
tih~ J~~~~o~
o}~o~c.~`~~~~~QO~,~~ OO~~~~~~c. i~iiiiguui iiiiii iiiuiiqiiq i~~ui~;uiiiui



e ~.~~,,-,,. - t ; ;--.5. ~

~ ~~!~''''i",,, ~~~i...~~~h1tt~`..

~ C~~' T~i-~~~U ~~
~i ~



HIGHER ORDER MOMENTS OF BILINEAR TIME
SERIES PROCESSES iiIITH SYrIl~TRICALLY
DISTRIBUTED ERRORS

Jan G. de Gooijer and Ruud M.J. Heuts

FEW 251 ~~~.y



April. 1987

HIGHER ORDER MOMENTS OF BILINEAR TIME SERIES

PROCESSES WITH SVMMETRICALLV DISTRIBUTED ERRORS

by

Jan G. de Gooijerl~ and Ruud M.J. Heuts2~

1~Department of Economic Statistics 2~Department of Econometrics
University of Amsterdam University of Brabant

Jodenbreestraat 23 P.O. Box 90153
1011 NH Amsterdam 5000 LE Tilburg

Holland Holland

Summar
For the stationary superdiagonal. diagonal and subdiagonal bilinear time series

model with symmetrically distributed errors formulas for the standardized third

and fourth order central moments are obtained. It is shown that these results

contain useful information to distinguish a bilinear process from a white noise

process if the errors are Gaussian distributed. Application to situations where

the distribution function of the errors is a member of the class of symnetric

exponential power distributions is also Driefly discussed. An empirical example

is given for illustratíve purpose.
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1. lntroduction

Linear time series models such as the well-known family of autoregressive

integrated moving average (ARIMA) models provide a remarkable effective and

versatile range of possibilities to adequately approximate many time series

observed in practice. However, despite reported evidence of the advantages of

these models, it is increasingly recognized that there are time series in

economics and operations research which are unlikely to be well represented

by any linear model; see, for example, Maravall (1983), Hinich and Patterson

(1985) and Subba Rao and Gabr (1984). A number of authors have studied various

tractable classes of non-linear models. Among these are the so-called Dilinear

models discussed by Granger and Andersen (1978) and Subba Rao and Gabr (1984),

the threshold autoregressive models of Tong and Lim (1980) and the exponential

autoregressive models of Lawrance and Lewis (1985). Each of these models offer

a useful avenue in representing nonlinearity in observed time series data.

In this paper we will concentrate on the class of bilinear autoregressive

moving average models. The most general form of this model is given by

p q r s
y- L m.Y -. t A t i e.A t E E~tkyt-tAt-kt j-1 J t J t ~-1 J t'J t-1 k-1

where {AL} is a sequence of i.i.d. random variables with mean zero and fixed

variance u2 and where {Yt} is a discrete stationary time series process. If

the parameters Stk-O for ali t~k model (1.1) is usually referred to as the

superdiagonal model. It is called the subdiagonal model if Stk-O for all tck

and diagonal model if Btk-O for all tAk.

The successful application of a particular class of nonlinear models

hinges heavily on the determination of the most appropriate model, or models,

within its class with respect to some prespecified loss function. For bilinear

models the use of Akaike's ir~formation criterion has been suqgested to determine

the orders p, q, r and s of (1.1). However, it is well-known that for linear
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ARMA models this criteríon asymptotically overestimates the "true" orders

with a non-zero probability. This feature of AIC may also extend to the bi-

tinear model (1.1).

Another way of identífying the structure of a bilinear model has been

considered by Granger and Andersen (1978) and Maravall (1983). These authors

suggest to make first a preliminary identification of the orders of the linear

part of (1.1). In principle this can be done by any of the order determination

methods proposed for linear time series modelling; see, for example, De Gooijer,

Abraham, Gould and Robinson (1985) for a review of these methods. Then. a bi-

linear model is fitted to the residuals obtained in the first stage using

the sample autocorrelations of the unsquared and squared residuals as iden-

tification tools. By relating these statistics to the known behaviour of their

corresponding theoretical quantities inferences can be made about the most

appropriate bilinear structure for the residuals.

A crucial element in this last approach is that knowledge should be

available on the theoretical behaviour of the autocorrelations for different

bilinear models. However, because of the rapid increase in algebraic complexity

as the orders r and s in (1.1) becane bigger, these results have only been

obtained for a limited number of models (see, e.g., Granger and Andersen (1978)

and Lí (1984)). Moreover, one may wonder whether autocorrelations of unsquared

and squared residuals provide enough ínformation about the system under study.

In particular, these statistics do not completely determine the structure of

the process when the series are generated by a non-Gaussian bilinear model.

In such a situation it is necessary to analyse the higher order moments of

the process.

In this paper we study the theoretical properties of the third and fourth

central moments of three stationary bilinear time series models having symme-

trically distributed errors. These results can be used to distinguish a bi-

linear process from a white noise process. Moreover, they provide useful
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information about the most appropriate bilinear time series model.

The paper is organized as follows: The three bilinear time series models

and some assumptions are given in Section 2. In Section 3 we derive the

theoretical standardized third and fourth central moments for these models

assuming that the errors are symmetrically distributed around mean zero.

Estimators of these moments will be considered in Section 4 together with

approximate expressions for their variances. Also some data simulations are

performed in this section to study the sampling properties of the standardized

third and fourth central moments. Finally, in Section 4 an example will be

given illustrating the usefulness of the results obtained in the previous

sections for detecting bilinear relations in empirical data.

2. Preliminaries

Assume that tYt} is generated by one of the following three bilinear

models (respectively, superdiagonal, diagonal and subdiagonal model)

Yt - BYt-tAt-k } At

Yt - BYt-kAt-k { At

Yt - BYt-kAt-k-1 4 At

(2.2)

(2.3)

where for the sake of generality it is assumed that (At} is distributed symme-

trically around mean zero. For ease of reference, we define E(At)-ui if i is even

and vi-0 if i is odd. If the error distribution is specialised to a zero-mean

Gaussian distribution then the even moments of {At} up to order eight are given

by v4-3u2. u6-15v2, u8-105u2 while all the odd moments are equal to zero.

Quinn (1982) gives the following necessary and sufficient condition for

strict stationarity for time series generated by (2.1)-(2.3): 1n~B~tE(1n~At~)~0.

For zero-mean Gaussian distributed {AL} this condition reduces to v2~B~~1.8874.

We assume that this condition is satisfied in the rest of this paper. Also we
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assume that ail moments up to order four exist. For the superdiagonal model

(2.1) with k-1 and e-2, Granger and Andersen ( 1978, p. 40) show that this

assumption becomes equivalent to checking Lhe condition B4u4~1.

Instead of considering the behaviour of the autocorrelations of {Yt},

o(i)-cov(Yt,Yt-i)~var(Yt), for different lags i as a characteristic pattern

for bilinear model identification, we will investigate the behaviour of the

standardized third and fourth central moments. These nwments are, respectively,

given by

B1(i.j) - E[(Yt-u)(Yt-i-u)(Yt-j-u)ll{var(Yt)}3~2

- [c(i,J) - v{E(Yt-iyt-j)tE(YtYt-j)tE(YtVt-i)}} t 2u3]I{var(Yt)}3~2

(2.4)

and

BZ(O,i,j) - E[(Yt u)2(Yt-i-u)(Yt-j-v)]I{var(Yt)}2

- [c(O,i,j) - u{c(O,i)tc(O,j)t2c(i.j)} f u2{E(Yt)}E(Yt-iyt-j)

f2E(YtYt-j)t2E(YLYt-i)} - 3v4}I{var(Yt)}2 (2.5)

where

c(i.j) - E(YtYt-iYt-j),

c(u,i,j) - E(YtYt-uYt-iYt-j)

(2.6)

(2.7)

and u-E(Yt).

These moments have several features over o(i) useful for identification

of a bilinear time series model. For instance, if {Yt} is generated by a linear

model with symmetrically distributed errors then o(i) can be nonzero whereas

(2.4) will be zero for all lags i and j. Also the two dimensional pattern of

(2.4) for different lags i an j should provide more information about the model

under study than the one dimensional autocorrelation pattern of o(i).
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3. Higher order moments

In this section we summarize in a number of lemmas and theorems, the

main results on the higher order moments of the bilinear time series models

(2.1)-(2.3). For ease of notation we use throughout this section the definition

a3g2u2.

3.1 The superdiagonal model

Lemma 3.1 If {Yt} is generated by (2.1) with {At} distributed synmetrically

around mean zero then c(i,j)-8u2~(1-a) for (i ,j)-(k,t) or (t,k) and c(i,j)s0

otherwise; see Guegan ( 1984, Table 1).

Proo . The proof is straightforward and is therefore omitted.

Le,mea 3.2 If {YL} is generated by (2.1) with {AL} distributed symmetrically

around mean zero then

cov(Yt,Yi-j) -

am[u4-uz-2a(v4-3u2)(1-a)]I(1-a)2(1-94v4)

a~l(u4-u2)I(1-a)2(lta)

a~l(u4-u2)líl-a)2

0

Proo . Only the first part of this lemma will be proved

of the second and third part is similar. The fourth part was

for j-mt
(m-0,1,2,...);

for j-~ntfk and t~2k
(m-o,1.2....):

for jzmttk and ta2k
(m-0,1,2....);
otherwise.

here. The proof

proved by Li (1984,

Lemma 2).
If j-mt (m-0,1,2,...), then

c(O,mt,mt) - E[(B2Y2 A2 t2BY A A tA2)Y2 1- aE(Y2 Y2 )tu E(Y2)
t-t t-k t-t t-k t t t-mt t-t t-mt 2 t

- u2[ltata2t...txm-1}E(YL)~amE(Y~) (3.1)
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Substituting (3.1), together with

E(Yt) - u2l(1-a)

and

E(Yt) - (v4-au4}6a2u2)I(1-a)(1-a4u4)

into cov(Yt,Yt-mt)-c(O,mt,mt)-E(Yi)2 the result follows.

(3.2)

(3.3)

Notice that for zero-mean Gaussian distributed {At} and m-0 the second

part of Lemma 3.2 is i dentical to the first part of Lemma 4 of Li ( 1984),

while for m-1 the second part of Lemma 3.2 conforms to Lemma 3 of Li ( 1984).

Notice also that for zero-mean Gaussian distributed {At} and m-0 the third

part of Lemma 3.2 is similar to the second part of Lemma 4 of Li ( 1984).

Furthermore, it is easy to see that the results of Lemna 3.2 are in agreement

with the results given by Guegan (1984, Table 2) for the superdiagonal model

(?.1) with ksl, t-2 and zero-mean Gaussian distributed errors.

Theorem 3.1 If {Yt) is 9enerated by (2.1) with {At) distributed symmetri-

cally around mean zero then the standardized third and fourth central moments

of {Yt}. respectively, are given by

91(i,j) - c(i,j)I{E(Yt)}3l2 and B2(u.i.j) z c(u.i,j)I{E(YL)}2

where E(Yt) is given by (3.2), c(i,j) and c(O,j,j) follow from, respectively,

Lemma 3.1 and 3.2, and where for i~j

mt2 22a ~2~(1-a) for u-0, i-mttk, j-(mt2)t and t-2k
Í (m--1,~.1,2,...):

c(u,i,j) -~ au2l(1-a) for u-k, i-ttk and j-2t;

otherwise.
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Proo . Using the fact that v-E(YL)-0 the proof is straightforward and is

omitted.

It is clear that the coefficient of skewness 91(0,0) is equal to zero

for every g)E0. Hence, it will be difficult to distinguish the superdiagonal

bilinear model (2.1) from pure white noise on the basis of this coefficient.

The coefficient of kurtosis

62(0,0,0) - (v4-av4f6av2)(1-a)I{u2(1-B4v4)} (3.4)

is more useful for this purpose, provided 64u4~1. For zero-mean Gaussian

distributed {At} (3.4) reduces to

g2(0,0,0) - 3(1-a2)~(1-3a2) (3.5)

which is identical to relation (5.14) of Granger and Andersen (1978). in this

case B2(0,0,0)i3, for every B140, which indicates Lhat this process has a higher

degree of peakedness and thick-tailness than a pure Gaussian white noise process.

3.2 The diagonal model

For the diagonal model (2.2) the series {YL} is a function of At' At-k'

At-2k,.. , so there are actually k independent series within {Yt}. Therefore,

unless j-mk, where m is an integer, cov(Yt,Yt-j).0 for errors distributed sym-

metrically around mean zero. Following the same reasoning as above.

cov(Yt,Yt-j)~0, un}ess j-mk. Hence, Lemma 1 of Li (1984) is true even for errors

distributed symmetrically around mean zero. Furthermore, under this assumption

for {AL}. the moments E[(Yt-u)(Yt-i-v)(Yt-j-u)] and E[(YL-v)(Yt-u-v)(Yt-i-u)

(Yt-j-u)] are both identically zero, unless u-mlk, í-m2k and j-m3k where ml, m2

and m3 are integers. Thus the problem of deriving higher order moments of (2.2)

reduces to obtaining moments of series {YL} generated by the diagonal model
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Yt - BYt-lAt-1 } At.

The following two lemmas are stated without any proof. Oetails of the

proofs are, of course, available if required. However, since they do not

possess any interesting features, it has been thought better to omit them.

(3.6)

L~m~a 3.3 If {Yt} is generated by (3.6) with tAt} distributed symn~etrically

around mean zero and acl then

3Bu2fB3u6t3B5uál(1-a) for i~je0;

Bvz43Bav4tB3au6}3B5auql(1-a) for 1~0, jzl:

Bu2ta3-2(B~u4tg3a2u6t3Ba2u4)tBau4{ltaj-2(3B4av4-1)}I(1-a)

for i-o, j~l;

c(i,j) - Bu4(lt2a)I(1-a) for i-j-1:

4BavZ for i-1, j-2;

I 2au2 for i-1, j~2;I` 2

Bu2E(Yt-iYt-j)
for i~l, j~l;

where E(YLYt-i)-2au2 for i-1 and E(YtYt-i)zE(YLYt}i)-auZ for i~l.

~enma 3.4 If íYt} is generated by (3.6) with (AL} distributed symmetrical-

ly around mean zero and B4u4c1 then

[B6(-upug'Svpu4t6v4u6)iB4(v8 uá)t5av4fv4]I(1'a)(1-B4u4)

c(O,i,i) -

for i-0;

[B8(7v2u4v6-u2uá6u4)tB6(v2váv4u6tv2u4-u2v4)~B4(6u4-v2u6-

u2u4)tB2(v6fv2v4-u2)tu2]I(1-a)(1-B4v4) for i-1;

ac(O,i-l,i-1)t(1-a)E(YL)2 for i~l;

where E(Vt)-(uZ-av2tB2u4)I(1-a).
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From Lemma 3.4 it is easy to see that for zero-mean Gaussian distributed

iAt} we get

var(Yt) - 2u2(1~4at40a2t18a3-54a4)I(1-a)2(1-3a2) (3.7)

and

cov(Yt'Yt-1) " óau2(2f3at5a2ta3-Sa4)I(i-a)2(1-3a2) (3.8)

provided a2~i13. Substituting ( 3.7) and ( 3.8) into p(1)-cov(Yt,Yt-i)Ivar(YL)

leads to relation (6.35) of Granger and Andersen ( 1978). Furthermore, from the

third part of Lemma 3.4, we have p(i)-ap(i-1), i~l, which is in agreement with

relation (6.34) given Dy Granger and Andersen ( 1978, p. 55). Notice, however.

that their statement saying that this result can be obtained "... without any

assumptions being made about the distrtibution of {AL} ,,," is not correct.

In principle the results of Lemma 3.4 can be generalized to any combination

of the lags u, i and j in c(u,i,j). Since, however, we are only interested in

the behaviour of B2(o.i,i) for lags i~0 in Section 4 we will not pursue this

matter here any further. From Lemma 3.3 and 3.4 the following theorem can be

straightforwardly obtained.

Theormn 3.2 If {YL} is generated by (3.6) with {AL} distributed symmetri-

cally around mean zero then the standardized third and fourth central moments

Bi(i,j) and 82(O,i,i), respectively, are given by

B3[2u2tubt3u4(B2u4-u2)I(i-a)]I{var(YL)}3l2 for i-jz0;

( [c(i,l)-Bu2-2Bau2-Bau4l(1-a)]I{var(Yt)}3j2 for i-0, j-1

Bi(i,j) - [c(O,j)-Bu2-Bau4l(1-a)JI{var(Yt)}3l2

Bau2I{var(YL)}3l2

0

and izl, j-1;

for i-0, j~l;

for i-1, j-2;

for i~1, j~2,

and
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92(O,i,i) '

[c(0,0,0)-4Bu2c(0,0)t3au2(2u2-au24292v41(1-a))1lfvar(Yt)}2

for i~0;

[c(0.1.1)-2a{c(0,1)tc(1.1)}tau2{2u2t5au2t2g2u41(1-a)}]

~{var(Yt)}2 for i-1;

[c(O,i,i)-2a{c(O,i)rc(i.i)}tau2{2u2fau2t2g2u41(1-a)}J

~{var(YL)}2 for i~l,

where var(Yt)-(uZ-2au2tg2u4ta2u2)I(1-a).

Using Theorem 3.2 the coefficients of skewness and kurtosis for zero-mean

Gaussian distributed {At} are, respectively, given by

2B3u2(4t5a2)I(1-a2)
91(0,0) '

{u2(1-9 tB u2)I(1-a )}

provided a2~1, and

g2(0,0,0) -
u2(3~9a2t57a4t93a6t117a8i135a10)I(1-a2)(1-3a4)

{u2(lt9 tB u2)I(1-a )}

(3.9)

(3.10)

provided 3a4~1.

Clearly the expression in the numerator of (3.9) i s not in agreement with

the third central mament given by Granger and Andersen (1978, p. 52). Also the

numerator of (3.10) differs a factor 3 with the fourth central moment (6.26)

given by these authors. This last result may explain the high values of the

coefficient of kurtosis given in column 5 of Table 1 of Granger and Andersen

(1978). Notice that for the diagonal model (2.2) we get a pattern of non-zero

B1(i,j) at lags (i,j)-(0,0), (k,k), (k,2k) and (O,mk) for m-1,2,3,... . This

in contrast to one dominating value of gl(i,j) at lag (i.j)-(k,t) and (t,k)

and zero values elsewhere for the superdiagonal model (2.1).
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3.3 The subdiagonal model

The moments of this model are much more difficult to derive than those

of the two previously discussed bilinear time series models. Only for a few

simple subdiagonal models the autocorrelations o(i) of the squared time series

process {Yt} have been obtained (see Granger and Andersen (1978. Chapter VII)).

The reason is that it is often difficult to leave behind lagging errors upon

repeatedly substituting the model equation for the lowest lagging {Yt} since

k~t. For the subdiagonal model (2.3) no results have appeared in the literature

for the standardized third and fourth central moments as far as we know.

Without proof we first state the following two lemmas.

Le~ma 3.5 If {Yt} is generated by (2.3) with (At} distributed symmetri-

cally around mean zero then
gau4tgy2 for kal and i-2, j-1 or i-1,j~2;

gu2 for k~2 and i-2, j~3 or i-3, j-2;
c(i,~) '

~By2}~y2~(1-~) for ka3,4,... and i~k. j-kf1 or i ~ktl, j~k;
0 otherwise.

Lemna 3.6 If {Yt} is generated by (2.3) with {pt} distributed sym~~etri-

cally around mean zero and 84u4~1 then

( B8E(Ytptpt-1)t6a2u4(1tB4u4)I(1-a)tóauZ(uztp4v6)tv4(1f94v4)

I for i-0, k-1;

c(O,i,i) -

BBaE(Ytptpt-1)tau4{ltó(atg8vá)}I(1-a)tB6u4u6(óatl)tu2(atl)

for i-1. k-1;

B8~2E(Ytptpt-1)t{a2u4(lfa)t2B4aug(1t394au4)?I(1-a)t

g6ay4u6(óatl)tv2(a2tafl)t~(BZu6tu4) for i-2, k-1;

96u4{6a41(1-a)tg10u4}I(I-B4u4)i6au2(1tB4y4f68Vg)~~1-al~v4t
B4u~(1~B4y4) for i-0, ki2;

xc(O,i-l,i-1)ty2{lt7~tg4u4l(1-a)}rg4(u4-u2)E(Yt-ipt-3)
-

for i23, k-1;

ac(O,i-k,i-k)h,2~(1-a) for i-1~Vc?2,
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where for k-1

E(Y4A4A4 ) - íóB2av2v I(I-a)t6av2tu u }I(I-B4u )t t t-I 46 6 48 4

and

E(Yt-iAt-3) - { u2{ltat84u41(I-a)} for ii4.

Using (2.4), (2.5) and v-E(Yt)-0 the third and fourth central moments are

given as fo}lows:

Theorem 3.3 If {Yt} is generated by (2.3) with {At} distributed syrtmetri-

cally around mean zero then the standardized third and fourth central moments

gl(i,j) and B2(O,i,i), respectively, are given by

91(i,j) - c(i,j)~{E(Yt))3j2 and b2(O.i.i) - c(O,i,i)I{E(Yt)}2

where c(i,j) and c(O,i,i) follow from, respectively, Lemma 3.5 and 3.6, and

where

u2tau2tB2au4l(1-a)

u2l(1-a)E(Yt) - ~

for iL3;

for k-1;

for ki2.

It is clear from Theorem 3.3 and Lemma 3.5 that the coefficient of skewness

BI(0,0) is equal to zero for every B7E0 and {At} distributed symmetrically around

mean zero. Also, it is obvious from the last part of Lemma 3.6 that cov(Yt,YL-i)-

acov(Yi,YL-itk). for i-1~k~2, for symmetrically distributed errors. This

generalizes relation (7.22) given by Granger and Andersen (1918) for Gaussian

distributed {At}. Finally, for zero-mean Gaussian distributed {At} we have for

the coefficient of kurtosis 92(0,0,0) the representation

u4tavZta2v4l(I-a)
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3(1-a)(-144abt264a5t72a4t24a3t4a2fatl)I(1f2a2)2(1-3a2)
for k-1;

B2(0,0.0) - 3(1-a){(l~a)(1-27a6)t9B2z6(2t3s2-382a)}~(1-3a2)

provided 3a2~1.

for k~2 ,

(3.11)

4. Some simulation results

Let tYt: t-1,...,n} be a set of realizations of {yt}, Then the natural

estimators of a(i), B1(i.j) and 92(o,i,i), respectively, are given by

rt(i) ' til(Yt-Y)(Ytti-Y)~tFl(Yt-Y)2'

-1 n-max(i,j) y -Y)(Y -Y)(Y Y)I{n1 i(Y -Y)2}312. (4.2)
bl(i,j) - n i ( t tti ttj- t.l t

t-1

n-i n
b2(O.i,i) - n 1 E(YtY)2(Ytti-Y)2l{n 1 E(Yt-Y)2}2 (4.3)

t-1 t-1

where Y-n lEt-1Yt and Y-n lit-lYt.

}f {yt} is 9enerated by a zero-mean Gaussian distributed white noise process

then it follows from the central limit theorem proved by Sun (1963) that r'(i)

is uncorrelated and asymptotically Gaussian distributed with mean zero and

variance n-1. Similarly, for Gaussian distributed white noise, the statistics

(4.2) and (4.3) both are asymptotically Gaussian with mean zero. Since, however,

the variance of bl(i,j) and b2(O,i,i) depend on the lags i and j, it is necessary

to distinguish three different cases for the approximate variance expressions

of these statistics.

First, if i-j-0 and {Yt} is zero-mean Gaussian white noise, exact expressions

for the variance of (4.2) and (4.3), respectively, are 9iven by

var[bl(i ,j)] - 6(n-2)I(n}1)(nt3) , (4.4)
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and

var[b2(O,i,i)] - 24n(n-2)(n-3)~(ntl)2(nt3)(nt5). (4.5)

These results can be easily obtained from Kendall and Stuart ( 1969, p. 297-298

and p. 305-306).
Second, if i~0, j)E0, i~j and {YL} is zero-mean Gaussian white noise, we

have var[(YtY)(Yt-i-Y)(Yt-j-Y)]~,2 and var[(Yt-Y)2(YL}i-Y)2]a9u2. Hence,

using the well-known Taylor series expansion for the variance of a ratio of

two random variables ( see, e.g., Kendall and Stuart ( 1969, p. 232)), we find

var[bl(i.j)] ~ n lu2lu2 - l~n. (4.6)

var[b2(O,i,i)] ~ 9n-lu2lv2 - 9~n. (4.1)

Finally, if Ozi~j or Ofi-j or 0-j~i and {Yt} is zero-mean Gaussian white

noise, we have var[(YL-Y)(YL-i-Y)(YL-j-Y)]oE(YL)E(YL)-3u2 which gives

var[bl(i,j)] ~ 3n lu2~uZ - 3In. (4.8)

To investigate the accuracy of the approximation (4.6)-(4.8) a simulation

experiment was performed. For the number of replications N set equal to 18000~n,

with n-100(50)300, the followíng two statistics were computed

N
sd[bl(i,j)] z [ E {blu(i.j)-bl(i,j)}2l(N-i)]1j2 (i-0.1,2; j-1.2) (4.9)

u-1

N
sd[b2(O,i,i)] - [ L {b2u(O.i,i)-b2(O,i.i)}2l(N-1)]1~2 (i-1) (4.10)

u-1

where bl(i,j)-Elblu(i'~)~N and b2(O,i,i)-Eib2u(O,i,i)~N with blu(i,j) and

b2u(O,i,i), respectively, the value of bl(i,j) and b2(O,i,i) obtained from the

uth replication. These results are reported in Table 1 together with

{var[bl(i,j)])1j2 and {var[b2(O,i,i)l}1~2 obtained from (4.6)-(4.8).



Table 1. A comparison between approximated and simulated values of {var[bl(i,j)]}1~2 and {var(b2(O,i,i)]}1~2

for series generated by a zero-mean Gaussian white noise process and sample sizes na100(50)300.

n sd[bl(i,j)] {Appr.(4.6)}3 sd[bl(1,2)] {Appr.(4.8)}} sd[b2(0,1,1)] {Appr.(4.7)}~
ia0, jzl is0, j-2 i~j-1 i-j~2

100 .142 .139 .144 .145 .173 .092 .1 .115 .3

150 .102 .118 .108 .113 .141 .086 .082 .152 .245

200 .099 .088 .116 .114 .123 .074 .071 .169 .212

250 .079 .083 .083 .091 .110 .060 .063 .113 .190

300 .075 .088 .066 .074 .1 .060 .058 .125 .173

Legend: {Appr.(4.6)}}-(l~n)} as an approximation of {var[bl(i,j)]}~ for i~0, j~0, i~j;
{Appr.(4.7)}~a(9~n)~ as an approximation of {var[b2(O,í,i)]}~ for i{0, j~0, i~j;

{Appr.(4.6)}}s(3~n)~ as an approximation of {var[bl(i,j)]}} for O~i~j or O~isj or OLjti.
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The tentative conclusion that emerges from this table is that for n~200

approximation (4.6) and (4.8) can be considered as satisfactory. Hence bl(i,j),

in conjunction with the variance expressions (4.4), (4.6) and (4.8), may be

used as an alternative statistic to (4.1) for detecting nonlinear types of

dependence in the residuals of fitted time series models. This also suggests

that the statistic nE(i~j){bl(i,j)}2~cij, where cij-1 if i~0, j)E0, i~j; cij-3

if 0-i~j or 0{i-j or 0-j~i; and cij-6 if 0-i-j, may be a potentially useful

diagnostic statistic for testing the dependence amongst the residuals. Since,

however, we do not know its approximate distribution we shall not pursue this

matter here further. Approximation (4.7) gives values which differ more sub-

stantially from the simulated results. Clearly, b2(O,i,i) with i~0 is a less

useful statistic for testing residual dependencies.

To study the behaviour of bl(i,j) and b2(O,i,i) for bilinear models with

standard normally distributed errors a large scale simulation experiment was

carried out. Table 2 and 3, respectively, contain results of bl(i,j) and

b2(O,i,i), based on 100 replications of length n-200, for the bilinear model

YL-.SYt-tAt-ktAt with (k,e)-(1,2), (1,1) and (2,1). These results form a small

thouqh representative subset of many other bilinear models we simulated. ln

each simulation run 100 observations were discarded as a precaution to avoid

possible "start-up" difficulties in the simulated series.

The simulated results exhibit a pattern similar to that of gl(i,j) and

B2(O,i,i). From Theorem 3.1 and 3.3 it follows directly that the only non-zero

values of B1(i,j) are at laq (i,j)-(j,i)-(1,2) for the super and subdiagonal

model. For standard normally distributed errors and B-.S they are, respectively,

given by B1(l,2)-.433 for the superdiagonal model and B1(1,2)-.408 for the

subdiagonal model. The non-zero values of B1(i.j) for the diagonal model follow

from Theorem 3.2. Among the non-zero are B1(0,0)-.756, B1(0,1)-81(1,0)-.486,

B1(1,1)-.756, B1(0,2)-B1(2,0)-.148 and B1(1,2)-B1(2.1)-.054. The values of the

kurtosis for the super and subdiagonal model are, respectively, 3.462 and 5.205.

From (3.10) we have for the diagonal model B2(0,0,0)-5.816.
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Table 2. Mean standardized third central sample moment bl(i,j) from 100

length 200 simulations of the bilinear model Yt-.SYt-tAt-k}At
with (k,t)-(1,2), (1,1) and (2,1).

Lag Lag i
(k~R) j 0 1 2 3 4

(1,2) 0 -.061

1 -.026 -.026

2 -.012 .394s -.035

3 -.093 .022 .001 .034

q -.007 .065 -.009 .051 -.009
s(1,1) 0 .531

1 .695s .362s
2 .120 .121 .068

3 .034 -.021 .013 .021

4 .018 .001 -.018 -.064 -.020

(2,1) 0 -.013

1 -.054 .057

2 .006 .546s -.128

3 .007 -.050 -.008 -.049

4 -.089 .034 .123 -.007 .105

Note: s denotes statistically significant at the 5X level.

Table 3. Mean standardized fourth central sample moment b2(O,i,i) from 100

length 200 simulations of the bilinear model Yt-.SYt-tAt-k~At

with (k,t)-(1,2), (1,1) and (2,1).

Lag i
(k~R) 0 1 2 3 4

(1,2) 3.246 1.336 1.429 1.053 .999

(1,1) 4.030 2.195 1.254 .996 .952

(2,1) 3.499 1.708 1.495 1.111 -907
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Clearly the estimates of the skewness and kurtosis are much smaller than

might be expected from the theoretical results for the three simulated models.

This was also noticed for all other simulated bilinear time series. It

illustrates a characteristic of these series noticed earlier by, for example,

óranger and Andersen (1978) and Maravall (1983). They found that stationary

bilinear time series usually behave much like a linear series for a long

period of time. However, on occasion, a different regime seems to operate on

the series resulting in increased activity for short periods. This increased

activity will show up in the estimated values of 91(0,0) and ~2(0,0,0) only

if the series is extremely long. In our case a sample size of length 200 is

too short to adequately capture the full bilinear structure of the series.

Indeed, when we reestimated BI(0,0) and g2(0,0,0) for series of length 800,

using 30 replications, we obtained much better results. For instance, the

estimates of the kurtosis for the super and subdiagonai model with 8-.5

are then, respectively, given by 3.565 and 5.488. We may conclude from this

that it will be difficult to accurately identify a particular model on the

basis of the statistics (4.2) and (4.3) unless the series is much longer than

is usually the case in economic time series analysis. In particular, it will

be hard to distinguish superdiagonal models from subdiagonal models using

these statistics for moderately large time series.

This last point was also confirmed by a blind discrimination experiment

between 60 simulated bilinear time series. Each series of length 200 was

generated by one of the three previously discussed bilinear models with g-.5.

The choice of a model was determined by an unseen sequence of numbers 1, 2 and

3 which we randomly obtained at the start of the experiment. The mean and

variance of the generated {At} was set respectively to zero and one throughout

the simulations.

Using the characteristic pattern of p(i), 91(i,j) and B2(7,i,i) we tried

to discriminate between the three bilinear models. Of the 60 simulated series,

we correctly identified 43 series which represents about 72X success. Of the
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18 series generated by the diagonal model Yt-.SYt-lAt-1}At, 16 were correctly

identified, whilst the other 2 were incorrectly thought to be generated by the

superdiagonal model Yt-'SYt-Z t-14At' This successful identification was based

on the typicai pattern of 91(i,j) and the fact that E(Yt)AO for diagonal models.

By comparing the pattern of the sample statistics (4.1)-(4.3) with their

theoretical counter parts we obtained 7 out of 19 correct ídentifications of

the subdiagonal model Yt-'SYt-lAt-2}At. For the remaining 12 series, 10 were

incorrectly identified as being generated by the superdiagonal model. Finally,

for the superdiagonal model 20 correct decisions were achieved and 3 were in-

correctly identified as coming from the subdiagonal model.

Aithough the scope of this simulation experiment is rather limited the

results ~eem to suggest that correct discrimination between series of length

200 generated by a super and subdiagonal model, using (4.2) and (4.3), is

doubtful. There is hardly any marked difference in the behaviour of these

statistics for these two bilinear models which makes them not very useful for

model discrimination. Perhaps by estimating both a super and subdiagonal model

one could more easily tell which model generated the data. On the other hand,

the results of the simulation experiment also indicate that a quick and

relative accurate method for distinguishing a diagonal model from a non-diagonal

model can be based on the set of non-zero values of the statistic bl(i,j).

In economics the assumption that the errors of a time series model follow

a Gaussian distribution with fixed mean and variance is often not very

reasonable. For instance, it has been pointed out in the literature that stock

price data are generated by models with errors coming fram leptokurtic distri-

butions. Me now investigate the effect of non-Gaussian distributed {At} on the

value of the kurtosis B2(0,0,0) for various bilinear models. For this purpose

we assume that the distribution function of the errors is a member of the

family of symmetric exponential power distributions centered around mean zero.

The probability density function of this class of distributions may be written

in the 9eneral form
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P(A) - w(Y)o-leXp{-c(Y)a-2l(ltY)IAI2I(1tY)}
- m cA~ ao; -l~ycl; 0~0

where
{r[3(lty)]}~ r[3(1tY)] ll(1tY)

(Y) - ~ - ~
~ (lty){r[~(1t7))}3l2

and C(Y)
r[}(ltY)]

Its ith moment is 9iven by

0 if i is odd.

vi - E(At) '
o~{r[~(ltY)1}(~-2)l2r[~(itl)(1tY)]

{r[~(1tY)]}il2
if i is even.

(4.11)

(4.12)

Here, the parameter o denotes the standard deviation of the population whereas

the parameter Y can be regarded as a measure of the kurtosis indicating the

extent of non-Gaussianity of the parent distribution.

Many well-known symmetric distributions are a member of the class of

symmetric exponential power distributions. It includes the uniform distribution

when Y y-1, the normal distribution when Y-0 and the double exponential

distribution when Y-1. Hence, it covers symmetric leptokurtic (Y~0) as well as

symmetric platikurtic (Y~0) distributions. Various shapes of the symnetric

exponential power distribution are given Dy Box and Tiao (1973, Fig. 3.2.3)

who use this family of distributions extensively in a Bayesian context. Since

the shape of the distribution of many economic time series is leptokurtic we

will only consider the range of parameter values O~Ycl.

Table 4 displays the values of B2(0,0,0) for the model Yt-BYt-tAt-ktAt

with (k,t)-(1,2), (1,1) and (2,1) for various values of ~B~ and Y. In all

computations the parameter a was, without loss of generality, set at unity.

Notice that for the range of values O~Yc.4 the symmetrically distributed {At]

produces a series {Yt] which is distributed not too far from óaussianity



-21-

Table 4. Yalues of the kurtosis 82(0,0,0) of the series {Yt} generated by

the bilinear model Yt-BYt-QAt-ktAt with (k,!)-(1,2), (1,1) and

(2,1) and with {qt} independent drawings from the family af symmetric

exponential power distributions with characteristic parameter Y.

U
0 .12 .24 .36 .48 .60

0 (1,2) 3 3.00 3.02 3.11 3.38 4.27

(1,1) 3 3.01 3.15 3.74 5.36 9.79

(2,1) g 3,00 3.03 3.29 4.69 10.88

,2 (1,2) 3.42 3.41 3.40 3.47 3.77 5.02

(1,1) 3.42 3.41 3.63 4.66 7.36 14.91

(2,1) 3.42 3.41 3.42 3.78 6.23 18.28

.4 (1,2) 3.94 3.92 3.87 3.91 4.29 6.12

(1,1) 3.94 3.90 4.32 6.16 10.71 23.86

(2,1) 3.94 3.91 3.89 4.48 9.15 34.43

.6 (1,2) 4.53 4.48 4.41 4.44 4.92 7.83

(1,1) 4.53 4.47 5.30 8.61 16.18 40.29

(2,1) 4.53 4.48 4.45 5.54 14.78 70.74

,g (1,2) 5.21 5.15 5.04 5.06 5.73 10.82

(1,1) 5.21 5.15 6.62 12.65 25.16 73.47

(2,1) 5.21 5.14 5.11 1.29 26.05 160.29

1 (1,2) 6 5.92 5.77 5.81 6.83 18.92

(1,1) 6 5.99 9.36 19.63 40.90 110.80

(2,1) 6 5.92 5.93 10.41- 49.39 424.02
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depending on the value of ~9~. Hence, for these parameter values no severe

problems will arise, due to the non-Gaussianity of the residuals, when

estimating the parameters of a bilinear model by a maximum likelihood

procedure. Also it can be noticed that for values of 8~.48 and Y~.4 the

departure from Gaussianity is more significant for the diagonal model than

for the other two models.

From (4.12) it follows that the coefficient of kurtosis of the {At}

distribution is given by

82(0,0,0) - r(2}(l~r)]r[}(li"r)]I{r[1}(l~r)]}}. (4.13)

Knowing the value of 9 one can approximately deduce from the results in Table

4 the appropriate value of the kurtosis ( 4.13) that need to be imposed on the

errors in order to generate a bilinear time series {Yt] with a given kurtosis.

This can be done along similar lines as has been proposed by Davies. Spedding

and Watson ( 1980) for ARMA models with non-Gaussian residuals.

5. An exanple
Consider the coal production series given by Pankratz (198-s, Case 3).

The series represents the monthly bituminous coal production in the United

States from January 1952 through December 1959, a total of 96 observations.

The data have been seasonally adjusted and from the results presented by

Pankratz it can be concluded that they do not contain a seasonal pattern.

When reanalysing this series we arrived at the AR(2) model specification

Y- 7576.84 t.49Y - t.31Y t A, a2 - 9,054,181 (5.1)
t (3.13)(4.90)t 1 (3.01)t-2 t a

where oá is the residual variance and where t-ratios are standing between

parentheses. The parameter values are reasonably close to those presented by

Pankratz for this model. The predictability of this model can be expressed
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as R2-1-(oáloy), where oy is the sampie variance of the series {Ytl, and is

equal to .547.

Table 5. Autocorrelations ra(i) and rá(i) of, respectively, (At} and {At}

fran model (5.1) fitted to the coal production series.

Lag i
1 2 3 4 5 6

ra(i) -.078 -.015 .155 -.017 .016 -.012

r~(i) .361 -.018 .097 . 086 -.041 -.044
a

In Table 5 the autocorrelations of the residua}s {AL} and {Át}, respectively,

denoted by ra(i) and rá(i), are presented for lags i-1,2,...,6. The values of

ra(i) suggest that the residuals {AL} are uncorrelated. This is also supported

by the modified x2(M-p-q) diagnostic statistic Qa-n(nf2)EM-1re(i)I(n-i) which

for M-20 is equal to 1.42. Looking at the values of rá(i) we notice that, with

the exception of rá(1), all residual autocorrelations of {At) are not signifi-

cantly different from zero at the 5X level. The value of rá(1) may indicate

evidence of some nonlinear relation in the {AL}. However, this is not confirnied

by the value of the diagnostic statistic Qá-n(nt2)~-1{rá(i)}2l(n-i) suggested

by McLeod and Li (1983) for detecting autocorrelations in the squared residuals.

For M-20 the value of this statistic is 16.07 which is less than the 5X

significance point of the x2(M) distribution. One reason for this could be that

Qá is computed on the basis of only 94 residuals which, as explained in the

previous section, may be insufficient for identifying bilinear relations in the

data. Therefore it is worthwhile to take a further look at the values of the

statistics bl(i,j) and b2(O,i,i) to see whether they can provide some useful

information about the process underlying the residuals.

The estimated values of bl(i,j) of the residuals {At} fram model (5.1)
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are presented in Table 6. Usíng the variance expressions (4.4), (4.6) and (4.8)

we notice significant values of bl(i,j) at lag (i,j)-(0,1), (0,3), (1,2) and

(3,3) at the 5X level. The ccefficient of kurtosis is equal to 4.097 while for

lag i-1,2,3 and 4 the values of b2(O,i,i) are, respectively, given by 2.330,

.999, 1.317 and 1.060. In general the distribution of {Àt} has a rather

symmetric though slightly leptokurtic shape.

Table 6. Estimated va}ues of bl(i,j) of {At} from model (5.1) fitted to

the coal production series.

Lag Lag i
j 0 1 2 3 4

0 .209

1 -.441; .281

2 .309 -.245~ -.015

3 .372~ -.120 .139 -.386~

4 -.065 .081 -.128 .228 -.345

Note: ' denotes statistically significant at the 5X level.

It is evident fram the results in Table 6 that the residuals have

significant nonlinear properties. This suggests that model (5.1) could be

improved by adding a bilinear term to the linear system. The super and

subdiagonal model are both characterized by a theoretical pattern of B1(i,j)

which is non-zero for lag (i,j)-(k,t) and zerces elsewhere. On the basis of

the significant values of bl(i,j) a diagonal model seems more likely. However,

this conclusion is somewhat tentative since the pattern of significant values

of bl(i,j) does not fully conform the theoretical pattern of B1(i,j) for the

diagonal model discussed in Subsection 3.2.
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In order to check this last conjecture we decided to estimate the model

At-gAt-eUt-k}Ut with {k,e-1,2 and 3} and where {Ut} is a sequence of i.i.d.

random variables with mean zero and fixed variance. A close approximation to

the maximum likelihood estimate of the parameter g in this model can be

obtained by minimizing the sum of squares 5(g)-FtUt over a grid of admissible

parameter values. After standardizing the series {At} and setting the initial

values of {Ut} equal to zero to avoid starting up problems, the minimum sum

of squares was reached for the diagonal model At-.19At-lUt-14Ut. In terms of

the original series {yt}, model (5.1) augmented by this fitted diagonal model

gives rise to a predictability measure R2 equal to .589, which is an increase

of more than 4X compared with the forecasting abilíty of model (5.1). The

autocorrelations of {Ut} and (Ut} for lags 1 through 6 were not significantly

different from zero at the 5X level which was also confirmed by the McLeod-Li

(1983) diagnostic statistic. The values of bl(i,j) of the new residuals {Ut}

were all very small, except from significant values at lag (i,j)-(0,0) and

(i,j)-(0,3). Hence, practically all of the nonlinearity can be explained by

the above simple diagonal bilinear model.

From this example it may be concluded that there are situations in practice

where the autocorrelations of the squared and unsquared residuals do not provide

sufficient inforniation about Lhe existence and type of nonlinearity present in

the data. We feel that the results presented here demonstrate that the statistics

bl(i,j) and b2(O,i,i) may be used as a useful additional tool to identify a

particular bilinear time series model. However, more work is needed to solve

the problem of discriminating between super and subdiagonal models on the basis

of these statistics. Also more attention should be directed to the problem

that bilinear time series models can only be well identified when the sample

size is extremely large.
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