daJ ttrV aa~oa~ ~ 1

- 1 m~ a~ }2 m~ aVHa~
sz aalaaJ sz 8a1 aa~

where

likelihood

-1 1 m' a~ m' av-m
T a aa1 aa

hesslan 36 2~.06.94 8



q q T-Ik-SIT-I1-}I

1. trV-1
aa. V 18a - Z L L L Li }

k-0 l-0 h-1 q-1
(V-1[gtll-jI,h1V-1[g,htlk-illtV-1(g,h]V-1(gtll-jl,h}Ik-iIl)akal

r-IS-JIz
2. trV-laát~al- 2 ~ V-1(hili-jl,hl

n-i
q T-Ik-SI

3. m~a~ m~a~- 4{ L ~ mh~Mlk-Ilak}{

m-
V-le

q T-I1-JI

~ ~ ~e~a'I1-llal}
k-0 h-1 1-0 q-1

T-I~-11z
4. m'8a áá- 2 ~ ~n~n,li-~I

n-i
9 q

5. ~~ aV H~- ~ (m(Ik-il)t~(-Ik-il))ak)~H( ~ m(Ij-11)t~(-Ij-11)al).é3ai 8a~
k-0

~(k)- (~ltk ... mT 0 .. ~)~
~ k -~

~(-k)- (O .. O ml ... ~T-k ),

~ k -~

H- V-1 -V-1X(X~ V-1X)-1X~ V-1.

1-0

The proof is given in Appendix 1. Here we give a brief outline. Substitute

the lagform of the covariance matrix in the expression of the derivative,

next rewrite if necessary and use the properties of the trace operator.

Eventually use the definition of the lagmatrix and the result follows.

The first part and thè most complicated one is trV-láa V~8a '1 ~

It is a function of the elements of the inverse of the

covariance matrix, with many elements if T is large. The next

2
part, trV-laáiaay, is rather simple and consists of the sum of

the elements of the li-jlin diagonal of the inverse of the

dispersion matrix.
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z
For the third and fourth part, ~~á~ ~~~~ and m~a~, we define

i ~ t ~

~-V-le. The resulting expressions are simple sums and products of this

vector.

For the last part, if present, we first define ~(k)- (mltk ... mr 0.. 0)~
f- k -~

to compute the vector á~. Next we premultiply and postmultiply the
}

quadratic form H with the appropriate vectors.

5. The Auto Regressive Case

The approach to the AR case is more or less as in the preceding section.

However there are several differences. First, in this case we have an

expression for the dispersion matrix in stead of the covariance matrix

itself. As a consequence all elements of the off diagonals of several

matrices we encounter are equal, which makes computations considerable

easier. Second, both expressions, of which the sign is not clear, are not

necessarily positive, be it that the quadratic form is almost always

positive. Only if the T, the number of observations, is small compared to

p, the number of parameters, it may become negative. Third, the determinant

of the covariance matrix is equal to that of the submatrix consisting of

the first p rows and columns.

In the AR-case we have V-1-P~P-QQ~, with dV-1- dP~PtP~dP-dQQ~-QdQ~ and

dZV-1- 2(dP~dP-dQdQ~), as P and Q are linear functions of the parameter

vector. Write V, P and 4 for the pXp upper left submatrix of V, P and Q.

Then V-1-P~P-QQ~, and IV1-1V~ (see Van der Leeuw, 1992). Therefore we have

trVd2V-1- trVd2V-1- 2trV(dP~dP-dQdQ~)- 2trdPVdP~-2trdQ~VdQ, the difference

of the traces of two positive definite matrices. For the quadratic form

hesslan 36 27.06.94 1~



e~d2V-le we have e~dP~dPe-e~dQdQ~e, again the difference of two positive

terms.

The lagform of the dispersion matrix is
P P

V 1- ~ ~ L]-y ( j ) ,9y~9].

t-o }-o

with as differential
P P

dV-1- ~ L (L]-1(~)}L]-1(j))~9}d~9y.
1-0 }-o

The representation of V in lagform is

p p-1-1 p

~-1- ~ ( ~ L]-t (j )~9}- ~ L}-y (p-i )~9] )~9y

t-o ]-o ]-P-1.i

with differential
p p-1-1 p

dV-1- ~ ( ~ {L}-1(j)}L1-t(j)),~}- ~ {L]-1(p-i)fL}-t(P-i))~9})d,91.

t-o ]-o ]-P-1~1
Using these expressions we give the second derivative of the modífied

likelihood function.

Theorem 2

Second derivative AR-case.

2 ' -1 -1
a,9 a~ - trv a;s ~ a;si ) 1 }

a2v-' i i -av-'
-trVa,91a,9} -T Sa e a~9

. av-1 1 , a2v 1
e e

a~9 } e} s 2 e a,s,a,~
].,

where

s

-1 -1

- z e~a,~ {X(X~V-'X)-lx~?a,s".s t )

hesstan 36 27.06.9a 11



-1 -1

1 . trV~~V~~ -
t J

P-1-1 P-J-1 P-1 P-J P-I-1 P P-1 1

Z( ~ ~ L ~ - L L L L

k-0 1-0 q-1.k h-1.1 k-0 l-p-J.1 g-1~k h-1.p-)
p p-J-1 k p-J p p k 1

- ~ L ~ ~ } ~ ~ ~ ~ }
k-p-!.1 1-0 q-1.p-i h-1.1 k-p-1.1 1-p-J.1 q-1.p-1 Illlh.p-J

{V[h-ltj-g1V[g-kti-h] }V[h-g] V[g-kti-htl-j]}~k~1

azV-i
2. trVa~9ia,9J - 21P-i-jl~[j-i1

-1 -1 p 7-1-k p T-J-k

3. e~ a~~ e' a,9 e- 4( ~( ~ eh,keh,1 ) ,9k}{ ~( ~ eh.keh.J)flk}
1 J

k-0 h-1 k-0 h-1
r-1-1, a2v-1

4. e
at9;at9J

e- 2~ eA'jeh,i

n-i

5. e a~ (X(X V X) X}a~ e-
i j

P P

( ~ (e(i,k)te(k,i))~~9k}(X(X~V-1X)-1X~}{ ~ (e(j,k)te(k,j))~9k}

k-0 k-0

e(i,j):- (0 .. 0 eltJ ... eT-1 0.. 0)~.
~ 1 -i E-- J -~

The derivation of this formula can be found in Appendix 2. As in the MA

case the information matrix gives most complications, be it that the number

of computations is relatively small, because of the structure of the

determinant. The second part is very simple: the second derivative is here

equal to one of the elements of V times a scalar. At the same time it makes

clear, that the sign is not certain.

The differential corresponding to this term is trVd2V-1 or

P P
~ ~21P-i-jl~[j-i1d~91d~9J.

, av-1 -~ -~ - av-1
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If p-1 we get trVd2V-1-2V(0], which is clearly positive. For p-2 it becomes
r d~9

trVd2V-1- d,9 d,9 0 2V[ll 1, a matrix with one ositive and oneI 1 2, 2V[1] 4V[0) d~92 p

negative root.

The fourth term, containing the second derivative of V-1, is
T-1-J p p T

, aZV-1e a~ia~} e- 2 ~ en,jen,i or 2~ ~ ~ en-Sen-}. The corresponding
n-1 t-1 j-1 n-1,1.j

matrix of derivatives is almost sure positive. The differential e~d2V-le

can be split up in two parts, of wh.ich the larger one is always positive.

P P T

e,d2V-le- L L ~ en-Sen-}d~91d,9j

i-1 J-1 h-1~it)
P P 2P T

- ~ ~ { ~ en-ien-jd,91d~9j} ~ en-Sen-jd~91d,9j)

!-1 j-1 h-lalrj n-2p~1

The former trem in this expression contains only p2(p-1), the latter one

p2(T-2p) terms and is positive:

p p T T p

~ ~ ~
en-Sen-Jd~9id~9j- ~ ( ~ en-kd~9k)2.

1-1 J-1 h-2pr1 h-2p~1 k-1

The sign of the former term is indeterminate. It can be split up again,

such that the first part has the same structure as the complete expression,

while the second part can be positive, zero or negative.

P P 2P

L L ~ en-ieh-Jd~91d,9j-

1-1 J-1 h-1a1a)
p-1 p-1 2p p 2p

- ~ L ~
en-Sen-jd~91d,9jt2

~ ~
eh-peh-kd~9hd,9k

1-1 j-1 h-1~1~j k-1 h-liptk

For the last term of the second derivative, if present, we first compute a

vector containing the derivative. It is obvious, that the corresponding

matrix of second derivatives is positive definite.

hessian-36 27.06.94 13



6. The ARMA case

As can be expected the ARMA case is the most complicated one. The

differential of the MA part is quite easy to find. For the AR part we only

have the inverse in a form which can be rewritten in lagmatrices. Therefore

formulas become longer and more complicated, but essential technical

problems do not arise. In the sequel symbols containing a bar denote

'enlarged' matrices or vectors of order Ttp in stead of T for expressions

without a bar. Moreover we will use.p for the number of parameters. This

give no loss of generality as we can fill up the shorter vector with zeros.

First we will treat the second differential in the direction of the MA

parameter, next in the AR direction and eventually the mixed case.

The expression for V we will use is [N M][P~P-QQ~]-1[N MJ~, and thus we use

(3) as the equation for the second differential. To facilitate notations we

will use ~ for the (inverted) AR part, P~P-QQ~. As ~-1 is a covariance

matrix, every diagonal has the same elements. From this expression it is

clear, that the MA-differential of V will always contain the AR covariance

matrix. This results in sums over all the elements of ~. On the other hand

the AR differentials of V suffer from the fact that only the inverse of a

differentiable form is available. The consequence is second differential of

two parts.

6.1 The ARMA case: MA-part

What we need is an expression for the covariance matrix that can simply be

differentiated to al. To do this we first rewrite those parts of the

covariance matrix containing MA parameters in such a way, that the

hesslan-36 27.06.94 14



parameter vector becomes explicit. Observe that [N M] can be written as
T p

[0 I]M, Where (0 I]- ~ t.nchrp and M- ~ LS(i,i)al. Then [0 I]M becomes:
n-i 1-0

(0
T p T.p

I]M- ~ ~n~n.p~ ~ ~969-Sa1
n-i 1-0 9-i.1
P T

- ~ ~ ~h~h~p~hap~htp-lal

1-0 h-1

p T

- ~ ~ bh~h'P-lai
s-o n-i

The covariance matrix is
p T p T

V- ( ~ ~ ~n~n'P-iai)t1-1( ~ L ~9~4'P-Jaj)~
J-0 g-1

p T T
-1

~ ~ ~ ~ [h-i-gtj]~hL9aiaJ.

1-0 J-0 h-1 q-1

Its differential is

p p T T

dV-
L ~ L L (t1-1 [h-g-it j ] ~~-1 [h-g-jti ] ) cnc9aJda1

s-i J-o n-i 9-i

or
T TP P

-C. ~ ~ ~
(~ 1[h-g-itj]tp-1[g-h-itjl)t.nc9a}da;

1-1 }-0 h-1 g-1 ~

as ~-1[k]-~-1[-k].

Theorem 3.1

Second derivafive ARMA-case; MA-parf.

a2s. -trv-'
av v-1 av

ttrv-1
a2y -1 1 ~ av ~ av z ~ a2v }

aalaaJ- aal 8aJ aasaaJ T Sa ~ a~ a~ -~ aa~

, av av}2m áa1Ha~

hessian 36 27.06.94 15



with

T T T T

1. t~v-~ av v-~ av -
L L L Laa~ aa~

h1-1 h2-1 g1-1 q2-1

P

{ L
(~-llhl-gl-itkllt~-llgl-hl-ifkll)akl}

k1-0

2

2. ~.CV-laal IXJ-

3.

T 7 p T T p

4{ L
L(~A-'Ih-g-i}k]ak)mh~q){ L L(~0-1(h-g-j;klak)mh~q)

h-1 q-1 k-0 h-1 g-1 k-0

r T
a2v C (' -~

4. m aaiBaiW- Z L L ~ [h-g-itj]~h~Dq

h-1 g-1

T T T T

5. ~~aáHda~-{ ~ L L Li ~
h1-1 g1-1 h2-1 g2-1

P

{ ~ (0-lfhl-gl-i}kllt~-llgl-hl-i}k1I)akl}

k1-0

P

( ~ (~-1[h2-g2-jfk2]t~-1[g2-h2-jtk2])ak2)

k2-0

H- (V-1 -V-~X(X~V-1X)-1X~V-1).

H[h1,h21~q10q2}

The proof can be found in Appendix 3.1. The derivations are similar to the

those in the MA and AR part. The first part, minus the information matrix

has a simple structure but contains for large T many terms, consisting of

elements of the (enlarged) AR covariance matrix and the dispersion matrix.

P
{ ~ (~-llh2-gz-k2tjl}~-ll8z-h2-k2tj])ak2?V-IIS2,h1]V 1[81,h21

k2-0
T T

2 ~ C A-1(h-g-itj]V-1[h,8]

n-i q-i

~~á~~~á~-t ~
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The second term looks líke the first one, but in a simplified form. The

quadratic parts are similar to the MA case, but now weighted with the

elements of the AR covariance matrix. The last term with the quadratic form

is again a complicated expression.

6.2 The ARMA case: AR-part

From V- [N M]0-1[N M1~ with ~- P~P -QQ~ we conclude that we need the

differential of ~ or dV- -(N M]~-1d0~-1[N Mj~. Hence the second

differential is a less friendly expression with two terms:

d2V- 2[N M]~-ld~~-1d0~-1[N M]~-[N M]~-1d2~~-1(N M]~. It implicates that the

resulting second derivatives become correspondingly longer. Otherwise the

derivation brings no specific problems. Furthermore, contrary to the pure

AR case, the determinant is not equal to the upper left submatrix of the

covariance matrix.

Q 9

From 0- ~ ~ L1-t(j)~91~t
t-o 1-0

we get

d~-

9

~ (L1-t(j)tL~-1(j))5id~9j
a

~
t-o ~-o

and as derivative

ao
á~,

9

~ (Lk-1(k)tLk-t(k)),9k i- 1,..,q.

k-0

Theorem 3.2

Second derivative ARMA-case; AR-part.

a2s~ -~ av -, av
a,s,a,~~- -trv a~lv á~j ttrv-~ a2v -i 1 - av . av z- a2v

a,v, a,~~ T Sa m a~ ~ a~ -~ at9~

t2 , av H avm á.al a~
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With

P P

1. t~u ao-u ao - L La,s, a,~ J
k-0 I-0

T.p-i T.p-J 7.p-I Trp-1
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g-1rk h-1ri

Trp-k Trp-J

t ~

g-1.k h-1rJ
T.P-k Trp-l

~ U[h-1tj,g1U[g-itk,hlt ~ ~ U[h-j}1,g1U[8-itk,h]}6k61

g-1.1 h-1.1

U- 0-1[N M1~V-1[N M1a-1

z 2
2. t~v-1a~ló J- 2trua~io-la~ -t~ua,~,a,sJ

P P

2. 1 trUá~ ~-1á~ - ~ ~
1 J

k-0 1-0

T'P-1 T.P-J

( ~

g-1rk

g-1r1 h-1rJ

Trp-1

~ U[h-ltj,81~ lI8-kti-h1t ~

n-1.t g-1rk
Trp-k Trp-J

~ ~

Trp-k

U[h-ltj.81~-1[g-itk-hlt ~
g-1a1 h-1r1

2
Trp-1

2.2 trUa~ á~J- 2~ U[h-j4i,h1

h-1'J

p T.p-i

3. S~ a,9 ~ S' a~9.~- 4{ L1 )

~- ~-1[N M]~V-le

g-1r1

P

T'P-1
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h-1rJ
T.P-1

~ U[h-jtl,g]~-ll8-itk-hl}~k~l
h-1rJ

T.P-J
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k-0 g-1.k l-0 h-1.1

~ -1 aZV -1 ~ a~ -1 a~ ~ a2~4. e V a~91a~9JV e- 2~ á~5j~ á~9~~-~ a~9,a~9JS

~(1.J)- (0 .. 0 ~1tJ ... ~T~P-1 0 .. 0)
t--- 1 ~ e- J ~

, ao -1 ao4.1 C o~91~ aí~-

P P

{ ~ {{(i,k)t~(k.i)}~9k)~~-1{ ~ {C(j,l)}~(l.j))~91}
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2 T~p-1-}

4.2 ~~d~18 iS- ~ Ch.}~h.l

h-1

P P
~ a0 ÓD

5. { 8~SG8~}S-{ ~ ({(k.i)t~(i.k))~9k)~G{ ~ ({(k.i)t~(i.k)),9k~~1

k-0 k-0

G-0-lIN M)~(V-1-V-1X(X~V-1X)-1X~V-1)IN M]~-1

For the proof see Appendix 3.2. To describe the information matrix we

introduce U, a mixture of the AR covariance matríx, a matrix with MA

parameters and the dispersion matrix. We get an expression as in the pure

AR case, but with much more elements. For the second and fourth part

(containing the second derivative of V) we need two terms. For the

quadratic form we introduce ~, a transformation of the error vector, like ~

in the preceding sections.

6.3 The ARMA case: mixed part

In the preceding sections the direction of the differential was clear. Here

however, we have to make clear which differential is meant. Therefore we

introduce daV- ~a and d,yV- ~-~V-d,9.

For the MA- direction we use as before

p p T T

dav- ~ ~ ~ ~ (`h`P-i~-1~9'P-s~9}~h'P-s~-1~9'P-1)lh~9asdai
1-0 s-0 h-1 g-1

or

p p T T

- L L L ~
{A-llh-g-its]t~ l lg-h-itsl)~ht.9asdai.

1-0 s-0 h-1 g-1
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For the ,9 direction we have d,yV- -( N M]~-Sd,g~~-1(N M]~ and
P P

~9~- ~ ~ (Lk-J(k)tLk-1(k))c9kdi9J.

~-!1 k-0

Taking the differential of daV in the ~9-direction gives, as shown ín

appendix 3.3,

P P P P T T T~p-J

d~daV-- ~ ~ L ~ ~ L L
1-o J-o s-o t-o n-1 y-1 r-1.t

(0-1(htp-i-rl~-1(.r-ttj-g-ptslt~-1(htp-i-rtt-j]A-1(r-g-p}slf

n Slhtp-s-rl~-1(r-ttj-g-pti1tL11(htp-s-rtt-jlA-1(r-g-ptil}thc9aS6td~9Jda1,

which shows that we may expect complicated expressions.

Theorem 3.3

Second derivative ARMA-case: AR~MA-part

2 ~

aa a,9 - - trZ~ ~~ Z~a ttrV-1
1 J 1 J

a2v i 1- av - av i a2v
auia,3J -T á~ a~ ~ á~9j~ - z m'aa~}s s

- av ao
Z~ áalHaí~

with
T T p

1. trZ~ á~ zá~- ~ ~(~(~-1 Ih-g-jtslt~-1 Ig-h-jtsl )as}

h-1 q-1 s-0

Z- ~-1(N M]~V-1

2

p T.p-i

( ~ ~ (Z[g,n1Z(n-kti,hl}2(h,n]Z(n-kfi,gl),9k}
k-0 n-1~k

p p T T T~p-s

2. trV-Saaía~9~-- L L L L L
s-0 t-0 h-1 g-1 r-1tt

(~ 1(htp-i-r1~-1(r-ttj-g-ptslt~-1(h4p-i-rtt-jl~-1(r-g-pts]t

~(hfp-s-rl~-1[r-ttj-g-ptil}0-1(htp-s-rtt-jltl-1(r-g-p}il}V-1(h,glas~t
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3. m~ á~C~ á~ ~-1 ~
p T T p T~p-1-k

2{ ~ L ~ {~-'[h-g-itsl;~ 1[h-g-s}il)~h~9a5){ ~ ~ Sq~kCqal~k)
s-0 h-1 g-1 k-0 q-1

~- V-le

~- 0-1[N M1~V-le

2 P P T T T~P-7

4. ~~ aa á~-- L ~ ~ L L

s-0 L-0 h-1 q-1 r-1it

{~-1[htp-i-rl~-1[r-ttj-g-pts1t0-1[htp-i-rtt-j10-1[r-g-p}s]}

~-1[htp-s-rl~-1[r-ttj-g-ptilt~-1[htp-s-rtt-jl~-1[r-g-p}il)~n~yas~t

- av ao5. ~ áa1Ha~9y~-

T T T p

L L { L ~ {~-1[hl-gl-itslt~-1[gi-hl-itsl)~ylas) H[hl~gz]
h1-1 g2-1 g1-1 s-0

P P T'P'J'1

{ L ~ ~ ~-1 [g2tp-k-hz-1 ] ~hZf~t~-1 [BZtp-k-h2-jl~h2~1 }~1

k-0 1-0 h2-1

H- (V-1 -V 1X(X~ V-1X)-1}{~ V-1 ) .

For the proof see appendix 3.3. In line with the foregoing cases, the

result is as may be expected: rather complicated expressions. The

information matrix part is maybe less complicated than expected, a

consequence of the relatively simple form of the first derivative in the

5-direction.
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7.Conclusion

The differential of the logarithm of the concentrated likelihood consists

of two parts: the differential of the determinant and the differential of

the quadratic form of the errors. Another dífferentiation gives five terms,

two of them coming from the determinant, the other three from the quadratic

form. Some of these are positive definite, some negative definite. In

several cases the sign is not clear or can be either positive or negative.

All terms can be expressed as function of the covariance matrix or matrices

of which the covariance matrix is composed. The resulting algorithms are in

several cases very computer time consuming because of the number of

summations. The second derivative cannot assure us whether a stationary

point is a unique global optimum.
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Appendix

The appendix is available upon request.
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