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Abstract

It is shown that a simple counting rule provides necessary and

sufficient conditions for identification of the parameters ir an un-

restricted factor analvsis model.

1. Introduction

In a classic article, Anderson and Rubin (1956) discuss identi-

fication and estimation in a factor analysis model. flne of their results

is a general, sufficient condition for the identification of the para-

meters in the unrestricted model (apart from some inevitable indeter-

minacies and some necessary and s~ifficient conditions for special cas-

es). They note that their general condition is unnecessarily strong, in

that model parameters may be identified if the condition is not met.

Although their article appeared over a quarter of a century ago,

we are not aware of a later publication stating necessary and sufficient

conditíons for identification, The apparent non-existence of such a

publication may be due to the fact that a formal proof requires results

on zero-one matrices and matrix stacking operators that have only re-

centlv been developed. This note provides necessary and sufficient

conditions for local identification of the parameters. The model is

presented in section 2, as well as the identification result. Section 3

presents the proof of the result.

2. The 11ode1 and the Identification Result

In factor analysis a population variance covariance matrix E of

order pxp is assumed to have the following structure

E- H~ Ii' f A, ( 2.1)
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where H is a p x m-matrix (m t p) of full column rank, ~

a m x m-matrix, and A a p x p-diagonal matrix of unknown positive

parameters. Under the common assumption of multivariate normality of all

factors, equation (2.1) completely determines the identification of the

parameters. That is, if E is known (and it can be estimated consistently

from second order sample moments), a parameter is identífied if and only

if it can be uniquely determined from (2.1). It is well-known that

normality is the least favorable assumption with respect to identifica-

tion. Under different assumptions we could supplement (2.1) with equa-

tions involving higher order moments, which would give additional in-

formatinn on the parameters.

Asstmiing normality is therefore a conservative assumption from

the viewpoint of identification. If a parameter is identified under

normality, it ís also identified under different distributional assump-

tions. Ttoreover, the identification result derived under normalíty also

applies to the functional factor analysis model, where the common fac-

tors are considered to be unknown constants rather than random variables

[cf. t~ald (1q48), Anderson and Rubin (1956), Aigner et al. (1982, sec.

2)]. In thís note we assume normality throughout.
~

Ubviously, replacing H by H- H~ and ~ by the identity

matrix has no observable consequences for E. So no elements of ~ are

identified. Following common practice, we set ~ equal to the identity

matrix. This reduces (7.1) to

E- H~1' f A . ( 2. 2)

Furthennore, if 0 is an m x m-orthogonal matrix, i.e. QQ' - I, repla-m
cing FI by H- H~ does not influence E either. Obviously, QQ' - im impo-

ses m(mfl)~2 restrictions on Q and hence Q has m(m-1)~2 free elements.

This in turn implies that H can only be determined up to m(m-1)~2 in-
determinacies.

In this paper we prove the foliowing proposition:



prnposition. Apart from m(m-1)~2 indeterminacies in H, equation (2.2)
has locallv unique solutions for H and A if and only if

~
(P-m)~ ~ P}m . (2.3)

Remark 1. By contrast, the sufficient condition given by Anderson and

Rubin (1956) requires:

p ~ ?m~-1 . (2.4)

Both conditions (2.3) and (2.4) are represented graphically in Fig. l.

The white dots indicate the (p,m)-combinations for which (?.4) holds,

and the hlack dots indicate the (p,m)-combinations for which (2.3)
holds, but not (2.4).

Remark 2 Since E is symmetric, the number of unconstrained elements

in E is lp(pfl). The number of indeterminacies in H is ~-m(m-1) so we

need as many extra restrictions to determine the elements nf H uniquely.

There are mp unknown parameters ín H and p in A. Simply counting the

numher of unknown parameters, (mfl)p, and the number of equations pro-

vi~led bv (Z.2) plus the extra restrictions needed to remove the indeter-

minacies in H, ~p(pfl) t}m(m-1), gives as a counting rule for identi-

fication:

1P(P}1) f }m(m-1) a (mfl)P~ C'.5)

which is equivalent to (2.4). So, the proposition states that necessary
and sufficient conditions for identification can be verified by simply
counting the number of equations and the number of unrestricted para-
meters. Although the counting rule is encountered in the literature,
e.P., in testing specification ( ?.Z) fcf., e.g., Jóreskog (1978)], we
are not aware nf a proof that this rule provides a sufficient condition
for i~ientificatinn.
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Remark 3. The proposition only provides a local identification result.

Since (?.2) is a quadratic equation system no globally unique solution

exists. A simple example is that the sign of a column of H can be chang-

ed without changing Hi1'. A more intricate example is given by Wilson and

~dorcester (1q39),

3. Proof of the proposition

The proof rests on an analysis of the Jacobian of the equation

system (7.2), taking into account the redundancy caused by the symmetry

of E. To deal with sy~nmetry we employ a number of useful matrix opera-

tors P, T1, L, N defined as follows [cf. Balestra (1976), Alagnus and

Neudecker (1979,198~), Henderson and Searle (19ti1) for details]. Let A

be an arbitrary r x s-matrix, then the permuted identity matrix Pr s of~
order rs x rs is defined by

P vec (A') - vec A, (3.l)
r,s

where vec is the matrix stacking operator which "vectorizes" a matrix

column by column. Pr s consists of s x r blocks of order r x s each. TIZe
r

(i,j)-th block has a unit element in position (j,i) and zeros elsewhere.

The
rs x rs-matrix N is defined byr, s

N - ~(I f P ).r,s rs r,s C3.2)

If no confusion can arise, the subscripts of P and N are omitted.

Let ei be the i-th unit vector and let F,ij - eiej, i.e., a

matrix with a single 1 in position (i,j) and zeros elsewhere, then P and

N satísfv the following properties:

P - Pr,s s,r
(3.3)



P P - Ir,s s,r rs

Pr,l - Pl,r - Ir

s r ,
Pr s - E E

(Ei.j~Eij)' i-1 j-1

(3.4)

(3.5)

(3.5)

Pr k(A~B)P~ s- BAA for any r x s-matrix A and k x k-matrix B (3.7)
. .

N2 - N - N~ has rank }s(stl) .
s,s s,s s,s

Next, let S he a svmmetric pxp-matríx; v(S) is obtained from vec(S) by

eliminating all elements corresponding to the supradiagonal elements of
2S. The }p(pfl) x p-matrix L, called the elimination matrix, i s defined

by

L vec S - v(S). (3.9)

The p2 x}p(pfl)-matrix D, called the duplication matrix, is defined by

D - N L'(LN L')-1 .
P.P P,P

(3.10)

From now on, Eij is meant to be a pxp-matrix and ei a p-vector.

Let u - v(E ), i~ j, i.e., the ~p(pfl)-vector with a unit element in
ij ij -

position (j-1)pfi-}j(j-1) and zeros elsewhere, then L and D satísfy:

L - E u (vec E )'
~ j ij ij

LP L' - E u u'
i íi ii

Dv(A) - vec A for any symmetric p x p-matrix A

(3.11)

(3.12)

(3.13)

L has full row rank (3.14)
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D has full column rank

DLN - ~1

PD - D - ND

L'L - i~ ' E3j~E1i .J

For a proof, see Magnus and Neudecker ( 1980). Next, define

F11 ~

~ - . P~ x P

F,
PP

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

K - I-L4'(4"L'I.Y')-lY'~L~ 1P(P}1) x ~P(P}1) (3~?D)

rt - I - ~~ ' 2 2
P x P (3.21)

V' is a matrix with ones in positions ((1-I)pfi,i), i - 1,...,p, and
zeros elsewhere. K projects perpendicular to the space spanned by the
columns of L`Y, M to that of`Y (asY"Y' - I). The following properties

of Y', K and 11 can be verified straightforwardly:

L`Y - E, u e'
] jj j

`Y'L'L`Y - I
P

LY'Y' ' L' - LP L'

L' LY' - 4'

(3.22)

(3.23)

(3.24)

(3.25)



K- I- Lw~y~ ~ L~ ( 3.26)

KL - L~1 ( 3 .'- 7 )

?tN - NM . ( 3.2H)

Now, write (2.?) in vector form:

v(E )- v(HH' ) f v(n )- L vec HH' f L vec A. (3.29)

Let a he the p-vector of diagonal elements of n and define

vec N
4~ - ( ~ ). (3.3~)

Lemma 1. The ,Tacohian ,I e av(E)~a~p' of the equation system is:

J - L(2~I(HRI ), Y'~ . (3.31)
P

pro~f: T,et hi he the i-th column of H. Then

a v(HH' ) - L a vec HH' -- L~ a(hiédhi) -

a(vec H)' a(vec H)' i-1 a(vec H)'

- L (h 6àI fI éà h ,...,h 6dI tI ~h ) - L (ItP )( HAI ) - 2LN (HAI ).
1 P P T m P P m P.P P P.P P

(3.32)

Furthermore it can he checked directly that

a~(n) - I a~e~ n
aa aa, - . , - LT . (3.33)

Lemma ?. The rank of LN(H6~ip) i s mp-Zm(m-1).



Proof: We first consider the rank of N(HRIp). Let the p x(p-m)-matrix

G satisfv G'G - I and G'H - ~. The space of dimension pm has a basís
- p-m

(R1, R~, R3), where

R1 - (ImAH)(I - Pm m)?m '
(z.34)

R - lI RH)(I -~ P ) (3.35)~ m ~ m~m
m`

R3 - ImAG . (3.35)

?
Let x and v be arhitrarv m-vectors. Then, using (l.7), we see that

~I(H6àIp)(ImR}i)(I 2 - Pm~m)x - (1 (3.37)
m

Thus, post-multiplying N(Hé3In) by any vector in R1 yields zero. Since

?(I 2-Pm m) is idempotent its rank equals its trace, which is equal to
m '

In(m-1). Aence R1 spans a}m(m-1)-dimensional space, so that according

to (3.37) the columns of N(HidIp) satisfy ?m(m-1) independent restrict-

ions. There are no more than ~m(m-1) independent restrictions because

postmultíplication of N(HAIp) by a vector contained in RZ or R3 only

vields zero if that vector is the zero vector. This can be verified as

follows: ~onsider the equation

N(HádIp)P.vy - }(HAH)(I ~ t
Pm,m)y - G,

m

which, in view of the full column rank of r-l, implies

(I ~ t P )Y - !1
m,m

m

(3.3R)

(3.39)

This only holds if y is zero or if y is of the form (Im2 - Pm m)x
in

,
which case R y- ~. In both cases we would be postmultiplying N(H~I )~- p

bv the zero vector.
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Secondly, let Z be an arbitrary (p-m) x m-matrix and z- vec Z.

Then consider the equation

N(HAIp)R,lz - N(H6àG)vec 7. - N vec GZH' - z vec (GZH' t HZ'G') - C.

(3.40)

This implies

cZ.H' f H7.'r,' - (1 .

Premultiplication by G' gives:

7.H' f ~ - ~

(3.41)

(3.4?)

Since H has full column rank this implíes that 7. - 0 is the only solut-

ion of (3.4~).

As a result we have that the coliunns of the pZ x mp-matrtx

N(AIp) satisfy exactly Zm(m-1)
mp-lm(m-1).

Turning to an analysis of

independent

the rank of

restrictions, so its

LN(HAIp) we have:

Rank[LN(HSdIp)] G 11in{ Rank(L), Rank[N(H~Ip)]} -

- P1in{ Zp(pfl), mp-?m(m-1)} - mp-}m(m-1),

rank is

(3.43)

since m t p. In addition, using (3.16), we observe that

mp-lm(m-1) - RankfN(HáàIP~j - RankfnLN(~Tédip)]

C D1in{Rank(T)1, Rank LN(HAI )} - Rank[LN(H9I )] . (3.44)
P P

Inequalities (3.43) and (1.44) establish the Lemma.



Remark 4. 2LN(HNIp) is the Jacobian of the equation system:

c - v(HH'), (3.45)

with c a known vector. As discussed in the previous section, there are

4m(m-1) indeterminacies in H. This is brought out by the rank of the

.Jacohian which is 4m(m-1) less than the number of parameters in H.

Remark 5. From the proof of Lemma 2 it is clear that N(H~Ip) and

i,N(H4~Ip) have the samP rank. This is accordíng to expectation, as the

eliminati~n matrix L simply eliminates superfluous equations from the

system.

Remark 6. Tn view of (3.45) it is clear that if A is identified, H will
be identified up to '-m(m-1) indeterminacies, since in that case c can be

taken equal to v(E) - v(A) which are then both ohservable. Ro the ele-

ments of H are determined up to lm(m-1) indeterminacies if and only
if A is identifie~i. Thus we can concentrate on necessary and sufficient
conditions for the identificatíon of A. The elements of A are identified

if and only if there are no linear dependencies between LN(HádIpl
and T;Y. This requires the rank of KLN(NAIp) to be enual to the rank of
L~1( HRIp) .

Lemma ~. The rank of KLN(HEdIp) equals Min{ip(p-1), pm-~m(m-1)}.

Proof. From (3.27) it follows that

KLN(HRIp) - i.l`iN(HÓàIp). (3.46)

We first study the rank of h[N(HQIp). From (i.2R), MN - Nr7. Obviously PiN
is idempotent. Its rank is equal to its trace, whi.ch.can easily be seen
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to be ~p(p-11, So the pm column vectors of 1Q~7(HRIp) lie in the ~p(p-1)-

dimensional space spanned by the columns of I~L'V, From (3.37) it is once

again clear that they satisfy zm(m-1) restrictions. This establishes the

rank of iViN(r-TAIp) as min{ }p(p-1), pm-~m(m-1)} , Fínally, using an argu-

ment similar to (3.43) and ( 3.44), LN11(HAIp) has the same rank as

NPf(H6dIp), because 1)LN - N.

It is now obvious that LN(H~Ip) and KLN(HÓàIp) have ídentical

ranks if pm-lm(m-1) ~-~p(p-1) which proves the proposition.

Remark 7. KLN(HAIp) differs from LN(HÉ~Ip) in that the rows corresponding

to the ~líagonal elements of E are set equal to zero. So KLN(HéiIp) is the

Tacobian corresponding to the system which equates the off-diagonal

elements of E to the off-diagonal-elements of HH'. The diagonal elements

of E are "reserved" to identify A.
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