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1. INTRODUCTION

Consider a group of economic agents who a11 want to make use of some machines

or facilities. If the agents cooperate they can possibly share some fa,cilities and thus

save costs. In section 2 it is shown that this kind of cost allocation problems give rise

to concave cost garnes which lic in the cone generated by all dual unanimity games.

Subsequently, we investigate the consequences of a restriction in rommunication

possibilities between the agents on this kind of cost allocation problems. Throughout

tliis paper we assume that the communication possibilities can be modelled by means

of a(communication) graph. Based on the Shapley value, two solution concepts for

conrmunication situations were introduced: the :~~Zyerson value and the position value.

An axiomatic characterization of the 1`lyerson value was given by Myerson (19ï7) and

Bor-rrc et al. (1990) gave an axiomatic characterization of the position value in case of

cycle-free communication graphs. Van den Nouweland and Borm (1990) proved that

if a communication graph is cycle-complete (cycle-free) and the underlying cost game

is concave, then the Myerson value (position value) is in the core of the corresponding

graph-restricted game.

Owen (1986) and Borm, et al. (1990) provided integral forrrrulas to compute the

~Iyerson value and the position value in situations where the communication graph is

cycle-free and the underlying game is a quadratic measure game. In section 3 we derive

integral fornrulas for the Myerson value aud the position value in situations where the

iuiderlying cost game is a dua.l tmanimity game.

2. THE MODEL

Let N:- {1,...,ii} and 2N :- {S ~ S C N}. By TUN we denote the class

of a.ll transferable ut,ility ga~nes (N,v) with player set 1V and charactert9ttc function

c, : 3'~`~ ~~ with r( 0)- 0. There are basically two ways to interpret a TL'-game

(.~-, r), the a.mount c~(S) can represent the revenue~gains for a coalition S C.N or it can

rcpresent the costs for this coalition. We prefer to denote a TU-game by (N,c) if it is

to be interpreted as a cost game.

In this paper we consider cost games that are generated by cost allocation problems

c~f t1iP forrn (N, F, p. d). Here. N is the set of players, F is a finite set of facilities.

p: F~ ff8f is a function t.hat assigns to every facility its non-negative price, and

d:,1' --~ 2F is a function that assigns to every player the subset of facilities demanded

L~~ this player.
Let (1V, F, p, d) be such a cost allocation problem. Then the players in a coalition S C N

have to purchase each facility that at least one of them demands. On the other hand,
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if two (or rnorc~) playen demand the same facility, then they only have to purchase it

once. Hence, this allocation problem leads to a cost game (N, c) with

c(s) :- ~P(r) Iivr(S),
r E F'

~~-here, for all r E F, Nr :- {~i E N ~ r E d(i)} is the set of players who demanci facilit}'

r, and ec` is the rlual unanimit a~ne on N, defined by u`. S ~ 1 if S(1 Nr ~ 0
;v, .~l 9 r ,ti~ ( ~ - 0 else

The proof of theorem 1 is straightforward and therefore omitted.

THEOREM r. The clas, of a.ll eost games corresponding to cost allocation prohlems of

the fornl (N, F,~, d) is the convex cone generated by all dl-ial unanimit,y games uM with

.ll E 2N`{0}.

A cost game (N, c) is called con.cave if it is more advantageous to join a larger coalition

UI', lIl fUIIIlllla, lf

c(S U {i}) - c(S) j c(T U {i}) - c(T)

for all r E N and all S C T C N~{i}. The class of concave games with player set

.V is a convex cone a.nd (~~~, le L1) is a concave game for every AI C N. Therefore, a

dirc~ct collsequc?ncc of t.llc~orem 1 is that all cost games corresponding to cost allocation

prol~lelns of the form (N, F, p, d~ are concave.

It may he notecl that the Shapley valwe ~(N,c) E IféN (cf. Slzapley (1953)) of the

cost game (N, c) corresponding to the cost allocation problem (N, F, p, d~ has a nice

illt~~rprc~t~ltiou. As i, e~asily scen tlle Shaplc~y value of a clllal unanirnity ganle (N,7cht)
c~c)nr~l~ 0 for i~ AI ~11IC1 ~t~ for i E RI. Sinccr t.hc~ Sllapley value is linea.r, it fiillows thnt.

`I'~( ~~, c) -

for all i E.V, which implies that the costs of each facility are equally dicided arllong the

pla~'c~rs tllat Inake nse of it.

3. INTEGRAL FORMULAS FOR THE MYERSON VALUE AND THE
POSITION VALUE

So far. we implicitl}~ assumed that all players can freely communicate with one

anotller. Now suppose that communication between the players is restricted and that

thc~ colnmunication possihilities are determined b~- an undirected (comm,unication) graph
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(N,.-1) in which the points are the players and the ares correspond to pairs of players

who can communicate directly. A triple ( N, c, A), where (N, c) is a cost game and (N, A)
is a communication graph, is called a com.raunication situation.

Let ( N, c, .4) be a communication situation. Then the players in a coalition S C N can
effect communication through all communication links of

.~1(S) :- {{i, j} E A ~{i, j} C S}.

Hence a coalition S splits up into (comrnunicatio~a) cornporaents in the following way:

T C S is a component within S if and only if the graph (T, .9(T ) ~ is connected and there

is no set T such that TCT C S and (T, A(T)~ is connected. We denote the resulting

partition of S by S~A.
Taking into account these~ communicat.ion restrictions, the costs cA(S) for a coalition

S E 2N can be defined as

Cq(.S) :- ~ C(T).

TES~A

(1~', c,~ ) is called the graph-restricted game.

One can also focus on the communication links. The cost savings for the grand coalition

incluced by the presencP of the communication links in L C A are defined as

rjv(L) :- ~ c({i}) - ~ c(T).
iEIV TEN~L

( A, rv) is called the arc (cost savings) ga-nze.

1'ow we are reacíy to formulate the definitions of the Myerson value and the position
value.
The Myerson ualue Ei(N,c,A) E ~N (cf. Myerson (197ï)) is defined as the Shapley

~.alue of thc~ corresponding graph-restricted ganie, i.e.

~[( N, C, .4) :- ~( N, Cq).

Tlie positiorz naliie of a cornmunication situation (cf. Bor~rt et al. (1990)) is based upon

the Shapley vahie of the corresponding arc game: the corresponding cost savings of

each arc are equa.ll,y dividccí among the players it connects. With the aid of these cost

savings the rorresponding cost allocation rule ~r( N, c, A) E 9~N, defined by

rr,(N,c,A):-c({i})- ~ ,z~a(A,r.

nE:1,
)

for all i E a~. is called the position value of the cornmunication situation (.~, c, rl ). Here,

.-li :- {{i, j} E rl ~ j E:ti'} is the set of all communication links of which player i is an

end point.
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I3oth t.he i`1~'erson value and the positiou value are linear with respect to the underlying
cost game. Therefore, in deriving integral forrnulas for both values we can restrict our
attention to ciual unanimitg- games. because all cost games we con5ider are positive
combinations of dual unanimity games ( cf. theorem 1).

First we derive an integral formula for the Myerson value of a communication situation
(1~', caM, A), 1lI C N, if the communication graph (N, A) is a tree.
Let (:~', c, ~) be a communication situation. As is well known, the game (N, cA) can be

written ati

cA - ~ O~A~S) us,
SE2~"`{0}

~vhere t~.,s. is the unanárnity garrae on S, clefined by

zis~T)-{1
ifScT

0 else

a.ncl the dividends v~a ( S) ( cf. Harsanyi ( 1959 )) are given by

T~~ S

-1)ISI-ITI cA~T)

for a11 S E 2-~~`{0}.
In t.he following we consicier a fixc~d communication situation (N, ii;y, A) where ~N~ ~ 2
Flll(1 ~ .ti., .~ ~ 15 a tI'E'e.

In this case the dividends Ot,,.~~)~(S) are given by (cf. Owen (1986))

(~-1)~snni~tr if ~S, A(S)~ is connected and Ext~S, A(S)~ - S fl M
~t~:`r)"~S) - (l0

else

for all S E 2~~{~}. Here, for a connected graph ~5,.4(S)~

E~ct(S, d(S)) :- {i E S ~ ~A; ~ A(S)~ C 1}

clenutes the set of r.xtrem,e points.

Consequently.

Ic~Í N,ri.h1,A) - `~,~N,Ír~M),t) -
SE~(.A):~ES

~-1)~SnA9~f~

IS~
(1)

for .cll i E 1~-, wherc~

~(.-l) :- {S C:~' ~( S,.-1(S)~ is connected and Ext~S,A(S)~ - Sfl ilI}.
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In order to apply (1) we havc to find all e~lements in ~(:~) cont~aining a player i. This
r:ut l,c dutti~ in tL~~ fcillowin~; way.
For e~.ery S C C ~~'ith C E.ti'~.~, we can define the connected hull of S( cf. Owen (1986))
bv

H(S) :- ~{T ~ S C T C C, (T, A(T)) is a connected graph}.

Let i E N and let. A, : -{{z~,i(1)},..., {i,i(t)}}. Clearly, since (N,A) does not contain
a cycle, the partition .V~(.~1~A; ) contains t distinct components C(1), ..., C(t) with
i(1: ) E C( k) for all k E { 1. . .., t}. For each ~- E{ 1, . .., t} we define a connected
subgraph (T(k),A(T(~)~~ of (C(~),A(C(k)~~ bY

T(k) :- ~ {H({i(k),1}) I IH({á(h), j}) n M~ - i}. (2)
ÍEM1fnC(k)

So, in particular, T(k) - 0 if C(k) f111~I -~, T(k) -{i(k)} if i(k) E ï11 and in all other
cases Ext(T('h~), A(T(k~)))~{i(k)} - T(k) n 111.

Iu dericing a generating function (cf. Owen (1972)) for the Myerson value we suppose
that each pla.yer has a probability :z' t.o be 'active' ~r 'operational' and we compute for

eacl~t subgraph ~T(k),.~(T(k)}~ the probability Pk(a) that at least one of the players
in aI fl T(k) can act.ually- iuteract wit.h player i. Using the inclusion-exclusion principle
this probability Pk(x) is given by

SC('T(k)na1),5~8

(-1)~s~tt~,~fi~su{~(k)})I (3)

for a11 k E{ 1, ..., t}. Note that Pk(~) - 0 if T(l~) f1111 - 0. The expected costs player ~i
generates by linking up the components C(1), ..., C(t) are described by the generating
fitnction d;(r), whcre

i
1 - ~k-~ Pk.(,T)

A;(.t') :- r ,
~,-z~r~c{i,...,r},~i~~-r(-1) ~kEiti ~k(~T)

In particular we have that B;(.r) - 0 if i ~ M and t- 1.
`cn~~ we can formnlatc

ifiE161
if i ~ ?f1.

THEOREM 2. Let (1~,.-i) be a tree wlth I~'~ ~ 2. Then for all M E 2N`{0},

{ta(.~', ti tir, A) - ~ B;(.r.)dz (5)

0

for all i E 1~'. where B,(.r) is tlefittcd as in (4).
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Proof. Let i E!11. Then

t

~ B~(z)~s -
0

~k~z~as~

- 1 - ~~ ~ ~-1~~5~{-l~~H(SU{i(k)})I
r~~~

k-1 ~ SC(T(k)n.Lf),5~8

~ ~-I~~S~t-1

k-t sc(T(k)nnf).s~0 ~H(S U{i(k)})~ -~ 1~

~1ote that, since i E 11I, for each k E{ 1, ..., t} a coalition S C T(k) f1 1L~1 with S~ 0
uniqLtely. determines a set T- H(SU{i}) E ~(.~), which satisfies Ext~T, A(T)~~{i} - S.
Hence, (G) eyuals

r ~~,..,~

k-t SE~.~k(~1aES,~.S~~'?

i-~ ~ ~-~~s~ ~ ~~~

where ~k(A) :- {S E~(A) ~ S C(T(l~) U{i})} for all k E {1,... ,t}.
The fact that i E 1lI itnplies that for a11 S E s(A) with i E S ~i.nd ~S~ ~ 2 the~re is ~
k E { 1. .. ., t} ~uch tlt~~t S C T(1~) U{ i}. Thcrefc,rc, ( ~) c,)n~tls ~

( 1)~ti~nnf~
1 - Z .

SE`7(A):,ES,~S~12 Isl

SincP i E 11I, wF~ ltave { } E E(A), so ( 8) equals

SE~'( A):,E.S

~-1 ~~snnr~t~
~S~ - ~1(~, unf,A).

Lc~t i E.~~~.V . First ttote t kt~t w~~ tn~~y ~ssumF~ tltat ~{ k E{ l,..., t} ~ T( k)~(~ } ~ J 2, f~~t'
„tlt~~t'LVis~~ N,(.r) - U att~1 {S E~(.-l) ~ z E S} -(~, so trivi~tlly ( 5) is satisfi~~l.
Sittcc fc,r ~ill Ii C{ 1, ..., t} with ~Ií ~) 2

~ Pk~s~ - ~ ~ ~ ~-i~isiftxiH(StJ{;(k)})i~
kEA kElí SC(7'(k)nAf):5~0

~ ~ ~ ~-1~~S(k)~~1~~H(S(k)U{i(k)})~~ ~~~
,

~S(kl~ EP(fí ) kEFí
kEK

LehPrc~ I'(Ii ):- {(S(k~)kEF. ~ S(k) C(T(k) Il bI),S(l,:) ~ 0 for all k E Ii }, it, follows
thar



I

.~ B~(.r)d.r -
u

(-1 )L4ex(~S(k)~t1)

r}.1~~1-r ~5. k~ 1~~kE~t ~H(S(~') U{é(l~~)})~
(-11~~~ ~

AC{1,.
~ ( ) kFhEl(1.)

~ (-1)it~kEti IS(k)I

~~liC{],.~.~h~~-r ~ ~H~UkEk'.S(i~:~~~
~Il))

~5~(k)~ E EI'(k)

Since ~i ~.11, for each Ií C{ 1, . .., t} with ~Ií~) 2 a set ~S( ~-)~ kEti E I'( lí ) uniquely
determines a set T - H~ U S(k )~ E r( A), which sat,isfies Ext ~T, r1(T )~- U S( ~. )

kEh kE1i
and r E T. H~~nce, (10) equa,ls

(-I~~SnA1~fi

SEE(A1-~ES ~S~
- F~~~~~, uNt, A).

~~-t~ illustrate the actual compiitation of the Myerson value in

a

Ex~.NtPtE i. Lc~t ,~' -{ 1. ...,10} and ~lI - {1, 3, 4, 7, 10}. The graph (N, A) is
r~~i~r~~seiited in fi~;iu~c~ 1.

L

~~` ,,.
, `~~ ~

fi~itre 1

Consicler play-er 2~.ll. Following ( 2) we obtain four subgraphs corresponding to
T(1) -{1}, T(?) -{3}, T(3) -~ and T(4) - {6,7,8,10}. The corresponding
liolt-noniials (cf. (3)) are P~(r) - Pl(:r) - x, P3(-r) - 0 and P4(x) - r~ ~- ,~3 - s~.
HF~nce, acrordin~; to (~).
Hlf.i'1 - -Pi(-~~)Pz(.~') - P~(.r)P~(.r~) - f'1(s)1'iÍ-r) ~- P~(:r)Pt(.r)Pal.r)-i
-.rz -'~ri - .r~~ f 3.r' -.rs. So. ~i~~~(.V, ti11,A) - f~H?(r)~l.r - --~i os ~n

S



Now cousider player 3 E ~1I. We obtain two subgraphs corresponding to T(1) -{4}

and T( 2)- { 1, ?, 6, ï, 8, 10 }. The corresponding polynomials are P~ ( r)- x~d

P,,(x) - x"- -~ :rs ~- a~ - .~~} -:r' - .r' -}-.r`' - .r2 f .r3 - 2:r5 ~- rs. So, according to (4).
i

B3(a') - 1-Pi(.r)-R,(r) - 1-.r-:rz-s3-F2a'-ss andEia(~V.un1,.4) - f B3(T)cl.r - zá~

F~ir rh~~ ,~il:~~ ~~f r~ini~il~~r.i~n~~,ti ~~~~~ noc~~ that.
0

1
~ l -~', tL ~l , .-1) - ~~0 ( 255. -?S4, 45, 210, 0, -249, 269, -123, 0. 297).

It may scem tha.t the calctilatioii of the polynomials P,~(.r) (cf. (3)) may be quite lengthy,

especially if the sets T(k) ~l .1I hace a large number of elements. An alternative way to

obtain these polynomials is described below.

Let i E N and let ~T(k),-~(T(k)~} be one of the connected subgraphs corresponding to

player i as described in (2). Suppose each player p has a probability ~p to be 'active'.

Coiisi~lcr thc~ polynomial

1 - ~j (1 - ~ ~p)
jET(k)nM pEH({í(k),j})

and espand it. Now reduc-e the obtained polynomial to a niultilinear p~lynomial l~y
t,he~ simple re~coursc of reclucing each higher exponent to a 1. Finally, by replacing the

hrobabilities .rp by tlie probability a E[0, 1] we obtain the polynomial Pk(.r).

In this, ~ce arc effectively using t.he inultilinea,r extension (cf. Owen (1972)). As we
kno~ti., thc partial derivati~.e ~~ of this extension corresponds to the expectation that
otlier players ~~-ill collaborate with pla.yer i. Typically, for S C N`{i}, the term

ic(S) :- ~ ~z'i
jE5

(12)

~~orr~~sponds to thc~ probability tliat all meinbers of S collaborate, given that each j E S
ha; prohabilit,y .r~ of collaboration and assuming independence. Now, if S and T are

cli~joint, then

z~(SUT) - u(S).zc(T), (13)

siiice the pl~~y~~rs in S and T are inciependent. ~~Vhen S rl T~~, however, (13) is not
qnite corrc~ct. Rather,

rt( S U T}- t~(s) . it(T ),

~~-her~~ tLe~ h,ir correspon~lti to a rcduct.ion operatien: ea.ch exponc~nt lar~er than 1 iti
r~~duc~~,cl tc, 1. If, for t~x~~iuplc, S-{ 1.'?} a.iid T- {2, 3}, then z.~(S) -.r~ r~.~, z~(T) -.rl.ra
~ncl v(SUT) -.ri.rz.r.3 -.c~.r.~.r3.



ExatvlPLE z. Let (N, u ti.t, .4) be the cvmmunication situation as described in example
1. :~gaiii consider player 2. For the subgraph corresponding to T(1) -{1}, expression

(11) y1P.1dS
1-(1-.rl),

wliich re~iilts iii th~~ l~ol~.nomial Pi (.r )-.r.

In the same way ~~.e obtain P2(a) -.r for the polynomial corresponding to T(2) -{3}.

Defining the empty product. to be 1, we easily see P3(~) - 0.

Finally, for the suhgraph corresponding to T(4) -{6,7,8,10}, expression (11) yields

1 - (1 - rsx~)(1 - :rs~a~io)-

Espanding this, we obtain

.r~;.r7 f :rfi.rs:rio - .rha7.rHr~~.

Reducing this polynomial ancl then replacing all xN's by s, we obtain

.T2 -~ ~3 - .T9~

which is exactly the desired polynomial P3(~).

~~'c now concentrate on the position value. The arc game corresponding to the
nicatiou situation (N, u~~, A) can be expresseá as

ru'sr - 1 c~ ..~ Í L) 4tr.
Li .. ~f . . `. .

commu-

LE2A`{0} N

~~~here, for all L E 2~~{0}, (A,uL) is the (arc) unanimity game

IJnr~,~ et. ~il. (1990) imply that for all L E 2A~{0}

~ 411 (L) - ~
(-1)I~U.~n~~[~

' .. 0

on L. The results of

if (N(L),L) is a tree and Ext (N(L),L) - N(L) rl lll
else,

~~-hrrf~ 1~'(L) is thc~ set of I~~layers who are end points of an arc in L. Hence, for all a E A

~a ( .,~ , r ~;"' ) -

LE:1(A):aEL

~-1)~N(L)nM~

~L~

where ~~(.~) :- {L C.-1 ~(N(L),L) is a tree, Ext(N(L),L) - N(L) (l ll~f}.

In ordcr to apply (15) we have to find all elements in A(A) containing an

can be donc in the following way.

(15)

arc a. This

10



Let u-{i(1), i(2)} E.4. Clearly. since (N, A) is a tree, the partition N~(.q~{a}) consists
of two distinct components C(1) and C(2) with i(1) E C(1) and i(2) E C(2). For each
~ E{1,2} we define the connected subgraph ~T(k),A~T(~-)~~ of ~C(k),A~C(k)~~ as in

(2). In deriving a generating function for ~(.4, r~' ) we suppose that each arc has a
Prcib~tibilit~. .r tr, he 'available' and w~e compute for each stibgraph ~T(k),r1~T(k)~~ the
probahility- P~;(x) that at least one of the players in .'11 ~iT(k) can actually interact with
play-er r(~). L;sing the inclusion-exclnsion principle this probability Pk(:~) is given by

Pk ~ ~T ~ -

for k r` {1, 2}. The expected cost savings an arc generates by linking up the components
C(1) and C(2) are described bv the generating function B~(a),

Ba~~~ -- pI~T~ ' P2~~ ~- ~17~

`ow- w-e can forniiilate

THEOrtEM 3. Let (N,.~) }-~e a tree with ~N~ 1 2. Then for all 1LI E 2N`{0},

~~ k-1 SCf I'(k)nA1):S~O

fc~r all a E.~1, where Ba(:r ) is defined as in (17).

Proof. Lct n E.4. ~~e iuay assume that T(1) and T(2) are both non-empty, for otherwisc
Bn(.r) - 0 and {L E A(.4) ~ a E L} -~, so, trivially (18) is satisfied. Now

i i

J ~,~(T)ds - ~~i(,i')Pl(,r)dr
o a

sCf7'(k)ndl).S~N

t

~n(-`l,rti.")- J BQ(x)dx (18)
u

~-~~~5~-{-1~~A~H(Su{i(k)})~~ ~~~~

~-~~~5~-}11,~A~H(SU{i(k)})~~ ~~~,

L
~ ~~~-1~~5(k)~t1~,~A~H(S(k)u{i(A)})~~~~jT ~~~~

0 ~.S(1),S(?)~EP({1.'1}) ~-1

whcrc~ I'({1,3}) :- {(S(1),S(2)) ~ S(k) C(T(k) fl ?II),S(k) ~ 0 for I~ E {1.3}}.

11



Carrying out the integration in expression (19) we obtain

2(-1)~.-~c15(~~IfI)

1 -I- ~,~~-~ ~-~{H(S(~) U {~~(~')} ))~
(S(1)..Y("))EI'1{I,YI)

~

~S(1).S(2)~E1~1{1,?})

~ (-1)~SU)~f~S(2)~

~~~H{S(1) ~ s(2))~ ~

?~ote that each pair { S(1), S( 2) } E I'( { 1, 2} ) uniquely determines a set

L-.-1(H(S(1)US(2))} E A( ~), which satisfies a~ E L and Ext(N(L),L) - S(1)US(2).

Hence, ( 30 ) equals
~ (-1)~N(L)~M~ .

~L~ - ~a(A.rjv"). (]
LE:1(A):aEL

~~'t` illustra,te the actual computation of the position valuc in

ExAMPr.~ s. Let (N, u;y, A) be the commlrnication siirration as described in example
1. Con~icler playe~r 6. To obtain the position value of player 6 we have to compute

~{z,t~}(A.r~' ).~{s,r}(.4,rN') and ~{s.a}(.~~r'w' )~
For a:- {2,6} we obtain (cf. (2)) the subgraphs corresponding to T(1) -{1,2,3}

and T(?) - {6.7,8, 10} with corresponding polynomials (cf. (16)) Pr(x) - 2z - a~

and PZ(r) -.r f r'- -~3. Hence, according to (17). 9Q(.r) - 2a~ f ra - 3:r~ ~.rs ancl
(I'

~a(~ r~~~c ) - J Ba(x)~~ - 6ó'
0

For b:- {6, 7} we obtain T(1) -{1, 2, 3, 6, 8, 10} ancl T(2) -{7} and the Polynomials

Pr(.r) - 3.r~ - x'3 - 2x4 -}- :rs and P2(a) - 1. Hence, Be(a) - 3~~ -:r3 - 2a4 -~ xs and
I

~e(.~. r`N„ ) - f 96(.r)rl.r - só -
~,

Fillally, for c~ :- {6, 8} we obta.in T(1) -{1, 2, 3, 6, ï} and T(2) - {8, 10} with corres-
Ironcling Pr7lynornial5 PI(:r) -.r f 2.r2 - 3.r~ ~.r"} anrl PZ(.r) -.r. Hent-c`, wc have

t
B~(.r ) - ,r1 ~- 2:r~3 - 3.r'; ~- .r~ antl ~, (.9, rti"r ) - ~~ B~(.r )d.r - 5 .

0
~` t' nt)~V fOIIl~lltt`

~s( ~-,u:~r,.-1) - r,nl({6})-
fEAF

~~P(-~`rni')-0- z(só~só~su)--íó-

Ft~r the sake of completeness ~~-e note that

1
r(:V,utit,.-1) - -(~4. -101.'?4.00.0.-S4,bJ,-48,O,JG).

1?0
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Similarlt~ to the method dPSCribed for the polpnomials with respect to the I`~Iverson

~~~lue, thc~re is an altcrnative wav to compute tlie polvnomials P,t(.r.) as clescribed ir.

('1~). The dc5ircd poly.nonri~i.l is ohtained by consiclering the pol~.nomial

1- ~ (1-
iE7'(k)nAt

aE.4~ ~~( {i(k),j })~

ancl then following a reductiun procedurP similar to the one cieseribed before.

In deriving integral fornnilas for the My-erson value and the position value we restricted

our attention to communication graphs that are trees. However, since for all communi-

c-atioii situatiotis ( N, c, -a) and all coznponents T E N~r1 we have tliat

f~~(N, c, A) -~~(T, c ~~r, -4(T ))

and
~t(1~',c,A) - ~z(T.c ~T,.4(T))

for all i E T( where c ~T denotes the restrict.ion of c to T), the int.egral formulas can be

used to compute both values for comnnrnication situations with cycle-free communica-

t.ion graphs.
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