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Abstract

Several efficient methods to compute the exact ARMA covariance matrix are known.

However, a general matrix representation in closed form is lacking. This article

presents such a closed form. First a matrix equation, containing the covariance

matrix, is derived, next it is solved for the h1A, AR and ARMA case. The result is

quite, and maybe surprisingly, simple.
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1. Introduction

Autoregressive, moving average and mixed processes are widely considered in the

statistical literature. Several authors have provided efficient methods of

calculating the autocovaríance functions (McLeod, (1975), Tunnicliffe Wilson,

(1979)). But, although the exact covariance matrix and its inverse of several

processes, like AR(1), AR(2), MA(1), ARMA(1,1) are known a general and easy to

differentiate form is lacking. Only for the MA(q) case a result, due to Diebold

(Diebold, 1986), is known. In this article we present a simple form for the

general ARMA(p,q) case, which of course includes the AR(p) and the MA(q) as

special cases.

The form of the covariance matrix we present is simple enough to be

differentiated, which permits analytical expressions for first and higher order

differentials. The results can be used both in time series analysis and in the

estimation of the linear regression model with ARh1A errors. Furthermore our form

gives insight into the way the covariance matrix is co mposed. As can be expected,

the MA covariance matrix is simple when not inverted, the AR part is easy when

inverted. The core of the inverted matrix consists of a matrix which rank is equal

to the highest number of AR or MA parameters.

2. Matrix form for ARMA parameters

The elements of the ARMA(p,q) error vector e are defined as
D 9

c--E6e tvtEav t-1,2,..T (1)t ~-i i t-~ t i-i i t-~

where v is a vector of white noise:

Ev -0, Ev2-v2, Ev v-0 for txs. We assume that the ARMA process is stationary overt t t:

time and that the usual invertibility conditions hold:

f(z)-1t,91zt.,.~PZP~O for ~z~sl

and

g(z)-1fa~zt...taazQxO for I z I ~l

(2)

(2')
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while f and g have no zeros in common.

Following Pagan (1974), we introduce two matrices for both the AR parameters and

the MA parameters. These are special types of Toeplitz matrices. First we define a

(square) lower band matrix, say P, of dimensions TxT as follows:

1

~1

~P ~P-1 ~1 i 1
. s, .

. 1

t9P t9P-1 ~1 1

The upper triangular of a lower band matrix consists of zeros and the lower part

has off-diagonals with the same elements. As is well-known its inverse can be
obtained by a simple algorithm. An other important characteristic of these
matrices is the fact that they commute and that their product is a matrix of the
same type. It is useful to partition P in Pl of dimensions pxp, PZ of dimensions
(T-p)xp px(T-p) NE-part ( all zero's) and P3 of dimensions (T-p)x(T-p).

~~P ~D-1 . t911

1
~1

O 0

~o . o~
Q has the dimensions Txp and is partitioned in an upper pxp part and a lower (T-

p)xp part, which consists of only zeros.
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Observe, that P1 and P3 have the same structure as P itself. Moreover, PZ has the
same structure as Q, while Q1 is the transpose of a lower band matrix. In the
sequel we will also use the matrices M and N. M and N have the same structure as P

and Q with ~9 replaced by a and p replaced by q. Observe that ~PI and (MI are equal

to 1.

To relate the invertibility condition to these matrices we give the following

theorem:

Theorem 1

Let P1 and Q1 be defined as above. The invertibility condition is equivalent to

the condition that all solutions to I aP1fQ1 I-0 satisfy -l~a~l.

Proof

Observe, that aP1tQ1 is a circulant matrix. Its eigenvalues {~k are (see e.g.

Davies, 1979):

Ftk-Àa-~9P~-t9P-1Zkt...~-i9~Zk-1 (k-1,...,p)

where zk-aliPe2kitciP, which implies

~1k-Zk (1f,91rZkt...t,9PIZk)

-af(l~z ).k
f is as defined in (1), where

Let ao be a

holds. Since

I zk I- I a I'~P. As zk-a, we can also write

the AR-invertibility condition is stated.

solution to IaP1tQ11-0 and suppose that the invertibility condition
a is never zero we0

IaoP1tQ~l can only be zero if at

have pkx0 for Il~zkl~l or ~ZkILI or I~oILl. But

least one of the eigenvalues is zero, which can

never be the case for I~ol'-1. Therefore we conclude I~ol~l.

For the second part of the proof, suppose ~aoP1tQ11-0 implies O~laol~l. Then

IaoP1tQ11-0 means that at least one of the eigenvalues pk is zero or f(llzk)-0,
while I~ol~l means Il~zkl~l. Hence f(l~zk)-0 implies Il~zkl~l, and this is

equivalent to f(l~zk)x0 for Il~zkl~l. Q.E'.D.
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3. Covariance equation
In this section we will derive an equation from which the exact covariance matrix

can be solved. First we rewrite the errorvector in matrix form. As done by several

other authors (de Gooijer, 1978 or Galbraith and Galbraith, 1974) we form an

equation for the covariance matrix. But there is one difference as our equation

involves only one unknown matrix. The solution to this covariance equation will be

given in the next section.

Denoting the covariance matrix by V and using the symbol -T for the inverse of a

transposed matrix, we state

Theorem 2

The covariance m atrix V corresponding to the ARh1A(p,q) error specification is a
solution to the equation

PVPT-NNT}MMTt [Q 0, V[Q O] T- [N O] MrP-T [Q O, T- rQ 0, P-1M [N 0] T

(3)

where P, Q, M and N are defined as above and 0 is a matrix consisting of zeros.

Proof

First define the auxiliary vectors é and v:

eT- (e ,e ..,e e )T-pal -p~2~~ -1~ 0

VT- (V ,V ..,V V )T
-q~l -q~2~~ -1~ 0

Then we can write (1) in matrix form:

rQ p~ e-rN Ml v
L e L J v

or Pe-Nv;Mv-Qé. Post multiplying both sides by its transpose and taking

expectations gives

PE(eeT)PT-E(NvtMv-Qé)(NvtMv-Qé)T.

4



The right hand side contains the expressions Evvr, E'vvT, EvéT, E'vvT, EvéT and
EééT. These can all be expressed in matrix form or are zero. v is an independently

distributed variable which implies EvvT-v~17 ,EvvT-a~~I and EvvT-O. Because we
P

assume that the ARMA(p,q) process is stationary over time we have the same

structure for E'ééT as for E'eeT, i.e. V. As the vector c depends only on v, v,o -i
... (which are by assumption uncorrelated with vl, v2, ... ), we conclude E'vé-0.

The resulting equation can be found in e.g. Galbraith and Galbraith, 1974 or de

Gooijer, 1978. But we can go one step further, for the covariances of é and v have
- supposing stationarity - the same structure as the covariances of e and v. This
covariance can be derived as follows:

E(PevT)-E'(NvtMv-Qé )vr

-NE'(vvT)tb1E'(vvT)-QE'(cvT)

-M

which gives E(evT)-P~~M. For E(évT) we get the first p rows and the first q

columns of P-1M. Using 0 as the matrix which consists of only zeros gives equation

(3).

The problem of finding V is thus reduced to the problem of finding a solution to'

(3). We will show that this is possible if the invertibility condition holds.

4. Solution of the covariance equation
Theorem 3
The covariance equation (1) has an unique solution if the invertibility condition

for the AR-part is fulfilled. The solution is

V-IN M1[PTP-QQTI ~[N MlT (4)

where M and N are as defined in section 2 and P and Q have the same structure as

in section 2, but are of order (Ttp)X(Tfp) and (T}p)Xp.

Corollary 1

The covariance matrix for the MA(q) model is

5



V-NNT;MMT (4a)

Corollary 2
The covariance matrix for the AR(p) model is

V-(PTP-QQT1 1 (4b)

Proof

To prove uniqueness we proceed as follows. Writing (3) in vec-notation and

rearranging terms we see that uniqueness is guaranteed if PBP-(Q O]~(Q O1 is not

singular. Its determinant, D, is:

D-1P~P-[Q O1~[Q O11

-11-[Q 01~[Q O][PeP]-11 IP~PI

-11-[Q o]P-'~[Q o1P-'I.
Hence, a sufficient condition for nonsingularity is that all eigenvalues or [Q
O]P-1 are less than one in absolute value. These eigenvalues are zero or equal to

those of Q~P11. As Theorem 1 states that lal is less than one when the

invertibility condition holds, we conclude that D is nonzero, and thus that (3)

has an unique solution.

As is proven in the appendix we can write (4) as

V-P-1(MMTt(PN-MQ)(PiPI-Q1Qi )-1(PN-MQ)T]P-T

That the right hand side of (4') is a solution to (3) is established by direct

verification. The essence of the proof is the fact that lower band matrices

commute. The proof can be found in the Appendix.

The proof of Corollary 1 is trivial. Substituting P-I and Q-0 in (1), we get the

MA(q) expression for V.

To prove Corollary 2 substitute M-I and N-O, next premultiply both sides of (4')

by P and postmultiply by its transpose. The resulting equation is equal to the

corresponding covariance equation if V1 (the NW-part of V) is equal to

(PiPI-Q1Qi)-1, which is proven in the appendix. Q.E.D.

(4')

6



It is clear that the second term of (4') within brackets is of order p. Because of

the commuting property PN-MQ can be written as
PiNI-MiQI

which makes clear that

the main part of V consists of P ibíhiTP-T, the rest being a correction matrix of

which the rank is p. Furthermore (4') is easy to invert: the core of the inverse
consists of a(p:p) matrix, which can be triangulized. Use an expression for the
inverse of the sum of two matrices (see e.g. Rao, 1973, p. 33), which gives

V-1-PTM-T(Ir-R(RTRtPiPI-QiQi) iRT}ht-iP

with R-M-~PN-Q.

It is not clear whether it is possible to write (5) in a form similar to (4),

where the MA part and the AR part are separated.

The determinant of V can be obtained in the follo wing way. Observing that the

value of the determinant of M-1P is equal to one we have
r 1 r

T 1IP1N1 MiQil(PiPI-Q1Q1)-1 ~PiNI MiQI~ M-T~Iv1-11 tM 0 0

- I I t(PTP -Q QT)-1(P N-M Q)TMTM (P N-M Q)T ~.
p 1 1 1 1 1 1 1 1 1 1 1 1 1 1

where Ml is the (Txp) matrix, consisting of the first p columns of M-1. The

(S)

equality is due to the fact, that the second term of the sum in both equations has

the same nonzero characteristic roots. The evaluation of the determinant can thus

be reduced from a(TXT) matrix to one of order (pXp), the highest number of AR or

MA parameters.

5. Concluding remarks

In this article we present a compact matrix expression for the covariance matrix

of ARMA distributed errors. While the individual elements of the covariance matrix

are very complicated, this form is charmingly simple. For the AR case and the MA

case the forms are even more simple as can be expected. Expressions for the

inverse and the determinant are given.

O
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Furthermore it is shown how the invertibility condition and the positive

definiteness of the covariance matrix are interconnected.
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Appendix

Because of the structure of the matrices we partition after p rows and columns. We

shall use p, the number of AR parameters instead of max(p,q), because we may

suppose p to be equal to q. This gives no loss of generality as it is possible to

fill up the shorter vector by zeros. First we will prove the following lemma, next

we will show, that (4') is a solution to the covariance equation.

Lemma

can also be written as

with A-P~P1-Q1Q1.

V-IN MIIPTP-QQT1-1[N M1T (4)

V-P-1[1.1~fTt(PN-MQ)~-1(PN-h1N)T1P-T (4')

~ is positive definite if the invertibility condition holds.

Proof

First we prove that ~ is positive definite, if the invertibility condition is

fulfilled. Observe, that
P1 O

Q1 P1
and are both lower band matrices. As they

commute we have O-PTP -Q QT-P PT-QTQ or A-1I2(P Pr-Q QT)t1~2(PTP -QTQ ).i i i i i i i i i t i i i i i i

Both parts of the right hand side are symmetric, implying that they have real

eigenvalues. Next we show that they are positive. For the first part we have

P1Pi-Q1Qi-P1(I-P11Q1QiP1T)Pi. The eigenvalues of the expression between brackets

at the right hand side are equal to one minus the square of the eigenvalues of
PI~QI. But from Theorem 1 we know that I aP1tQ~ ~-0 implies ~ a ~ ~l, which means that

an eigenvalue of P~Pi-QiQi is equal to 1-aZ. In the same way we can prove that the
second part is positive.

To prove that (4) is equivalent to (4') we partition P and Q as before. For

9



FrP-QQrFrP-QQr we get
T TP1Pi Q P because PÍPt}P2Pz-Q1Q1-PiPI" As is easily

PTQ PrP

Q-I -Q-IQTP-T

verified, its inverse is -P 1Q0-i P-1P-r}P-1 - i r-r ' Premultiplying by [N M]
Q~ Q P

and postmultiplying by its inverse gives (4'), because P(and thus P-1) and M

commute. Q.E.D.

To prove Theorem 3 substitute the right hand side of (4') for V in (3) and

partition as before2. Observe, that all parts, apart of MMr, on both sides ara

zero except the NW part. This means that we have to demonstrate that

(P N-M Q)0-1(P N-M Q)r-N NrtQ V Qr-N MTP-rQr-Q P-~M Nri i i i i i i t i i i i i i i i i i i i i

with V-P-1(M Mrt(P N-M1í Q)~-1(P N-M Q)r)P r.i i i i i t t i i i i i i

Insert the expression for V1, rearrange terms and make use of the commuting

property to get Pln-1Pi-ItQ~p-~QÍ. But this is the NW-part of the covariance-

equation in the pure AR-case.

To show this equality, use ~-PiP1-Q1Qi-P1Pi-QiQI and thus

~-1-P-1(I-P-rQ QTP-1) 1P-r-Q-~(Q TP PTQ-1-I)-~Q-r.t i i i i i i i i i i

Here we have P1rQiQiP11-(Q1rP1PiQ11)-1 and straightforward algebra completes the

proof. Q.E'.D.

2 A detailed proof can be obtained from the author upon request.
10
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