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Abstract

To estimatet he meansojo urn time, a sample of Tilburg fair visitorsw as asked

for the duration of their stay on the fair grounds. The longer a visitor'ssojo urn, the

larger his/her probability of being in terviewed will be; therefore, longer sojourn

times will be overrepresented in the sample. As a consequence, the arithmetic

sample mean is not a suitable estimator.

The paper places this problem against a theoretical background. As a better

estimator the harmonic meanoft he observed sojourn times is presented. In addi-

tion, a variance estimator is given. The properties of these estimators are di�cult

to derivea nalytically.Inst ead, their behaviour is studied in a number of examples.

Keywords: harmonic mean, pps-sampling, ppy-sampling, renewal theory, sojourn time,
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1 Introduction

The Tilburg fair is the Netherlands' largest; its economic impact, therefore,i sgre at. A

�rst attempt toin vestigate these economic features was made in SMEETS (1988). Since

expenditures of visitors will tend to increase with sojourn times, an importantec onomic

indicator willbethea verage sojourn timeofTil burg fair visitors.

To estimate this crucial quantity, pollsters questioned nearly 2000 fairgr ounds visitors

in 1988 about the duration of their stay. Respondents were selected without exact

instructions: pollsters moved on the fair grounds and interviewed `randomly' selected

visitors. Since the probabilitythatavi sitor is being interviewed will increase with the

duration of stay,asui tablevi sitor selection model is probability proportional to sojourn

time. In other words, selection probabilityi s proportional to the variablethati s being

investigated. This sampling scheme is called ppy-sampling; iti s studied here inam ore

general context.

The paper shows that to estimate the average duration of stay under a ppy-sampling

scheme, the harmonic mean of the observed sojourn times should be used rather than

the arithmetic mean. An-adm ittedly, crude - estimator for the varianceispre sented;

it is an extremelysi mple function of both arithmetic and harmonic mean.

In more detail, the organisation of the paperi s the following. Section 2 treatssam pling

with probabilities proportional to size, where `size' is a fully known variable.T oa void

unnecessarily laborious notations, itwi ll be assumed in the beginning that all random

variables are absolutely continuous. Adaptation of the notation to the discrete case is

straightforward, as some of the examples illustrate.

In Section 3, ppy-sampling is de�ned and studied; of course, now the values y,of

the variableofin terest, are assumed to be unknown. The properties of the proposed

estimator are discussed, mostlyb ym eans of three examples. Section 4 considers variance

estimation, while Section 5 applies the theory developed to the Tilburg fair problem, that

triggered this research. The �nal Section 6 brie
y presents comparable outcomes for the

Tilburg 1995 fair (VERMEULEN, 1995); of course, the methodology is applicable to

more general gatherings of large crowds. The relation withre newal theory is pointed

out.
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2 Sampling with probabilities proportional to size

Consider a pair of absolutely continuous random variables( X;Y )wi th joint density

f :IR2
! IR. The marginal distributions are denoted by fX and fY .F or any function

k : IR2
! IR, we de�ne

�k = E[k(X;Y )] =
ZZ

k(x; y)f (x;y )dxdy

providedt hise xpectation exists; e.g.

�x =
ZZ

xf (x;y )dxdy =
Z
xfX(x)dx:

Any random observation of the pair (X;Y )has f as density. Consider the case,

however, that observations are not made at random, but with probabilities proportional

to a known positive function h of Y with existing mean �h. Then the function p de�ned

by

p(y)= h(y)=�h (1)

reweights the density f . An observation of (X;Y )no wl eads to a new pair (V;W )of

random variables taking the samev aluesas( X;Y ), but with a density g given by

g(x; y) = f(x; y)p(y) (2)

The marginal densities are

gW (y)= fY (y)p(y)

gV (x)=
R
f(x; y)p(y)dy

Of course, E[k(V;W )] 6= E[k(X;Y )] = �k - unless p is constant (the case of random

sampling). However,

E[k(V;W )=p(W )] = �k (3)
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So, �rst dividing the observation k(V;W )b y the sampling probabilityle adstoanun bi-

ased estimator for �k. This facti sw ell-known from sampling with unequal probabilities

in �nite population sampling; the complete distribution of the auxiliary variable Y is as-

sumed known. See for example, HEDAYAT & SINHA (1991) or S�ARNDAL et al. (1992).

If h is the identity, this sampling schemei s called pps-sampling: sampling proportional

to size (Y ); Y is assumed to be positive.

In this important special case h(y)= y,(1)i s simpli�edto

p(y)= y=�y (4)

An immediate consequence is

E(W ) = E(Y 2)=�y; E(V ) = E(XY )=�y (5)

while of course (2) continues to hold.

(Note that pps-sampling is not the only case of interest. Considerav ase with ballsof

di�erentradi i Y . Balls are selected byc hoosing a pointi nIR3 with random coordinates;

if this pointi s contained in one of the balls, this ball is sampled. In this case p(y) / y3.)

EXAMPLE 1. Consider the following discrete bivariate distribution of (X;Y )wi th

probabilitym ass function f .Them arginal distributions and some parameters are added.

f(x; y)

y 1 2 4 fX(x)

x

0 0:2 0:3 � 0:5

1 � 0:4 0:1 0:5

fY (y) 0:2 0:7 0:1 1

�x = 0:5

�2x = 0:25

�y = 2

�2y = 0:6

�xy = 0:2

�xy = 0:5164

In sampling with probability to size Y , p follows from (4):

y 1 2 4

p(y) 0.5 1 2

leading to the following joint distribution of observations (V;W ).



5

g(v;w)

w 1 2 4 gV (v)

v

0 0:1 0:3 � 0:4

1 � 0:4 0:2 0:6

gW (w) 0:1 0:7 0:2 1

�v = 0:6

�2

v = 0:24

�w = 2:3

�2

w = 0:81

�vw = 0:22

�vw = 0:4990

It is easy to check that (5) holds. On the other hand,

W=p(W ) = 2) E[W=p(W )]=2= �y

while the distribution of Z = V=p (W )isgiv en by

z 0 0.5 1

fZ(z) 0.4 0.2 0.4

so that E(Z) = E[V=p (W )] = 0:5= �x. This is in agreementwi th the general re-

sult (3). 2

In general, Y is of interest only as an auxiliary variablede termining the sampling prob-

abilities, while X is the variable under investigation. However, in somei nstances, the

`size' Y itself is the variableofi nterest.

Further, attention will be concentrated as a rule on the original variables X and Y .I t

is importanttonote ,ho wever, that the observed variables( V;W )m aybeofim portance

too.

Example 2 illustrates both remarks.

EXAMPLE 2. In a smallsc hool with fourty pupils four classes are formed with 4, 6,

12 and 18 pupils, respectively.F or this school, class-size Y has mean �y = 10. Draw

one pupil at random and ask for the number of pupilsinhi s/hercl ass. This gives the

following functions.
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y 4 6 12 18

fY (y) 0.25 0.25 0.25 0.25

p(y) 0.4 0.6 1.2 1.8

fW (y) 0.1 0.15 0.3 0.45

For the observation W of Y it follows E(W )=13. This number can be interpreted

as the mean number of pupilspe rc lass as experienced by the pupils. Note that it is the

`quadratic mean' E(Y 2)=E(Y ), in agreement with (5). (In slightly otherw ords this out-

come can be read as: for the population of fourty pupilsthem ean numberofcl assmates

in 12.) 2

3 Sampling with probabilities proportional to the

variable of interest

From now on, attention will be concentrated on Y being both the auxiliary `size' variable

and the variable under investigation. Tom ake the problem statisticallyi nteresting,

the probabilitydi stribution of Y is supposed to be completely unknown. The only

information is obtained through observations W which are drawn with probabilities

p(w)= h(w)=�h;�h = E[h(Y )] is the unknown estimand.

An estimator for �h can be found by applying (3) to the (constant) function k(V;W )=

1. This gives

1 = E[1=p(W )] = �hE[1=h(W )]

or

1=E[1=h(W )] = �h (6)

This suggests the following estimatorMh for �h, based on n observationsW1;W 2; ... ;W n:

Mh =
1

(1=n)
Pn

1
1=h(Wi)

=
nPn

1
1=h(Wi)

(7)

i.e. the harmonicm ean of the h(Wi).
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The special case that arisesis h is the identity willbec alled sampling with probabilities

proportional to the variableofin terest Y , abbreviated ppy-sampling. The estimator (7)

for �y then is the harmonicm ean M of the observations Wi.

According toSl utsky's theorem, Mh isac onsistent estimator. However, otherst a-

tistical properties of Mh are hard to establish in general. Therefore,onl y three special

cases will be considered.

EXAMPLE 3. Assume that Y has the inverse gamma distribution I�(�; �) with �> 2

implying

f(y) =
��

�(�)
y�(�+1)e��=y; y > 0:

Then �y = �=(� � 1) and �2y = �2=(� � 1)2(� � 2). The distribution of an observation

W , obtained by ppy-sampling - compare (2) and (4), follows:

W � I�(�; �� 1):

Standard properties of gamma and inverse gamma distributions lead to the following

successivere sults:

1=W � �(�;� � 1)

Pn
i=1 1=Wi � �[�;n(�� 1)]

1=
Pn

i=1 1=Wi � I�[�; n(� � 1)]

M � I�[n�; n(�� 1)]:

Immediate results are

E(M)=
�

�� 1� 1=n
; V (M)=

�2

n(�� 1� 1=n)2(�� 1� 2=n)
:

So for large n, the bias B(M )andv ariance of the estimator M for �y are

B(M ) := �=[n(�� 1)2]; V (M ) := �2=[n(� � 1)3]
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approximately. 2

EXAMPLE 4. Here, Y isadi chotomous variable; ppy-sampling leads to the following

probabilitym ass function fW of W .

y fY (y) p(y) fW (y) �y =4 =3; �2y =2 =9

1 2=3 3=4 1=2 �w =3 =2; �2w =1 =4

2 1=3 3=2 1=2

Let T denote the numberofobse rvations W1;W2; . . . ;Wn having the value 1. Then

T � B(n; 1=2) and

M =
n

T + (n � T )=2
=

2n

n+ T

Expectation andv arianceof M then followim mediately from

E(Mk)=
1

2n

nX
t=0

�
2n

n+ t

�k  n
t

!
:

Table 1 shows somen umerical results. The last columnwi ll be discussed in the next

Section.

Table1. Moments of the harmonicm ean in Example 4.

n E(M) nV (M ) E(S2) n E(M) nV (M ) E(S2)

2 1.4167 0.2639 0.1111 50 1.3363 0.2011 0.2192

3 1.3875 0.2508 0.1538 100 1.3348 0.1993 0.2207

5 1.3648 0.2323 0.1853 500 1.3336 0.1979 0.2219

10 1.3486 0.2153 0.2056 1000 1.3335 0.1977 0.2221

For large n;M is nearly unbiased for �y =
4
3 with variance0 :198=n. 2

EXAMPLE 5 (see EXAMPLE 2). Assume that from the population of fourty pupils n

pupils are drawn at random (with replacement). Then the mean class-size �y(= 10) can
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be estimated by the harmonic mean M of the class-sizes obtained from the sample.In

this case, the behaviour of M is studied bym eansofsim ulation.

For di�erentv aluesof n; k =5000( ppy-)samplesw ere simulated; denote the outcome

of M in sample j =( j =1 ; 2; ... ;k )b y mj. Table 2 shows the quantities

�m =
1

k

kX
j=1

mj; v(M)=
1

k � 1

kX
j=1

(mj � �m)2: (8)

They can be viewed as approximations to the parameters E(M )and V (M ), respectively.

The last column of the table will be discussedi n the next Section.

Table2. Simulated means �m and variances v(M) of the harmonic mean in Example 2.

n �m nv(M) s2 n �m nv(M) s2

2 11.789 38.322 10.246 50 10.068 41.072 29.171

3 11.374 42.337 15.716 100 10.047 38.863 29.601

5 10.845 43.825 21.230 500 10.009 39.714 29.896

10 10.369 42.792 26.003 1000 10.001 39.658 29.955

For large n;M is nearly unbiased with approximate variance 39:7=n. 2

4 Estimating the variance of M

No statistical analysisi s complete without a variancee stimate. So the next two steps will

be: to �nd an approximate expression for the variance of M andtode riveane stimator.

Our solution starts with an alternativef ormulation of M .

The sample gives a picture of the distribution of W . To obtain a pictureofthe

distribution of the original variable Y , the observations Wi must be reweighted; because

of the ppy-sampling plan the weights

Gi =
1=WiPn 1=Wi

are appropriate. Mean and variance of thisre weighted sample are given by

nX
i=1

GiWi(= M);
nX
i=1

Gi(Wi �M )2:
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So, the second statistic S2, can be used as a consistent estimator for �2y. Since M

is a (arithmetic) sample mean with - admittedly - rather peculiar weights, a (crude)

approximation for its variance will be given by

V (M ) := �2y=n: (9)

Note that S2 can be rewritten as

S2 = [
nX
i=1

(Wi �M)2=Wi]=
nX
i=1

1=Wi =
M

n
[
nX
i=1

Wi � nM ]:

Introducing �W = 1
n

PnWi, this estimator for �2y becomes

S2 = M ( �W �M ): (10)

For n = 1000, the following values were found in Example 4:

�2y nV (M) E(S2)

0:222 0:198 0:222

and in Example 5:

�2y nv(M) s2

30 39:7 30:0

where

s2 =
1

k

kX
j=1

s2j ; s2j = mj( �wj �mj):

Indeed, (9) only o�ers a crude approximation, which however may be useful in practice.

The search for a better variance estimator will be continued.
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5 Application

The Tilburg fair is the Netherlands' largest. It takes nine days - at the end of July; the

number of attractions exceeds 200. Among them are games of skill like shooting galleries,

fairground attractions like Ferris wheels, lotteries and gambling halls. Apart from its

entertaining and cultural features, the economic importance is rather impressive: e.g.,

the city of Tilburg receives over 2 mln Dutch guilders from the showmen. This amount

is based in particular on the number of visitors, the average sojourn time and their total

expenditures. Reliable estimates of these quantities therefore are of great importance,

both for individual showmen and for the city of Tilburg.

The �rst attempt to obtain a detailed picture of the economic impact of the Tilburg

fair was reported in SMEETS (1988). Here we concentrate on one feature of this project:

estimating the mean sojourn time of the visitors of the fairgrounds.

During the fair, pollsters walked on the fairgrounds and asked nearly 2000 visitors to

answer a questionnaire. One of the questions was `How long is your average stay on the

fair site per visit?' The �rst two columns of Table 3 show the results; gk denotes the

observed frequency.

Table 3. Duration of sojourn on fairgrounds.

stay (hrs) gk wk gkwk g�k

0� <1 104 0.5 52 208

1� <2 309 1.5 463.5 206

2� <3 556 2.5 1390 222.4

3� <4 416 3.5 1456 118.9

4� <5 265 4.5 1192.5 58.9

5� <6 121 5.5 665.5 22

6� <7 81 6.5 526.5 12.5

� 7 134 8 1072 16.8

Total 1986 � 6818 865.5

Source: SMEETS (1988), p. 101

From the classmids wk in column 3 and from column 4 follows the (arithmetic) mean

duration of stay in this sample:

�w =
X
k

gkwk=
X
k

gk = 6818=1986 = 3:433:
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If the observations had been obtained by random sampling, this value would have been a

suitable estimate for �y, the mean sojourn time of all visitors. However, the probability

of being approached by a pollster will increase with the duration of stay. Hence, a better

model is obtained by assuming ppy-sampling.

So, a better picture of the sojourn time distribution in the population is obtained by

using the reweighted frequencies g�k = gk=wk. This gives the estimate

m =
X
k

g�kwk=
X

g�k = 1986=865:5 = 2:295:

which is only 67% of the arithmetic mean. The estimator (10) for the variance �2y in the

population takes the value

s2 = m( �w �m) = 2:612:

Following (9), an indication of the variance of M then is given by

v(m) = s2=n = 0:00132

leading to the approximate 95%-con�dence interval (2.224, 2.366) for �y.

As a check, a resampling procedure was used. From the observed distribution (i.e.

columns 2 and 3 of Table 3) k = 500 random samples (with replacement) of size 1986

were drawn. For each sample j the harmonic mean mj was calculated. Then (8) leads

to the values

�m = 2:340; v(M) = 0:00248

Note that �m is within the above con�dence interval; regretfully, the di�erence between

v(M ) and v(m) is substantial. A better variance estimator is wanted.

According to (3), the mean �x of any other variable X can be estimated unbiasedly

from an observed pair (V;W ) by means of

V=p(W ) = �yV=W:
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Since �y is unknown, a natural estimator Mx for �x, based on n observations

(V1;W1); (V2;W2); . . . ; (Vn;Wn) is

Mx =
M

n

nX
i=1

Vi=Wi =
nX
i=1

GiVi:

So, from a bivariate frequency table of (V;W ), an estimate for �x can be obtained -

compare EXAMPLE 1. Note the central role of M .

6 Discussion

To quantify the economic impact of the Tilburg fair, the average sojourn time is one of

the key aspects. Together with the number of visitors it determines the fee showmen

have to pay the city of Tilburg. In estimating this mean sojourn time, the size of the fair

is in itself a major problem: the fair founds occupy a large area within the city center;

since entrance is free, there are no clear-cut entrance/exit-gates. By consequence, it is

di�cult to take a random sample of visitors and this lead to the ppy-sample in the 1988

survey.

To avoid the problems connected with this sample design, the 1995 survey was or-

ganised at the fair's main exit roads. By questioning persons obviously leaving the fair's

premises an approximately random sample of 1780 visitors was obtained.

Table 4 compares the distributions of the sojourn times in 1988 and 1995. Columns

2 and 3 are derived from Table 3 (columns 2 and 5, respectively). The last column is

based on VERMEULEN (1995).
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Table 4. Relative frequency distributions of sojourn times.

1988 1995

stay (hrs)

sample reweighted sample

0� <1 5.2% 24.0% 17.6%

1� <3 43.6 49.5 42.1

3� <4 20.9 13.6 20.8

4� <5 13.3 6.8 7.0

5� <6 6.1 2.5 4.9

� 6 10.8 3.4 7.4

It is clear that the 1988 sample resembles the 1995 distribution much better after

reweighting.

In recent years, many non-pro�t organisations are starting to operate on a more

commercial basis. In particular municipalities are forced - due to budget cuts - to explore

and exploit their opportunities in the �elds of tourism and recreation. Quantitative data

on the economic performance of these new developed mass activities are badly needed.

The problem of estimating the number of participants at mass meetings is notorious: the

guesses of organizers and police o�cials may easily di�er a factor 3. The paper shows

how one of the problems arising in these situations can be handled.

The subject of this paper is related to renewal theory: the �rst equation in (5) can be

found in KOHLAS (1982), p. 57. However, the problem was considered from a sampling

point of view; besides, estimators (M and S2) were presented for mean and variance in

the population. These estimators will prove to be useful in renewal situations as well.
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