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Abstract

In I3orm, Keiding, McLean, Oortwijn and Tijs (1992) the compromise value

is introduced as a solution concept on the class of compromise admissible NTU-

games. Two characterizations of the compromise value are provided on sub-

classes of NTU-games.

'I'his note shows that in one of thes~ characterizations the axiotns are depen-

dent. It turns out that with a small weakening of the symmetry property thc

axioms become independent. Moreover, a new characterization of tlie compro-

mise value is provided.

Further, it is shown that these characterizations can be extended to a larger

class of NTU-games. Finally, all monotonic, Pareto optimal, and covariant

values on this class of NTU-games are described.



1 Introduction

Borm, Keiding, McLean, Oortwijn and Tijs (1992) introduced the compromise value

as a new solution concept for a large class of NTU-games. The comprornise value

by dc(inition cxl,cnds t,hc r-va.luc for'1'l1-gamcs ('I'i.ls (1981)) and thc Ii.aiffa-Kalai-

Smorodinsky solution (ILKS-solution) for bargaining problems (Ii,ailfa (1953), Kalai

and Smorodinsky (1975)) to NTU-games. Two characterizations of the compromise

value show that also axiomatically the compromise value generalises the solution con-

cepts nicnt,ionc,d abovc.

In section 2 0l' this uotc it is shown that in onc of the charactcrizations of thc cornpro-

mise value provided by Borm et aL (1992) the axiom system is dependent. We show

that by weakening the (strong) symmetry property, the original characterization of

the compromise value can be adapted in such a way that the axioms are independent.

Moreover, we obtain a new characterization of the compromise value, which is similar

to one of the characterizations of the MC-value introduced in Otten, Borm, Peleg,

Tijs (1994).

In the characterizations of the compromise value discussed in section 2 a non-levelness

condition plays a crucial role. Section 3 illustrates that this condition can be weak-

ened in order to obtain a characterization on a larger class of NTU-games. We use a

similar technique as Peters and Tijs (1984) who extended Thornson's (1980) axiom-

atization of the RKS-solution to a larger class of bargaining problems by weakening

the non-levelness condition.

Finally, section 4 characterizes the set o[ all monotonic, Pareto optimal, and covariant

values on this class of NTU-games using monotonic curve solutions as introduced by

Peters and Tijs (1984).

2 The compromise value

We start, wit,h some definit,ions. !1 non-transJeraóle utility gayrce or NTII-garrte is a pair

(N,V), whcrc N is a finite scó o( playcrs and V is a map assigning t,o oach coalition

.5 E 2N ~{~l} a~ subset V(S) of IL` of ctllrlirenGlc payo,(}~veclors. Wc asstunc 1.haL for

each ~i E N there exists a real nurnber v(i) such that V({i}) -{x E II. ~~ G v(i)}.
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Furthcr, wc assurne that, for cach .S E 2N ~{(~i} the following properties hold

(i) V(.4) is a. non-c~nipty, closcd and coinprchc~nsive subsel. of l~s

(ii) V(S) fl {x E RS ~ x; 7 v(i) for all i E S} is bounded.

An N'1'U-garrre (N, V) is often identified with V.

Let V be an NTiJ-game. For each S E 2N `{~}, let

dom(V(S)) :- {x E RS ~ x G y for some y E V(S)}

wdom(V(S)) :- {x E RS ~ x G y, x~ y for some y E V(S)}.

The elements of (w)dom(V(S)) are (weakly) dominated by the coalition S in the

game V. Elements of V(S) `dom(V(S)) are called weakly Pareto optinaal in V(S)

and elements of V(S) `wdom(V(S)) are called Pareto optimal in V(S). The core

of (!~',V), denoted by C(V), consists of all payoff vectors attainable for the grand

coalition N which are noL dorninated by any coalition S.

Let i E N. The utopia payof~ for player i, It;(V ), is defined by

Ií;(V) :- sup{t E R ~~QERx~{~} : (a,t) E V(N),a ~ dom(V(N ~{i})),a ~(v(j))~EN~{;}}.

By assurnption ( ii) in the definition of an NTU-game it follows that lí;(V) G oo.

However, it might happen that Ii;(V) -- oo. We will restrict ourselves to NTU-

games (N,V) for which lí;(V) E R for all i E N. The vector Ií (V) :- (Ií;(V))iEN ~s

also called the upper value of V.

Let i E N and let S E 2N with i E S. 'I'he re~nainder of i E S is given by

pv(s,i) :- sup{t E R ~~aE fts~~.~ :(a,t) E v(s),a ~(x~(V))~ES~{~}}.

The nzinirnal right of player i is denoted by

k;(V ) :- max p~(S, a),
S:iES

and the vector k(V) :- (k;(V));EN is also called the lower value of V. Note that

k;(V) ) v(i) for all i E N, but it might happen that k;(V) - oo for some i E N.
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Again, we will restrict ourselves to NTU-games (N,V) for which k(V) E RN.

The compromise value is defined on the class of compromise admissible NTU-games.

An NTU-game (N,V) is called compromise a.dmissible if

k(V) c lí (V), and k(V) E V(N), K(V) ~ dom(V(N)).

It is easy to show that for a compromise admissible game ( N,V) the assumption

K(V) ~ dom(V(N)) implies that K(V) ~ wdom(V(N)). By CN we denote the class

of all compromise admissible NTU-games with player set N. It is shown by Borm et

al. (1992) that an NTU-garne with a non-empty core is compromise admissible.

A value on CN is a map f: CN ~ RN, which assigns to each V E CN a payoff

vector. For a compromise admissible N'I'U-game (N,V) the compromise value 'l(VJ

is defined as the unique vector on the line segment between k(V) and lí(V) which

lies in V(N) and is nearest to the utopia value Ií(V), i.e.,

T(v) :- k(v) ~ a~(x(v) - k(v)),

where

a,, :- max{a E[o, i~ ~ k(v) ~- ~(x(v) -~(v)) E v(N)}.

Borm et al. (1992) show that the characterization of the two player ItKS-solution by

Kalai and Smorodinsky (1975) can be extended in order to provide a characterization

of the compromise value. In order to illustrate this result we first need some notation

and definitions.

l;or vectors ~, y E R`v and a subset C C RN, we define ~~,y :- (x;y;)iEN and

a,~C:-{x~c~cEC}.

Let (N, V) be an NTU-game, ~ E R~~ and Q E RN. The NTU-game (N, a~ V-~ ~i)

is defined by

(cY ~ V f Q)(S) :- ~s~ V(S) -f {~s} for all S E 2N.

l~l`I~ ,-~N ~~,.N .l.Ild Il`I, I : ~lw -a ~~.N b~` :1. Vallll` UII rÍN.



(i) f is callr~d I'arelo oplimolon A~ if f(V} E V(N)~wdunt(V(N)) forall V E AN.

(ii) f is called weak Pareto optintal on AN if f(V) E V(N) ` dom(V(N)) for all

V E AN.

(iii) f is syntrnetric if f;(V) - f~(V) for all V E AN and all i, j E N which are
symmetric in V. Here, players i, j E N are called symmetric in V if

(1) for all .S C N` {i, j}, all ~: E V(.S U{i}) it holds t.hat ,y E V(S U{j}),

where ,y E Rs"{'} is defined by y~ -.x; and ys - a,s,

(2) for all S C N, i, j E S and all a, E V(S), we have y E V(S), where y E Rs
is defined by y; -~~, y~ - x; and ys`t~,~} -~s`{t,~}.

(iv) f is strongly symmetric on AN if for all V E AN and all i, j E N with k;(V) -

k;(v),x;(v) - r~,(v), we have f;(v) - f,(v).

(v) f is monotoaic on A~ if for all V,W E A~ with k(V) - k(W),lí(V) - K(W)
and V(N) C W(N) we havc f(V) C f(W).

(vi) f satisfies covariunce on AN if for all V E AN, all ~ E R~t and all Q E RN we

have f(cY~V fQ)-a~ f(V)~~.

On the class of compromise adrnissible garnes the compromise value satisfies all prop-

erties mentioned above, except Pareto optimality. This is shown in the following

example.

Example 2.1 Let N:- { 1, 2, 3} and define V by

V(.S):-{.rE1~s~:rCO} fora.IISE2N`{N,N},

V(N) :- compr(conv{(4,0,0), ( 4,3,0), (2,4,0), (0,4,0), ( 2,3,2), (0,3,2), ( 0,0,4)}).
Here, for a set C E RN, compr(C) denotes the comprehensive hull of C and conv(C)
denotes the convex hull of C. The reader easily verifies that K(V) -(4,4,4) and
k(V) -(0, 0, 0). So, V E C~ and T(V )-( 2, 2, 2). But (2, 2, 2) E wdom(V(N))
since (2, 3, 2) E V(N). Hence, the compromise value is not Paret,o optimal on G'N.

Borrn et aL (1992) characterize the cornpromise value on the set CN C CN of all

compromise admissible games (N,V) satisfying
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(A) the boundary of t,he set V'(N) :- {:c E V(N) ~ x~ k(V)} contains no segments

parallel to a coordinate hyperplane, i.e., V'(N) is non-level

(B) k(V) ~ Ií(V)

(C) (kN~t;), lí,(V)) E V(N) for all i E N

(D) V(N) is convex.

We now krave

Theorem 2.2 (Borm et aL (1992))

The corupromise value is the unique value on CN which satisfies weak Pareto opti-

rnality, strong symrnetry, monotonicity and covariance.

Of course, in this characterization weak Pareto optimality can be replaced by Pareto

optimality since for a game V E CN all weak Pareto optimal points in the set V'(N)

are Pareto optimal.

However, in this characterization the monotonicity property is superfluous. This

is a consequence of

Theorem 2.3 The compromise value is the unique value on CN which satisfies

Pareto optirnality, strong syrnrnet,ry and covariance.

Prooj. Clearly, the compromise value satisfies the properties mentioned above on

CN. Let f: CN -~ RN satisfy the three propert,ies, and let V E CN. We show that

f(V) - T(V).

Let V' :- V- k(V). Clearly, V' E CN and k(V') - O.Moreover by (B), Ií(V') -

K(V)-k(V) ) 0. Definc ~ E R.N by ~; :- ( k;(V'))-r for all i E N. Then a 1 0. Let

W:- ~~ V'. 'l'hcn W E C`N and k(W) -.~ ~ k(V') - 0, Iï (W) -.~ ~ K(V') - cN,

where e~ E R~ denotes the vector with cN - 1 for all i E N. St,rong symrnctry

of f and the 7' implics f;(W) - J~(W) for all i, j E N and 'I;(W) - 7~(W) for a.ll

i., j E 1V. From Parcto opt,itnality oF f and the T it follows that f(W) - T(W'). Since

V- K(V') ~ W~ k(V) covariance of f and T implies f(V) - T(V). O
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Note that in thc proof of this theorem we did not use the conditions (C) and (D). So

theorem 2.3 holds on the larger class of compromise adrnissible NTiJ-games satisfying

(A) and (B).

Theorem 2.3 is similar to one of the characterizations of the MC-value which is in-

t,roduced in Otten et aL (1994).

In fact, the proof of thcorem 2.2 provided by 13orrn et al. (199`L) shows the fol-

lowing characterization of the compromise value on CN in which strong symmetry is

replaced by symmetry.

Theorem 2.4 The conrpronrise value is the unique value on CN which satisfies

Pareto optimality, symmetry, monotonicity and covariance.

It is left to the reader to show that in theorem 2.1 all properties are indcpendent.

3 Characterizations on a larger class of NTU-

games

'I'he assumpl.ion of non-Ievelness plays a crucial role in the characterizations of Lhe

previous section. We will show that by modifying this assumption one can obt,ain a

characterization of the compromise value on a larger class of compromise admissible

NTU-games. This modification is based on Peters and Tijs (1984), who extended

Thomson's (1980) characterization of the RKS-solution to a larger class of bargain-

ing problems by weakening the assumption of non-levelness.

We restrict attention to the class CN of all cornpromise admissible N'I'U-games with

player set N satisfying (B)-(D) and, in addition,

(E) for all x E V'(N) and all i E N we have: if x E wdonz(V(N)) and x; C Ií;(V),

then there exists an f ~ 0 such that, x-h ee' E V(N).

llere, e` E RN denotcs the vector with e~ - 1 if i- j, aud e~ - 0 otherwise.

Clearly, if V"(N) is non-level, then V"(N) also satisfies (E).
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Not.e tha.t ihe N'I'[1-gainc providcd in cxarnple l does uol, satisfy (G). This is an

imniecííate conseyuence of I,he following lenmia which shows I,hat I,he comprornise

value is Pareto optimal on the class CN.

Lemma 3.1 Lci V E CN. 'I'hcn 7'(V) E V(N) `~~dom(V(N)).

Proof 13ecause of covariartce of f and "I' it is sufficient to prove that f(V) - T(V)

for all V E CN wit.h k(V) - 0 and lí(V) - e~ ( see the proof of theorern 2.3). So, let

V E CN with k(V) - and I((V) - eN. The compromise value of V is an element of

the line segment through 0 and e~. We rnust prove that T(V) E V(N)~wdom(V(N)).

We disf.ingiiisli Lwo casc~s.

Olivioiisly, if 'I'(L') - r~, tlien 'I'(V) E V(N) ~ tu~lunt(V(N)). Now suEifiose LhaL

'l'(V) ~ cN aud Lhat '!'(V) E~iudorn(V(N)). '1'heu 1'(V) G c`v - lí (V), and so

by assumption ( 1J), it follows that for each i E N there exists an e, ) 0 such that

T(V) f ete` E V(N). Take e:- min{e; ~ i E N}. By comprehensiveness of V(N) it

follows that Í'(V) ~- ee' E V(N) for all i E N. Using convexity of V(N) we obtain

that T(V) f ~~,~e~ E V(N). Ilence, T(V) E dom(V(N)), which contradicts the weak

Pareto optimality of T. Hencc;, T(V) E V(N) ~ wdom(V(N)). ~

Now we can forrnulate

Theorem 3.2 The cornprornise value is the unique value on CN which satisfies

Parcto opl,iniality, synunctry, rnonol,onicit,y anci covariance.

!'roof ('Ica.rly, t,he coniproniise valuc~ sat,isfics t,hc four propertic~s ment,ioned above on

CN. Now let f: CN -~ 1~.~ sal,isfy the four properties. We provc that f(V )- T(V )

for all V E CN.

Because of covariance of f and T it is sufficient to prove that f(V) - T(V) for all

V E CN with k(V) - 0 and I1(V) - eN ( see the proof of theorem 2.3). So, let V E CN

with k(V) - and h(V) - eN. Then T(V) is an element of the line segment through 0

and eN. Using the assumptions (C) and (ll) we have that ronv{e` ~ i E N} C V(N),

so T(V) ) ~N~e'v.

Now consider the NTU-game (N,W) defined by
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{:cE It'ti~~:rCO} il'S'E2N`{{D,N}

com~r(cortv({e' ~ i E N} U{T(V)})) if S- N.

Obviously, fí(W) - eN, and k(W) - 0. Hence, W E CN and assumptions (B)-(ll)

are satisfied. If T(V) - eN, then W(N) - corrzpr{eN}. Otherwise, if T(V) G eN,

then W(N) is non-level. In both cases (E) is satisfted, so W E CN. Clearly, T(W) -

T(V). Using symmetry of f it follows that f;(W) - f~(W) for all i, j E N. So, by

Pareto optimality of f and T it follows that f(W) - T(W). Hence, T(V) - f(W).

Since, W(N) C V(N), k(V) - k(W), and K(V) - [í(W), it follows by rnonotonicity

of f t,}:at, f(W ) C f(V ). Henc;c:, T(V ) G f(V ). But then Pareto optimality of T

irnplies that T(V) - f(V). ~

4 The class of monotonic, Pareto optimal and co-

variant values on CN

Theorem 3.2 characterizes the compromise value as the unique value on CN which

satisfies Pareto optimality, monotonicity, covariance and symmetry. In this section

we drop t.he syrnmetry property and characterize all Pareto optirnal, monotonic and

covarianl, solutions on the class CN. I~or t,his, we use similar tcchniques as Peters and

`l'ijs (198~) who charactcrizcd all l'areto optimal, rno~rotonic, and covariant bargain-

ing solutions on a large class of bargaining problems, using monotonic curve solutions.

Because we consider covariant values on C~ attention can be restricted to the class

Cór of NTU-games V E CN which satisfy Ií(V) - eN and k(V) - 0(cf. the proof

of t,heorern 3.2).

Using monotonic curves one can define monotonic and Pareto optimal values on the

class C~~.

A rranreolo~rr,ic curve (Peters and 'l'ijs (198~)) is a map y: [1, ~N~] ~[0, 1]~ with

(i) y is increasing, i.e., ry(s) 1 ry(t) if s? t, and

(~~) ~;EN -y,(t) - 1 for all t E [l, ~N~].
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Note that (ii) irnplies that, y(1) E corzv{e` ~ i E N}, and ry(~N~) - eN. Moreover, it

can easily be checked that eac6 monotonic curve is continuous.

Let 7 be a monotonic curve. '1'hen ry gives rise to a value fry on Cor in the following

way: for V E Cór define f~(V) as the unique Pareto optimal point of V(N) lying on

the curve {ry(t) ~ 1 G t G ~N~}. It can easily be verified that fti is well-defined on Cór
(c.f. Peters and rI'ijs (19~34)). f~ is called tlce value corresponding to líee m.onotonic

cvcrve y. 'I'hc r~~adcr c~asily vcrifies that f~ is rnonotonic and Paret,o opt,imal.

Clearly, each J~" cau be exteuded to a rnonotonic, l'areto optirnal and covarianL value

on CN in a unique way.

We now have tlre following characterization.

Theorem 4.1 Let f: CN -~ R.N be a value on CN. Then f satisfies Pareto opti-

rnality, rnonotonicity and covariance if and only if f- fry for some monotonic curve

ry : [l, ~N~] -' [0, 1]N.

Proof Clearly, if f- f~ for some rnonotonic curve ry, then f satisfies the reyuired

properties. Conversely, let f satisfy Pareto optimality, monotonicity and covariance.

We const,ruct y:[l, ~N~] -~ [0, 1]N as follows.

I~'or ! E[I, ~N~], I~,t y(l) :- f(l~), whcrc~ V~, is I,hc hI'l'U-garnc dc[incd hy

~~ {a~ER~ti~:rCO} if.SE2~~{(n,N}
~',~(.5') :

corn.Err({ar E RN ~ 0 G:r C c~~, ~,EN r; G l}) if .S - N.

'lhe reader easily verifics that, !t (V~) - e~, k(V~) - 0 and that V~ E C~ for every

t E[1, ~N~]. Further, by Pareto optimality and monotonicity of f it follows t,hat -y

satisfics ( i) and (ii). So ry is well-defined. Note that

f(V~) - f~(Vr) for all t E [1, ~N~]. (1)

We want to prove that f- f7. In view of covariance of f and f~ it is sufircient to

prove that f(V) - f~(V) for all V E CN with K(V) - eN and k(V) - 0.

Let V E C'N satisfy Ií(V) - eN and k(V) - 0. Let t :- ~iENfi ( ~~), and let W be

the NTtJ-game defined by
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( {~ERS~~CO} ifSE2N`{~,N}
W(S) :- Sl V(N) ~ Vr(N) if S- N.

Then W E CN and K(W) - eN and k(W) - 0. Clearly, f"(W) - f"(V) - f"(Vt).

Iience, by (1)

.i"(V ) - f(Vt). (2)

Using monotonicity of f, we have f(LV) C f(Vi), and f(W) C f(V), and by Pareto

optimality of f it follows that

f(W) - f(V~) - f(V~~ (3)

Combining ( 2) and ( 3) we can conclude that f(V) - f"(V). O

I'rorn thc proof of Lhcorctn 9.1 i1, follows I,haL thcrc exists a uniyuc nronotonic curvc

7" :[1, ~N~] -a [0, 1]N such LhaL f"~ is symmetric, namely, -y'(t) :- ~N~eN for all

t E [1, ~N~]. Clearly, f"~ - T, so theorem 4.1 provides an alternative proof of theo-

rem 3.`l.
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