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Abstract:
In many practical situations coordination of replenishment orders of a family of items

leads to considerable cost savings. A continuous review inventory system wfth com-
pound Polsson demands and discount opportunlties is considered. A welf-known class

of strategies for the case where cost savings are due to reduced fixed ordering costs is

the class of can-order strategies. However, these strategies, which are simply to
implement in practice, don't take discount possibilities into account. We propose a

method to incorporate discounts in the framework of can-order strategies. When the

can-order system triggers a replenishment, an additional decision has to be made

whether the can-order replenishment has to be enlarged in such a way that the ddlar

value of the order exceeds a given discount breakpoint. A class of simple decision rules

for this discount evaluation is investigated. For small problems the optimal strategy

within this class can be found with a semi-Markov decision model. For large sized

problems a one-perlod look ahead heuristic is proposed. Some numerical examples

show that this heuristic performs quite satisfactorily.

1. Introduction

The main part of inventory management literature is devoted to single-item

models. These models neglect possible savings which can be achieved by

ordering two or more items together. These savings can be caused by

reduced ordering costs, reduced freight rates, quantity discounts or improve-

ment of the implementation of stock control. Therefore, joint replenishment

models, in which the interaction among different items is explicitly taken into

account, are very useful in many practical situations.
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The joint replenishment models, which have been investigated ín the literature,
can be divided into two groups, depending on which of the following problems
has to be tackled:

JRP1 : Joint replenishment problem with savings due to reduced ordering

costs
The problem is to find an ordering strategy for the situation where a fixed

ordering cost is incurred for any order that is placed. In addition, an item-

specific ordering cost is charged for each particular item included in the re-
plenishment (the fixed cost is shared when two or more items are jointly

replenished).

JRP2 : Joint replenishment problem with savings due to discounts

In this situation, the problem is to find an ordering strategy for the situation

where discounts are available if the total dollar value of an order exceeds a

given discount breakpoint. These discounts may take severat forms (for

example: all units discounts, incremental units discounts or freight rate

reduction).

JRP1 is extensively studied in the literature for the case of constant determi-

nistic demand (a good overview is given in the review papers by Aksoy and

Erenguc (1988) and Goyal and Satir (1989)).

Less attention has been paid to the stochastic demand case. A well-known

class of strategies for the stochastic demand case of JRP1 are the so-called

"can-order" strategies, which are characterized by three parameters (S,,c,,s;) for

each item i. Under this type of control the inventory position is continuously

reviewed. Whenever the inventory position of any item i drops to or below its

must-order point (s;) a family replenishment is made. All the other items j with

an inventory position less than or equal to their can-order point (ci) are

included in this replenishment. The inventory position of each item j in the

replenishment is then raised to the order-up-to level (S~). Silver (1974, 1981),

Thompstone and Silver (1975) and Federgruen et al. (1984) have proposed

algorithms to find the parameters of the optimal can-order strategy for the

case of (compound) Poisson demands.

Periodic replenishment strategies for the stochastic demand case of JRP1
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have been investigated by Naddor (1975), Chakravarry (1986) and Atkins and
lyogun (1988).

All these strategies have in common that they don't take account of discount
opportunities and hence they are not appropriate to deal with JRP2.

Miltenburg (1984a, 1984b, 1984c, 1985, 1987) has developed a coordinated

replenishment system, based on reorder points, for the situation where

quantity discounts provide significant potential savings. Roughly speaking, this
system works as follows: ff the inventory position of any item in the family
drops (to or) below its reorder point, then a replenishment is triggered. Based
on the actual inventory positions of all items, the relevant costs, the demand
rates and the discount structure, a total order for the entire family is selected.
This family order is obtained by aggregating information about all items in one
single item. Discounts are evaluated by using a single-item model of Brown

(1967). The family order is then allocated among the items in the family such

that the expected time until the next replenishment is maximizEd. In a number

of papers , Miltenburg (1985, 1987) and Miltenburg and Silver (1984a,b,c)
provide procedures for determining the optimal reorder point of the different

items, the size of the family order and the allocation of the family order among

the items. Miltenburg assumes that demand occurs according to a Wiener

process.
We refer to IBM's IMPACT (1971) for another class of strategies for JRP2.

As mentioned before, the can-order systems don't pay attention to discounts.
Another shortcoming of can-order systems is that the calculation of the optimal

policy is rather complex. On the other hand, however, if the parameters have

been determined, the can-order strategy is very easy to implement in practice
because of its simple structure.

In this paper, we extend the class of can-order strategies in such a way that

discount opportunities can be taken into account. When the can-order system
triggers a replenishment, an additional decision has to be made whether the

can-order replenishment has to be enlarged so that the total dollar value of the

order exceeds the discount breakpoint.
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This paper is structured as follows. Section 2 introduces some notatíons and
investigates how to incorporate discounts into the framework of can-order

strategies. Further, a simple decision rule is proposed. Using this rule, the
optimal strategy is found with a semi-Markov decision model, which is presen-

ted in section 3. Since application of this method is prohibitive in real applica-
tions, a heuristic method will be considered in section 4. This heuristic is
investigated and validated in section 5. Finally, some concluding remarks are
given in section 6.

2. Can-order strategies with dlscount opportunitles

We start this section with a detailed description of the model. For a complete

list of symbols, we refer to appendix 1. Coordinated replenishment systems for

a family of N items with continuous review are considered where demand

events are generated by independent compound Poisson processes with rate

7y for item i. Demand sizes for item i are independent random variables with a
probability distribution, which will be denoted by {~Q}, 0 s j s m,}. The expected

demand size is denoted by ED;. Excess demands are backlogged and the

lead time is a constant L.

The objective is to minimize the total expected long run average cost per time

unit subject to a given service level constraint. The relevant costs consist of

ordering, holding and purchase costs.

The ordering costs are divided into two parts: a fixed ordering cost, denoted

by K, is charged whenever an order is triggered. A minor ordering cost, k;, is

added if item i is included in the order. When the inventory on hand of item i

is H~, the holding cost of item i is charged at a rate h;H; per unit time. Further-

more, the unit purchase cost in dollars of item i is v;. Unit price discounts

(such as all-units discounts) or freight rate discounts may be offered on the

total dollar value of a family order.

Ignall (1969) has shown that the overall optimal strategy may have a complex

structure for the case that savings by joint replenishments are caused by

reduction of ordering costs (JRP1). Therefore, in the literature a lot of attention

is paid to nearly optimal strategies, like the can-order strategies, which are
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more easy to implement. The control mechanism of the can-order strategies
is already described in the previous section. Note that an individual item i is
ordered when I; s s,, or when I, s c, while I~ s sl for any item j(I, denotes the
inventory position of item i). When an item j: i triggers a replenishment, we call
this a"special replenishment opportunity" for item i.

Although the control mechanism of the can-order strategies is very simple, it is
difficult to determine the optimal control parameters (S;,c;,s;) for i-1,..,N.
Interaction is caused by the special replenishment opportunities. Several
heuristics have been proposed to overcome this difficulty. Most of them are

based on a decomposition approach: the N-item problem is decomposed in N
single-item problems. Crucial is the assumption that the special replenishment
opportunities for item i(the trigger moments of all other items) can be approxi-
mated by a Poisson process. The rate of this process, ~, is equal to sum of
the expected number of trigger events per unit time of the other items. Let f31

denote the expected number of replenishments per unit time triggered by item
j, then ~:- E~,;í3~. Given a set of trigger intensities (f3~) the control parameters

(S;,c;,s;) are determined from the solution of the single-item problem. An

iterative solution procedure is then used since the control parameters of item i

influence the rate of special replenishment opportunities of any other item. The

iteration process stops when the control parameters are the same in two

subsequent iterations. The general solution procedure for computing values of

the control parameters of the optimal can-order strategy is given by PROC-
CAN:

PROC-CAN :

Step 0: Choose starting values for B; ( i-1,..N).
Step 1 a: Initialize i: -0.

1 b: Set i: - i t 1, compute W: - El,;fil (2.1)
1 c: Solve the single-item problem SIP; i.e. choose the parameters

(S;,c;,s;) which minimíze the expected long-run average cost of item i
per unit time, subject to a given service level constraint, where de-
mands and special replenishment opportunities are generated by

independent Poisson processes with rates Jy and fy, respectively.

Next compute f3; given the parameters (S;,c,,s;).
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Step 2: Stop when for each item the new control parameters are the same
as in the previous iteration and the values of W have sufficiently
converged; otherwise go to step 1 a'rf i- N or to step 1 b"rf i ~ N.

Remark 1: Based on this global solution scheme, Silver developed in a series
of papers (see Silver (1974, 1981) and Thompstone and Silver (1975)) algo-
rithms to solve the single-item problem in step 1c under different assumptions.
In a related paper, Federgruen et al. (1984) carried out step 1 c by describing
SIP with a semi-Markov decision model which is solved by the policy-iteration
algorithm. The service level constraint is handled by Lagrangian techniques. In
section 4, this algorithm of Federgruen et al. is considered in more detail,
because elements of it will be used in our heuristic for the discount case. ~

The can-order strategíes so far do not take into account the possibilities for
achieving a discount. In the rest of this paper, we investigate the multi-item
system with all-units discounts. When the total dollar value of the replenish-

ment (denoted by Q) is greater than or equal to a given discount breakpoint
(denoted by Od), a discount is achieved which is a given percentage (d) of the
total dollar value; so, when Q zQd, the discount is d- Q. It will be shown that
the methods to be developed are also applicable when other discount struc-
tures are given.

It seems reasonable to expect that the control parameters of the can-order

strategy will change when discounts are incorporated. In the case of no-
discounts, the long-run average purchase cost per unit time is the same under
all possible stable strategies. Hence, the purchase cost is not taken into

account in the algorithms of Silver and Federgruen et al.. In the case of

discounts, however, the long-run average purchase cost depends on the
strategy which is used. So, when the decomposition-approach is used to find
the control parameters, the purchase cost should be taken into account in
SIP. However, this cost depends on the total dollar value of the family order.

Since it is very hard to obtain changes in the control parameters due to

possible discount possibilities, we propose to use a can-order strategy as if

there are no discounts. However, when a can-order replenishment is triggered,
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a"discount evaluation" is done. When the total dollar value of the can-order
replenishment (which will be denoted by o~,,,) is not enough to achieve the
discount, an additional decision has to be made whether Q~,,, has to be
enlarged so that the total value of the order exceeds Qd. A flow-chart of the
system, which will be developed, is given in appendix 2.

Several possibilities are available to achieve this enlargement: the order
quantities of those items which are already in the can-order replenishment
might be enlarged or other items which are not in the can-order replenishment
might be added. In this paper we restrict attention to the following simple rule:
"include new items into the can-order replenishment and order those items up
to their order-up-to level". We emphasize that this choice is only based on the
easy structure of the resufting policy; the nice structure of the can-order
strategy is preserved when using this rule. Note that the enlargement of the
can-order replenishment is restricted under this rule.

To formalize the "discount evaluation" procedure three sets are defined; Fo
denotes the set of items in the can-order replenishment, whereas F, consists
of the items which are not included. Finally, F2 denotes the set of items which
are added to the can-order replenishment if one decides to take the discount.
FZ' is chosen in such a way that the value of the extra order exceeds (Qd-tD~~)
and the extra ordering and holding costs until the next family replenishment

are minimized. It is shown in appendix 3 that the problem of determining F2`
can be modelled as a knapsack problem. This knapsack problem is denoted
by KP(F,).
The general procedure, PROC-DE, for "discount evaluation" when the inventory
position of the system is (I,,..,IN) at a given replenishment epoch, can be
formalised as follows:
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PROC-DE
Step 1 a: Determine Fo :-{ i ~ li s c; }, F, :-{ i ~ li ~ c;}

b: Calculate

Q~~: - ~ (.S; -~;) ~ Vi
I t FO

c: If Q~,,, z Qd , order i E Fo; otherwise go to step 2
Step 2a: Calculate

O,x: - ~ (S; -vi) . v;
icF~

b: If Q~~ t QeX ~ Qd, order i E Fo; otherwise go to step 3.
Step 3a: Determine F2' by solving the knapsack problem KP(F,).

b: Solve EP : decide whether to order:
(i)

(ii)

i E Fo (discount is not taken), or
i E Fo v F2~ (discount is taken)

(2.2)

(2.3)

Note that Q,x denotes the maximum enlargement of the can-order replenish-
ment if Q~~ is only enlarged with new items i E F, whose inventory position is
ordered up to S;. If this extra order value is not enough to achieve the discount
breakpoint, then the discount opportunity is neglected (see step 2b).
The procedure is straightforward except for the case that Q~~ ~ Qd s Q~„ } Qex
(step 3). In this case one has to decide from a cost point of view whether the
regular can-order replenishment has to be enlarged or not. The extra items (i E
FZ~) which are ordered when the discount is taken are determined by solving
the knapsack problem (step 3a). In section 3 and 4 we will discuss an optimal

and a heuristic method to solve the evaluation problem EP in step 3b of
PROC-DE.

3. An optimal method to solve the discount evaluation problem EP

In the previous section we have proposed the following strategy: períodically

(for example, once in every three months), the parameters of the can-order

strategy are determined by PROC-CAN (and the algorithm of Federgruen et al.
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(1984) for solving SIP). Between these periodical reviews the can-order
parameters are fixed. Discount opportunies are evaluated at those epochs at
whích the can-order strategy triggers a replenishment. PROC-DE is used to

decide whether the order has to be stretched or not. Only items which are not

included in the replenishment are used to enlarge the total value of the order
(Q~) if it is lower than the discount breakpoint (Qd). When it is possible to

achieve the discount by adding new items to the order, the evaluation problem

EP has to be solved. In this section we develop a method to solve this

problem EP by formulating the proposed replenishment strategy as a semi-

Markov decision process.

It seems natural that the decision epochs of the semi-Markov decision proces
are given by the moments at which a replenishment is triggered by the can-
order system. However, the corresponding one-step transition probabilities
turn out to be very complex. Therefore we choose as decision epochs the
moments at which a demand occurs for any of the items in the family. Note
that this implies that at several decision epochs no replenishment is triggered,
and thus, no discount evaluation has to be done. By this choice the decision
epochs follow a Poisson process, and the expected time between two subse-

quent decision epochs equals t: -1 ~ ~; ~, (recall that demand events occur
according to independent Poisson processes with rate ~ for item i).

The state space of the inventory system is described by the vector of inventory

positions of all items, (I,,..,IN), just after a demand, but before the decision

induced by the can-order strategy. Feasible states are those for which the

inventory position of all items i is between s; t 1 and S;, with the exception of at

most one item j, whose inventory position is allowed to be equal to or lower

than s~.

There are two possible actions in each state,

- a-0 : do not change the can-order replenishment,
- a-1 : order extra items to get the discount.

In several states (I,,..,IN) only action a-0 is feasible: if I;~ s; for all items i, if

(]~~2 Qa, or if Q~„fQsxC Qd. The set of feasible actions in state (I,,..,IN) is

denoted by F(I,,..,IN).
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The relevant costs consist of purchase, ordering and holding costs. Recall that
the holding cost is charged at a rate h, proportional to the inventory on hand
of item i. The problem of determining the one-step holding cost is complicated
when there is a lead time L~O, because the inventory position (I;) and the
inventory on hand (H;) of item i differ during a time L after a replenishment of
that item. Note that the inventory on hand at time ttL depends on the inven-
tory position at t and the demand during [t,tf LJ. Hence, the inventory position
just after the n'th decision epoch tn determines the distribution of the inventory
on hand at time t~ t L. A standard convention to handle positive deterministic
lead times, which is also used by Federgruen et al. (1984), is to shift the
holding cost in [t„fL,t~~,tL] towards the time interval [t~,t„t,].
Denoting the probability distribution of the total demand of item i during de
lead time L by r;(k) and the inventory position of item i after action a by I', the
expected holding cost incurred in [t„f L,t„t, t L] is given by:

s
N ~I

h((I,,..,IN),a): - ~- ~ hi ~ [ ~ (~~H -k)' ri(k) J
I-1 k-0

with I;o :- I; when i E F,,

.- S; when i E Fo.

I;' :- I; when i~ Fo~ F2f,

.- S; when i E Fo ~ F2`.

(3.1)

The probability distribution of the total demand of item i during L can be
computed recursively (see Adelson (1966)).

When choosing action a(a-0,1), the one-step costs consist of the immediate
ordering and purchase cost together with h((I,,..,IN),a), representing the
expected holding cost. The one-step cost functions, denoted by
c((I,,..,IN),a), are calculated as follows:
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c((I,,..,IN),0). -

(3.2)

h((I,,..,IN),0) if C~~,,,- 0

t K t~ki t h((I,,..,IN),0) if O~QcanCOd
i F Fp

(1 -d) - Q~„ t K t~ k; t h((I,,..,IN),0) Íf Q~~ z Qd
IcFp

C((I,,..,IN),1):-

(1 -d) [ ~~„ t~(S; -l;) . V; ] t K f ~ k~ t h((I,,..,IN),1) (3.3)
i f F2 i c Fp UFZ

where lie en h((I,,..,IN),a) (i-1,..,N; a-0,1) are defined as above.

As mentioned before, the methods are also applicable to other discount
structures, such as freight rate discounts. It is shown in appendix 4 how the
one-step cost functions (3.2) and (3.3) have to be adapted to handle freight
rate discounts.

To define the one-step transition probabilities we use the following observation.
If we start in state (I,,..,IN), then the state at the next decision epoch is
(1,8,..,1i'-k,..,IN ), when the next decision epoch is induced by a demand of k
units for item i. For k-1,..,m;, i-1,..,N and a-0,1, the one-step transition
probabilities of the semi-Markov decision process are given by :

Ps,t(a) :- ~li- t. ~(k) (3.4)

where s:-(I,,..,I;,..,IN) and t:-(1,8,..,1"-k,..,IN'), and pg,(a) is equal to zero
elsewhere.

This completes the description of the semi-Markov decision process. Algo-
rithms for computing an average cost optimal strategy for the semi-Markov

decision model are the policy-iteration and the value-iteration algorithm (see
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e.g. Tijms (1986)). Due to the large state space' for our problem the latter
algorithm is preferable. The value function, V„(s), follows from formula (3.47) in
Tijms (1986):

Vn(s) :- mineEF~81 [ c(S,a) ~ T t~Pa,e(a) ~ ~~-,(t) l (3.5)
t

The algorithm stops after a finite number of iterations with a strategy for which
the average cost is within a prespecified region around the minimal average
cost per time unit. Note that by choosing action a-0 for all states the algo-
rithm gives the appropriate cost expression for a given can-order strategy.

It is clear that this semi-Markov decision approach has not much value for
large sized problems. From our numerical investigations it becomes apparent
that huge amounts of computer time are necessary to solve only fairty small
problems (N -3). However, the exact method will be used to validate a heuris-
tic approach, which will be presented in section 4. The numerical comparisons

are presented in section 5.

4. A heuristic approach to solve the discount evaluation problem EP

In this section we will describe a fast and simple heuristic for the discount
evaluation problem EP in step 3b of PROC-DE. It should be noted that the
ordering costs, the future holding cost and the purchase cost depend on the

decision whether or not to enlarge the can-order replenishment. On the other
hand, also the time until the next repleníshment and the state at the next
decision epoch will be influenced by the selected action.

The heuristic can be characterized as a"one period" look ahead rule which

compares the sum of the direct costs until the next demand and the future

costs for both possible actions. The costs until the next demand arrival are

given by the one-step cost functions of the semi-Markov decision model in the

~ For example: 'rf N-3, s~ - 0, and S~ - 100 `d i, and the demand size is always equal to unity
(~(t)-1 `dl), then we distinguish 1.000.000 states.
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previous section (see (3.1) up to (3.3)). To approximate the total future costs
after the next demand an-ival we use the relative vatues from the policy itera-
tion algorithm for the determination of the can-order system according to
Federgruen et al.(1984).

These relative values are defined as the unique solution of a set of linear
equations which has to be solved when using the policy-iteration algorithm. In
particular, the difference between relative values vR(i) and vRQ) denotes for any
two states i and j and any policy R the difference in total expected costs over
a infinitely long period by starting in state i instead of state j when using

strategy R(see e.g. Tijms (1986)). Relative values are used in a Markov
decision model to construct from a given strategy R a new strategy R' whose

average long run expected cost is less than or equal to that of R.
Federgruen et al. (1984) use this policy-improvement procedure to solve the N

decomposed single-item problems SIP (see section 2). In their semi-Markov
decision model corresponding to the single-item problem for item i, the
decision epochs are given by epochs at which a demand or a special replen-
ishment opportunity occurs for item i. The state of the system of this single
item model is represented by (x,z), the inventory position x of item i just after a

demand (z -0) or after a special replenishment opportunity (z -1). The relative
value of state (x,z) of item i using can-order strategy R will be denoted by
v; R(x,z) (the subscript i is deleted in the notation used by Federgruen et al.
(1984)).

As mentioned before, these relative values are used as an approximation of
the future cost differences after the first demand arrival. However, in the

relative values as produced by the algorithm of Federgruen et al. (1984) for the

single-item system the purchase cost doesn't play a role, since the long run

purchase cost for item i is equal to v; .~, . ED; for every stable policy R. In our

model the purchase cost plays a significant role in distinguishing between

strategies, due to the discount possibilities. Therefore the purchase cost have

to be incorporated into the relative values. The details of this extension are

presented in appendix 5. The relative values are computed when the optimal

can-order strategy is determined for a given number of periods (see the flow-

chart in appendix 2).



14
The one-period look ahead heurístic is developed to solve the evaluation
problem EP in step 3b of PROC-DE. It decides for a given state s: -(I,,.., IN),
with Q~„ ~ Qa s Q~„ f Q,X, whether the regular can-order replenishment has to
be enlarged to achieve the discount. The algorithm for the One-Period-Look
ahead Heuristic is outlined below:

PROC-OPLH

Step 1 : Compute c(s,a) for a-0,1 from (3.1) up to (3.3).
Step 2 : Compute for a-0,1, k-1,..,m,, i-1,..,N for any state

t: - (I~',..,18-k,..,INe)
a: pg,t(a) from (3.4),
b:

N
va(r) - - ~ vl,a(SIP)

1-i

with:
Vi R(SIP): - Vi,R(Iie,1) if 1~8-k s s, and i N j,

. - vi,R(lia-k,0) if j - i,

. - vi R(Ii8,0) otherwise.
Step 3: Compute for a- 0,1 :

X(S~a) ~-c(S~a) } ~ PB,t(a)'vR(t)
t

If X(s,0) ~ X(s,1), then order i E Fo (do not take the discount),
otherwise order i E Fo~ FZ~ (take the discount).

(4.1)

The value of state t at the next demand arrival of any item i(which is reached
with probability pg,(a)) is computed by the sum of the relative values of the
states li of the single items j. The relative value of item j(including the pur-
chase cost) is equal to vi R(lia,1) if there is a special replenishment opportunity
for item j and it is equal to vi R(Ii8,0) 'rf the demand for item i(.~ j) doesn't trigger
a replenishment. Finally, the relative value of item j is equal to vi R(ti'-k,0) if the
next demand arrival is a demand of k units for item j.

We emphasize that the relative values are only approximations for the cost
differences, not only because of the underlying decomposition assumption, but
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also due to the implicit assumption that no discount opportunities will occur in
the future.

5. Numerlcal results

In this section some numerical results are given to validate the one-period look

ahead rule for solving the evaluation problem EP. The average expected costs

per unit time for the heuristic are compared with the optimal value of the

average expected costs according to the semi-Markov decision model.

As mentioned in section 3, the applicability of the semi-Markov decision

approach is restricted to only small problems (N-3). Therefore, simulation is
used to validate the heuristic for larger problems (N -15). The costs of the

strategy which uses the one-period look ahead rule are compared with the
costs associated with two extreme heuristics: always take the discount and
never take the discount.
Finally, our strategy should be compared with other discount strategies like
this of Miltenburg (1987) or IMPACT (1971). However, an appropriate compari-
son between those strategies is not possible due to the difference in the

assumptions of the demand process (e.g. Miltenburg assumes a demand
process given by a Brownian motion instead of a Poisson process).

Table 1 lists some numerical data for a family of three items. There are no
shortage costs involved, but there is a service level constraint which requires
that at least 950~ of the demand is satisfied directly from shelf. Further, ~(1) -1
for all items i(simple compound demand) and A-25, L-0.25.
The can-order parameters, which are determined by PROC-CAN (and the

algorithm of Federgruen et al. (1984) to solve SIP), are also given in table 1.

The relative values including purchase costs, which are needed for the one-

period look ahead rule, can then be computed by PROC-RV (see appendix 5).
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TABLE 1
Data for numerical example 1(N-3)

item i v~ h~ a~ ~L~ s~ c~ S~

1 10.00 2.50 5.00 11.00 2 12 19
2 5.00 2.00 10.00 20.00 3 19 37
3 2.00 0.50 15.00 15.00 0 14 44

The dollar value of the discount break, Qd, and the discount percentage, d,
are varied for different experiments. Table 2 summarizes the minimal costs and
the costs of the heuristic when using the given can-order strategy and PROC-
DE for discount evaluation at replenishment epochs. Copt denotes the exact
costs when using the semi-Markov decision model, whereas Cop,,, denotes the
exact costs of the one-period look ahead rule. Cop,,, is determined by using the
value iteration algorithm with the given strategy from PROC-OPLH.

The determination of the optimal strategy takes huge computation times. The
average computation time to get the optimal strategy for these small problems
is more than four CPU-hours (on a VAX-8700-computer), wheras it takes only
one CPU-second to obtain the strategy with the heuristic approach.

TABLE 2
Results for numerical example 1(N-3)

combination Qd d Copt Cop l h

1 150 0.03 323.65 323.66
2 150 0.05 318.86 318.88
3 200 0.03 323.80 323.82
4 200 0.05 319.08 319.13
5 250 0.03 323.89 323.91
6 250 0.05 319.21 319.23

From table 2 it follows that the one-period look ahead rule works satisfactorily

for the examples considered. However, we want to validate the strategy for
larger sized problems. Since the semi-Markov decision approach is not
applicable for large problems, simulation is used to find the average expected

cost under three different strategies: the one-period look ahead rule for solving
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EP is compared with two very crude heuristics: h1 and h2.

Under h1 the discount opportunity is only used when the regular can-order
replenishment is enough to qual'rfy for the discount (the replenishment is never
enlarged).
Under h2 the discount opportunity is always used if the discount can be
reached by adding new items to the regular replenishment (the replenishment
is always enlarged with the item(s) i E FZ~ when it is possible to achieve the
discount).

We consider a family of N-15 with A-75 and L-0.25. The items are listed in
table 3, along with the values for hi, v;, a;, ~ and the corresponding can-order

parameters s;, c; and S; when the required fraction of demand which is
satisfied directly from inventory on hand is 97.50~o for all items. It is assumed
that for all items the demand size has the same trunctated negative binomial

distribution with parameters r-30,p-0.85.

TABLE 3
Data for numerical example 2(N-15)

item i h~ v~ a~ ~L~ s~ c~ S~
1 2.50 5.00 15.00 15.00 38 84 118
2 1.50 4.00 15.00 10.00 19 63 99
3 0.75 3.75 15.00 12.00 15 76 131
4 1.25 2.50 15.00 10.00 19 65 104
5 1.75 7.50 15.00 5.00 11 40 63
6 1.50 3.50 30.00 12.00 23 66 122
7 0.25 1.00 30.00 7.00 0 55 158
8 0.75 3.00 30.00 9.00 17 61 129
9 0.50 2.50 30.00 15.00 23 91 197

10 4.25 20.00 30.00 2.00 8 21 35
11 5.50 30.00 45.00 2.00 11 22 37
12 0.25 1.00 25.00 10.00 0 67 180
13 0.75 4.00 25.00 10.00 20 68 133
14 0.50 2.50 25.00 8.00 1 55 126
15 0.25 1.25 45.00 5.00 0 28 135

The discount breakpoint, Qd, and the discount percentage, d, are varied in the

experiments wheras the other parameters are kept fixed. For each combina-

tion of Od and d the number of simulation runs is determined by the require-

ment that a 95oIo-confidence interval has to be obtained with a bandwidth of



18
four. A single run for a given combination is obtained by simulating the multi-
item system until 1000 orders have been triggered. The simulated average
costs per time unit of the strategy which uses the one-period look ahead
heuristic, h1 and h2 are denoted by Cop,h, C,,, an C,,2, respectively.

It appears that simutation is not a useful alernative for heuristic procedures
from a computation time of view. It takes a large amount of computer-time
(approximately 6 CPU-hours for the 15-item example) to obtain confidence
intervals of acceptable width for the average cost.

TABLE 4
Results for numerical example 2(N-15)

combination Qd d Ch~ Co~~h Ch2

1 1500.0 0.03 4577.33 4573.79 4596.39
2 1500.0 0.05 4524.01 4519.53 4532.49
3 1500.0 0.10 4392.43 4366.41 4370.30
4 1500.0 0.15 4261.08 4207.92 4212.69
5 1500.0 0.20 4129.27 4050.56 4048.92
6 2000.0 0.03 4602.67 4596.34 4639.49
7 2000.0 0.05 4565.37 4548.91 4578.44
8 2000.0 0.10 4475.99 4419.04 4425.55
9 2000.0 0.15 4384.03 4270.81 4271.78

10 2000.0 0.20 4292.31 4116.33 4116.05
11 2500.0 0.03 4630.38 4617.45 4657.10
12 2500.0 0.05 4609.36 4584.80 4602.03
13 2500.0 0.10 4564.87 4470.55 4469.87
14 2500.0 0.15 4518.63 4340.83 4341.56
15 2500.0 0.20 4472.18 4208.27 4210.83

The procentage cost savings of using the one-period look ahead heuristic

instead of hi or h2 are low in most experiments. However, note that the

absolute cost savings due to the discount opportunities are bounded. When

the can-order strategy is optimal with respect to the ordering and the holding

costs, the maximal cost saving per unit time equals:

N

d - ~ ,l; - ED; . v;
~ ~i

(5.1)

Note that the maximal cost savings are only incurred when Q~~ is always

larger than Qd.
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In table 5 we compare the costs of each heuristic with the costs of the best
heuristic in the particular situation. In addition, the maximal cost savings (max)

due to the discounts are given in the last cotumn.

TABLE 5
Cost deviations, C~- min (C~~h, Ch~, Ch2}, for i-oplh, hl, h2

comb. QK d hl oplh h2 max

1 1500.0 0.03 3.54 0.00 22.60 99.64
2 1500.0 0.05 4.48 0.00 12.96 166.06
3 1500.0 0.10 26.02 0.00 3.89 332.13
4 1500.0 0.15 53.16 0.00 4.77 498.19
5 1500.0 0.20 80.35 1.64 0.00 664.25
6 2000.0 0.03 6.33 0.00 43.15 99.64
7 2000.0 0.05 16.46 0.00 29.53 166.06
8 2000.0 0.10 56.95 0.00 6.51 332.13
9 2000.0 0.15 113.22 0.00 0.97 498.19

10 2000.0 0.20 176.26 0.28 0.00 664.25
11 2500.0 0.03 12.93 0.00 39.65 99.64
12 2500.0 0.05 24.56 0.00 17.23 166.06
13 2500.0 0.10 95.00 0.68 0.00 332.13
14 2500.0 0.15 177.80 0.00 0.73 498.19
15 2500.0 0.20 263.91 0.00 2.56 664.25

The following conclusions can be drawn from the numerical results. In all
cases the one-period look ahead heuristic is the best of the three heuristics
(note that the cost deviations in combination 5, 10 and 13 are not statistically
significant).
The one-period look ahead heuristic is always fairly close to one of the

extreme heuristics, although it cannot be predicted in advance to which of

one.

Our conclusion is that related to the maximal cost savings obtained by the

discount, the one-period look ahead heuristic gives fairly good results.
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6. Concluding remarks

A procedure is developed to handle discount opportunities in a can-order
system. Control parameters are set at a periodic basis, whereas demands are
monitored continuously. The can-order strategy is used to trigger replenish-
ments. At a replenishment epoch, it is possible to enlarge the regular can-
order replenishment by using dynamic can-order levels. We proposed to use a
one-period look ahead heuristic to evaluate the discount opportunities in those

cases in which it is possible to achieve the discount by adding new items in
the replenishment. An overview of the system is given in appendix 2. The flow-

chart in this appendix shows the relationship among the different procedures
which are described in this paper.
For small problems (N s 3) the performance of the heuristic is evaluated by
comparison with the optimal average expected cost per time unit, which is
determined by using a semi-Markov decision model. For larger problems the
validation is based on simulation. Numerical results show that the proposed
heuristic strategy gives fairly good results.
In this paper, we considered all-units discounts, but the method is also
appropriate for other discount structures, such as freight cost discounts.
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Appendix

Appendix 1: List of symbols

number of items in the family.

Poisson arrival rate of customers for item i.
probability for item i that the demand size equals j units.

maximum demand size for item i.

expected demand size for item i.

lead time.
K : fixed ordering cost per replenishment (independent of the items in the

replenishment or the number of items ordered).

k; : additional ordering cost for item i when it is included in the replenish-
ment (independent of the order-quantity).

h; : holding cost of item i per unit per unit time.
H; : inventory on hand of item i.

I; : inventory position of item i.
v; : unit purchase price of item i.

S; : order-up-to level of item i.

c; : can-order point of item i.

s; : must-order point of item i.

Q : total dollar value of the family replenishment.

Qd : discount breakpoint (in dollars).

d : discount percentage.
Q~a~ : total dollar value of the regular can-order replenishment.

QBX : maximum total dollar value of extra order.
Fo : set of items in the regular can-order replenishment.
F, : set of items which are not included in the regular can-order replenish-

ment.
FZ' : set of items which are added to the regular can-order replenishment to

achieve the discount breakpoint.
~ : expected time between two subsequent demand events for any item in

the family.

F(s) : set of feasible actions in state s:-(I,,..,IN).

r;(k) : probability for item i that the demand during lead time L equals k units.
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I;g : inventory position of item i just after decision a has been selected.
h(s,a) : one-step holding cost function in state s: -(I,,..,IN) when action a is

selected.
c(s,a) : one-step cost function in state s: -(I,,..,IN) when action a is selected.
pst(a) : the one-step transition probability of going from state s: -(I,,..,IN) to

t: -(I,a,..1;8-k,..,INe) when action a is selected.
V~(s) : value function in state s: -(I,,..,IN) after n iterations.
v; R(x,z) : relative value of item i when the inventory position equals x just after

a demand event (z -0) or a special replenishment opportunity (z -1)

according to the single-item model of Federgruen et al. (1984) (with

or without the purchase cost).
v; R(s) : relative value in state s: -(I,,..,IN) of the multi-item model including

the purchase cost.

X(s,a) : sum of direct costs until the next demand event and the weighted
relative value at the next decision epoch, in state s: -(I,,..,IN) when
action a is selected.

Appendix 2: Flow-chart of the coordinated replenishment system

In figure 1, a flow-chart is given of the coordinated replenishment system with

the periodic and daily decisions. Further, it describes the relationship among

the different problems and procedures, which are described in this paper.
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FIGURE 1

Coordinated replenishment system with discount opportunities

Observe demands on a continuous basis
Set control parameters on a periodic basis

r

(1)

Is there a demand-event (0) or
a periodic review of the control
parameters (1) ?

n

Use PROC-CAN to determine the
can order-parameters based on
recent information about the
costs, the demands and the
required service-level

Tv
i

Use PROC-RV to calculate the
relative values (including the
the purchase cost)

v

~-
(0)

Is there any item whose
inventory position is at
or below its must-order
point ?

no

Based on the current
inventory position of all
items, the available
discount and the relative
values, use PROC-DE to
select the replenishment
quantities

~ - - - - -
PROC-DE

- - - - - - - - - 1

~ If Qcen~ Qd~ order ieFo
If Qcan~ Qd~ Qcan}Qex~ order ieFo

~ Otherwise:
solve RS(F~) to determine Fz',

~ use PROC-OPLH to solve EP, and
order ieFo or ie FovFZ',

Ldepending-on the outcome of-EP

n
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Appendix 3: Determination of F2R

Recall that Fo :-{ i ~ I; s c, } and F, :-{ i ~ I; ~ c, }. Let F2` denote the set of
items belonging to F,, which are added to the regular can-order replenishment

to achieve the discount. We assume that the sequence of can-order replenish-
ments approximately follow a Poisson process with rate p, which equals Ei 3i
(the values of f3i (i-1,..N) follow from PROC-CAN together with the algorithm of
Federgruen et al. (1984) for solving the single-item problem SIP ). Under this
assumption, the extra ordering and holding costs until the next replenishment

equal:

h.. S; -~;) ]
~ [ t ~a;
ieF2 p

(a.1)

Note that the extra holding costs are shifted for a fixed period L. The problem

of determining FZ' can now be modelled as follows:

h.. (S.-l.)
min ~ [ ai t ' ' ' ] -x,

i e F, p

S.Í. ~ [ Vi ~ (`Si - Íi) ] ~ Xi 2 (Qd -Qcan)
ieF,

Xi -~,Í, ÍEF,

Let yi-1-xi, i E F,. It is easily seen that the above minimization problem trans-
forms to the following standard knapsack problem:

Knapsack problem KS(F,):

max ~ [ si
icF~

]-y;f h;~ (Si-l;)

P

S.f. ~ [ Vi (Si -Íi) J~ Í~i S(Qez t Qcan - Qd)
iEF,

y; - 0,1, ÍEF,

Note that Fz'- { i ~ y;-0, i E F, }.
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In the literature, several optimal and heuristic procedures have been proposed
to solve this classical combinatorial optímization problem ( see e.g. Martello
and Toth (1990)). The following rule was used in our experiments: when the
number of items in the knapsack (the number of items in F,) is less than five,

then the optimal solution for KS(F,) is obtained by full enumeration of all
possible solutions. Otherwise a heuristic approach is used, which is based on
a ranking of the items in decreasing order with respect to the ratio of
{ a, t h, (S,-I;)~ p} and ( S,-li) . v,. The knapsack is filled with items from the
ordered list until the k'th item doesn't fit. The knapsack is then filled with any
other item (~ k) from the ordered list that still fits.

Appendix 4: One-step cost functions for freight rate discounts

The traditional quantity discount models analyse unit price discounts. In this

paper we investigate one type of unit price discounts, namely all-units dis-

counts. Another type of discount structure, which exist in many practical

situations, is a fixed dollar value discount on ordering costs, as described in

section 2, or freight costs when the replenishment order exceeds the discount
breakpoint. A typical example is the situation where FR: -0 if Q z Qd, and

FR: - F if ~ ~ Od, where FR denotes the freight cost per replenishment.

The discount evaluation procedure which is described for the all-units discount

structure is also applicable to the freight cost discount structure, when the

one-step cost functions (3.2) up to (3.3) are changed into:

c((I,,..,IN),0): -

h((I~,..,IN),0) ~f U~„- 0

Q~~ f K f~ ki f F t h((I~,..,IN),0) if OCQ~~CQd
ieFp (3.2')

p~~ t K t~ ki t h((I~,..,IN),0) if Q~~ 2 Qd
icFO
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C((I~,.., IN),1): -

~ ~can t~(S;-l;)~ V; ] t K t ~ k; t h((I~,..,IN),1)

IcF2 itFQUF2

Appendix 5: Computation o~ the relative values v~ R(x,z)

(3.3')

Recall that v; R(x,z) denotes the relative value of item i with an inventory

position of x units, just after a demand event (z-0) or a special replenishment

opportunity (z -1) for a given can-order strategy R-(S;,c;,s;). The algorithm of

Federgruen et al. (1984) for the single-item problem SIP can be used to
compute the relative values. However, purchase costs are then neglected. In

this appendix, the same approach as Federgruen et al. (1984) is used to
determine the relative values including purchase costs. For convenience, the

subscript i wíll be deleted in the notation.

For a fixed can-order policy R-(S,c,s) the average cost and relative values

can be determined by the theory of regenerative processes. The attention is

restricted to the cost incurred between two subsequent replenishment orders
for the particular item. The regeneration state is the order-up-to level S, the

state which is visited just after an order. Now, tR(x), qq(x), hR(x) and kR(x) can

be defined for a can-order system (with control parameters R), which starts in

state (x,0) with x~ s: tR(x) is the expected time until the next replenishment

order, qq(x) is the probabilty that this replenishment is triggered by a demand,

hR(x) denotes the sum of the expected holding cost until the next replenish-

ment and the expected purchase cost at that particular replenishment epoch

and finally kR(x) denotes the total holding cost until the next replenishment

together with the expected purchase and ordering costs incurred at the

replenishment epoch. It follows that:

kR(x): - hR(x) t(K f k) . qR(x) t k~(1-qR(x)) (a.4)
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The long run average cost per unit time under the can-order strategy R,
denoted by gR, equals:

9R: - kR(S)ItR(S) (a.5)

tR(x), qR(x) and hR(x) are determined by conditioning on the state of the

system after the next decision epoch. The probability that the next decision
epoch is induced by a demand is ~. -( xt ~,)'', wheras ~.(~.t ~)-' equals the

probability that the next decision epoch is induced by a special replenishment

opportunity. Hence,

ta(x) :- (~}~)-' } ~~(~}4~)-'~~(x)- ó(x-c)
x-s-,

t x.(~}w)-' ~ rR(x-i) - ~U) x ~s
;-0

and

4a(x):- ~ (~}~)~'~qR(x)- b(x-c)
o x -g -~

f ~..(~.t~)-'~ [ ~ ~(1)t ~ qR(x-~)~ ~íl) l x~s
j -x -s j -0

with ó(i) -1 if i~ 0 and ó(i) -0 otherwise.

(a.6)

Define c(x) as the holding cost until the next decision epoch (Federgruen et al.
(1984) consider also two sorts of penalty costs, but these are disregarded in
this appendix). Using the same convention as in section 3 and 4 (the holding
cost in [t~ f L,t~„ t L] is assigned to the cost after decision epoch t~), it follows
that

x

c(x) -- (~}~)-'~h~ ~
j -0

(x-i)~~U) (a.8)

where r(j) denotes the distribution function of the demand during the lead time
and (~lt t~)-' is the expected time until the next decision epoch.
If the next decision epoch is a demand of j units and x-j s s, then the item
triggers a replenishment and a purchase order for (S-xtj) units is placed. If
the first decision epoch is a special replenishment opportunity and x s c, then

the item is also included in the replenishment and a purchase cost of (S-x) - v
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dollars is incurred. Hence, for x~ s:

nR(x) :-c(x) } ~~(x}~)-'-nR(x). ó(x-c)
x -s -1

} .t~(~t~)-' ~ ~ hR(x -Í)' ~U)
~ -o

} W~( ~t~)-' - ( S -x). v. ó(C t1 -x)
0

t ~t.(,tt~)-' ~ (S -x tÍ ) ~ v' ~(Í)
i-x-e

(a.9)

Finally, the relative values of the given can-order strategy R-(S,c,s) are
defined:

uR(X~~) .- kR(X)-gR ~ tR(X) X~ S

.- K f k f(S-x) - v x s s
uR(X~1) ~- kR(X)-gR~tR(X) X1 C

.- k f(S-x) ~ v x s c

The algorithm for determining v; R(x,z) is given below:

(a.10)

PROC-RV
Step 1: Compute tR(x),qR(x),hR(x),kR(x) recursivily from (a.6),(a.7),(a.8),(a.9)

and (a.4) for x-st 1,..,S.

Step 2: Compute gR from (a.5).
Step 3: Compute v; R(x,z) for x-s;t 1-m;,..,S; and z-0,1 from (a.10).
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