CBM

: W

7626

1985
e

subfaculteit der econometrie

RESEARCH MEMORANDUM

ILBURG UNIVERSITY
JEPARTMENT OF ECONOMICS

'ostbus 90153 - 5000 LE Tilburg
letherlands







OPTIMAL DYNAMIC INVESTMENT POLICY
UNDER FINANCIAL RESTRICTIONS AND
ADJUSTMENT COSTS

Peter M., Kort

Department of Econometrics
Tilburg University

P.0. Box 90153

5000 LE Tilburg

The Netherlands



Abstract

This paper examines the effects of a convex adjustment cost function on
the optimal dynamic investment policy of a firm with financial restric-
tions. We assume that the management, which operates under decreasing
returns to scale, maximizes the shareholder's value of the firm. It
turns out that investments are a continuous function of time, that capi-
tal never keeps a stationary value and that there exists an unique opti-

mal investment decision rule for the firm.

The author would 1like to thank Prof. Dr. P.leJeMe van Loon, Drs.
GeJeCeThe van Schijndel and Prof. Dr. P.A. Verheyen for many fruitful

discussions and useful suggestions.
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l. Introduction

Surveys by Bensoussan, Kleindorfer & Taplero (1978) and Feichtinger
(1982a, 1982b, 1985) excellently illustrate that many recent papers
using optimal control to solve dynamic models analytically, have
extended the theory of the firm. Those models provide insight into the
economic behaviour of firms over time.

One of the first dynamic models of the firm is the classical model of
Jdérgenson (1967). The problem with this model is that the resulting
optimal solution dictates an instantaneous adjustment of the stock of
capital goods to the level of maximum revenue.

In the literature, two ways in particular have been proposed to avoid
this unrealistic immediate adjustment. The first way is the introduction
of financing limits In the dynamic model of the firm. Examples of such
models are those of Leland (1972), Ludwig (1978) and van Loon & Verheyen
(1984).

The second way of getting a smoothed adjustment pattern is the introduc-
tion of adjustments costs as another aspect governing the dynamics of
the firm. Research into this subject has been conducted by e.g. Gould
(1968), Lucas (1967) and Treadway (1969). The article by Sdderstrdm
(1976) contains a good survey of the theory of adjustment costs.

In this contribution we will analyse the impact of coupling financing
and adjustment costs on the optimal policy within a really dynamic model
of the firm. Section 2 contains a global survey of the theory of adjust-
ment costs; in section 3 we will present our dynamic model of the firm.
In this model we have incorporated both financiny limits and adjustment
costs. Section 4 contains a description and further analysis of the
optimal solution, which is proved in Appendix l. [n Appendix 2 we derive
the development of investments and capital durin;; two optimal trajecto—
ries and in Appendix 3 we give the derivation of an investment decision

rule.



2. The theory of adjustment costs

Ad justment costs arise with investment expenditures of the firm. In the
literature, a distinction is made between external adjustment costs (in-
vestment expenditures) and internal adjustment costs (seize on available
productive inputs) (Brechling (1975)).

External adjustment costs apply to a monopsonistic market of capital
goods: 1if the firm wants to increase its rate of growth it will be con-
fronted with 1increasing prices on the market because of its increased
demand of capital goods. Other examples of external adjustment costs
are: architects' fees, expenditures on job advertisements and costs of
moving new employees.

Internal adjustment costs arise because the acquisition of additional
capital and/or labour requires resources which could otherwise be used
for the production of output. For instance, a firm may have personnel
and training departments which are adequate for regular replacement of
quits and retirements. Suppose the firm now wishes to raise its level of
employment by hiring more people. In consequence more capital and labour
have to be invested in both these departments. With given total inputs
the level of output must, therefore, fall.

Installation costs and organisation costs are other examples of internal

adjustment costs.

We can consider three different shapes of the adjustment cost function
as given in figure 2.1, It is always assumed that the first derivative
of the cost of adjustment function is positive. The question is whether
there are constant, increasing or decreasing costs compared to the rate
of adjustment. In accordance with standard terminology, costs of adjust-
ment 1in these three cases will be called linear, convex and concave
(Sdderstrdm, 1976).

The curvature of the adjustment cost function could have an impact on
the optimal investment policy of the firm. If the cost of adjustment
function is convex, marginal adjustment costs are increasing with in-
vestment expenditures. Therefore, the total cost of raising capital
stock by a given amount will be larger the faster the growth of capital
stock, and hence the firm will tend to adjust it slowly.
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Figure 2.1. The curvature of the adjustment cost function

Concave adjustment cost functions imply declining marginal costs. The
firm's policy would be to take advantage of decreasing costs of invest-
ment and raise its capital stock instantaneously.

As linear adjustment costs imply only a rising price level of the in-
vestments, its impact on the firm's investment policy is obvious.

In the literature, most dynamic models have incorporated a convex cost
of adjustment function, but other types of adjustment cost functions can
also be considered (Rothschild, 1971).



3. The model

We first assume that the firm behaves as 1if it maximizes the share-
holder's value of the firmes This value consists of the sum of the
present value of the dividend stream over the planning period and the

present value of final equity at the end of the planning period, so:

= =T -1z
maximize: f D(T)e dT + X(z)e (1)
T=0

in which

D(T) dividend
X(T)

T = time

equity

i = discount rate

z planning horizon
Assuming that the firm will attract only one kind of money capital:
equity and has one production factor: capital goods, we get the balance

equation:

K(T) = X(T) (2)

in which
K(T) = total amount of capital goods

We further assume that earnings after deduction of depreciation and
adjustment costs are used to issue dividend or to increase the value of
equity through retained earnings.

As far as the adjustment costs are concerned, we assume that they are a
convex function of investments. Also, we assume that the firm operates
under decreasing returns to scale and that depreciation is proportional
to capital goods. The ahove results 1in the next state equation of
equity:

: dx

X = ar - S(K) = ak(T) - U(I) - D(T) (3)



in which
ds a’s
S(K) = earnings, S(K) > 0, =—=> 0, — < 0
dK 2
dK
dau au
U(I) = adjustment costs, U(I) > O, Fid > 0,-——5 > 0, U(0) =0

dI
I(T) = gross investments

a = depreciation rate

The impact of investments on the production structure 1is described by

the, now generally used, formulation of net investments:

- dk _

K =5 = I(T) - aK(T) (4)

As far as its dividend policy is concerned, we assume that the firm is

allowed to pay no dividend, so:

D(T) > O (5)
Investments are irreversible, so:

T(TY » 0 (6)
At last, we assume a positive value of capital good stock at T = 0:

K(0) = K

0 >0 (7

After some simplifications, we get the followin;;, dynamic model of the

firm:

§ -1T -iz
max [ (S(K)-I(T)-U(I))e ~ dT + K(z)e

T T=0

(8)
Sete
é = I(T) - aK(T) (9)

S(K) - I(T) - U(I) > O (10)



I(T) & 0 (11)

K(0) = KO (12)
This model can be solved analytically by using optimal control theory
(Kamien & Schwartz (1983)), where the state of the system is described
by the amount of capital goods and is controlled by investments. The aim

of this control is to reach a maximum value of the objective function.



4. The optimal solution

We obtain necessary and sufficient conditions for an optimal solution
using Pontryagin's standard maximum principle. Next, we apply the
general solution procedure of van Loon (1983, pp. 115-117) to get the
optimal trajectories of the firm (see Appendix 1).

Each trajectory consists of one or more feasible paths, which are cha-
racterized by different policies concerning investment expenditures and
dividend payments. In our problem the set of feasible paths amounts to

three:

path I D
1 max 0
2 >0 >0
3 0 max

Tabel 4.1. Features of the feasible paths

Depending on the values of Ky and z, we get different optimal trajecto—
ries. Here we will demonstrate two of them, represented in figure 4.1
and 4.2 and derived in Appendix 2. The other pattcerns are subsections of
these two solutions.

Concerning figure 4.1, we have to remark that the way I diminishes on
path 2 depends completely on specific features of S(K) and U(I). So,
when S(K) and U(I) are not specified, we do not know whether the slope
of [ Increases, decreases or remains constant on this path. Without
these features of S(K) and U(I) we do not have insight into the way I

rises on path 1 either.

First, we concentrate on master trajectory 1, which is represented by

figure 4.1. On path 1, the next inequality holds (see Appendix 3):

z
%% < e—(i+a)(z-T) % f e-(1+a)(t—T) ds

1 + aK

daT (13)
t=T
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Figure 4.1. Development of I, K, and aK on master trajectory 1
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Figure 4.,2. Development of I, K and aK on master trajectory 2



The left-hand side of this expression represents an investment expendi-
ture including adjustment costs, at the right-hand side we find the mar-
ginal earnings of investments, consisting of the present value of the
remaining new equipment at the end of the planning period (the value of
the new equipment decreases with a rate a during the rest of the plan—
ning period) plus the present value of additional sales over the whole
period due to this new equipment (the production capacity of this equip—
ment decreases with a rate a during the rest of the planning period).
Expression (13) means that on path 1, marginal earnings exceed marginal
costs of investment expenditures. Therefore, the firm invests at its
maximum level, i.e. that level which is feasible considering the finan-
cial restrictions, so it does not pay out any dividend and all earnings
are spent for investing.

At tio this strategy stops, because marginal earnings become too small
6%% decreases when K rises) to finance the rising adjustment costs Q?%
rises when I rises). Therefore on path 2 investments are kept on such a
level that marginal earnings equals marginal costs, so the next equation

must hold:

du _ -(i+a)(z-T) Z _(i+a)(t-T) dS
a1 e + tiT e aK dt (14)

1+
This implies decreasing investments and increasing capital stock until I
falls below the depreciation level. From this very moment K will also
drop. Just when investments become zero, path 2 passes into path 3, This
transition is fixed by the moment that the next expression becomes
applicable:

| 44U ~(#a)(z-D) | fz o (Ha) (e-T) dS

t (15)
d1 =T dK

The inequality shows us that the marginal costs of investments exceed
the marginal earnings on path 3. This 1is caused by the fact that from
tyy on the remaining time period is too short to defray the adjustment

costs of new investments. Therefore, the firm does not invest anymore on

path 3.
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A noteworthy point 1is the continuity of T. Larger values of I imply
rising marginal adjustment costs because of the convex adjustment cost
function. Therefore, adjustment costs are minimized as much as possible

if I develops gradually over time.

Another interesting feature is the way in which this pattern will change
when the planning period is extended. If z is fixed upon a higher value,
then t;, as well as toq will be postponed (see Appendix 3). In the case
of an infinite time horizon expression (l4) continues to hold from tha
on, so path 3 disappcars completely. This is easy to understand, because
now there is always enough time to defray the adjustment costs. On path
2, K will approach a stationary value asymptotically (figure 4.3). Here,
the influence of the convex adjustment cost function becomes clear; the
optimal value of capital good stock will not be reached within a finite
time period, because it is always cheaper to split up the final adjust-
ment into two parts.

ds

On master trajectory 2 (figure 4.2), Ky 1s so large (this means that X

is low) that expression (15) holds at T = 0 for all possible values of
du
a1 ds
creases. At t3g, H?—has risen enough for expression (14) to become

« This implies that investments are zero and capital good stock de-

applicable. From this very moment I starts to rise, but it never reaches
the depreciation level, so K still decreases. At tog the remaining time
period is again too short to defray the adjustment costs of new invest-

ments. This means that I becomes zero again.

In accordance to master trajectory 1 path 2 will be final path on master
trajectory 2 when the time horizon 1is infinite. In this case capital
good stock will approach its stationary value asymptotically from above
(figure 4.4).
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5. Summary

In a dynamic model of the firm we have incorporated financing and a con-
vex cost of adjustment function. We derived the optimal trajectories of
the firm by applying Pontryagin's standard maximum principle and the
general solution procedure of van Loon. Some striking characteristics of
the optimal solution are the continuity of investments during the plan-
ning period and the absence of a stationary value of the capital good
stock. We have also derived an investment decision rule that explains
the optimal policy of the firm by comparing marginal earnings and mar-
ginal costs 1in the succeeding stages of the firm's evolution. With the
help of this rule we fix the moments on which the firms policy has to be
changed fundamentally and we discuss the relation between these moments

and the length of the planning period.
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Appendix 1. Derivation of the optimal solution

We apply Pontryagin's standard maximum principle to obtain the necessary

and sufficient conditions.

Let the Hamiltonian be:
-1iT
H = (S(K)-I-U(I))e + Y(1I-akK) (16)
and the Lagrangian:

L = H + X (S(K)-T-U(D)) + A,I (17)
in which:
¢ := adjoint variable or co-state variable which denotes the
marginal contribution of capital good stock to the per—
formance level
A, := dynamic Lagrange multiplier representing the dynamic
'shadow price' or 'opportunity costs' of the j-th res—

triction

then the necessary conditions are:

SL du -iT
i —(1+-539(e +x1) + ¢ + 12 =0 (18)
° _ds , -iT
-y = K (e +Xl) ay (19)
Al(S(K)—I-U(I)) =0 (20)
} complementary slackness conditions

2,1 =0 (21)
v(z) = e-1z (transversality condition) (22)
Y = continuous with plecewise continuous derivatives (23)

Y,A : continuous on intervals of continuity of I (24)
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K : continuous (25)
I : plecewise continuous (26)

As Hoptimal is concave in (K,I) and the functions S(K) - I - U(I) and I
are quasi-concave in (K,I), these conditions are also sufficient (Van

Loon, 1983 (pp. 105)).

Next, we can apply Van Loon's general solution procedure in order to
transform these conditions into the optimal trajectories of the firm.
These trajectories consist of different paths, which are each of them
characterized by the set of active constraints. The properties of these

paths are presented by tabel A.l.

path XI Az
1 + 0
2 0 0
3 0 +
4 + +

Table A.le The different paths

We will prove that path 4 is infeasible:
From table A.l, (20) and (21) we conclude that on path 4:

S(K) ~ T - U(E) = 0 27)

I=0+0(1) =0 (28)

From (27) and (28) we obtain:

S(K) = 0 +K=20 (29)

But, (4), (6) and (7) imply that:
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K>0 (30)
conclusion: path 4 is infeasible

To find the optimal trajectories of the firm, we start at the time hori-
zon z and go backwards in time. According to this strategy we first
select all final paths. In order to find these paths, we substitute the
transversality condition (22) in (18) for T = z:

iz

du -1z -
~(1+-Ef)(e +Al) + e + xz =0 (31)

From this, we can conclude that on a final path it must hold that:

Az >0 (32)
From (32), we conclude that only path 3 is a feasible final path.

Next, we start a coupling procedure to complete the optimal trajecto-—
ries. The essence of coupling two paths 1is to test whether such a cou-
pling will or will not violate the continuity properties of the state
variables and the co-state variables. In our model, this means that K
and ¢ have to be continuous.

As an example of a feasible coupling we will prove that path 1 can pre-
cede path 2.

First, we derive the necessary conditions for the continuity of ¢. From

(18) and table A.l we get:
On path 1 it holds that:
du -1iT
v = (1+ 3—1)(e +x1) (33)

On path 2 it holds that:

duy —=1T

Y = (1+He (34)

From (10), (20) and table A.l we derive:
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On path 1 it holds that:

S(K) = I + U(I) (35)

@ path 2 it holds that:

S(K) » I + 1I(1) (36)

Because K has to be continuous and S(K) is a continuous function of K,

we conclude from (35), (36) and the convexity of U(I):

>« iy o
du du
for t12 ¢t I > (1+ E) > (1+d_I (37)
(t12 is the coupling moment of path 1 and path 2. An arrow to the right
(left) indicates the left (right) side limit of the relevant variable at

the relevant point of time.)

From (33), (34), (37) and table A.l we derive the following necessary
conditions for the continuity of y:

I must be continuous at 3P (38)

Al must be continuous at t12 (39)

Next, we check if K can be continuous when (38) and (39) must hold. When
we differentiate (33) to time it holds that on path 1:

. . - - Ll
r - d—‘z’ e 1T+x1) = e Trpik %) + 2,014 g—‘I’) (40)
d1

From (19) and table A.l we obtain that on path 1 it holds that:

v=ay - e h) (41)

After substituting (33) and (40) in (41) we get:



2. &
du ds d"Uu -it
((1+a)(l+-d—f) _T:IT('_—_ZI)e =
dI
v, . ds , d’u : . du
(-a(l+-ETQ txt—= I)Xl - Xl(l+-3f) (42)

Analogous to the above, we can derive that on path 2, it holds that:
(ra)(+ 9 - -1 =0 (43)

From (39) and table A.l we obtain:

=
Xl(tlz) =0 (44)
xl(tlz) <0 (45)

Due to (42), (44) and (45) we get that at the end of path 1, 1t holds
that:

2

(e - B Ad 759 (46)
d1 dK 2
dl
dU dzU
From (38), (43) and (46), the continuity in I of d and S and the con—

d1
tinuity in K of a we conclude that a necessary condition of the conti-

dK
nuity of K is:

ey
v
—~ e 4

for t12 : (47)
So, the coupling path l-path 2 is feasible, if the necessary conditions
(38), (39) and (47) hold.

Next, we show an example of an infeasible coupling. We try to couple

path 1 to path 3. From (18), (21) and table A.l we derive that on path 3
it holds that:
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Vo= (1+ -‘;—g)(-' = Ry (48)
1=0 (49)

Due to (33), (35), (48), (49), table A.,1 and the convexity of U(I) we

conclude that Yy is continuous 1if:

I, A, and X, are continuous on t (50)

1 13

Due to (35), (49) and (50) we derive that at the end of path 1 it holds
that:

S(K) = I+ U(I) =0+K=0 (51)

This is in conflict with (30), so the coupling path l-path 3 is infea-
sible.

Table A.2 gives us a survey of the feasible and infeasible couplings.

From this table we can derive the following possible trajectories:

path 1 - path 2 - path 3 (master trajectory 1)
path 3 - path 2 - path 3 (master trajectory 2)
path 2 - path 3

path 3

Depending on the value of Ky and the length of the planning period one

of these trajectories is optimal.
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path 1
path 2 - path 3

_\path 1 4 .

path 1 = +

\\\\\\\\
path 2—”;;////

path 3

in which
+ : coupling is feasible
- : coupling 1is infeasible

Table A.2. The feasible and infeasible couplings of the paths
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Appendix 2. The development of capital stock and investments on the two

master trajectories

First, we concentrate on master trajectory 1.

At T = 0 we make the following assumption:

o) > aKO

Combining this with (4) we get:
K(0) > 0

From (35) we obtain that on path 1 it holds:

ds ° du, *
K K = (1+ dI) I

From (53) and (54) we conclude that on path 1 it holds that:

K>O0

e

>0

Further, from appendix 1 we know that on path 3 it holds that:

I=0

The above is represented in figure A.l.

(52)

(53)

(54)

(55)

(56)

(57)
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Figure A.l. Development of K, I and aK on path 1 and path 3

pue to (6), (34), (48), (49), table A.l, the convexity of U(I) and the
continuity of y we can conclude that I must be continuous at ty3. So at
the end of path 2 (57) becomes applicable.

Let us assume that at the beginning of path 2 it holds that:

I>0 (58)
From (43) and (58) we derive:
du ds
(i+a) (1+ Ef) > K (59)

Due to (58), the convexity of U(I) and the concavity of S(KX), we can
conclude that (1+a)(l+-%%) increases and %% decreases (because K 1in-
creases). As (59) is still satisfied, I continues to rise. This brings
us to the conclusion that (58) holds on the entire path 2. Then, after a
while restriction (10) will be violated and it is also in conflict with
1 being zero at the end of path 2, so we have proved that (58) cannot

hold at the begin of path 2.

From the above, we conclude that at the beginning of path 2, it holds:

du ds

ET) < o (60)

(i+a) (1+
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Now there are four possibilities:

1.

2.

3.

ad 1.

ad' 2¢

ad 3.

ad 4.

(i+a)(1+ g%) < %% on the entire path 2

(1+a)(l+-%%) becomes equal to %% when I > ak

(i+a) (1+ %%) becomes equal to %% when I = akK

du ds
(i+a)(1+ dI) becomes equal to X when I < aK

Due to (43) we conclude that I < 0 on the entire path 2,

Due to (43) we conclude that I becomes equal to zero when T > aK.

Now the 1level of (1+a)(1+ %%) does not change and K increases
because I > akK. This implies that %% diminishes and according to

2 .
(43) we derive that (t+a)(1+-%%9 - Q_% I has to diminish too. So
dI
the level of I must change.
I has to diminish because when it starts to rise, it continues to
rise at the rest of path 2, which is in conflict with the fact
that (57) holds at the end of path 2. Moreover, restriction (10)

will be violated after a while.

Due to (43) we conclude that i = 0 when I = aK. This implies that
the levels of I and K do not change, so a stationary situation
arises which is in conflict with the fact that (57) holds at the
end of path 2.

This implies that (1+a)(1+ EHO < e when I = aK. Since then I has
du d1 dK

diminished so-af has diminished, and K has diminished so‘gg has

increased. This brings us to the conclusion that (i+a) (1+ %%)

can't become equal to g% when 1T < ak.



25

From the above we can conclude that I will diminish on path 2, but an
exception 1is possible: 1 can remain at the same level during a very
short period when 1 > akK.

Now we have proved figure 4.1l.

In the case of an infinite time horizon path 2 will be final path. Then
I cannot become equal to zero, so the only satisfactory possibility is
the third one (see figure 4.3).

Let us now concentrate on master trajectory 2.

So far, the following is known about the development of I, K and aK on

master trajectory 2 (figure A,2).

ANK, 1, aK
K
. K
!
|
A MK
aK aK | s |
' "“ akK
[\“»,
L — a | z _) time
path 3 t32 path 2 t23 path 3

Figure A.2. Development of K, I and aK on path 3

Due to (6), (34), (48), (49), table A.l, the continuity of U(I) and the
continuity of y we can conclude that T must be continuous at tg,. This

means that the following must hold:

-
for tay I>0 (61)

From figure A.2, we derive:
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&
for tyy ¢ I <0 (62)

Due to (25), (26) and (43) we can conclude that I is a continuous func-

tion of time on path 2.

Now, there are three possibilities:

1.

ad

ad

ad

2

I =0 when T < aK

-
"

0 when T = akK

I = 0 when | > akK

This means that depreciations are larger than investments during

path 2.

In this case a stationary situation arises, which is in conflict

with T being zero at the end of path 2,

This means that I > 0 when I = aK, so (due to (43)) (i+a)(1+-%%) s

ds du ds
K when I aK. Since then Fii has risen and i has diminished, so

this possibility cannot arise.

From the above, we can conclude that possibility 1 will occur, so we

have proved figure 4.2.

In the case of an infinite time horizon path 2 will be final path. Then

possibility 2 will arise, because I cannot become equal to zero (figure
4a4),
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Appendix 3. Derivation of the investment decision rule

During the whole planning period, it holds that:

Z o
W(T) = $(z) - [ p(1)dt (63)

T=t

After substituting (18), (19) and (22) in (63) for Al = Az = 0 it holds
that on path 2:

z
du, -iT -iz dS -1t
(1+ 5 = e + T£T (dK e —ay(t))dr (64)

After solving the differential equation (19) on path 2 and path 3 (AI-O)
and substituting in this solution the transversality condition (22) we
get:

—(i+a)z)

dt + e

z
§ite) = e2T( f e—(i+a)t %E. (65)

t=t

When we substitute (65) in (64) and differentiate this to time we get:

2 . i®

a1 81T, 92 Gt
d1
_ _.aT -(i+a)z _ dS -iT aT * -(i+a)t dS
= ae e 3K © + ae f e K dt (66)

t=T

4T

After substituting (43) in (66) and deviding this by ae =~ we obtain

that on path 2 it holds that:

Z
%% . e—(i+a)(z—T) P | e—(1+a)(t—T) ds

1 + aK

dt (67)
t=T

In appendix 2 we obtained that at the end of path 2 it holds that:

I1<0 (68)



28

From (43), (68) and the continuity in tyg of K and 1 we get:

— —
du ds
for t23 : (i+a)(1+ dI) <d_K (69)
From (57) we derive that on path 3 it holds that:
I=0 (70)
Due to (69), (70) and the fact that Ei rises on path 3 we can conclude
that on path 3 it holds that:
(iea) (e Sy ¢ & (71
dI dK

Due to the continuity of I and K on t;,, we can conclude that (60) holds
at the end of path 1. Also, we know that (56) holds on path 1. There-

fore, we can rewrite (46) as follows:

-(i+a) (1+ §D) + d—% 1>-$ (72)
drt

When we divide (67) by e(i+a)T we get:

(1+

duy ~(i+a)T _ ~(i+a)z fz ~(i+a)e ds oo (73)

1 o dK

After differentiating the left-hand and right-hand side of (73) to time

we get:
(i+a)T
a((l+ ) 3
aT = (= (i+a)(1+-——) + E_E rye (1+a)T P
dI
z
g 1IN, | LR g-i dt)
t=T _ _4ds e—(1+a)T Epui

oT dK
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Concerning master trajectory l, from (70) through (72), (74) and (75) we

can conclude that:
on path 1 it holds that:

au

~(Ha) (2T fz (1) (e-T) ds
a1

5 K

dt (76)
t=T

on path 3 it holds that:

¥4
U () (=T 7 S (e dS
T ... dK

(o (77)
Next, we want to know what happens to tlZ and tyy on master trajectory 1
when the planning period 1is extended. Therefore we differentiate the
left-hand and right-hand side of (67) to z:

21+
B (78

z
a(e—(i+a)(z-T)+ f e—(i+a)(t—T) %%-dt)

t=T
3z

-(i+a) (z-T)

ds

= (-(i+a)+ EE)e (79)
From (43), the fact that K reaches its maximum level on path 2 and the
fact that T < 0 on path 2, we can conclude that during the whole plan-
ning period it holds:

ds dU

K > (i+a) (1+ 11 (80)
Due to (79) and (80) we conclude that the derivative of the right—hand
side of (67) to z has a positive value. So, when the planning period is
extended (z becomes bigger), the right-hand side of (67) becomes bigger,
so T must be on a higher level when path 1 pas:ses into path 2. So, the
coupling moment of path 1 and path 2 has to be jostponed.
When the coupling of path 2 and path 3 takes place, T must be equal to
zero, so the left-hand side of (67) always ha: the same value at this

coupling moment. When z becomes bigger, the right-hand side of (67)
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becomes bigger. Due to the fact that the right hand side of (67) dimi-
nishes during the time, tos has to be postponed.

Finally, we concentrate on master trajectory 2.
Due to (43), the fact that I > 0 at the begin of path 2 and the conti-
nuity of K and I, it must hold that:

—_— —

du ds
for t32 : (1+a)(l+-aio > K (81)

Due to the fact that %% rises on path 3, we can derive that on path 3 it
holds that:

1]
(i+a)(1+ %) > -‘(% (82)

From (70), (74), (75) and (82) we can conclude that (77) holds on path
3w
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