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Abstract

The linear complementarity problem is to find vectors s E~in and
z E ~" such that s- Mz ~ q, sTz- 0, s~ 0, z 1 0, where
M and q are the data of the problem. In this paper we propose
a new complementary pivoting algorithrn for solving th~ LCP as a
more eíficient alternative to the algorithrns proposed by Lemke and by
'I'alman and Van dcr Ileyden. I'hc algorithm can start at an arbitrary
vector zo in ~2~ and converges under the same conditions as the other
two methods.



1 Introduction

The linear complementarity problem (LCP) is to find vectors s E~in and

z E ~" satisfying

3- i~iz ~ qi 3TZ - ~i S~ ~i z~ ~i ~1.1)

where M is a given n~n-matrix and q a given n-vector. The LCP is quite com-

mon in mathematical programming because the problem is frequently met

in different areas of scientific research where optimization plays an impor-

ta.nt role. Often these optimization problems lead to Karush-Kuhn-Tucker

conditions which take the form of an LCP.

The popularity of the LCP in mathematical programming has led to a

variety of algorithms attempting to solve the problem. Among this variety of

algorithms the Lemke complementary pivot algorithm [3] is undoubtedly one

of the most renowned algorithms. The Lemke algorithm is a path-following

algorithm starting in z- 0 and generating a piecewise linear path of so-

called almost complementary solutions either towards a solution to the LCP

or towards infinity.

The major drawback of the Lemke complernentary pivot algorithm is that

one is stuck to the fixed starting point z- 0. This feature causes inefficien-

cies when one has some idea concerning the possible location of a solution to

the LCP. For example, when one tries to solve a nonlinear complementarity

problem by a sequence of linear complementarity problems (see Mathiesen

[4]) one cannot start Lemke's algorithm at the solution to the previous LCP

in order to solve the present LCP in the sequence. This inefficiency in pro-
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ccssing the information makes it worthwile to adapt Lemke's algorithm for

an arbitrarily chosen starting point. In [5] Talman and Van der Heyden

present a whole class of algorithms generalizing the Lemke complementary

pivot algorithm to an arbitrarily chosen starting point. All the algorithms in

this class however use a pivot system of at least n f 1 equations in order to

guarantee possible convergence of the algorithm where n is the dimension in

prulile~ni ( 1 . l). Moreruvi~r noni~ of the~se algorithn~y secni to I,c vi~ry natural in

solving the LCP. To get rid of these inefficiencies we propose a new pivoting

algorithm to solve the LCP allowing for an arbitrarily chosen starting point.

This algorithm has a natural interpretation as a path-following algorithm

and it does not need more than n equations in the pivot system.

The algorithm leaves the starting point in one out of n f 1 possible di-

rections. There are n rays that connect the starting point with each of the

n axes of ~2~ and one ray connects the starting point witli the origin. This

allows the algorithm to leave the starting point zo in such a way that, with

so - Mzo f q, it will raise z; from zo by moving into the direction of the i-th

axis when ,so is negative and smaller than all other components of so, while

the algorithm will lower z proportionally from zo towards the origin if all the

components of so are positive. In particular this latter feature endows the

algorithm with a very natural interpretation. For example, the algorithm will

stop with a solution to the LCP if it reaches the origin. This is contrary to

the algorithm in the Talman and Van der Heyden class of algorithms having

also n~ 1 rays to leave the starting point. In that algorithm there are n

rays that leave the starting point parallel to each of the axes and there is

one ray connecting the starting point with the origin but the a.lgorithm must
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continue along one of the axes of ~i} when reaching the origin.

In our algorithm the intersection of the rays with each of the axes can

arbitrarily be chosen. In Section 4 of this paper we suggest a particular choice

of these intersections such that it is possible to see in advance whether the

algorithm might not solve the problem.

The paper is divided as follows. First we describe the algorithm. The

algorithm follows a path of points through difTerent subsets of ~2~. In Section

2 these subsets arc defined as well as the way to generate a path through

these subsets. The steps of the algorithm are enumerated in Section 3 while

Section 4 is dedicat,ed to convergency issues.

2 The algorithm

Let S be a set in ~2n and let f: S-~ ~i" be a function. A point i in S

is defined to be a stationary point of f on S if iT f(i) ~ xT f(i) for all x in

S. The stationary point problem (SPP) on S with respect to f is to find a

stationary point of f on S.

The LCP is equivalent to the SPP on ~2~ with respect to the affine func-

tion g defined by g(z) - -Mz - q on ~i~, as can easily be shown. Taking

notice of this interpretat,ion of the LCP we propose an algorithm to solve the

LCI' whicli Collowa a picccwisc lincar path of points in ~i2~ starting in somc

arbitrarily chosen point zo E~2t`{0}. Each point z on tkre path is such that

it is a stationary point of the function g on the set H(t) (1 ~2~ for some t~ 0

where
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H(t) :- {zo f~~t~ ~~q(j) ~.1~ ) 0 for j - 1,...,n -~ 1, and ~~}i ~~ - t}.

For j - 1,...,n, y(j) - ae(j) - zo, with e(j) denoting the j-th unit vector

in ~2~, and q(n f 1) --zo. The number a is an arbitrarily chosen number

satisfying a J~y",-i zh in order to assure that zo E H(t) for all t ~ O.t The

number t can be considered as a homotopy parameter running from zero to

infinity. For t- 0 the set H(0) only consists of the starting point zo. Hence

zo is a stationary point on H(0) of g. For t- 1 the set H(1) is the convex

hull of the origin and the points ae(j), j - 1, ..., n, on the axes of ~it. If the

algorithm generates a stationary point z of g on H(1) f16d~J2~ with ,~i}1 ~ 0

then z is also a stationary point of g on ~if and thereby a solution to the

LCP. For t~ 1 the set H(t) fl ~2~ is equal to the convex hull of the origin

and the points [(1 - t) ~h-1 zh ~- ta]e(j), j - 1, ..., n, on the axes of ~2~. In

this way the algorithm follows a path of points starting in some arbitrarily

chosen point zo E~2~ ` {0} and, barring degeneracy, terminates either on a

ray or at a solution.

ln order to characterize a stationary point of g on II(l) fl ~Ii~ let z E

H(t) fl ~2~ for some t~ 0. By definition of H(t) it follows that z is a convex

combination of zo ~- tq(j), j - 1, ..., n f 1. Then there exists a subset T of

{ 1, ..., n~-1 } such that z-zo is a nonnegative linear independent combination

of q(j), j E T. So, for subsets T of { 1, ..., n~ 1} one can define a subset of

~2~, denoted A(T), which is spanned by q(j), j E T.

lIn Section 4 we will make use of this liberty in choosing a by letting the choice of a

depend on the matrix M and vector q(see Lemma 4.2).
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Definition 2.1 For T C { 1, ..., n-f 1}

A(T)-0 ifn~-lET andzh-0forallh~T

and otherwise

A(T) -({zo} f cone{q(j) ~ j E T}) fl i}.

lf z lies in the boundary of N(t) fl ~t~ such that t 7 1, ~„}1 - 0, and

zh - 0 for some index h for which zh ) 0, then z is a nonnegative linear

combination with sum at least a of the unit vectors e(j), j E T, for some

subset T of { 1, ..., n}. So, for some specific subsets T of { 1, ..., n} one can

define a subset of bd~tt, denoted Ao(T), which is spanned by e(j), j E T.

Definition 2.2 For T C { 1, ..., n f 1}

Ao(T)-~ ijnfl ET orzh-0 forall h~T

and otherwise

Ao(T) -{~.1;ae(7) ~.1; 1 0 for j E 1' aled ~.~; ~ 1}.

)ET jET

The algorithm is such that it generates, starting at zo, a piecewise linear

path of points through subsequent subsets A(T) and Ao(T), for varying sub-

s(~I,s T of { l, ...,1a ~ 1}, by n~aintaining so-called T-f011ElJlftfldf.33 In cach

point on the path.

Definition 2.3 For T C { 1, ..., n-} 1} a point z E~2~ is T-complete if

j E T when s; - minh sh G 0 and n t 1 E T when minh sh ~ 0, where

s-Mzfq.
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When the algorithm generates a piecewise linear path of T-complete points

through subsequent subsets A(T ) and Ao(T ) for varying subsets T of { 1, ..., n~- 1}

then each point on this path is a stationary point of g on H(t) fl ~2~ for some

t~ 0. This is proved in Theorem 2.1.

Lemma 2.1 Let P:- {x E~2n ~ Aa G b} be a nonempty polytope and let

i E P. If c ís a nonnegative linear combination of the binding constraints of

P ini thencTaGcTiJorallxEP.

Proof:

Let A contain m rows ai , ..., a,TR. Let the set X(x) be defined as X(x) :-

{j ~ a~x- b;} for all x E P. Let c- ~m 1~~a~ where .~~ - 0 for all j~ X(á)

and ~j ~ 0 for all j E X(i). Hence c is a nonnegative linear combination of

the binding constraints of P in i. Then, for all ~ E P it holds that

cTx- ~~ía~~~ G~~~6~ -~~~ a~i~ - cTi.
jEX(i) jEX(i) jEX('s)

l]

Theorem 2.1 If z is a T-complete point in A(T) or Ao(T) for some T C

{ 1, ..., n f 1} then x is a stationary point of g on H(t) (1 ~2~ for some t~ 0.2

Proof:

Let z be a T-complete point in A(T) or in Ao(T) for some T C { 1, ..., n-{-1 }.

Let t be such that z E 6d(H(t) fl ~2t). Then z being a T-complete point

zNotice that the reverse is also valid. The proof is left to the reader.
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implies that g(z) -~ie - ~ where Q- max{0, - minh gh(z)}, ~i - gi(z) ~ Q

for all j~'I' U {re f I}, and ~i - 0 for j E 7', and the vector e is such

that all component,s of e are equal to one. Combining this with z E A(T) or

z E Ao(T) and the fact that H(t) fl ~2~ can be rewritten as {z E~i~ ~ z~

(1 - t)zc and ~~-r zi C~~-r zo f t(a - ~~-r zo)} it is easy to see that g(á)

is a nonnegative combination of the binding constraints of H(t) fl ~2} in z.

Then with Lemma 2.1 it follows that g(z)TZ G g(z)TZ for all z E H(t) fl ~2~.

Hence z is a stationary point of g on H(t) fl á}. O

In the next section we describe how to follow the piecewise linear path of

T-complete poirrts in A(T) and Ao(T) for varying T, which starts at zo, by

complementary pivot steps.

3 The steps of the algorithm.

Definition 2.31eads to a pivot system in each point z on the path generated

by the algorithm from the starting point zo either towards a solution of the

LCP or towards infinity. To make this clear let us denote - minh sh by Q if

minh sh G 0. Then the T-completeness condition at a point z is equivalent

to the existence of ~i 7 0(j ~ T U {n f 1}), (j ? 0 if n} 1 ~ T and Q- 0

if n~ 1 E T such that

Mz ~- 4 - -Qe -~ ~ lrie(J)-
jQTu{n}r}

Combined with z E A(T) or z E Ao(T) the appropriate pivot system for T-

completeness at a point z in A(T) or Ao(T) is given in the next two lemma's

where M.i denotes the j-th column of the matrix M.
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Lemma 3.1 A point z E A(T ) is T-complete for some T C { 1, ..., n f 1}

if and only if the system of equations

~ ~jM9(J) - ~ hje(7) f ~e - -q - Mzo (3.1)
jET jQTu{n}1}

has a solution ~~ 1 0 (j E T), uj ? 0(j ~ T U {n f 1}), Q 1 0 if n~ 1 ~ T

and ~i - 0 if n-} 1 E T, such thal z- zo f~jET ~i9(J).

Lemma 3.2 A point z E A(T) for some T C {1,...,n} with zo - 0 for all

i~ T or a point z E Ao(T) for some T C { 1, ..., n} is T-complete if and

only if the system of equalions

~ ~jaMa - ~ í~je(J) ~ Qe - -9 (3.2)
jET j~(TU{ntl}

has a solution aj ~ 0(j E T), ~j J 0 (j ~ T U {n f 1}), and J3 ~ 0 such

that z - ~jET ~jajelJ)~

Notíce that the pivot systems in (3.1) and ( 3.2) all contain n equations

in n f 1 variables Icaving us with one degree of freedom. If nonempty, the

solution set of each system forms a line segment, assuming nondegeneracy.

This line segment corresponds to a linear piece of T-complete points in A(T)

or in Ao(T) with either one or two end points. As we will show below

each end point of a line segment of solutions to a system of equations for

some T C{ 1, ..., n~- 1} either corresponds to the starting point zo or to

a solution to the I.CP or is an end point of a line segment of solutions

to exactly one other system of equations possibly for a different set T. The

point zo will correspond to an end point of only one line segment of solutions.
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These properties make the path of points generated by the algorithm from

zo a piecewise linear path through subsequent subsets A(T) and Ao(T) for

varying T C{ 1, ..., n f 1}. Each linear piece can be followed by making

a linear programming pivot step in the appropriate pivot system with the

variable being zero ( or making a binding constraint) at an end point.

A linear piece of T-complete points in A(T) for some subset T C{ 1, ..., n}

for which zo - 0 for all i~ T can be generated by making a pivot step in

system (3.1) or in system (3.2). Which one of these systems will be appropri-

ate depends on in which system the previous pivoting step was made. This

feature causes the algorithm to generate the path through different subsets

of Si~ in an efficient way. Changing from one pivot system to the other

one at an end point of a line segment requires a redefinition of the variables

~„ j E T, in the new pivot system. The setup in Lemma 3.1 and Lemma

3.2 allows us to make as few of these changes of variables as possible.

Suppose the algorithm is following a linear piece of T-complete points in

A(T ) or in Ao(T) for some T C { 1, . .., n~- 1}, i.e., a pivot step is made in

one of the systems of equations (3.1) or (3.2) with a variable being zero at an

end point of the line segment of solutions. When the linear piece has another

end point, say z, then, assuming nondegeneracy, exactly one of the following

cases will occur for the solution at this end point:

Case 1: ap is zero for some p E T`{n -~ 1}, while T`{p} ~ 0. Then z

is an end point lying in A(T`{p}) or in Ao(T`{p}) depending on whether

x E A(T) or z E Ao(T) respectively. The algorithm proceeds in A(T`{p})

or Ao(T `{p}) by pivoting the column e(p) into the appropriate system of

9



equations thereby raising {~P from zero and maintaining T`{p}-completeness.

Case .'d: In system (3.1), ap is equal to

zo
(~,~j - 1) r o for some p E T.
jET`{y} a - zn

Then z is an end point lying in Ao('l `{p}). Let

( zo
~j - aj f(1 -~~h) I~ , foc j E T`{p}.

hET ` a

Then ~j 1 0 (j E T`{p}), ph ? 0(h ~ T U {n f 1}), py - 0, and

Q~ 0 is a solution to system (3.2) and z is an end point of a linear piece of

T `{p}-complete points in Ao(T `{p}). The algorithm proceeds in Ao(T `{p})

by changing system (3.1) into system (3.2) and pivoting the column e(p)

into the new system (3.2) thereby raising ~ap from zero in order to maintain

T`{p}-completeness.

Case `~: ~jET ~j is equal to 1 in system (3.1) while n-~ 1 E T or zh )

0 for some h~ T, or in system (3.2) while zh ) 0 for some h~ T. If

nfl E Tthensj-0andzj -.~jal0forj ETwhilesj -{~j ~0

and zj -(1 -~jET~j)zo - 0 for j~ T, leaving us with a solution to the

LCP in z. Otherwise, suppose n-{- 1~ T. Then z is an end point of a linear

piece of T-complete points in A(T) as well as in Ao(T). So, if z were the

end point of a linear piece of T-complete points in A(T) then the algorithm

proceeds by generating a linear piece of T-complete points in Ao(T). This

linear piece of T-completc points in Ao(T) is gcnerated by changing systcrn

(3.1) into system (3.2) and pivoting the column aM.k or e(k) into the new

system (3.2), depending on whether Mq(k) or e(k) was the last pivot column
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in (3.1). Notice that ~jET aj is then raised from 1. Conversely, if z were the

end point of a linear piece of T-complete points in Ao(T) then the algorithm

proceeds by generating a linear piece of T-complete points in A(T). This

linear piece of T-complete points in A(T) is generated by changing system

(3.2) into system (3.1) and pivoting the column Mq(k) or e(k) into the new

system (3.1), depending on whether aM.k or e(k} was the last pivot column

in the system (3.2). Ilence ~jET.~j is lowered from 1.

Case 4: In system (3.2) it holds that for some p E T

~~;zD f~p l a-~ za l- xp while xp ~ 0.
iET`{p} ` iET j

Then z is an end point lying in A(T `{p}). Let

~h - ~~ } xh ~ 1 - ~jET`{p}O J ~
for h E T `{p}.

a - ~jET xJ

Then.~h~0(hET`{p}), ph70(h~TU{n~-1}), ~ep-0,and~3~0is

a solution to (3.1) and z is an end point of a linear píece of T`{p}-complete

points in A(T`{p}). The algorithm proceeds by changing system (3.2) into

system (3.1) and pivoting the column e(p) into system (3.1) thereby raising

pp from zero in order to maintain T`{p}-completeness.

Case 5: pk is zero for some k~ T U {n ~ 1}. Suppose z E A(T). If z~ - 0

for all h ~ T U{ k} while n f 1 E T or if T U{ k} -{ 1, ..., n~- 1} then

z is a solution to the LCP. Otherwise z is an end point of a linear piece of

T U{k}-complete points in A(T U{k}). The algorithm proceeds by pivoting

the column Mq(k) into the system (3.1) or aM.k into the system (3.2) thereby

raising .~k from zero in order to maintain TU{k}-completeness.
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Suppose z E Ao(T). If zh - 0 for all h~ T U {k} then z is an end point

of a linear piece of TU{k}-complete points in A(TU{k}), otherwise z is an

end point of a linear piece of T U{k}-complete points in Ao(T U{k}). The

algorithm proceeds in both cases by pivoting the column aM,k into the system

(3.2) thereby raising ~k írom zero in order to maintain TU{k}-completeness.

Case 6: (~ is zero. Then z is a solution to the LCP if z E Ao(T) or if

z E A(T) and zh - 0 for all h~ T. Otherwise, z is an end point of a linear

piece of TU{n f 1}-complete points in A(T U{n f 1}). The algorithm proceeds

by pivoting the coliimn - 111zo into (3.1) thereby raising a„~r from zero in

order to maintain TU{n -~ 1}-completeness.

Case 7: a„~r is zero while T` {n -}- 1}~ 0. Then z is an end point of a

linear piece of T`{n ~- 1}-complete points in A(T `{n f 1}). The algorithm

proceeds by pivoting the column e into system (3.1) thereby raising ~3 from

zero in order to maintain T`{n ~ 1 }-completeness.

The cases 1 to 7 describe the performance of the algorithm at the end

points of all possible line segments generated by the algorithm except at zo

where the algorithm is initiated. To show that zo is an end point of a(unique)

linear piece of T-complete points in A(T) for sorrre T C { 1, ..., n~ 1}, let

us denote Mzo -f q by so. If minh s~ c 0 let k be such that sk - minh sh.

Then the starting point xo is To-complete with To - {k} and the system of

equations

- ~ F~.ie(J) f Qe - -q - Mzo
i~~,nfr
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has a unique solution ~lj - 30 - 9k 7 0 ( j~ k, n~ 1), and Q--sk ) 0. So,

assuming nondegeneracy, zo is an end point of a linear piece oí {k}-complete

points in A({k}). In order to follow this linear piece the algorithm starts by

pivoting the column Mq(k) into (3.3) thereby raising .~k from zero.

If minh sh 1 0 then the starting point zo is To-complete with To -{n ~ 1}

and the system of equations
R

- ~ l~je(7) - -q - Mzo (3.4)
j-]

has a unique solution pj - so ~ 0(j- 1, ..., n). Assuming nondegeneracy,

zo is the end point of a linear piece of {n -~ 1}-complete points in A({n -~ 1}).

In order to follow this linear piece the algorithm starts by pivoting the column

-Mzo into (3.4) thereby raising ~„fr from zero.

4 Convergence issues

Starting in some arbitrarily chosen point zo E~2~`{0} the algorithm gen-

erates a piecewise linear path of T-complete points through adjacent subsets

A(T ) or Ao(T), for varying T C { 1, ..., n} 1}, as described in Section 3.

This path either ends up with a solution to the LCP as defined in (1.1) or it

ends up with a ray towards infinity. The end points of the path giving rise to

a solution to the LCP have already been described during the enumeration

of the cases in Section 3. Lemma 4.1 summarizes all the cases in which the

algorithm ends up with a solution.

Lemma 4.1 Let z be an end point of a linear piece of T-complete points

on the path genemted by the algorithm in A(T) or in Ao(T) jor some T C

13



{1, ..., n~- 1}. Then z is a solution to the LCP if one of the following cases

holds:

i) z E A(T ), n~ 1 E T, lek - 0 jor some k~ T, and zh - 0 for al!

h~TU{k} orTU{k}-{1,...,nfl};

iiJ z E Ao(T) and p- 0;

iii) z E A(T), zh - 0 for all h~ T, and (3 - 0;

ivJ z E A(T), n-} t E 7', and ~iEr ~, - ~;

whcre the variables ~~ 1 0 (j E T), p~ ~ 0(j~ T U {n ~- 1}), and (j 1 0 are

the solution lo the appropriate pivol system at z.

The possibility of divergence urges us to impose a convergence condition

on the problem. Notice that divergence can only occur when the algorithm

is generating a path of points in Ao(T) or in A(T) with zo - 0 for all i~ T

and n~ 1~ T, i.e., when hemma 3.2 is valid. Therefore we c.an restrict

our attention to the possible occurence of a ray to system (3.2) for some

T C{1, ..., n}. System (3.2) however is equivalent to the system used in

Lemke [3] to solve the LCP. So, a convergence theorem on Lemke's algorithm

can be used for our algorithm.

The convergence theorem we impose is the most general one so far. It is

givcn in Jones [2] and the theorem is a slight generalization of the result in

Evers [1]. Before giving the convergence theorem we remark that a square

matrix C is said to be copositive if xTCx 1 0 whenever x is nonnegative,

and a square matrix P is said to be copositive-plus if P is copositive and if,

in addition, (P f PT) z - 0 whenever zT Pz - 0, z 1 0.
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Theorem 4.1 Suppose M can be written as PfC where P is copositive-plus

and symmetric and C is copositivc. IJ the system q f Px - C~~y 1 0, y~ 0

is feasible, then the algorithm terminates at a solution.

Proof: See Jones[2].

The statement of the convergence theorem ends our description of the

algorithm. What remains is a more precise delimitation of the possibili-

ties of choosing the number a. We already put one limitation on a which

is independent of the problem as defined in (1.1) but guarantees that each

A(T ), T C { 1, . .., n~ 1}, is convex. To make the choice of a dependent

on the data of the problem, i.e., on M and q, we suggest to choose a such

that for all j E{ 1, . .., n} no {j }-complete points in Ao( { j}) can be found.

For every j, let a~ be such that no j-complete points in Ao( { j}) exist. This

implies that the system ( 3.2) for T equal to { j},

.~jajM.j - ~ phe(h) f Qe - -q, (4.1)
h~j,n} 1

does not have a solution aj ~ 1, ~h 1 0(h ~ j,n f 1), ~i ) 0. This is the

case if for all ~j ~ 1, it holds that Q C 0 or {~h G 0 for some h ~ j,n -~ 1.

It can easily be seen that the following condition on aj assures that for all

~j 7 1 it holds that ~i c 0 or ph C 0 for some h~ j, n f 1:

if M;; 1 0 then aj 1 min (-q' , min { qh - q' 11 ,
l Mjj h:Mh~GMl~ l Mij - Mhj

I r~



if M~~ - 0 then a~ 1 min q' - q~
h:MhiCMii MhJ

Of course we assume M to fulfil the conditions impoaed by the convergence

theorem, Theorem 4.1. Then M~~ ~ 0 for all j E { 1, ..., n}. If these con-

ditions do not hold it is possible that for all j E{ 1, ..., n} a~ can not be

calculated according to (4.2). Then one knows in advance tliat the algorithm

could diverge and that the LCP might not even have a solution.

Condition (4.2) suggests how to determine a.

Corollary 4.1 Suppose M can be writfen as P-~-C where P is copositive-plus

and syminetric and C is copositive, and the systeln q f P~ -CTy ~ 0, y 1 0

ís f('a.slGlc. l,ct a b(' c1LOSC1l s1lclt llaal a ~ max{~h-1 zh,ai,...,a„} wherc a~

is such llaal

if t11~~ 1 0 then

a~ ) min ~~" ~ h:Mh,~ Nl,~ { M,qi - Mhi ~ J ~

ij M~~ - 0 lhcn

a~ ~ min j qi - 9n 1
h:M~~GM~~ l Mhj J

Jor a!1 j E{1, . .., n}. Then the algorithm always convel~ges and can not

genenzte {j}-complete points in Ao({j}), j E {1,...,n -~ 1}.

A final remark is dedicated to the choice of the starting point zo. Notice

that zo - 0 was excluded. This was meant to be a simplification of the

presentation of the algorithm. But it can easily be seen that for zo - 0 the

algorithm in fact reduces to the Lemke algorithm. To see this take q(j)- e( j)

instead of ae(j) for all j E { 1, ..., n} in Definition 2.1.
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