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An O(nlogn) algorithm

for

the two-machine flow shop problem

with

controliable machine speeds

C. P. hl. vara N~~~ ~rl

Abstract.

An algorithm is developed to solve the two-rnnchine flow shop probler~a, if

naachine speeds may vary. This alyorithm rnakes usc of an elementary da~m.inuiac~

relation to obtain the O(r~logn) runniny ti~ae, whidz is an improve~nze~rat or~

previr~usly developed rrlgorithrns. Mnrcnvrr i1, is showrr thut fr~.ti~f,r~r uly~ir~ithnr..

are not possible, even in the case with fixed rnachine speeds.
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1. Introduction

Classical research on machine scheduling concentrates ou the issuc~ of

sequencing. In this paper we treat a scheduliug problem in which, next to the

permutation of jobs on the machines also the speeds of the machines are

controllable. In particular, we treat the two-machine flow shop problenr with

controllable machine speeds.

The two-machine flow shop problem, in which the machine speeds are fixed, is

well-known to be solvable by Jonhson's algorithm in O(nlogn) time [4] (with rr

equa] to the number of jobs). The two-machine flow shop problem with

controllable machine speeds has been introduced by Ishii et :,I. [3]. Thcy

proposed an O(n~logn) time algorithrn for this problem. This time bound was

irnproved by Van Vliet and W'agelrnans [8] to 0(nyn). TI're ~naiu resull of tliis

papcr is an C)(uingn) solution uiethod.

Next to the two-machine flow shop problem, other scheduling environrnents in

which the machine speeds are controllable have also been considered. For

instance Potts and Van Vliet [6] give a linear time algorithm for thc

two-machine open shop and Strusevich [7] gives an O(n3) algorithm for thc~

two-machine no-wait flow shop problem. The above mentioned studies a.ll deal

with two-machine environments. Problem instauces with rnore than twu rnachiues

have been shown to be NP-hard for the case where machine speecís are fixecí.

Van Vliet [9] discusses a class of algorithms for the general machine flow~

shop problem with controllable machine speeds for which worst-case bounds are

derived.

The sequel is organized as follows. ln section 2 we present the problem

treated and give sorne properties on the fixed machine case. In sectiuu 3 ~~e
treat the case that the
solve the problem

achieve the time

functions which can

how the algorithm

can be speeded up.

first machine can be speeded up. The algorithin to

is presented together with the datastructures neccssary to

bound. Finally, in section 4 we consider various cost

be considered when speeding up machines. Moreover we show
can easily be adapted to the case in which both rnachines
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2. The two-machine flow shop problem

Two machines, Ml and ~12, are given on which n jobs have to be processed. l~:ach

job ie{1,...,n} has a processing tirne a; on h1~ and b; on M2. Moreover,
processing job i on .Mz can only start if the processing of i on .M~ i,
finished. Finally job processing should be done unpreempted on both machines:

a;

i

b,

MZ

The objective to be minimized is the ma.kespan C,,,a„ i.e., the tinie on wliich

the last job on MZ is finished. An uptimal schedule can be found where the

order of the jobs on both machines is equal, i.e. we can restrict ourselves

to permutation schedules, as proved in Johnson [4].

2.1 Johnson's algorithm

An optimal strategy to solve the two-~nachine flow shop problenc is th~~

following:

The jobs are partitioned into two sets L~ and LZ, where l.~ : -{i ~ a; ~ b; }

and L2: -{i I a; ~ b;}.

The jobs in L~ are ordered according to increasing processing tiiues ou hl i.

The jobs in LZ are ordered according to decreasing processing times on MZ.

The optimal job permutation consists of first performing the jobs in L~, in

the ordered way and second pcrforminfi th~~ jobs ín l.z in Uu~ ordi~r~~~l w,~v un

both machines.

A correctness proof of Johnson's algorithm is easily derived by u,ing a

simple exchange argument. It will therefore be omitted here. The complezity

of the algorithm is easily seen to be O(nloyn). Partitioning thc~ jobs iu l,~

and Lz can be done O(n) time. Sorting the jobs in L~ and Lz takes O(nluyn)

time.
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Example

a;
6,

1 2 3 4
2 5 7 8
5 6 9 9

Lr -{1,2,3,4}, LZ -{5,6}. The optimal schedule is:

M,
MZ

1 2
1

I
I

3 l
2 3

I I

5 6
4 8
3 1

I ,, s

It is easily seen that Cmax - ai } a2 } a3 } G3 ~ ba t bs } bs - 36. Job 3 is called thc

"critical job" here.

2.2 Lower bound for the cornplexity of the two-machine flow shop problem

We will prove now that Johnson's algorithm cannot be improved upon with
respect to worst case behaviour. We do this by showing that sorting is a

necessary part of the two-machine flow shop problem.

"Cake arbitrary integers n~,nZ,...,a,,, where no two are ec~ual. I)efino

Li-min{a~~a~1a;} for i-1,...,n. If aA-max{a;~i-1,...,u}, thcu GA: -u~,.}1. r1n

optimal solution to the thus defined flow shop processes the jobs in order of

increasing processing time on Mr. Moreover, it is easily seen that this is

the ONLY optimal solution. Therefore finding the optimal schedule amounts tu

sorting the integers a~,aZ,...,a,,, thus providing a lower bound of nlogn with

respect to time complexity.

2.3 Dominance

Now let the jobs be processed according to their numbering, i.e., the first.

job to be processed is job 1, the second job 2 and so on. "Che makespan with

respect to this schedule can be easily calculated as

r t n
max { ~ ai f ~ bi}

l~i~n lll~-r ~-,
(2.1)

A job for whiclt this ruaxi~nutu is attaincd is a critical jub. It h:L~ lic~~u nhuwu

by Monma and Rinnooy Kan [5] that for any permutation the makespan Cm,,, can

be calculated using (2.1), where i is the critical job.
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In this subsection the elementary concept of dominance will be introduced.

Definition: Let i, j be such that 1 ~ i ~ j ~ n
i-1

Job i is said to dominate j if ~ ak 5~ bk
k- itl k-i

j - 1
Job j is said to dominate í if ~ ak ~~ bk

k- itr k-i

Notation: i dom j and j dom i respectively. Moreover, we define i dom S for

any subset of the jobs, if each job in S is dominated by i. Finally we adopt

the convention that i dominates itself, i.e., i dom i.

The following propositions are easily proved, directly from the defiuition:

Proposition 1 Let i, j e {1,...,n}. "fhen i dom j or j dom i or both.

Proposition 2 (transitivity) Let i,j,ke{1,...,n}.

If i dom j and j dom k, then i dom k.

From Propositions 1 and 2 it follows that for each job i the complete set of

jobs can be partitioned ( not uniquely) in sets S; and 7'i such that b~Esi. c
dominates j and d~ETi: j dominates i. The following property connects the

concept of dominance with the critical job:

Proposition 3 i is a critical job if and only if i dom {1,...,rl}.

3. 5peed-up of Ml

It M~ is speeded up by a factor v, this results in a decrease of all

processing times on Ml, with a factor v, i.e. if the original processing tincc

of a job i is a;, then it becomes aiw. We will use the reciprocal of v, in

the following. This reciprocal will be denoted by a and it will be called the

multiplication factor. Note that av-1.

Defining C,,,ax(a) as the makespan of the optimal permutation with respect to

the multiplication factor a, it is not hard to see that C,,,ax(a) is piecewise

linear. It is also monotone non-decreasing in cx, but not convex or concave in

general.
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In this section we derive an algorithm that determines C,,,~,(a), by

calculating its breakpoints. The running time of the algorithm will be shown

to be O(nlogn). Ishii et al. [3] show that these breakpoints cau be used to

deterwine optitual macltine spee,ds for variuus cost functions. Sce, alsu ,ectiuii

4 on this problenr.

We suppose that the jobs are numbered such that

br 1 bz 1.... 1 bn
al - a2 - - an

Moreover the permutations p and a are determined as follows:

av~r~ G as~2) G.. . C aoln) br,~t~~b~21~... ~bPi„i

Note that this amounts to sorting the numbers a„ b; and b;~a; which takc~

O(nlogn) time. As a result of the numbering of the jobs, we can determine L~

and LZ for a given a simply as l.t -{ 1, ..., k} and LZ - {k t 1, ..., rz} where k is

such that bk~cx~bktr. The ordering in Lt and L2 now follows from o and p resp.
ak aktt

Although jobs may jump from Lt to L2i when a is increased there is a certain

monotonicity with regard to the dominance described in sectiou 2. 'I'lii.ti

monotonicity is expressed in the following lemma.

Lemma 3.1

Let two jobs i and j be given. Let i precede j in the optimal schedule for a

given cx and suppose that j dominates i. When cx is increased j remains to

dominate i as long as neither job jwnps frorn ht to L2.

Proof. Since j dominates i for cx we ítave:

cx (~ ak f a~l ~ b; t~ bk
lkel J kEl

(3.l )

Here 1 consists of the jobs between i and j, in the optimal permutation with

respect to cx. Raising a increases the left-hand side of (3.1 ) aud will

therefore not influence the validity of (3. l). Ilowever there may be jobs

added and deleted to I when cx is raised. Fortunately this happens for any job

k exactly when aak - bk so that the contribution to both sides of the

inequality sign is equal.
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Civen the "monotonicity" of the dominance relation for pairs of jobs we

maintain only the jobs which constitute the "important" dominance relations.

Let n describe the optimal perrnutation with respect to a given a as follows:

rr(i) is the position in the optimal permutation of job i. Determine jobs

ir,í2i...,iR such that n(ir)~tr(ir„) for r-1,...,R-1 and

I) ir-r dominates i,. r- 2, ..., R

Il) ir dominates {i~rr(ir-a)~n(i)~n(ir)} r-1,...,K ( ic:-0)

From I and II and the transitivity of the dominance relation it follows that

these jobs dominate all jobs succeeding them in n. Moreover, these jobs are

the only ones with this property. It. follows that a(iR) is the last job iu

the optimal sequence n, i.e. n(iR)-ia. Moreover, since i, dom {1,...,n} this

is a critical job with respect to cv. 'I~he jobs ir,...,iR are called poteutial

critical periods for obvious reasons: when a is raised lemma 3.1 shows that a

job that is not potentially critical cannot become critical, mitil it jun~ps

to LZ or until ir jumps to LZ. This follows directly from lemma 3.1. [3efore

we analyse how "jumping" and "dominauce" are handled when a is ina~c~ascd,

some parameters are defined:

Definition:

Let a be given:

1) k is chosen such that la-{1,...,kj and L2-{kfl,...,ra}, i.c. GA~c~~~'A'~
(lA a!A 41

2) For each pair ( ir-r,ir) we define cx(r) as the value of a for which i,

starts to dominate ir-r with respect to n. a(r) is determined as l3(r)~A(r)

where

A(r) - ~ ca, !3(r) - ~ b,

t:n(1r-r)Grr(t)~n(Er) i:n(ir-r)5a(i)~n(i,)

Note that a(r)~cx otherwise Er-r dona would not be true, contradicting I).Zr

Furthermore, since i, is a critical job the critical value can be calculatod
as

n
C,,,~x(a) - aA(1) f ~b; - Q(1).

;-~
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The following invariant is used, for a given cx.

I1) The set of "potential critical jobs" is given by il, . .., iR such that
rr( iY ) ~ rr( iZ) ~... ~ n(íR) ;
i,.-1 dom i,, (r-2,...,R);

i,. dom {iI7C(Y~-~)C7r(Y)G7r(Y~)}, (r-1,...,R).

I2) LY-{1,...,k}; L2-{kfl,...,n} where k-rnax{i~ b' ~cx}.
a;

Initially we take a- 0. Thus Lr -{1, ... , n}; LZ - 0 i.e. k- n. Moreover n- o and

ir-Q-~(r) ( r-1,...,n).

As a stopping criterion we use k- 0 and i~ -p-~(n). Note that k- 0 reflects

LY -~ and i~ - p-1(n) reflects that the last job is the critical one.

3.1 Description of an iteration

Suppose that I1) and I2) are valid for a given a. Let rr be tlie

corresponding optimal permutation. The set of potential critical jobs

{i1,...,iR} wil] be denoted by J.

Let í, be such that s-arg min{a(r)Ir-2,...,R}. Raise a to min ~a(s), bkl.
akf

If cx-cx(s), then i,-r is deleted from J and a(s) is recalculated.

If cx-ák then k moves from L~ to L2. ' Che new perYnutation will be denoted by
k

First, if tr" - n this amounts to k"jumping" from the last position in L~ to

the first position in L2. In this case actually nothing happens with respect

to I1). I2) is trivially restored.

Second, suppose rr' ~ rr. Then job k moves from n(k) to ~r'(k). As a result each

job j with rr(k) ~ rr(j) ~n'(k) moves one place to the left of the permutation:

~"Íj): -~(j)-1.
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Now let t be such that n(i!-r) ~ rr(k) ~n(it). If a(k) ~ n(ir) then ~(t) is

recalculated. If n( k)- n( it ) i.e. k- ir then ir is deleted from J aud a( t f 1) is

recalculated. Furthermore, let u be such that r'(i„-r) ~ n'(k) ~ n'(iu). Thu~ k

is placed between the potential critical jobs i„-r and iu. If i„ dominates k

then a(u) is recalculated and nothing else happens. If k dominates i,,, theu

cx(u) is calcula.tPd, as well as the speed-up factor for which k starts to

domiuate iu-r.

Finally k is decreased by one.

3.2 Correctness of the algorithrn

By lernma 3.1 it follows that most of the dorninance relations mentioned in Il

remain valid. We need only check cases where a job in J becomes dorninated b}
its successor in J (a-a(s)) and where a job jurnps in between two jobs in J

(cx-ók).ak

Case 1 a-a(s); i,-r is removed from J.

Then i, dom i,-r and since i,-~ dom {i~n(is-2)~n(i)~n(i,-r)} it follows by

transitivity ( proposition 2) that i., dom {i I n(i,-2) ~ a(i) ~ n(i,-~~}. Moreover,

since for a-cx(s) we have i,-r dom i, and i,-z dom i,-~ we have iy-z dom i,.

Case 2 ba- k
ak

If rr' -~r then nothing remains to be proved.

If n(k)~rr(ii) then by lemma 3.1 the dominance relations in II) with respect

to i~ are satisfied.

If n(k)-n(i~) i.e. k-ii, it remains to be proved that irtl dominates

{i I n(ir-r) ~ tr(i) ~ rr(k)}. Note that it-r dom ir~r, since it-r dorn k and

k dom irtr which remains so after k has jumped to LZ, since cxak - bk. Lca l br~

the successor of k, i.e. rr(1) - tr(k) t 1. If l e L~, then trivially, ak ~ ar. If l e L2

then bk ~ b~, since rr' ~ rr. Moreover, since l E L2, br ~ aai and thus aak - bk ~ b! ~ aa~,

which also implies ak ~ ar. From this it follows directly that l dominates

{i~rr(ir-r)~n(i)~n(k)}. We are fiuished now, since irir dominates l.
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Now let ~r'(iu-r)~n'(k)~~r'(à„). If tiu dominates k, then I1) follows from lemma

3.L If k dominates i„ we consider the predecessor of k, denoted by l, i.c.

n'(I)-n'(k)-1. If lELZ then b~~bk-aa~. If leLr then l is the last job in Li,

since ke l.Z. Thus tr(k) ~ rr(!) since n' ~ n and therefore ak ~ ar. AS Ie Lr we also

have aa~ 5 br leading to aak ~ aar~ bl. Therefore aak t br and this means that l

dominates k with respect to n'. Thus, as k dominates iu we have l dominates

i,,. By lemma 3.1 it now follows that l- ii-1. 'fhis suffices to prove that the

invariant is maintained, since {iln'(i„-1)~n'(i)~rr'(k)}-8.

3.3 Datastructures

Later it will be shown that the number of iterations is O(n). "Cherefore thc

datastructures should be chosen such that the amount of work per iteratiou is

O(logn).

From the previous description of an interation, the reader can easily check

the following operations must be performed:

a) For any job k find à,-r,à,.eJ such that ~r(i,.-r)~~r(k)~rr(à,).

b) Add~delete a job from J.

c) Calculate a(r) for à,.eJ.

d) Find the minimum of ~ cv( r) I i, e J`{ ir }}.

Although rr is mentioned we only keep it implicitly in two binary trees Tr and

TZ. These trees also facilitate c). Both trees contain n leaves, numbered

from 1 to n. A leave numbered o(i) for àELr has label a, in 7~r. '['he othc~r

leaves have label 0. Intermediate nodes in Tr have a label equal to the sum

of the labels of the leaves in its subtree. Analogously in TZ leaves niunbered

p(i) for ieLZ have label a, etc. Now for given j and k the value

~ a,

à:tr(~)~n(i) ~n(k)

can be calculated in O(logn) time. Thus A(i,.) for i,.eJ can be calculated in

this time. Using a similar structure B(i,) and therefore a(r) can be

calculated in 0(logn) time. Fínally, updating "l'r and TZ when a given job k

jumps from Lr to LZ is also easily seen to take O(logn) time.
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A combination ot datastructures is used for the execution of a), b) and d). A.~

only 2-3 trees are used we mention the features of this datastructure: the

operations SE.ARCH, ADD and DGI,I;TE a.re supported in O(lo~ n) t.inte~, n beiug thc~

number of leaves. A detailed description can be found in (1].

Consider the pairs ( ir,a(r)) tor ireJ. One 2-3 tree is used to store the

a(r) in an ordered set. J is partitioned in the sets L1nJ and L2nJ. In LtnJ

the jobs are ordered with the processing times on Mt as a key i.e. u;

(ireLtnJ). Analogously in LZnJ the jobs are ordered with processing tirnes on

MZ as a key i.e. b; (irEL2nJ).
r

It is now left to show tha.t the number of itera,tions is O(n). If

a: -a(s) then a job is deleted from J. If a: - ~k then a job is deleted froin
ak

Lr, but a job nray be added to J. In either case 2 I Lr I} I J I is decreased. Siuce

2I Lr l} J 5 3n at the beginning of the algorithm the bound O(n ) is a valid onc .

Now we have proved the mairt result:

Theorem 3.2.

C,,,ax(c~) for ae[O,oo) catt bc detr.rmined in O(ralo~re) time.

4. Speeding up both machines

In section 3 the speed of MZ was fixed to 1. However we may introduce a

speed-up factor ~3 for this machine as well. It is then asked to minimize a

function f(cx,~3,Cmax). However C,,,ax(a,~i) has the same shape for any fixed ~i

compared to ,Q - 1 as follows from the followiug formula.

r ~ ,r
Cmax(a,J~) - Q m i n max { 6 ~ a,r(k~ } ~ bn(k)}

ló -~rr ~ l - ~3
k:~(k)5i k:n(k)?i

Intuitively this is clear: speeding up bot.h machine with the sarne fac-tor

reduces C,,,nx with the same factor. Consequently, if we can prove that fur

fixed (3, say J3, the function f attains its minimum in a breakpoint of

C,,,ax(a,Q) then we only need to show that for such a breakpoint (cx,C,,,ax(cx,Q))

the arnount of work to calculate utin~ ((~a,e~3,eC,,,ax(a,~i) } can be~ clont~ in
e ~o

O(logn) time. Functions for which this can be cíone are, for instance, tboso

I1



considered in Ishii et al. [3]:

ÍIa,Q,G~x) - w rC~áX t~zaqz t waQy3(wt,wz,wa Positive, 4r,4z,43~ -1)

Here the minimum can even be determined in constant time.

5. Conclusions

The complexity of the algorithm to determine optimal speeds for the

two-machine flow shop scheduling problem has now been reduced to a minintum

for most objective functions. A similar result has been proved by Potts a.nd

Van Vliet [6] for the two-machine open shop scheduling problem. For tl~e

no-wa.it flow shop the complexity ga.p lies between nlogn and n3. 'fhe O(n[oyn)

time bound for the original problem is proved in Gilmore et al. [2], whereas

the time bound for the problem with speed-up of machines is given in

Strusevich [7]. It is an open problem, whether this gap can be tightened.
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