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AASTRACT

For non-terminating simulatíons wíth steady-state responses the follow-

ing alternative analysis [echniques are evaluated: (i) Replicated runs.

(ii) Approximatelv independent subruns or batches. (iíi) Renewal or

regeneratíve analvsis. Two general [echniques for reducing nonnormalit~-

and bias are grouping (or batchingl and jackknífing respectively. Applí-

cations of the various techniques are discussed. Aesides the estimation

of the me-;;, the estimation of variances and quan[iles is presente~i.



1. Introduction

In this paper we survey the state-of-the-art in statistica

analysis of stochastic output of simulation models with steady-stat~~

responses. In other words we exclude terminating systems such as queuinl;

systems that close down at the end of the day; see Kleijnen (1975, 1984~,

for a discussion of terminating versus non-terminating, steady-stat~

systems. We also exclude the analysis of simulation runs correspondin~;

to many different inputs (for which we recommen~i regression analysis ani

experimental designs).

(lur Survey is meant for simulation practitioners with a basi:

knowledge of statistics. We concentrate on statistical techniques tha'.

are of major practical use and that have heen developed in the las':

decade. In practice steady-state ouput analysis is necessary to reveai

the limitations of conclusions based on running a simulatíon model,

i.e., if. the run is too short the output's accuracy - as measured by .3

statisticai confidence interval - may be very bad. We exclude the sta-

tistical prohlems arising when the accuracy is found to be too low s,~

that the analyst must determine how much longer [o run his simulation;

runlength determination is discussed at length in Kleijnen (1975, 19841.

So in the remainder we concentrate on the following problem: ~~e

perform a simulation experiment with a single variant of a random sim~-

latinn model, i.e., in the simulatlon program we fix all input data a,d

all ~athematícal relationships and we run this program with a sequence

of random niunbers resulting in a time series. From this time seríes ~~e



compute "the" response or output, e.g., the average output or the 90i,

quantíle (value exceeded with l0Y chance). If "thé' response were compu-

ted from n independent observations - instead of a time series - then

classical statistics would yield the necessary confidence íntervals, for

instance, for the true population mean u we could use the t statistic:

P(x -t~i sx~dn ~ u ~ x t t~i sxl~n) - 1- a (1)

In dynamic simulation, however, the output forms a time series. In this

paper we survey relevant techniques, and we examine their assumptions.

We also report on practical experience with these techníques in a simu-

lation context.

~, F.lementary steady-state concepts

In nonterminating simulations there is no critic-il event that stops t're

simulation run. For example, we may use simulation to check whether :an

analytical approximation to a specific queuing problem is not coo crude.

Typically, in nonterminating stmulations we tie,~k the response in the

steady-state. Let rrs examine the steady-state co~icept in mure detaii.

Consider a sequence of variables xl,x2,...,xT (or a time series

xt with t- 1,...,T~. This sequence is strictly stationary (or in its

stearly state) if the joínt dtstribution function Fx(xl,...,xt,...,xT)

does not depend on the time índex t. A constant joint distrtbution

tmplies that the marp,inal distributíons Ft(xt) are the same for reach t.



FIG. 1, Autocorrelation pd versus lag d and traffic intensity ~,
in an MIMII queuing system.
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Consequently all moments are constant over time, in particular the means

and variances: u t- u and a~ - a 2. Also, the covariance betwee~l xt and

xt~-d and the correlation pd do not vary wit the absolute point oE time t

but only with the distance or lag d. The time series is called r-depen-

dent íf xt and xt, are dependent only if their distance d- it - t'Í is

not larger than a constant r.

Next we consider t}ie average of a stationary time series:
T

x- E xt~T. Obviously its expectation is u. It is easy to derive the
1

variance of the average:

2 T
var(x) - T [1 f 2 E (1 - T) .pd].

d-1
(2)

Note that tf the observations were independent then pd - ~ f,~r d~ 1

2,
and (2) would reduce to the familiar expressior. var(x) - a T. Let us

next consider the effects of autocorrelation ín a type of systems often

simnlated, namely queuing systems.

In c~u~eutn systems the autocorrelattons are positive, i.e., if

customer i ha~ to wait relatively long then the next customer prohably

has to wait long too:
P(wifl ~ p

~ u) ~ P~ wi}1 ~ u) ' Tf'ese posi-

tive correlations ínflate the variance of the average; see (2). '~1ure

specifically - also see Fíp,. 1- for M~M~1 queuing systems i- can be

shown that the (positive) correla[ions decrease expunentially with the

lag d; also these autocorrelatíons increase wíth the traffic intensíty

~(usually the traffic intensity is denoted by p in queuin~; texts but

the symbol p is used to denote autocorrelation in statistics [e}ts). The
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autocorrelation structure in single-server systems with ~eneral arrival

and service times is characterized in Woodsiáe anà ragurek (1979). The

autocorrelations of M~M~1 systems result in an "inflation factor", i.e.,

the expression in the square brackets of (2) is as large as 360 when the

traffic intensity a is 0.90; that factor is still 10 when a is 0.50. So

the estimated standard error of the average is completely wrong when the

autocorrelations are ignored, as is often done by practitioners and hy

standard output procedures in many simulation languages! If the autocor-

relations are taken into account, then it may turn out that extreme]y

many ~~ustomers must be simulated. For instance, in an M~M~1 system with

traffíc load a- 0.9 we need to simulate 111,716 customers when we wish

to es'-imate the mean waiting time within one unit with confidence ].evel

0.95; see Fishman (1978b, p. 521).

Since many statistical techniques assume normality, we mention

the e{istence of the stationary r-dependent central limit theorem: given

an r-3ependent strictly stattonary sample xt (t - 1,...,T) with mean

F.(xt1 - u- and the tNChnical condition that the ttlird absoLute moment

3F.(Ixt~ ) exists - the sample mean x- Ext~T i s asymptotically normally

distrihuted; of course the mean of x is u and its variance is given by

(2) ;ubstituting pd - ~ for d~ r. Selected refecences to stationary

tirne series are given in Fishman (1978b), Janssens (1982), Law and

Kelton (1982), Mihram (1972).



3. Replicated runs

We can try to analyze nonterminating simulations using the same

techniques as used for terminating simulations, the latter type yielding

one independent observation per run; see Kleijnen (1975). So suppose we

wish to estimate the mean waiting time in the steady state, that is,

u- E(wi) for i t~. Then we can start with a very long simulation run

comprising N customers, and we obtain a single observation on the

steady-state response. Denote that first observation by wl:

N
wl - E wilN

1

(3)

Ti obtain the nex[ observation (w~) we start a:l over aKatn, nsing a

di-fferent random number stream, so tha[ the ncx[ observation on w is

statistically independent of the previous observation (wl). And so on.

This approach would permit a statistical analysis exactly analogous to

the analysis for terminating systems, were í[ not for the followiny,

problems.

Since we are interested in the steady-s':ate response the tran-

sient (initial, start-up) response creates complications (in a termina-

tinN system, a possible transient behavior forms part of "the" respontie

per run; aee Kleijnen, 1975, 1984). Hence two options are available:

a. Retain the transient ghase.

Though the inttial phase creates bias - E(wl) ~ u- this phase does

contain information. Hence it is very we11 lossible that the Mean

S~luared Errur (MSF,) is mínimized, if the whole time series is nse~i.
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Indeed for simple queuing systems it can be proved that the MSE is

minimized when the whole run is utilized (assuming the system started in

the empty state and the run is long); see Law (1982). Moreover it may be

convenient to eliminate worries about the exact length of the transient

phase (see below) by simply retaining the whole time series. However,

even if the MSF, would be minimized, the resulting confidence interval

may be inconsistent (wrong confídence levei 1- a). Actually if we make

many replications (n) of a relatively short run (small N), then we

obtain a narrow confidence interval around the wrong quantíty, i.?. ttie

actual type I error exceeds the nominal a value which ís called a"lr,w

coverage" of the confidence interval; also see Fishman (1978b) and L~~w

(198:').

Recently Adlakha and Físhman (1982) proposed to start da a

collection not in [he ídle state of a queuing simulation but in a coi-

y~este~d state. Tf indeed the latter inítial state creates bias, we expcct

that the mean waíting time estimate w exceeds the steady-sta[e mean u.
n

it rin be made plausible that the averaged estimate (w - E wj~n) and
1

the e5timated variance (var(w)) are positively correlated; see Kleijren

(198'~). Hence the congested initial state is expected to result in an

overe5timate of var(w). The latter overestimate may c~rrect the ]ow

coverage found in Tany simulation experiments; see Sectíon 8. Note t}at

though data collection is not started in the empty state, it may be

convenient to start the simulation run in the idle state but to deier

outp~it generation until a congested state is reached. Wilson and Pri's-

ker (1978h) experi~nented with several starting conditions and found t~at

coverage is best when the mode of the steady-state distribution is
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selected as initial condition. Of course in practice that mode is in-

known but the analyst may try an educated guess. Anyhow these results

suggest that the empty state is not the best starting point for data

collection if runs are replicated.

b. Eliminate the transient phase.

Practitioners often throw away the initial part of the time series,

i.e., the simulation "warms up" before the simulation program starts

naking observations. TJnfortunately two practical problems remaín:

'i) How can we determine whether the transient phase is over?

(ii) Throwing away the initial phase of each run wastes computer time.

~uh (i): Practitioners often construct graphs - and making p,raphs is

always an excellent idea in any statistical expFriment - to see whether

~;tart-up effects "obviously" have disappeared. ~' guideline may be: "the

rransient phase is not over as long as the individual waiting times wi
N

ri - 1,?,...) keep growing". Note that running averages like E wt~N with
i

1; - 1,2,... lag behínd the individual waitin}~ times. Another simple

lreuristic is: "throw away the first hundred writinK [imes". But w{th

lreavily congested systems a hundred is too mall; remember Fig. 1.

leuristics up to 1978 can be found in Kleíjnen (1975) and Wilson and

'ritsker (1978a). Recently several statistical -echniques for detecting

initialízation effects have been proposed; see Kleijnen (1984) and Law

"1982). The most attractive technique is due tc, Schniben et al. (1980)

ind is summarized in Appendix l. These authors applied their technique

!-o five different simulation models and found that their test is ~.i1id

ind powerful.
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Sub (ii): If we overestima[e the length of the transient phase we throw

away information on the steady-state, and this increases the variance of

the final estimator. If we do not wish to waste computer time, we may be

tempted to underestimate the initial phase, and we bias the final esti-

mator. Fortunately, if [he total time path is long we may assume that

the bias caused by the transient phase is negligible. Therefore other

approaches besides simple replication have been devised.

4. "Inde~endent" subruns of fixed length: batching

Instead of replicating each long run (with different randcm

numbers) we may make a sin le, extremely long run. The initial part oE

that síngle run may be thrown away; see the preceding section. The

remaining (much larger) part of the run is divided into a number oE

suhruns or hatches. If the total run is very long, then the suhruns will

he long, e.p,., tf the total run (after elimination of the transiert

phasel comprises 100,00(1 customers then dividíng that run into t n

suhruns means that each subrun contains 10,000 custumers. Now consid~r

~uhruns 1 and 2: customer 10,000 will affect customer 10,001 but cn.-

tomer 10,~00 probably has little effect on customer 11,000; see Fig. .

More generally, the las[ "few" customers of suhrun i (i - 1,2, ...) o

affect the Eírst "fecd' customers in the next subrun (i f 1) but th y

har~íly affect most customers in the latter subrun. Consequently "th~"

responses (,the averages when estimating u) of subruns i and i f 1 are

practically speaking independent; also see KLeijnen (1975, p. 458). A

statistical refinement implies that the independence of the subr m

responses ts tested (see below); when the hypothesís of independence :s
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rejected, the subrun length is increased; etc. The subrun lengt}~ result-

ing from this statistical refinement, yields n subruns, and each subrun

results in a subrun response xi (i - 1,...,n) where xi is the subrun

average if we want to estimate the steady-state mean ~. (However, in a

next section we shall see that we may wísh to estimate the pth quantile

of the steady-state response and then xi denotes the pth quantile esti-

mated from subrun i). The techniques for independent observations can

now be applied to the (approximately) independent subrun responses

xi (í - 1,...,n): see (1). Next we shall examine some details of the

batching approach.

Practitioners often apply a simplified version of the subrun

procedure, i.e., they pick an intuitively fixed subrun length and they

do not test whether this length tndeed yiel.ds independent subrun res-

ponses x. Such an approach is dangerous because analytical results for

simple queuing systems have demonstrated that indivídual waiting timeti

remain autocorrelated over surprisingly long intervals. Consequently,

too short subruns may result in a drastic underestimation of the true

variance var(x); see the comment on Fig. 1. On the other side, if the

subruns are unnecessarily long, then only a few subrun responses x

remai.n and the resulting confidence interval tends to become longer and

less stable. (Briefly, the interval's expected length increases when the

number of batches decreases, primarily because in eq. 1 tn-1 and l.~Jn

increase; the interval's standard error i ncreases primarily because of
"? 4the lower n value: var(o )- 7~ ~(n-1). Secondary effects are derived

by Schmeiser, 1982.) If we would take the number of batches at its

minimum ( n - 2) then the coverage could s[111 be 1~; however the
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inrer.,ál~s expected length and variability would be unacceptable.

Schmeiser (1982) recommends the use of ten to twenty batches (or repli-

cations if the approach of Section 3 is followed) when computing the

confidence interval for the mean u: 10 C n~ 20. However, before we

compute that confidence interval we have to "know" that the subrun

responses x are independent. To test this independence we certainly need

more than twenty subruns, as we shall see next.

The independence of random variables can be tested in many ways.

Simulation practitioners may be familiar with the i ndependence issue, in

the context of pseudorandom-number generation, i .e., to test whether the

pseudorandom numbera rt ( t - 1,2,...,T) are independent many tests have

been devised; see recent textbooks like Fishman ( 19786) and Law and

Kelton (1982). Howt.ver, Ln that context extremely many observations are

avatlable (T-. m). '~.dith subruns the number of observations is much

smaller: xí with t- 1,...,n. The practitioner may be tempted to esti-

mare the autocorreiation between adjacent subrun averages: pl. (Note

that Ln eq. 2 p denoted the autocorrelation among i ndívidual responses

whereas now p refers to subrun responses.) However, the usual estimator

pl is biased and shows a high standard error. We recommend the Von

Neumann statístic, say y:

n-1 n
q - E (xi-xifl)2~ E (xi-X)2

i-1 i-1
(4)

The statistíc q concentrates on the first-order autocorrelation pl: if

the variables x are índependent (implying p 1 - p 2 -... - p n- 0) then,

whatever the dLstribution of x, we have E(q) - 2. However if the vari-
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ables x show positive first-order autocorcelation, then E(q) : 2. Whe~n

the variables x are normally and independently distributed (NID) then

oq - 4(n-2)~{(n-1).(ntl)} and the distribution of q is approximately

normal for n~ 20. Consequently we reject the hypothesis of independenre

if q is smaller than 2-z oq ~ere is a chance g that we erroneously

fail to reject the null hypothesis. This g increases as the autocorrela-

tion pl is closer to zero and as the sample size n is smaller so that oq

is larger; based on analytical and Monte Carlo results we recommend to

test the independence of the subrun responses x raing at least a hundr~d

subruns: n~ 100; see Kleijnen et al. (1982).

Although we recommend the use of at least a hundred subrwls

when testing the independence of the subrun res~~onses, the final confi-

dence interval for the expected response may be computed frorn .fewer- and

hence longer- subruns, so that we obtain extra protection against a~y

dependence not detected in the origínal (say, hundred) subrun response,.

So it may be good practice to compute confidence intervals frorn only ten

to twenty subr~rns, as proposed hy Schmeiser (1982).

If we detect dependence, then we increase the subrun length. The

cor.responding number oE subruns decreases. If the number of subruns

becomes smaller than 100 then we need to continue the original simula-

tion run; else we ímmediately return to the Von Nerunann test, etc. The

Literature gives a number of applications of. the subrun approach. ~1ost

practical studies do not test the tndependence of the subrun respons~~s.

The oldest procedure including steps similar to our proposal, was deri-

ved by Mechanic and McKay in 1966 and was adapted by Fishman (1978 a,
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b). We shall return to applications later on.

5. Independent cycles: renewal or regenerative approach

Whereas the subrun approach cuts the total run ínto pieces such

that each piece has the same lenp,th, the renewal or regenerative ap-

proach cuts the total run into pieces such that the length of a piece is

a random variable. Whereas the subrun approach results in responses

which are approxim;tely tndependent, the renewal approach results in

perfectly tndependent responses. First we give an example illustrating

the renewal approac'i.

Consider a simple queuing example, namely the M~M~1 system.

Assume we started the simnl.ation with an empty system. Now and then a

simulated c,istomer aill find the system empty again upon his arrival.

The "next htstory", í.e., the time patlc oE wt (t - 1,?,...,N) once a

cnstomer arrives into an empty system, is completely independent of Che

past history. This iay he ilLustrated as follows. As soon as a customer,

say customer 10, arrives and finds the system empty, we may erase that

part of the comput~r memory containing htstorical data. Of course we

cannot erase the sinulation program itself, i.e. for the M~M~1 system we

cannot erase the c~~mputer instructions executing the following equation

where st denotes ~he service tíme of customer í and at denotes the

in[ararrival time h~tween customers i and i- l:

wi - max(wi-1 } ~i-1 }
at,0) i - ?.3,,.. (5)
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FIG. 2. Renewal property.
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For the M~M~1 system the historical data consist of the preceding ser-

vice times si and interarrival times ai (plus the resulting waiting

times) for i~ 10. After we have erased these historícal data, we can

still compute w10' wll' etc.: by assumption w10 - 0(customer 10 arrives

into an empty system); using (5) we compute wll - max(w10ts10-a10'0)

where si0 is sampled from an exponential distribution and a10 is sampled

from another exponential distribution. Once we know wll we can compute

w12, etc. We emphasize that we do not need any historical information

when we sample the service and interarrival times, because Poísson

processes (resultín,; in exponential distributions) are memoryless. Fig.

2 furtfier illustr-ites that the "past liistory" does not matter. This

figure also tllustr3tes tha resulting "subruns", called cycles, epochs,

hLockti, or tours. .'ach cycle starts as soon as a customer arrives into

an err;~ty system. Note when two consec~itive customers find the system

e~npty (customers 1~ and l6), then two cycles result (cycles 4 and 5).

F,:~ch ycle hegins ,. ith a busy period (a customer arrives intn an empty

syste! wher~~upun t!e system immedia[el,v starts serving this customer)

anrl t ~e cycle encis aith an tdle period (the next cycle starts hecaase a

nr~w .~rstomer [inds the system empty, i.e., the server was idle). In

contr{tit to the batching approach the ~resent analysis results in per-

fectl,~ indepencient cycle responses x. 'T"he length of the cycles, say L,

is a randum variahle, e.p,., in Fig. 2 P(L5 ~ 2) - P(w18 ~ 0),

in the abo~~e M~M~1 example the empty state was the "renewal"

State, i.e., the state st:~rting a new cycle. Crane and T.emoíne (1977)

gtve :;everal more .xamples of renewal ~tates for queuing and inventory

syste,is. In general, all Markov systec.s have the renewal property. In
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such a system the probability of moving to a specífic state during

period t depends only on the state the system was in at the begin7ing of

that period (and does not depend on previous periods). For instance, in

an M~M~s queuing system the system state ís specified by the number of

customers waiting at each of the s servers. Any state may then be selec-

ted as the renewal state! A practical issue is that we wísh to select a

renewal state suc}i that many cycles result (also see the statistical

analysis later on). The renewal state may occur so infrequently that

only a few cycles result. For instance, if the queuing system has heavy

traffic then the empty state occurs rarely. And some systems have so

many possible states that the realization of one particular state occurs

rarely. A practicnl solution is to define a set of states as thE appro-

ximate renewal s[ate, e.g., the system is "nearly empty", say, in all.

servers either zero or one customer is waiting. We may tetit whetter thi.s

approximate renewal state indeed results in cycle responses which are

practically speaking independent. Approximate renewal analysis is dis-

cussed in Fishman (1978b), Gunther and WoLff (1980), Sauer (19791.

The renew.~l. approach re5ults in perfectly independent cycle

responses (unless we choose an approximate renewal statel. We prefer

independent responses because tt simplifies the statistical. analysis.

Nevertheless the s[3tistical analysís in the renewal approach involves

some statisti.cal problems because ratio estimation is needed, as we show

now. Consider the estimation of the expected waiting time in the s[eadY-

st;~te of the M~M~I queuíng system. We shall use the followinK sytibols:
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u: me3n waiting time in steady-state (u - E(wt) for t ~ W).

n : (fixed) number of (independent) cycles.

Li: (random) length of cycle i, i.e., number of customers in cycle í

(i - 1,...,n).

Wij: waiting time of customer j in cycle i(j - 1,...,Li).

Conseqiiently the total waiting [ime accumulated within cycle i is

Li
yi - E wi

j-1 ~

The tr.~ditional estimatnr of u can be rewritten as follows:

(6)

N n n 1, y, L

w- E wt~N - E ~i~ E Li - Y~L - E (~i) (~1) - E (~i) wi (7)
t-1 i-1 i-1 i i i

,ahich shows tha[ tne traditional estimator is identical to the cycle

averag~s wi weiKhter! with the relative numher of customers per cycle

i.i~N. [t can be pruved that the true m~-an ~ equals the Eollowing ratio

;~f :neans: u- E(y)~'.(L). To estimate such a ratio a variety of estima-

tors and confidence intervals i s availahle. One obvious point estimator

.~:~s yhown in (71. H„wever, we know that E(y~L) ~ E(y)~E(L) - E(y)~F,(L),

i.e., this "naive" estimator is biased. Fortunately, i n large samples

the naive estimator becomes unhtased. The confidence tnterval for tliis

estimator i s somewiiat complicated because - although the cycles are

independent -( 7) showed that we do not have a simple average of. inde-

pendent ob~ervations. It can be proved ( via the Central Limít Theor.em

applíed to y- u L) that the following ( 1~) confidence i nterval hol~ls

asymptotically:
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where

w t i ,2 . (a~~n)~L

a2 - var(Y) - 2w . cov(Y,L) t( w)Z . var(L) (9)

(8)

so that the confidence interval becomes "better" (tíghter) if
a~2

- we accept a higher a error ( smaller z ),

- a hecomes smaller, i.e., the (estimated) variance of y or L becomes

smaller, or their covariance becomes higher ( an overshoot cf y is

compensated by an overshoot of L),

- n hecomes higher (more i ndependent cycles),

- L hecomes higher (more customers per cycle).

The literature gives aLternative point estimators and confidencF inter-

vals, but none seems to dominate the above procedure. ~ne alttrnative

estimator uses "lackknifinQ" and will be presented ín the next ~ection.

See Crane and T,em~~ine (1977), Fishman (1978b).

Note tha[ the sample size in the renewal approach is de ineci :is

the number of cycles, not as the number of individual custanrrs. The

renewal approach also solves the transient sta[e problem (a seri;ius

prohlem in ail other approaches): any renewal state may he sele~~ted f~ir

the initíalization of the simulati~n run; no observatíons neei tc~ be

thrown away. Selectinp, a different renewal state may yield 1onKer

cYcles; for a given total computer time fewer cycles result l~ut each

cycle contains moce information. Hence the efficiency of the renew,31

estLmator doe, not depend on the renewal state selected. However, beca~r

se of the asympt~~tic cliaracter oE the confidence interval in (8), we

prefer a renewal state resulting in many (possibty shorter) cycles.
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The renewal approach applies to the estimation of the mean and

other quantities such as proportions (or percentages), variances and

quantiles; see the Literature and Appendíces 2 and 3.

A number of researchers has further developed the renewal ap-

proacli during the past decade. They have investigated asymptotic results

tllrougli analysis, and small-sample performance through simulation.

Several types of simulatíon models have been analyzed in this way; see

Section 8 on applications. The challenKe for practitioners is now to

discover the renew.-;L property of their more complicated systems. In the

~e:~n time researc' continues, e.o., recentl.y Heidelberger and Lewis

(19R1a) studied t e detection and rem~~val of small-sample bias and

nonnornaltty of re~~ewal estimators. Nonnormality may result in positive-

l,v currelated esti ators oE the mean and variance, and this correlatíon

may r~~u1t in inco~rect confidence intervals. We shall next present two

very -~~neral appro.,ches for dimínishing nonnormality and bias respecti-

vel~, wher., Hetdelberger and Lewis (1981a) used more sophisticated

reYressiun and p,ra~iical r.echniques.

(,. Vo mormalit~v an-? htas: ,~ener3',. teciini~lues
---.------ --.-----2--.--~~-

Nonnor-nalt~v may be reduced by combining the renewal approa~~h

~aLth r simple kind of batching (this batching is also used in quanti,.e

e5ttm-ctinnl, Suppose we have avaiLable n cycles, resulttng ia the índu-

pendent pairs vi ari Li (i - 1,...,n). Let us divide these n cycles inr.o

n gr~~ups of cvcles ear.h ,group comprising a- nl;n cycles. Per gruup ae

compc~.-~ a point estimator using (7):



w - y ~L (S - 1,...,m)
S g g

where the numerator yg is the average of group g; that group

"a" cycles, each cycle yielding a value y analogous to (6):

a L hyg - E ygh~a and ygh - Eg wghj
h-1 j-1

(lo)

comprises

The denominator in (10) is the analogue of (11). Sínce the cycles gtve

independently and identically distributed (i.i.d.) variables the group

averages w of (1~) are also i.i.d. Hence we c:cn compute a corrfidence
g

interval from the m group es[imates wg using the famiLiar t statistíc

with m- l degrees oE freedom. Aecause the grou~~ averages w art~ í.i.d.
!;

the Central Limit Theorem explains why the overail average w- i wg~m

is more normally ~{istributed than was the original point estimat.or w in

(7). Besides, to the i.i.d. group estimators wg ae can apply non--parame-

tric procedures such as the sign or rank te~t. One disadvar.t:a;te .~f

grouping or "batching" of cycle responses (or anv other es-lmators

outside the renewal analysis) is that the var ance is estimated fr~in

fewer independent observattons (m ~ n). Another .lisadvantage is that tiie

small-sample bias of the point estimators wg (and hence the hías of

their average w) exceeds the bias of the origin.~l estimator w. also see

Fishman (1978b, pp. 120-1221, Heidelberger and T.ewis (1981a), 'Clni.jnen

(1975, p. 501).

The smal}-sample btas of the group etitimators wg anri of the

original estimat~r w can be reduced through the jackknife technique.

Jackknífing was :~roposed by Quenouille in 1949 is a general "trick" for
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reducing bias; in 1969 Tukey emphasized that this technique results in a

confidence interval even if the índividual observations are dependent.

We shail present the jackknife because it is quite often used in renewal

analysis to reduce bias in short runs; moreover in other analyses the

jackknife may also be a useful idea. So suppose we have an estimator 6

based un n independent observations xj with j- 1,...,n (x may be multi-

variate). For instance, the estimator in renewal analysis is 0- y~L.

We divíde the origi~lal sample into N groups of equal size M- n~N where

N is an integer ex~-eeding the value one but possibly as big as n; see

(12). We form a suhsample by deleting one group from the N groups, and

from the remaining 'N-1)M observations on x we compute the same estima-

tur, denoted by Oi (i - 1,...,N). For instance, in renewal analysis we

may delete a single cycle i and compute

0. - E v.~ E L, ( i - 1,...,N - n)
1 j~i I ~i 1

(12)

Chen the "pseudo values" J of the jackknife estimatur are defined as

.ii - V.ó - (N-1).0 i (i - 1,...,N)

rlóvio~isl,v, if 0(and hence 0 i) were unbiased,

The j-ickknife estimator oE 8 is

C1 „ ~
7- E JiIN - N.0 -(N-1).0 i

1

(13)

then J would be unbiased.

(14)

N
where 8i - E Bi~N. It can be shown that in many cases the jackknif.e

1 .. - ~estím-itor reduces possible bias in 0 from order n-1 to order n. The
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pseudovalues J míght be treated as N i.i.d. variables, and an approxima-

te confidence interval can then be based on the t statistic:

N

t N J -6 with sJ - 1 ~1
SJ~~N

(15)

To make (15) hold better, we may transform the variable x before jack-

knifing, e.g., we may jackknife log s rather than s itself. Kore details

on the jackknife can be found in Cressie (1981) and Kleijnen (1975).

7. Other approaches

For the analysis of nonterminattnp, simulattons we díscussed in

detail: replicated runs, "independent" batches of fixed length, anri the

renewal approach. The litecature shows some more approaches.

Wa may estimate the autocorrelation coefficients pd among the

índtvidual observations xt; see (2). For large lags (high d valu.~s) ~nly

a few observations are available and the estimatnrs oE p{ shc.w l.ary,e

standard errurs. Instead of estimating pd we may estimate a traasforma-

tion of pd, i.e., we may resort to spectr;al analysis (invulvin~; the

Fourter transformatiun of pd). [Jnfoctunately this analysis is Tathe-

matically sophistlcated so that most practittoners hesitate tu apply

spectral analysis (alternatively, the practitioner may use a spectral

analysis package as a black box). See Hetdelherger and Welch (1981) and

Fishman (1978b).

A different approach expresses the observation xt as x m~ivtng

average. Thís approach seems Coo sophisticated Eor most practitioners,

and it involves several technical problems. See Fishman (1974b).

E (Ji-j)2
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Note that originally ( outsíde simulation) spectral analysis ard

the moving average representation were developed, not to obtain an

estimator for the mean with its standard error, but to characterize the

autocorrelation structure of the observations, i.e., this analysis tries

to de[ect periodicities and considers the time series xt as a composi-

tion of variables each with their own frequency of oscillation; see Aox

and Jenkins (1978), Fishman (1978b).

Recently a difEerent approach has been proposed by Schruben

(1982), based on tle Wiener or Brownian Motion process; also see Appen-

dix 1. Although thi~ process involves a sophísticated theory, Schruben's

analysis results ii quite simple procedures. It seems too early to make

definitive recommen.íations concerning this new techntque.

In a11 app~oaches of this section there remains the problem of

hnw r~ handle inittalizatton effects. Renewal analysis is the only

techni~ue that eli~.inates the initializ3tion problem. The estimation of

vartanc~Ns and quanciles is discussed in Appendices 2 and 3.

R. ~~(,}ic3tion5~~-`--~

In the pre~eding sections we presented a plethora of statistic,il.

techni~ues for the analysis of different situations. These situations

nay dlrfer in many respecte:

- ter,~inating versc.s nonterminattng (steady-state) simulations,

- diff~~rent measure5: mean, variance, quantiles, proportions,

- sin~le versus multíple re~ponses.

Most ;iublications ~n applications of statistical techniques ín simula-



24

tion, concern steady-sta[e situations with a single response, namely the

mean.

Many publícations referenced i n the preceding sections con[ain

empirical results, obtained when applying one or more statistical tech-

niques to simulation models. ( See Crane and Lemoine ( 1977), Heidelberger

and Lewis ( 1981a, 1981b), Heidelberger and Welch ( 1981), Sauer ( 1979).)

These models usually represent queuing systems, ranging from the simple

M~M~1 system to queuing networks (inspired by the modeling of computer

systems). Such empirical results are needed because the statistical

theory underlying the various techniques, usually gives asyml,[otical

results.

Extensive experiments wi[h the renewal analysis have further

been conducted by Lavenberg and Sauer (1977). A conEidence interval's

relative wídth of Sy resulted in valid confidence intervals in a1!nost

all theír experiments; b~it also "in many experiments larger relative

widths were adequate"; a relative width larger than 5~ results in smal.-

ler sample sizes so that asymptotic results may not apply. Igle!isrt and

Shedler (1982) havN extended and applied the renewal appr~,ach to models

of closed queuinf; networks with priorities among job classes; the5?

mo~lels are used ín computer and communication systems analysís.

Experiments with batching were performed by Fishman (1978a) -

but he applted the Von Nerunann test to eight (or more) suhruns wherea:.

we recommended to take at least a hundred subruns because nf the small

power of the Von Neumann test. He found that the batching appruach

worked in M~M~1 queuing simulations with a traffic intensity 1, as small
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as 0.5Q; the higher a the smaller the coverage. This lower coverage is

explained by the underestimation of the variance of the batch averages

caused by neglectin~ remaining autocorrelations among these averages.

Law and his associates Carson and Kelton performed a series of

experiments wíth the three main techniques discussed in this paper (in

termínating and noirterminating simulations, applying both fixed-sample

and sequentíal sampling plans, with relative and absolute width of

confidence intervals). All experiments were restricted to estimation of

the mean. Their motit recent results come from simulating the following

two processes: the M~?1~1 model with traffic Load a- 0.8, and a time-

sharínt; computer system model with known analytical solution. From this

serieti of experiments no statistical technique emerged as valid ín all

sítuatíons. For a summary oE their results (and references) we refer to

Law f19A2) or Law and Kel.ton (1982, pp. 279-315). Other applications are

surveve~i in Kleijnen (1975, 1984).

If we cíet~~rmine ronfidence t.itervals for more than a single

au3ntity, then we ~~an use the 8onferr~~ni inequality ( i.e., the experi-

nent.rise error rate doeti not exceed the sum of the indívidual error

rate: a; see Miller 1966, 1981, and al~o Kleijnen, 1975a). Many authors

are nut aware of t'-ie issue at stake when making multiple inferences, and

they simply use cl.issical tests like the t test with classical a values

like a- ~.~5. A publication explicity usinR the Aonferroni inequality,

is T,avenber.~ and ~~1utz ( 1975) who simulated an automated computer-tape

libriry.
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Applications of nonparametric tests to simulation da[a are

extremely rare. Remember that many studies showed that in simulation low

coverage results as a consequence of the dependence between ~ample

average and variance in non-normal distributions ( i.e., distrib~itions

with a long tail to the right). Whether nonparametric procedures remove

this low coverage, deserves more research; also see Heidelberger and

Lewis (1981b).

In summary, if the number of "observations" (cycles, batches,

replications) is large enough then valid confidence intervals result; in

small samples the interval may miss the true mean witti a probability

exceeding a. Unfortunately analytical results for the various sta[istic-

al procedures assiane asymptotic normalíty; empirtcal results are :imíted

to a few relatively simple simulation models. Recently several pnblica-

tions have discussed criteria for empirical research in thLs fiel~l; see

Law (1982), Schriber and Andrews (1981).

The "applicattons" above concerned expariments hy re~~arcl~ers on

simulation methodology. There is another category of simulation users,

namely researcher5 on non-simulation problems (e.g. queuing pr~~blems)

who nse simulation. Because of theír scientific attitude we expect that

tliese researchers are willing to apply statistical techniques in the

analysis of their simulation data. For instance, Pinedo and Wolff (19g?)

applied renewal analysis in their simulation experiments with tandem

queues, simulation5 being used to verify analytical approximati~~ns. In

sim~ilatton experiments by real practittoners the statistical anal:-sis is

completely missing or i5 rudimentar,y, e.g., they use the batcling ap-



proach with intuitively chosen subrun length. Our experience is that

simulation practitioners can learn the statistical techniques of this

survey without too much trouble.

9. Summary:

Sometimes ~imulations are nontec~ninating and the analyst is

interested ín the steady-state mean. We cannot recommend replication of

r~ins because each run shows initialization effects. In practice it ts

customary to partition the single, long run into subruns of fixed

length, We recommeid to test whether the subrun responses are indeed

independent, using at least a hundred subruns (power of Von Neumamt

testl, Renewal an~lysis solves the initialization problem completely,

and gives perfectly independent responses. For more complicated non-

terminating simulaitons we may use an approximate renewal s[ate. Other

approaches such as spectral analysis seem too sophLstícated for practi-

c:~l use.
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Appendix 1 The Schruben-Singh-Tierney test for initialization bias

Schruben et al. ( 1980) proposed the following procedure for testing

whether there i s bias in a time series (i f there i s "obvious" bias in

the beginning part of the output series, the procedure can be applíed to

the remaining truncated output).

(i) Consider the sequence of differences ( dk) between the average (w)
k

of the first k observations, wk - E wilk, and the overall average
N 1

wN - E wilN:
1

dk - wk - w,i (k - 0, 1, . .. ,N)

with dn - 0 and obviously dN - 0. (Note that these differences lead to

the so-called Browni.an bridge process; d is also related to the CIISUM-

tests in quality control; the runníng averages wk are compared :o the

final best estimate wN.)
2

(ii) F,sttmate a, the asymptotic variance of (wN~ ) ~ N, in other .rords,

2
var (wN) - a IN for large N. Several approaches are available for esti-

mating var (wN), e.;., dívide the N observations wi into n batches or

replicate the whole time series wi n times; see Sections 3 and 4. The

estimation of az results in aZ with d degrees of freedom. It is ~ise to

estimate a2 from the las[ half of the runs because of initialization ef-

fects. Hence in the batching approach the degrees of freedom become

(nI2) - 1.

(iii) A likelihood ratio test leads to the t statistic:
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TABLE 1

Replication of Time Series

Replication Time series Variance estimator

1 ~`11 x12 ... xlt ... x1T
x21 x2~ ... x2t ,.. x2T

"2ol
'2a2L

t
'2

'il xi2 xit "' xiT oi

Variance
etitima[or

"2
~nl xn2 ... xnt ... xnT o n

2 2 2 2
51 s2 ... st ... sT
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N
td -( 452)~ E dk . N. (1 - N)

N.a k-1

(iv) Reject the hypothesis of no initialization bias if t is signifi-

cant. If the sign of possible i ni[ialization bias is known then a one-

sided test is appropriate; otherwise a two-sided test is in place. For

instance, ín an M~M~1 queuing simulation started in the empty state, we

expect that u 1 ~ u 2 ~ ... so that dk tends to be negative and hence t

becomes significantly negative.

Appendix 2. Variance estimatíon

Suppose we wish to the estímate the variance a X in the fnllowing

equa[ion where the last two equalities hold for large t values (t ~ m):

var(xt) - ~(x - Vt) . ft(x) dx - J~(x -u) . f(x) dx - ax (?.1)

If we replicate the simulation run n times we obtain an n by T array

with xít ( í - 1,...,n and t- 1,...,T); see Table l. First consider

only ttie last obst~rvation of each run:

of a 2 is:
x

sT - E (xiT - xT)2~(n-1)
i-1

KiT' Then an unbiased estimator

This is the simples[ estimator but its degrees of freedom arr only n-l.

We can also generaLize (2.2) replacing T by t, resulting in th~~ depen-

~
dent estimators st with t- T, T-1, T-2,... (This dependence can he

2
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illustrated as folLows. Suppose the first replication yields a relati-

vely high xl(T-1)~ then the autocorrelation among the xt implies that

x1T tends [o be high too. The extreme values of xl(T-1) and x1T inflate

both variance estimators sT-1 and sT so that these estimators show

positive correlation.) As t becomes smaller (t -~ 1) initialization bias

tends to be more serious, and therefore we delete the warming-up period.

The resulting estimators st~ (t' - T, T-1,...;t' ~~ 1) remain dependent.

To obtain the standard error of the (unbiased) averaRe of these sC~ we

2
can apply the batching approach to the time series st, (or one of the

other approaches briefly mentioned in Section 7).

Serious un:ierestimation of o2 would result if we estímated oZ
x x

from hatches of ob,ervations on xt: the autocurrelation among xt means

tiiat ltttle variati.on exists within short subruns. Hence each batch j
2

(j

- 1,...,m) tends to underestimate o. However, taking the deviation of
x

xt r,~t from its ~~orrespondíng batch averaí;e xj but from the overall
m T

averi;;e x - E x.~m - E xt~T results in the last column of Table 1:
l ~ 1

T ~
oi - E (xit - xi)~~(T-1) ( 1 - 1,...,n)

t-1
(2.3)

`dote that ín the ~~~~timator a? dependent observations xit occur, whereas
i

?
the astimator st in the last row of Table 1 is a classícal estima[or.

~torr researc.h on variance estímation is necessary; also see Welch

(19R3). But reme~nber that renewal analysis permits straightforward
~

estímation of o X from a single run.
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Note that a system is called ergodic if the estimators computed

from a single run are equivalent to the estimators computed from repli-

cated runs. Consider the following (artificial) example of a non-ergodic

system, taken from Mihram (1972, p. 448):

xt - 1 for all t, if the toss of a die is 1 or 2

n - -1 n

3 or 4

5 or 6 (2.4)

2Consequently oi - 0 and E(ai) - 0 for all i, whereas E(st) - 2~3 for all

t. A more realistic example involving an IBM business game is presented

in Kleijnen ( 1980, pp. 157-186). Many s[ationary processes, however,

will be ergodic, e.g., processes with the renewal property also have the

ergodícity property.

-~ppendix 3. ~iantile estímation

The pt}~ quantile xp in a steady-state system is define~i hy the

following equation, where the last equality holds f~~r large t value~:

x x

p- P(XC ~ xp) - 1 p ft(x) dx - 1 p f(x) dx (3.1)

~or regenerative simulations three different techniques ar.e available:

Iglehart (1976), Seila (1976), and Moore (1980). We present only Sei1a's

technique, since the other two techniques are quite complicated (never-

theless, Iglehart's technique was applied in a computer cent:er case

~tudy - see Keyzer et al. 1981 - and Moore's technique nay show bettrr
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statistical performance). Seíla groups the n cycles into m groups of

equal size a; also see (10). Each group yields the usual estimator of

xp. Arrange the observations xi in íncreasing order, i.e., obtain the

order statistics x(i). The sample quantile is then x(p.n}1). Hence, if

Li denotes the length of cycle i(i - 1,...,n) and B denotes the nu]nber
a 2a

of cnstomers per group (B - E L, B2 - E L,, etc.) then we get

xp - x (B.p f 1).
1 i-1 i afl 1

Because of the renewal property, cycles are indepen-

dent and hence groups of cycles are independent. Hence the m groups

yield m independent estimators of xp. The average of these m observa-

tions results i n a point estimator of xp; the confidence interval may be

based on the [ sta':istic with m-1 degrees of freedom. Since the usual

estimator of xp i s only asymptotically unbiased, Seila applies jackkni-

fing to reduce small-sample bias. ( He divides the group into two sub-

groups, each comprising a~2 cycles: N- 2 in (12) throuRh (15); we

conje~~ture that takinq N- a results in better statístical results at

the expense nf morz computer time.) Note that instead of using the

parametric t statistic we may compute a nonparametric confidence inter-

val; see Conover ( 1971, pp. 110-111, 215-222).

Seila (1976) applied his procedure to the M~M~1 system with

trafYic intensity a between 0.5 and 0.9. He found coverages slightly

larYer th~~n the nominal 1~ value. The price paid is slightly longer

~-onfidence intervals: jackknifing inflated the variance. The estimatton

of quantiles requires much larger sample stzes than does the estimation

of ineans; typically where mean estimation requires a hundred cycles

qiiantile estimation takes a thousand cycles. To reduce bias large batch

sizes (say, at least a hundred cycles per batch) are recommended, even
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when jackknifing. We could add the following heuristíc to Seila's proce-

dure: compute the point estimate from the whole run (n cycles) but

compute the confidence interval from the groups (without jackknifing?);

if the point estimator lies "near" one end of the confidence interval

then simulate more cycles. The performance of such a heuristic remains

to be investiRated.

Seila (1982) proposed to use hís procedure not only with the

regenerative approach but also with the replícation or batching

approach, in the latter two approaches the initial part of the run may

be deleted. We add that a test for the independence of the batch quan-

tiles has little power unless we have a hundred batches (with a regene-

rative system such a test is not needed since the cycle responses are

known to be independent). Seila's grouping approach (besides spectral

analysis) was applied by Heidelberger and Lewis (1981b, pp. 35-361 with

acceptable results.

In quantile estimation we have a storing and sorting prublem.

With posítively autocorrelated observations larger sample sizes are

needed, and this computer problem becomes even more serioua. For ~o~npu-

ter algorithms we refer to Sedgewick (1978); for statistical issues see

Heidelberp,er and Lewis (1981b); also see Kleijnen (1984).
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