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Abstract

This paper examines the effects of a convex adjustment cost function on

thi~ optlmal dynHmic~ ínvestment pulicy of a flrm with finnncial restríc-

tions. We assume that the management, which oper~~tes under decreasing

returns to scale, maximizes the shareholder's value of the firm. It

turns out that investments are a continuous function of time, that capi-

tal never keeps a stationary value and that there exists an unique opti-

mal investment decision rule for the firm.

The author would like to thxnk Prof. Dr. P..I.J.M. van Loon, Drs.

G..1.C.'th. van Schijndel and Prof. Dr. P.A. Verheyen for many fruitful

discussions and useful suggestions.
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1. Introduction

Surveys by Bensoussan, Kleindorfer á Tapiero (1978) and Feichtinger
(1982a, 1982b, 1985) excellently illustrate that many recent papers

using optimal control to solve dynamic models analytically, have

extended the theory of the firm. Those models provide insight into the
economic behaviour of firms over time.

One of the first dynamic models of the firm is the classical model of
Járgenson (1967). The problem with this model is that the resulting
optimal solution dictates an instantaneous adjutitment of the stock of
capital goods to the level of maximum revenue.
In the literature, two ways ín particular have been proposed to avoid
this unrealistic immediate adjustment. The first way is the introduction

of financing limits ín the dynamlc model of the firm. F.xamples of such

models are those of Leland (L972), Ludwig (1978) and van Loon á Verheyen
(1984).

The second way of getting a smoothed adjustment pattern is the introduc-
tion of adjustments costs as another aspect governing the dynamice of
the firm. Research into this subject has been conducted by e.g. Gould
(1968), Lucas (1967) and Treadway (1969). The article by Sáderstróm
(1976) contains a good survey of the theory of adjustment costs.
In this contribution we wíll analyse the tmpact of coupling financing
and adjustment costs on the optimal policy within a really dynamic model
of the firm. Section 2 contains a global survey of the theory of adjust-

ment costs; in section 3 we will present our dyn;~mic model of the firm.

In this model we have incorporated both financin}; limits and adjustment
costs. Section 4 contains a description cind f~~rther analyais of the
optimal solutíon, which is proved in Append[x l. l.n Appendix 2 we derive
the development of investmentK nnd capital durín,; two optlmal trajecto-

ríes and in Appendix 3 we give the derivatlon of an investment decislon
rule.



2. The theory of adjustment costs

Adjustment costs arise with investment expenditures of [he firm. In the

lí[erature, a distinction is made between external adjustment costs (in-

vestment expenditures) and internal adjustment costs (seize on available

productive inputs) (Brechling (1975)).
External adjustment costa apply to a monopsonistic market of capital
goods: if the firm wants to increase its rate of growth it will be con-
fronted with íncreasing príces on the market because of its increased
demand of capital gooda. Other examples of external adjustment costs
are: architects' fees, expenditures on job advertisements and costs of
moving, new employees.
Internal adjustment coats arise because the acquisition of additional
capital and~or labour requirea resources which could otherwise be used
for the production of output. For instance, a firm may have personnel
and training departments which are adequate for regular replacement of
quits and retirements. Suppose the firm now wiahes to raise its level of
employment by hiring more people. In consequence more capital and labour
have to be invested in both these departmente. With given total inputs
the level of output muet, therefore, fall.
Inatallation cos[s and organisation coats are other examples of internal
adjustment costs.

We can consider three different shapes of the adjustment cost function
as given in figure 2.1. it is always assumed that the first derivative
of the cost of adjustment function is positive. The question is whether
there are constant, increasing or decreasing costs compared to the rate
oE adjustment. In accordance with standard terminology, costs of adjust-
ment in these three cases will be called linear, convex and concave
(S6derstrGm, 1976).
The curvature of the adjustment cost function could have an impact on
the optimal investment policy of [he firm. If the cost of adjustment
function is convex, marginal adjustment costs are increasing with in-
vestment expenditures. Therefore, the total cos[ of raising capital
stock by a gíven amount will be larger the faster the growth of capital
stock, and hence the Eirm will tend to adjuat it slowly.
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Figure 2.1. The curvature of the adjustment cost func[ion

Concave adjustment cost functions imply declininq mar~inal costs. The
firm's policy would be to take advantage of decreasing costs of invest-
ment and raise its capital stock instantaneously.
As linear adjustment costs imply only a rising Ftrice level of the in-

vestments, its impact on the firm's investment polícy is obvious.

In the literature, most dynamic models have incorporated a convex cost
of adjustment function, but other types of adjust~nent cost functions can
also be considered (Rothschild, 1971).



4

3. The model

We first assume that the firm behaves as if it maximizes the share-
holder's value of the firm. This value consists of the sum of the
present value of th~~ dividend stream over the planning period and the
present value of fin.~l equlty at the end of the planning period, so:

z
maximize: f D(T)e iTdT f X(z)e-iz

T-0

in which
D(T) ~ dividend

X(T) - equity

T ~ time

i a discount r:~te

z z planning horizon

(1)

Assuming that the firm wtll attract only one kind of money capital:
equity and has one production factor: capital goods, we get the balance
equation:

K(T) - X(T) (z)

in which
K(T) a total amount of capital goods

We further assume that c~arnings after deduction of depreciation and
adjustment costs are used to issue dividend or to increase the value of
equity through retained earnings.
As far as the adjustment c-oste are concerned, we assume that they are a
convex function of investments. Also, we assume that the firm operates
under decreasing returns to scale and that depreciation is proportional
to capttal goods. 'I'he al,ove results in the next atate equ~tion of
equity:

X:~ áT s S(K) - aK(T) - U(1) - D(T) (3)
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in which 2
S(K) - earninRs, S(K) ~ 0, áK ~ 0, a2~ 0

dK
2

U(I) - adjustment costs, U(I) ~ 0, dÍ ~ 0, a2 ~ 0, U(0) ~ 0
dI

I(T) - gross investments
a - depreciation rate

The impact of investments on tlie production str~~cture is described by
the, now generally used, formulation of net investments:

K :- dT - I(T) - aK(T)

max Jz (S(K)-I(T)-U(I))e-iTdT t K(z)e-1z
I T-0

As far as its dividend policy is concerned, we assume that the firm is

allowed to pay no dividend, so:

D(T) ~ 0

Investments are irreversible, so:

I(T) ~ 0

A[ last, we assume a positive value of capital go~~d stock at T a 0:

K(U) - K~ ~ 0

s.t.

After some simplifications, we get the followin}~, dynamic model of the
Fírm:

(4)

(5)

(6)

(7)

(8)

K - I(T) - aK(T) (9)

S(K) - I(T) - U(I) ~ 0 (10)
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I(T) ~ 0 (11)

K(0) a Kp (12)

This model can be solved analytically by using optimal control theory
(Kamien 5 Schwartz (1983)), where the state of the syatem is described
by the amount of capital goods and is controlled by investments. The aim
of this control is to reach a maximum value of the objective function.
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4. The optimal soliition

We obtain necessary and sufficient conditions fnr an optimal solution
using PontryaRin's standard maximum princ:iple. Next, we apply the
general solution procedure of van Loon (1983, p~~. 115-117) to get the
optimal trajectories of the firm (see Appendix 1).
Each trajectory consists of one or more feasible paths, which are cha-

racterized by dif.ferent policies concerning investment expenditures and
dividend payments. In our problem the set of fea~ible paths amounts to
three:

path I D

1 max 0
2 ~ 0 ~ Il

3 0 max

Tabel 4.1. Features of the feasibl~ paths

Depending on the values of K~ and z, we get diffc.rent optimal trajecto-
ries. Here we will demonstrate two of them, represented in figure 4.1

and 4.2 and derived in Appendix 2. The other patt~~rns are subsections of
these two solutions.

Concerning figure 4.1, we have to remark that tl,e way I diminishes on

path 2 depends completely on specific features of S(K) and U(I). So,
when S(K) and U(i) are not specified, we do not know whether the slope

of ( lncreases, decre~ses ur remalns conr,tant ~~n thís path. Withou[
theae features of S(K) and U(I) we do not have insight ínto the way I
rises on path 1 ei[her.

First, we concentrate on master trajectory 1, which is repreaented by

figure 4.1. On path 1, the next inequality holds (see Appendix 3):

dU -(i~-a)(z-T) z -(ita)(t-T) dS
1 f áI ~ e t J e áK dT (13)

t-T
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0 path i t12 path 2

Figure 4.1. Development of I, K, and aK on master trajectory 1

I

~ I !' ~--

0 path 3 t3z path 2

Figure 4.2. Development of I, K and

1- "-~tímeZ
t23 path 3

t23 path3Z~ time

aK on master trajectory 2
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The left-hand side of this expression represents an investment expendi-

ture including adjustment costs, at the right-hanci side we find the mar-
ginal earnings of investments, conaisting of the present value of the

remaining new equipment at the end of the planning period (the value of
the new equipment decreases with a rate a during the rest of the plan-

ning period) plus the preaent value of additional ealea over the whole
period due to this new equipment (the production ~~apacity of this equip-

ment decreases with a rate a during [he rPat of the planning period).

Expression (13) means that on path 1, marginal e:irninga exceed marginal

costs of investment expenditures. Therefore, tlie firm invests at ita

maximiun level, i.e. that leve] which is feasible considering the finan-

cial restrictions, so it dces not pay out any dividend and all earnings
are spent for investing.

At t12 this strategy stops, because marginal earnings become too small

(dK decreases when K rises) to finance the risin~; adjustment costs (dI
rises when I rises). Therefore on path 2 investmenta are kept on auch a
level that marginal earnings equals marginal costs, so the next equation

must hold:

1} du L è(ifa)(z-T) } Jz é(ifa)(t-T) dS dt (14)dI t~T dK

This implies decreasing investments and increasing capital stock until I

falls below the depreciation level. From this very moment K will also
drop. Just when investments become zero, path 2 passes into path 3. This

transition is fixed by the moment that the next expressíon becomes

applicable:

1} dU ~ é(ita)(z-T) } r z é(ita)(t-T) dS dt (15)dI t1-T dK

The inequality siiows us that the margínal costti of investments exceed

the marginal earnings on path 3. This is c~.aused by the fact that from

t23 on the remaining time period is too ahort to defray the adjustment

costs of new investments. Therefore, the firm does not inves[ anymore on
path 3.
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A noteworthy polnt ie th~~ con[inuity of I. Larger values of I imply
rising marginal adj~istment costs because of the convex ad justment cost
function. Therefore, adjustment costs are minimized as much as possible
íf I develops gradually over tíme.

Another interesting feature is the way in which this pattern will change
when the planning period is extended. If z is fixed upon a higher value,
then t12 as well as t23 will be postponed (see Appendix 3). In the case
of an infínite time horiz~~n expreasion (14) continues to hold from t23
on, so path 3 disappears c~impletely. This is easy to understand, because
now there is always enougl~ time to clefray the adjustment costs. On path
2, K will approach a ata[t~~nary value~ asymptotícally (fiqure 4.3). Neri~,
the influence of [he convex adjustment cost funetion becomes clear; the
optimal value of capital good stock will not be reached within a finite
time period, because it ís always cheaper to split up the final adjust-
ment into two parts.

On master trajectory 2(fit;ure 4.2), K~ is so large (this means [hat dK
is low) that expression (15) holds at T~ 0 for all possible values of
dU ~ This im lies that investments are zero and ca italdI P p good stock de-
creases. At t32, dK has risen enough for expression (14) to become
applícable. From this very moment I starts to rise, but tt never reaches
the depreciation level, s~ K still decreases. At t23 the remaining time
period ís again too short to defray the adjustment costs of new invest-
ments. This means th~t I b~~comes zero again.

In accordance to master trajectory 1 path 2 will be final path on master
trajectory 2 when the time horizon is infinite. In this case capital
good s[ock will approach its stationary value asymptotically from above
(figure 4.4).



11

L
I
I

0 path 1 t12

~

path 2

Figure 4.3. Master trajectory 1 in the case of an infinite time horizon

KO

aK

~K
~~.-----~--------

0 path 3 32 path 2 ---~ t ime

Figure 4.4. Master tra,jec[ory 2 in the case of an infiníte time horizon
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5. Summary

In a dynamic model of the firm we have incorporated financing and a con-
vex cost of adjuatment function. We derived the optimal trajectories of
the firm by applying Pontryagin's standard maximum principle and the
general solution procedure of van Loon. Some striking characteris[ics of
the optimal solution are the continuity of investments during the plan-
ning period and the absence of a stationary value of the capital good
stock. We have also deríved an investment decision rule that explains
the optimal policy of the Eirm hy comparing marginal earnings and mar-
ginal costs in the succeeciing atages of the fírm's evolution. With the
help of this rule we fix the moments on which the firms policy has to be
changed fundamentally and we díscuss the relation between these moments
and the length of the planning period.
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Appendix 1. Derivation of the optimal solution

We apply Pontryagin's standard maximum princtple to obtain the necessary
and sufEicient conditions.

Let the Hamiltonian be:

H - (S(K)-I-U(I))e-iT t ~,(I-aK)

and the Lagrangian:

L~ H t at(S(K)-I-ll(I)) -~ aZI

in which:

(16)

(17)

y~ .- adjoint variable or co-atate variable which denotes the
marginal contribution of capital good stock to the per-
formance level

1`j :- dynamic Lagrange multiplier representing the dynamic
'shadow price' or 'opportunity costs' of the j-th res-

triction

then the necessary conditions are:

6I - -(lf áÍ)(e-iT}zl) } ~ } ~2 ~ U

-y - áK (e-iT~~l) - a~

al(S(K)-I-U(I)) ~ 0

(18)

(19)

(20)
} complementary slackness conditions

a2I - 0 (21)

-iz~y(z) - e (transversality condition) (22)

~y s continiious with piecewise co~~tinuo~is derivativea (23)

~r,a : continuous on intervals of continuity of I (24)
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K . conti~~uous

I : piece~~ise c~~ntinuous

(25)

(26)

As xoptimal i s conca~e in (K,I) and the functions S(K) - I- U(I) and I
are quasi-concave in (K,I), these conditions are also sufficient (Van
Loon, 1983 (pp. 105)l.

Next, we can apply Van Lnon's general solution procedure in order to
transform these conc~itions into the optimal trajectories of the firm.
These trajectories consiet of different paths, which are each of them
characterized by the set oE active constraints. The properties of these
paths are presented hy tab~~l A.1.

path ~1 ~2

1 f 0

2 0 0

3 0 t

4 f t

Table A.1. The different paths

We will prove that pnth 4 is infeasible:
From table A.1, (20) and (?1) we conclude that on path 4:

S(K) - I- U(I) s 0 (27)

I~ 0 ~ U(I) ~ 0 (28)

From (27) and (28) w~~ obtatn:

S(K) - 0 i K s 0

But, ( 4), (6) and (7) imply that:

(29)
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K ~ 0 (30)

conclusion: path 4 is infeasible

To find the optimal trajectories of the firm, we ~;tart at the time hori-
zon z and go backwards in time. According to this strategy we first
select all final paths. In order to find these paths, we substitute the
transversality condition (22) in (18) for T z z:

-(lf ai)(éiz}~}~ } é iz }~2 ~ 0 (31)

From t}iis, we can conclude tliat on a final ~iath it muat hold that:

a2 ~ 0 (32)

From (32), we conclude tliat only path 3 is a feasible final path.

Next, we start a coupling procedure to complete the optimal trajec[o-

ries. The essence of coupling two paths is to tc~st whether such a cou-

pling will or will not violate [he continuity ~~roperties of the state

variables and the co-state variables. In our model, this means that K

and ~y have to be continuous.
As an example of a feasible coupling we wiLi prove that path 1 can pre-

cede path 2.

First, we derive the necessary conditions for th~~ continuity of ~. From

(18) and table A.1 we Ket:

On pat}i 1 lt holds that:

~y - (1-~ ái)(e-iT}~l)

On path 2 tt holds tha[:

~ - (1} ddÍ)eiT

(33)

(34)

From (10), (20) and table A.1 we derive:
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On path 1 it holds t~iat:

S(K) ~ I f U(I)

Qf, path 2 it holds that:

S(K) ~ I i- il(I)

Because K has to be continuous and S(K) ís a continuous function of K,
we conclude from (35), (36) and the convexity of U(I):

i t-i f
for t12 : I~ I (lt áI) ~(lt áI)

(tlZ is the coupling moment of path 1 and path 2. An arrow to the right
(left) indicates the left (right) side limít of the relevant variable at
the relevant point or time.)

From (33), (34), (3') and table A.1 we derive the following necessary
conditions for the c~,ntinutty of ~:

I must be c„ntinuous at t12

al must be continuoua at t12

(35)

(36)

(37)

(38)

(39)

Next, we check if K~.an be continuous when (38) and (39) must hold. When
we differentiate (33~ to tlme it holds that on path 1:

2 .
dI2

I(e--iT}al) - ie-iT(lt dÍ) f al(1~- áÍ) (40)

From (19) and table n.l we obtain that on path 1 it holds tha[:

~ - a~ - ~ (e-iT}~1) (41)

After substituting ("t3) and (40) in (41) we get:
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2 .
((ifa)(lf áÍ) - áK - a2 I)e it -

dI

2 .
(-a(lt áÍ) } áK t a 2 I)~1 } Z 1(1} áÍ)dI

Analogous to the above, we can derive that on pat~i 2, it holds that:

(ita)(If dI) - dK -
d2U ~
dI2

I 3 0

From (39) and table A.1 we obtain:

-i

~1(t12) ~ U

~

~1(t12) t 0

(42)

(43)

(44)

(45)

Due to (42), (44) and (45) we get that at the end of path 1, it holde

that:

2 .
(ifa)(lt dÍ) - dK - d 2 I~ UdI

(46)

2
From ( 38), (43) and ( 46), the continuity in I of {Í and `~2 and the con-

dI
tinuity i n K of áK we conclude that a necessary condition of the conti-
nuity of K is:

Eor t12 : I ~ I (47)

So, the coupling path 1-path 2 is feasible, íf ttie necessary conditions
(38), (39) and (47) hold.

Next, we show an example of an ínfeasibl~~ cout~ling. We try to couple
path 1 to path 3. From (18), (21) and table A.1 we derive that on path 3
it holds that:
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~ - (lt ddi)~-iT - ~2

I - 0

(48)

(49)

Due to (33), (35), ( 48), (49), table A.1 and the convexity of U(I) we
conclude tha[ ~y is continuous if:

I, al and a~ are continuous on t13 (50)

Due to (35), (49) and (50) we derive that at the end of path 1 1[ holds
that:

S(K) - I f U(I) ~ 0 i K- 0 (51)

This is in conflict with (30), so the coupling path 1-path 3 is infea-
sible.

Table A.2 gives us ,i survey of the feasible and infeasible couplings.
From this table we c~n derive the following possible trajectories:

path 1- path 2- path 3(master trajectory 1)

path 3- path 2- path 3(master trajectory 2)

path 2 - path 3

pa[h 3

Depending on the value of ICD and the length of the planning period one
of these trajectories ia optimal.
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path 1
path 2 `` ~-path 3

in which

path 1 t

path 3

,'
`path 2 ~

f : coupling is feasible

- : coupling is infeasible

Table A.2. The feasible and infeasible coupltngs of the paths
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Appendix 2. The development of capital stock and investments on the two
master trajectories

First, we concentrate on master trajectory 1.
At T 3 0 we make the following ass~ption:

I((l) ~ aK~

Combining this with (4) we get:

K(0) ~ 0

From (35) we obtain that on path 1 it holds:

dK K - (lt áÍ) I

From (53) and (54) we conclude that on path 1 ít holds that:

K ~ 0

Further, from appendix 1 wc~ know that on path 3 it holds that:

I s 0

The above is represented in figure A.1.

(52)

(53)

(54)

(55)

(56)

(57)
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aK0
aK,

-~-'

~ aK
~-

I

0 path 1 t12 path 2 t23 patls? time

Fi.gure A.1. Development of K, I and aK on path 1 and path 3

Due to (6), (34), (48), (49), table A.1, tlie convexity of U(I) and the

continuity of ~ we can conclude that I must be continuous at t23. So at

the end of path 2(57) becomes applicable.
Let us assume that at the beginning of path 2 it holds that:

From (43) and (58) we derive:

(ita)(lt dI) ~ dK

(58)

(59)

Due to (58), the convexity of U(I) and the concavity of S(K), we can
conclude
creases).
us to the

that (1-~a)(lt áÍ)
As (59) i s still

increases and áK decreasea (becauae K in-
satisfied, I contínues to rise. This brings

conclusion that (58) holds on
while restriction (10) will be violated

I being zero at the end oE path 2, so

hold at the begin of path 2.

the entire path 2. Then, after a
and it i5 also in conflic[ with
we have proved that (58) cannot

From the above, we conclude that at the beginning of path 2, it holds:

(ita)(lt dÍ) t áK (60)
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Now there are four possibilities:

(ita)(lf dÍ) ~ dK on the entire path 2

2. (ifa)(lf áÍ) becomes equal to dK when I~ aK

3. (ita)(lf ái) becomes equal to áK when I- aK

4. (ifa)(lf dÍ) becomes equal to áK when I~ aK

ad 1.
Due to ( 43) we conclude that I~ 0 on the entire pat}i 2.

ad 2.

ad 3.

Due to (43) we conclude that I becomes equal to zero when T~ aK.
Now the level of (lfa)(lt áÍ) does not change and K í ncreases
because I~ aK. Thi:; implies tha[ áK diminishes and according to

2
(43) we derive that (ita)(lt dÍ) - a2 I has to diminish too. So

dI
the level of I must change.
I has to diminísh because when it starts to rise, it continues to
rise at the rest of path 2, which is in conflict with the fact
that (57) holds at the end of path 2. Moreover, restric[ion (10)
will be violated after a while.

Due to (43) we conclude that I- 0 when I~ aK. This implies that
the levels of I and K do not change, so a stationary situation
arises which is in conflict wíth the fact that (57) holds at the
end of path 2.

ad 4.
This ímplies that ( ]ta)(1-} dI) ~ dK when I-
diminished so áÍ has diminished, and K hasd

aK. Since then I has
diminished so áK has

the conclusion
can't become equal to áK when i~ aK.

increased. This brings us to that (ifa)(lt áÍ)
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From the above we can conclude that I will di-minísh on path 2, but an

exception is possible: i can remain at the same level during a very

short period when I~ aK.

Now we have proved Eigure 4.1.

In the case of an infinite time horizon path 2 will be final path. Then

I cannot become equal to zero, so the only satisfactory possibility is

the third one (see figure 4.3).

Let us now concentrate on master trajectory 2.
So far, the following is known about the development of I, K and aK on

master trajectury 2 (fiRure A.2).

K, 1, aK

KQ

~aK
~`

I

I
~ ~ ~~~,, r ,, . ~

~ ~
I aK ~

1 --
1 ~L

z ~ t ime
path 3 t32 path 2 t2j ,path 3

Figure A.2. Development of K, I and aK on path 3

Due to (6), (34), (48), (49), table A.1, the continuity of U(I) and the

continuity oE ~ we can cnnclude that i muRt be e-nntinunus at t32. This

means that the following must hold:

f

for t32 : I ~ 0 (61)

From figure A.2, we derive:
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;

for t23 : I ~ 0

Due to (25), (26) and (43) we can conclude
tion of time on path 2.
Now, there are three possibilities:

1. I z 0 when I~ aK

2. I- 0 when I s aK

3. I s 0 when I~ aK

ad l.

This means that depreciattons
path 2.

(62)

that I is a continuous func-

are larger than investments during

ad 2.
In this case a stationary situation arises, which is in conflict
with I being zero at the end of path 2.

ad 3.
This means that I~ ~ when I- aK, so ( due to (43)) (ifa)(lf dU) ~
dS dU dS dI
dK when I ~ aK. Since then aI has risen and aK has diminished, so
thís possibility cannot arise.

From the above, we can conclude that possibility 1 will occ~ir, so we
have proved figure 4.2.

In the case of an infinite time horizon path 2 will be final path. Then
possibility 2 will arise, because I cannot become equal to zero (figure
4.4).
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Appendix 3. Derivation of the investment decision rule

During the whole planning period, it holds that:

z .
V~(T) - V~(z) - f V~(r)dt

T-t
(63)

After substítuting ( l8), (19) and (22) in (63) Eor al ~ a2 ~ 0 i[ holds
that on path 2:

(1} áII)e-iT a éiz } r- (áK éir-a~(T))~IT (64)
r 1aT

After solving the dif[erentia] equation (19) on prrth 2 and path 3(ala0)
and substituting in this solution the transversality condition (22) we
get:

z
J~(t) - eat( J e-(ita)t dY dt t e-(ifa)z)

t-r
(65)

When we substitute (65) in (64) and dífferentiate this to time we get:

2
-i(lt áÍ)é iT } d ~ ÍéiT a

di

aT -(ifa)z dS -iT aT z -(i;-a)t dS- ae e - dK e f ae J e áK dt (66)
tvT

After substituting (43) in ( 66) and deviding t}iis by ae-iT we obtain
that on path 2 it holds that:

1 t dU - é(ifa)(z-T) } z é(ifa)(t-T) dS dt
di t~T dK

In appendix 2 we obtained that at the end of path 2 it holds that:

(67)

I ~ 0 (68)
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From (43), (68) and the continuity in t23 of K and I we get:

for t23 : (ifa)(lt dI) ~ dK

From (57) we derive that on path 3 it holds that:

I ~ 0

(69)

(70)

Due to (69), (70) and the fact that áK risea on path 3 we can conclude
that on path 3 it holds tliat:

(i-ta)(lf dI) ~ dK (71)

Due to the continuity of 1 and K on t12, we can conclude that (60) holds
at the end of path l. Also, we know that (56) holds on path 1. There-
fore, we can rewrite (46) as follows:

2 .
-(ifa)(1-F ~) f d2 I ~- dKdI

When we divide (67) by e(ifa)T we get:

(72)

(lt ái)e (ita)T - é( ífa)z } rz é(ifa)t áK dt (73)
t13T

After differentiating the left-hand and right-hand side of (73) to time
we get:

dU -(íta)Ta((lt áI)e
)~(-(ifa)(lf d11) } dZU Í)e(ita)T (74)8T dI dI2

za(e-(ifa)z} J é(ifa)t dS dt)
t-T dK as -(ifa)T

3-dKe (75)8T
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Concerníng master trajectory 1, from (70) througl~ (72), (74) and (75) we

can conclude that:

on path 1 it holds that:

1} dU ~ é(ifa)(z-T) } z é(ita)(t-T) dS dtdI tJT dK

on path 3 it holds that:

(76)

1} dU ~ é(i-~a)(z-T) } fz é(it:i)(t-T) dS dt (77)
dI t~T dK

Next, we want to know what happens to t12 and t23 on master trajectory 1
when the planning period is extended. Therefore we differentiate the
left-hand and right-hand side of (67) to z:

8(lt dI)
aZ - ~

a(e (ita)(z-T)} Jz é(ifa)(t-T) dS dt)áKt-T
az

(78)

- (-(ita)t áK) e-(ita)(z-T) (79)

From (43), the fact tha[ K reaches Lts maximum level on path 2 and the
fact that I t 0 on path 2, we can conclude thal during the whole plan-

ning period it holds:

dK
a (ii-a)(If áÍ)

(80)

Due to (79) and (80) we conclude that the derivative of the right-hand

side of (67) to z has a positive value. So, when the planning period is

extended (z becomes bigger), the right-hand sidc of (67) becomes bigger,

so I must be on a higher level when path 1 pas::es into path 2. So, the

coupling moment of path 1 and path 2 has to be ~~oatponed.

When the coupling of path 2 and path 3 takes place, I must be equal to

zero, so the left-hand side oE (67) always ha; the eame value at this

coupling moment. When z becomes bigger, the right-hand side of (67)
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becomes bigger. Due to the fact that the right hand side of (67) dimi-
nishes during the ttme, t23 has to be postponed.

Finally, we concentrate ~n master trajectory 2.
Due to (43), the fact that I~ 0 at the begin of path 2 and the conti-

nuity of K and I, it must hold that:

for t32 : (ifa)(lf dI) ~ dK (AI)

Due to the fact that áK rises on path 3, we can derive that on path 3 it
holds that:

(ifa)(lf di) ~ ~1K (82)

From (70), (74), (75) and (82) we can conclude [hat (77) holds on path
3.
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