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1. INTRODUCTION

Consider a group of economic agents who all want to make use of some machines
or facilities. If the agents cooperate they can possibly share some facilities and thus
save costs. In section 2 it is shown that this kind of cost allocation problems give rise
to concave cost games which lie in the cone generated by all dual unanimity games.

Subsequently, we investigate the consequences of a restriction in communication
possibilities between the agents on this kind of cost allocation problems. Throughout
this paper we assume that the communication possibilities can be modelled by means
of a (communication) graph. Based on the Shapley value, two solution concepts for
communication situations were introduced: the Myerson value and the position value.
An axiomatic characterization of the Myerson value was given by Myerson (1977) and
Borm et al. (1990) gave an axiomatic characterization of the position value in case of
cycle-free communication graphs. Van den Nouweland and Borm (1990) proved that
if a communication graph is cycle-complete (cycle-free) and the underlying cost game
is concave, then the Myerson value (position value) is in the core of the corresponding
graph-restricted game.

Owen (1986) and Borm et al. (1990) provided integral formulas to compute the
Myerson value and the position value in situations where the communication graph is
cycle-free and the underlying game is a quadratic measure game. In section 3 we derive
integral formulas for the Myerson value and the position value in situations where the

underlying cost game is a dual unanimity game.

2. THE MODEL

Let N := {1,...,n} and 2V := {S | § € N}. By TUV we denote the class
of all transferable utility games (N,v) with player set N and characteristic function
v 2NV 5 R with v(@) = 0. There are basically two ways to interpret a TU-game
(N, v), the amount v(S) can represent the revenue/gains for a coalition S C N or it can
represent the costs for this coalition. We prefer to denote a TU-game by (N, c) if it is
to be interpreted as a cost game.

In this paper we consider cost games that are generated by cost allocation problems
of the form (N, F,p.d). Here, N is the set of players, F is a finite set of facilities,
p : F — Ry is a function that assigns to every facility its non-negative price, and
d: N — 2F is a function that assigns to every player the subset of facilities demanded
by this player.

Let (N, F,p, d) be such a cost allocation problem. Then the players in a coalition S C N
have to purchase each facility that at least one of them demands. On the other hand,
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if two (or more) players demand the same facility, then they only have to purchase it

once. Hence, this allocation problem leads to a cost game (N, c) with

=Y p(r) u,($),

reF

where, for all r € F, N, := {i € N | r € d(7)} is the set of players who demand facility
1 #SNN,.£0

r,and u)_ is the dual unanimity game on N, defined by uj, (S) = { &
= ” else

The proof of theorem 1 is straightforward and therefore omitted.

THEOREM 1. The class of all cost games corresponding to cost allocation problems of
the form (IV, F, p, d) is the convex cone generated by all dual unanimity games u}, with

M € 2N\{0}.

A cost game (N, ¢) is called concave if it is more advantageous to join a larger coalition

or, in formula, if

(SU{i}) —e(S) 2 (T U {2}) — ¢(T)

for all 2 € N and all S € T C N\{i}. The class of concave games with player set
N is a convex cone and (N,u},) is a concave game for every M C N. Therefore, a
direct consequence of theorem 1 is that all cost games corresponding to cost allocation
problems of the form (N, F,p,d) are concave.

It may be noted that the Shapley value ®(N,c) € RN (cf. Shapley (1953)) of the
cost game (N, c) corresponding to the cost allocation problem (N, F,p,d) has a nice
interpretation. As is easily seen the Shapley value of a dual unanimity game (N, u},)

equals 0 for 2 @ M and = for 1 € M. Since the Shapley value is linear, it follows that
! Tar]

ZP

rEd(l)

for all : € N, which implies that the costs of each facility are equally divided among the

players that make use of it.

3. INTEGRAL FORMULAS FOR THE MYERSON VALUE AND THE
POSITION VALUE

So far, we implicitly assumed that all players can freely communicate with one
another. Now suppose that communication between the players is restricted and that

the communication possibilities are determined by an undirected (communication) graph
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(N, A) in which the points are the players and the arcs correspond to pairs of players
who can communicate directly. A triple (N, ¢, A), where (N, c) is a cost game and (N, A)
is a communication graph, is called a communication situation.

Let (N,c, A) be a communication situation. Then the players in a coalition S C N can
effect communication through all communication links of

A(S):={{i.j} e Al {1,5} € S}.

Hence a coalition S splits up into (communication) components in the following way:
T C S is a component within S if and only if the graph (T, A(T')) is connected and there
is no set T such that T7CT C S and (T, A(T)) is connected. We denote the resulting
partition of S by S/A.
Taking into account these communication restrictions, the costs c4(S) for a coalition
S € 2N can be defined as

ca(S) = Z o(T).

TeS/A

(N,c,) is called the graph-restricted game.
One can also focus on the communication links. The cost savings for the grand coalition

induced by the presence of the communication links in L C A are defined as

ru(L) =Y e{i)) = Y o).

iEN TEN/L

(A,r5) is called the arc (cost savings) game.

Now we are ready to formulate the definitions of the Myerson value and the position
value.

The Myerson value u(N,c, A) € RN (cf. Myerson (1977)) is defined as the Shapley

value of the corresponding graph-restricted game, i.e.
u(N,c, A) := (N, cn).

The position value of a communication situation (cf. Borm et al. (1990)) is based upon
the Shapley value of the corresponding arc game: the corresponding cost savings of
each arc are equally divided among the players it connects. With the aid of these cost
savings the corresponding cost allocation rule 7(N,c, A) € RV, defined by

m(N.e A) i=c({i}) = D 1®a(A,r})
aEA;
for all 1 € N, is called the position value of the communication situation (N, ¢, A). Here,
A;:={{i,j} € A|j € N} is the set of all communication links of which player : is an

end point.



Both the Myerson value and the position value are linear with respect to the underlying
cost game. Therefore, in deriving integral formulas for both values we can restrict our
attention to dual unanimity games, because all cost games we consider are positive

combinations of dual unanimity games (cf. theorem 1).

First we derive an integral formula for the Myerson value of a communication situation
(N,ujs, A), M C N, if the communication graph (N, A) is a tree.
Let (N,c, A) be a communication situation. As is well known, the game (N, c4) can be

written as

cqA = Z Aei(S) ug,

Se2N\ {9}

where ug is the unanimity game on S, defined by

_r1 fSET
uS(T)_{O else

and the dividends A.,(S) (cf. Harsany: (1959)) are given by

A, (S) =D (-1)ISHITl ¢ o(T)
TCS

for all S € 2V\{0}.

In the following we consider a fixed communication situation (N, u}s, A) where |[N| > 2
and (N, A) is a tree.
In this case the dividends Ay ), (S) are given by (cf. Owen (1986))

A¢ (S) = {(—I)IS'R'MH’1 if (S, A(S)) is connected and Ext(S, AS) =SnM
. 0

A
M else

for all S € 2V\{0}. Here, for a connected graph (S, A(S))
Ext(S,A(S)):={1€ S| |4:inNA(S)| <1}

denotes the set of eztreme points.

Consequently,

(_I)ISﬁMH-l

!
5] (1)

pl Ny, A) = @(N,(uh)a) = >
SEL(A)E€S

for all : € N, where
S(4):={SC N | (S A(S)) is connected and Ext (S, A(S)) = SN M}.
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In order to apply (1) we have to find all elements in ¥(A) containing a player 7. This
can be done in the following way.
For every S C C with C € N/A, we can define the connected hull of S (cf. Owen (1986))
by

H(S)= ﬂ{T | SCTCC,(T,A(T)) is a connected graph}.

Let i € N and let A; :={{s,4(1)},...,{s,i(t)}}. Clearly, since (N, A) does not contain
a cycle, the partition N/(A\A;) contains ¢ distinct components C(1),...,C(t) with
i(k) € C(k) for all k € {1,...,t}. For each k € {1,...,t} we define a connected
subgraph (T(k), A(T(k))) of (C(k), A(C(k))) by

no
~—

T(ky:= |J A{H{k)D | [H{i(k),5}) N M| =1}. (

JEMNC(k)

So, in particular, T(k) = 0 if C(k)NM =0, T(k) = {i(k)} if i(k) € M and in all other
cases Ext(T(k), A(T(k)))\{i(k)} = T(k)n M.

In deriving a generating function (cf. Owen (1972)) for the Myerson value we suppose
that each player has a probability = to be ’active’ or ’operational’ and we compute for
each subgraph (T'(k), A(T(k))) the probability Pi(z) that at least one of the players
in M NT(k) can actually interact with player ;. Using the inclusion-exclusion principle
this probability Pi(z) is given by

Pu(z) = Z (=1)ISIH+1 I H(SUGE®DI (3)
SC(T(k)NM),S#0

for all k € {1,...,t}. Note that Px(z) =0if T(k)N M = (. The expected costs player ¢
generates by linking up the components C(1),...,C(t) are described by the generating

function 6;(z), where

1-%  p g
filx) = 2= Pule) . b (4)
I Z/\'gu ..... :},|1\'|=r(_1) erl\' Pi(z) ifi g M.
In particular we have that 6;(z) =0if i € M and t = 1.
Now we can formulate
THEOREM 2. Let (N, A) be a tree with |[N| > 2. Then for all M € 2V\{0},
1
pwi(Nyupy, A) = /Gg(.t)dz (5)

0

for all i € N, where 8;(r) is defined as in (4).
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Proof. Let 1 € M. Then

1

1
/B(I)dx_l—Z(/Pk )dz)
0

0
( 1
== Z(/ Z (=1)ISIH1 G HSUGE®ODI g
k=11 SC(T(k)NM),S+#0
1)|S|+1

R, - (-
St Y TAGUGEDAT -

k=1 SC(T(k)nM),S#0

Note that, since 1 € M, for each k € {1,...,t} a coalition S C T(k) N M with S # 0
uniquely determines a set T = H(SU{i}) € £(A), which satisfies Ext(T, A(T))\{i} = S

Hence, (6) equals
t ( = )|Sﬁ M|

I_Z Z S|

k=1 SET,(A):HES,|S|>2

where i (A) := {S € I(A) | S C(T(k)U {z})} for all k € {1,...,t}.
The fact that ¢+ € M implies that for all S € £(A) with ¢ € S and |S| > 2 there is a
ke {1,...,t} such that S C T(k)U {i}. Therefore, (7) cquals

1)15‘0/\1]

e ( .
SR D @

SET(A):HES,|S|[>2

Since 1 € M, we have {i} € £(A), so (8) equals

2

SEX(A)ES

(_I)ISHIWI-H

= (N UGy A )
5] pi( N, upp, A)

Let ¢ € N\M. First note that we may assume that |[{k € {1,...,t}| T(k) # 0}| > 2, for

otherwise #;(x) =0 and {S € S(A) |1 € S} = 0, so trivially (5) is satisfied.

Since for all ¥ C {1,...,¢} with |K| > 2

H Py(z) = H( Z (—1)I51+1 I H (VLR DIy

keER kERN SC(T(k)NM):S#0

— Z ( H(_1)IS(k)l+ll.!H(S(k)U{i(k)})l), (9)

(S(k))kEKEF(A‘) o

where I(IV) := {(S(k)), ¢, | S(k) € (T(k)n M),S(k) # 0 for all k € K}, it follows
that



t (|S(k)|+1)
_1)Ekeh
B:(z)dr = LT )t (
/ (e=d, 2 - ) e S TK (SIVETET
0 r=2 NC{1,...,t},|K|=r (5(‘")),,9,{6”"')
t (_1)1+Zkek|5(k)|

T4 2, H(Uren SGN|
=2 KE(d, l}”\l—r(s(k))kEKEr(“ | (UKEI\ ())'

(10)

Since ¢ ¢ M, for each ' C {1,...,t} with |K| > 2 a set (S(k))kel\ € I'(R) umquel\

determines a set T = H( |J 5'(k ) € £(A), which satisfies Ext(T, A(T)) = L) S
kEN keER
aud ¢ € T. Hence, (10) equals

5

SEL(A):HES

(_1)'50/\“4’1

= iNa *aA~

We illustrate the actual computation of the Myerson value in

EXAMPLE 1. Let N = {1,...,10} and M = {1,3,4,7,10}. The graph (N, A) is

represented in figure 1.
e/
3 \ \@

q
figure 1

C'onsi(lcr player 2 &’ M. Following (2) we obtain four subgraphs corresponding to

= {1}, T(2) = { } T(3) = 0 and T(4) = {6,7,8,10}. The corresponding
l)olnumndlb (cf. (3)) are ) = Py(z) = z, P3y(z) = 0 and Py(z) = x2 4 23 — 4.
Hence, according to (4),
b2(x) = =Pi(r)Py(r) — Py(2)Py(2) — Py(x )P,(r)+P,(1)Pz(rP4(r)
=g% = 2p* — #V Y 3% — 6. Go, pa(N,uy,, A) = [02 Ydr = -%.



Now consider player 3 € M. We obtain two subgraphs corresponding to T(1) = {4}
and T(2) = {1,2,6,7,8,10}. The corresponding polynomials are P;(z) = = and
Pyz)=z2 428 + ot — 2t — 2% — 2% + 2% = 2% + 23 — 22% + 5. So, according to (4),

1
B3(x) = 1=Py(z)—Py(z) = 1—r—22—2*+22%— 2% and p3(N,u},, A) = [63(z)dz = 238—.
0

For the sake of completeness we note that

1

(N, uy, A) = —
H(N uyy 4) 190

(255, —284, 45,210, 0, —249, 269, —123, 0, 297).

It may seem that the calculation of the polynomials Pr(z) (cf. (3)) may be quite lengthy,
especially if the sets T(k) N M have a large number of elements. An alternative way to
obtain these polynomials is described below.

Let i € N and let (T(k), A(T(k))) be one of the connected subgraphs corresponding to
player i as described in (2). Suppose each player p has a probability z, to be ’active’.

Consider the polynomial

1- I a- I =) (11)

JET(K)NM pEH({i(k),5})

and expand it. Now reduce the obtained polynomial to a multilinear polynomial by
the simple recourse of reducing each higher exponent to a 1. Finally, by replacing the
probabilities x, by the probability = € [0, 1] we obtain the polynomial Pi(z).

In this, we are effectively using the multilinear extension (cf. Owen (1972)). As we
know, the partial derivative —(;—’IJT of this extension corresponds to the expectation that
other players will collaborate with player i. Typically, for S C N\{:}, the term

u(S)i= H.rj (12)

JES
corresponds to the probability that all members of S collaborate, given that each j € S
has probability z; of collaboration and assuming independence. Now, if S and T are

disjoint, then

u(SUT) =u(S) u(T), (13)

since the players in S and T are independent. When S NT # 0, however, (13) is not

quite correct. Rather,

w(SUT) = a(S)-ulT), (14)

where the bar corresponds to a reduction operation: each exponent larger than 1 is
reduced to 1. If, for example, S = {1,2} and T = {2, 3}, then «(S) = zy2,,u(T) = xoxy

and u(SUT) = 7 7%v3 = t10203.




EXAMPLE 2. Let (N,u},, A) be the communication situation as described in example
1. Again consider player 2. For the subgraph corresponding to T'(1) = {1}, expression
(11) yields

1—(1—x,),
which results in the polynomial Py (x) = x.
In the same way we obtain Py(z) = z for the polynomial corresponding to T'(2) = {3}.
Defining the empty product to be 1, we easily see Ps(z) = 0.
Finally, for the subgraph corresponding to T'(4) = {6, 7,8, 10}, expression (11) yields

L=[(1=zex7}(l = zeTeT10):
Expanding this, we obtain
, 2
LeT7 + TeXgT1g — TgT7TT 0.

Reducing this polynomial and then replacing all z,’s by z, we obtain

12+z3 -—174,

which is exactly the desired polynomial Py(z).

We now concentrate on the position value. The arc game corresponding to the commu-
nication situation (NV,u}s, A) can be expressed as

= Y A g (D) ur,
Leza\{8} "

where, for all L € 24\{0}, (A4,uy) is the (arc) unanimity game on L. The results of
Borm et al. (1990) imply that for all L € 24\ {0}

(=1)INAM] - 3f (N(L),L) is a tree and Ext (N(L),L) = N(L)N M

0 else,

A :,(L):{

r
where N(L) is the set of players who are end points of an arc in L. Hence, for alla € A

(_1)1N(L)ﬂMI

B (AT )= Y T

LeEA(A):a€L

(15)

where A(A):={LC A|(N(L),L)is a tree, Ext(N(L),L) = N(L) N M}.
In order to apply (15) we have to find all elements in A(A) containing an arc a. This

can be done in the following way.
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Let a = {i(1),7(2)} € A. Clearly, since (N, A) is a tree, the partition N/( A\{a}) consists
of two distinct components C(1) and C'(2) with i(1) € C(1) and #(2) € C(2). For each
k € {1,2} we define the connected subgraph (T'(k), A(T(k))) of (C(k), A(C(k))) as in
(2). In deriving a generating function for @(A,rf,‘v;“) we suppose that each arc has a
probability = to be ’available’ and we compute for each subgraph (T(k),A(T(k))) the
probability Pi(x) that at least one of the players in M NT(k) can actually interact with
player ¢(k). Using the inclusion-exclusion principle this probability Pi(z) is given by

Bilal = }: (_1)|5|+1I|A(H(Su{i(k)}))| (16)
SC(T(k)NM),S#0

for k € {1,2}. The expected cost savings an arc generates by linking up the components
C(1) and C(2) are described by the generating function 6,(x),

90(11‘) = P]((I’)'PQ((I'). (17)
Now we can formulate

THEOREM 3. Let (N, A) be a tree with |[N| > 2. Then for all M € 2V\ {0},

1
Do (A,riM) = /9ﬂ(1)(1z (18)
0

for all a € A, where 6,(z) is defined as in (17).

Proof. Let a € A. We may assume that T(1) and T'(2) are both non-empty, for otherwisc
fu(r) =0 and {L € A(A)|a € L} = 0, so, trivially (18) is satisfied. Now

- / ﬁ( - (—1)lsH1 A (HSUE®D ) g,

= / Z (ﬁ(_1)|5(k)|+11:|A(H(S(’C)U{i(k)}))l)(lr‘ (19)
0

(s(1),8(2))er({1,2}) k=1

where I'({1,2}) := {(S(1),5(2)) | S(k) C (T(k)N M), S(k) # 0 for k € {1.2}}.
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Carrying out the integration in expression (19) we obtain

5 1)Z: LSk [+1)
(s(1).502)) €r(f1.2}) FZ‘ MRS (R (R
- 5 (-

(s(1),5(2))€r(1,2h |A(H (s(1 US(Q)))[

)|5(1)|+|5(2)|

(20)

Note that each pair (S(1),S(2)) € I'({1,2}) uniquely determines a set
L=A(H(S(1)US(2))) € A(A), which satisfies a € L and Ext(N(L),L) = S(1)U 5(2).

Hence, (20) cquals

LEA(A):a€L

(—1)1ML)OM] ut
— =@, (A, rp"). O

We illustrate the actual computation of the position value in

EXAMPLE 3. Let (N,u},,A) be the communication situation as described in example
1. Consider playPr 6. To obtaln the position value of player 6 we have to compute
¢(2,6}( 4 T'N ) @{5“}( 4 T‘N ) and q){(; 8}(A 'V‘N
For a := {2,6} we obtain (cf. (2)) the subgra.phs corresponding to T(1) = {1,2,3}
and T(2) = {6,7,8,10} with corresponding polynomials (¢f. (16)) Py(z) = 2z — z*
and Py(z) = = + 22 — z%. Hence, according to (17), 8,(z) = 22% 4+ 2 — 32* + z°® and

5 1
<I>a(.4,r;‘\.“) = { 8slz)de = %.

0

For b := {6,7} we obtain T(l) = {1,2,3,6,8,10} and T(2) = {7} and the polynomials
Pi(x) = 3z% — x —22* 4+ 2% and P,(z) = 1. Hence, 83(z) = 322 — 2% — 2z% 4 z° and
By(A, r"" f@b
Finally, for ¢ := {6, 8} we obtain T(1) = {1,2,3,6,7} and T(2) = {8,10} with corres-
ponding polynomials Py(z) = r + 222 — 323 + z* and Py(z) = z. Hence, we have
0.(r) =%+ 223 — 32* 4+ 7° and ®( u"' fG

We now compute

|
™
2y
o:'m
oleo
b
2l
+
mlw
ol
N

I

|
=5

ro(NV,up, A) = uis ({6}) — S 1&e(A,ri) =0

teAg

For the sake of completeness we note that

1
w(N,uy, A) = —1‘70(84. —101, 24, 60,0, —84, 89, —48,0,906).
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Similarly to the method described for the polynomials with respect to the Myerson
value, there is an alternative way to compute the polynomials Pi(z) as described in

(16). The desired polynomial is obtained by considering the polynomial
1- I «a- II Za)
JETRNM e a(H({ik).j))

and then following a reduction procedure similar to the one described before.

In deriving integral formulas for the Myerson value and the position value we restricted
our attention to communication graphs that are trees. However, since for all communi-

cation situations (N, ¢, A) and all components T' € N/A we have that
pi(N, e, A) = pi(T, ¢ |, A(T))

and
7!',‘(]\7, Cy .4) = 7T,'(T. c |T, A(T))

for all 2 € T ( where ¢ |1 denotes the restriction of ¢ to T'), the integral formulas can be
used to compute both values for communication situations with cycle-free communica-
tion graphs.

REFERENCES

Borm, P.E.M., Owen, G., and Tijs, S. (1990). "Values of points and arcs in communi-
cation situations’. Report 9004, Dept. of Mathematics, University of Nijmegen, The
Netherlands.

Harsanyi, J.C. (1959). 'A bargaining model for the cooperative n-person game’. Annals
of Math. Studies 40, 325-356.

Myerson, R.B. (1977). ’'Graphs and cooperation in games’. Math. Oper. Res. 2,
225-229.

Nouweland, A. van den, and Borm, P. (1990). 'On the convexity of communication
games’. Report 9047, Dept. of Mathematics, University of Nijmegen, The Netherlands.

Owen, G. (1972). 'Multilinear extensions of games’. Management Science 18, supple-

mentary issue, P64-P79.

Owen, G. (1986). 'Values of graph-restricted games’. SIAM. J. Alg. Disc. Meth. T,
210-220.

Shapley, L.S. (1953). 'A value for n-person games’. Annals of Math. Studies 28, 307-
317.

13



IN 1990 REEDS VERSCHENEN

419

420

421

422

423

42l

425

426

427

428

429

430

431

432

433

434

Bertrand Melenberg, Rob Alessie
A method to construct moments in the multi-good life cycle consump-
tion model

J. Kriens >
On the differentiability of the set of efficient (u,0” ) combinations
in the Markowitz portfolio selection method

Steffen Jogrgensen, Peter M. Kort
Optimal dynamic investment policies under concave-convex adjustment
costs

J.P.C. Blanc
Cyclic polling systems: limited service versus Bernoulli schedules

M.H.C. Paardekooper

Parallel normreducing transformations for the algebraic eigenvalue
problem

Hans Gremmen
On the political (ir)relevance of classical customs union theory

Ed Nijssen
Marketingstrategie in Machtsperspectief

Jack P.C. Kleijnen

Regression Metamodels for Simulation with Common Random Numbers:
Comparison of Techniques

Harry H. Tigelaar
The correlation structure of stationary bilinear processes

Drs. C.H. Veld en Drs. A.H.F. Verboven
De waardering van aandelenwarrants en langlopende call-opties

Theo van de Klundert en Anton B. van Schaik
Liquidity Constraints and the Keynesian Corridor

Gert Nieuwenhuis
Central limit theorems for sequences with m(n)-dependent main part

Hans J. Gremmen
Macro-Economic Implications of Profit Optimizing Investment Behaviour

J.M. Schumacher
System-Theoretic Trends in Econometrics

Peter M. Kort, Paul M.J.J. van Loon, Mikuléas Luptacik
Optimal Dynamic Environmental Policies of a Profit Maximizing Firm

Raymond Gradus

Optimal Dynamic Profit Taxation: The Derivation of Feedback Stackel-
berg Equilibria



435

436

437

438

439

4ho

Ll

Lu2

4y3

LYy

4hs

446

hh7

448

L4g

it

Jack P.C. Kleijnen
Statistics and Deterministic Simulation Models: Why Not?

M.J.G. van Eijs, R.J.M. Heuts, J.P.C. Kleijnen
Analysis and comparison of two strategies for multi-item inventory
systems with joint replenishment costs

Jan A. Weststrate

Waiting times in a two-queue model with exhaustive and Bernoulli
service

Alfons Daems
Typologie van non-profit organisaties

Drs. C.H. Veld en Drs. J. Grazell

Motieven voor de uitgifte van converteerbare obligatieleningen en
warrantobligatieleningen

Jack P.C. Kleijnen

Sensitivity analysis of simulation experiments: regression analysis
and statistical design

C.H. Veld en A.H.F. Verboven

De waardering van conversierechten van Nederlandse converteerbare
obligaties

Drs. C.H. Veld en Drs. P.J.W. Duffhues
Verslaggevingsaspecten van aandelenwarrants

Jack P.C. Kleijnen and Ben Annink
Vector computers, Monte Carlo simulation, and regression analysis: an
introduction

Alfons Daems
"Non-market failures": Imperfecties in de budgetsector

J:P.C. Blanc
The power-series algorithm applied to cyclic polling systems

L.W.G. Strijbosch and R.M.J. Heuts
Modelling (s,Q) inventory systems: parametric versus non-parametric
approximations for the lead time demand distribution

Jack P.C. Kleijnen

Supercomputers for Monte Carlo simulation: cross-validation versus
Rao's test in multivariate regression

Jack P.C. Kleijnen, Greet van Ham and Jan Rotmans
Techniques for sensitivity analysis of simulation models: a case
study of the 002 greenhouse effect

Harrie A.A. Verbon and Marijn J.M. Verhoeven

Decision-making on pension schemes: expectation-formation under
demographic change



450

451

452

453

45k

455

456

457

458

459

460

h61

462

463

164

465

iii

Drs. W. Reijnders en Drs. P. Verstappen
Logistiek management marketinginstrument van de jaren negentig

Alfons J. Daems
Budgeting the non-profit organization
An agency theoretic approach

W.H. Haemers, D.G. Higman, S.A. Hobart
Strongly regular graphs induced by polarities of symmetric designs

M.J.G. van Eijs
Two notes on the joint replenishment problem under constant demand

B.B. van der Genugten
Iterated WLS wusing residuals for improved efficiency in the linear
model with completely unknown heteroskedasticity

F.A. van der Duyn Schouten and S.G. Vanneste
Two Simple Control Policies for a Multicomponent Maintenance System

Geert J. Almekinders and Sylvester C.W. Eijffinger
Objectives and effectiveness of foreign exchange market intervention
A survey of the empirical literature

Saskia Oortwijn, Peter Borm, Hans Keiding and Stef Tijs
Extensions of the t-value to NTU-games

Willem H. Haemers, Christopher Parker, Vera Pless and
Vladimir D. Tonchev
A design and a code invariant under the simple group Co3

J.P.C. Blanc

Performance evaluation of polling systems by means of the power-
series algorithm

Leo W.G. Strijbosch, Arno G.M. van Doorne, Willem J. Selen
A simplified MOLP algorithm: The MOLP-S procedure

Arie Kapteyn and Aart de Zeeuw
Changing incentives for economic research in The Netherlands

W. Spanjers
Equilibrium with co-ordination and exchange institutions: A comment

Sylvester Eijffinger and Adrian van Rixtel

The Japanese financial system and monetary policy: A descriptive
review

Hans Kremers and Dolf Talman

A new algorithm for the linear complementarity problem allowing for
an arbitrary starting point

René van den Brink, Robert P. Gilles

A social power index for hierarchically structured populations of
economic agents



iv

IN 1991 REEDS VERSCHENEN

466 Prof.Dr. Th.C.M.J. van de Klundert - Prof.Dr. A.B.T.M. van Schaik
Economische groei in Nederland in een internationaal perspectief

467 Dr. Sylvester C.W. Eijffinger
The convergence of monetary policy - Germany and France as an example

468 E. Nijssen

Strategisch gedrag, planning en prestatie. Een inductieve studie
binnen de computerbranche



Bibliotheek K. U. Brabant

MO

17 OO0 01066358 2




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20

