

7626
1988
360

CONSTRAINTS IN BINARY SEMANTICAL NETWORKS

Shan-Hwei Nienhuys-Cheng

FEW 360

CONSTRAINTS IN BINARY SEMANTICAL NETWORKS

Shan-Hwei Nienhuys-Cheng
Infolab, Tilburg University
P. O. Box 90153,5000 LE Tilburg, the Netherlands

Abstract

Constraints in Information Systems are used to check the correctness of data, preventing redundant data. In this way there shall be more structure in the information system. The ideas and examples of constraints are originated from RIDL language ${ }^{1,2,3}$. This article intends to give a more formal approach to the constraints and their language. We use the concept "relation" to interpret roles and paths in semantical networks and to build up constraints. We divide the constraints in two kinds: declarative and non-declarative. The second kind is more powerful than the first.

I INTRODUCTION

1 What is a binary semantical network?

Suppose we want to make some information analysis of certain things in the real world, especially classification, structures and mutual relations. For example, a group of people, some conferences, the people who attend or organize the conferences, etc. are what we are interested in. We have to choose a method to approach this problem, for example, the method of binary semantical networks according to NIAM. In fact, the work of De Troyer et al. ${ }^{4}$ is dedicated to the design of such a network. We shall call it CRIS. It is based on the test model for conference organization given by IFIP in 1982. We are also going to use this design for our examples in constraints in this article. We shall give an introduction to this theory here. There are a few important concepts and terminologies in the binary semantical network:
Important concepts are NOLOT (non-lexical object type) and LOT (lexical object type). These concepts are made more clear by considering their difference. We discuss this distinction using the example of an imaginary IFIP conference in June 1992 (one of a number of different conferences), and an attendant of this conference, L. G. Jansen (one of many people). Both these entities are real and unique, even though almost any data about them can change. The whole point of maintaining an information system on this conference is to keep track of the copious amounts of change in data concerning this event.
All data of L. G. Jansen can change as well, for instance her name can turn out to be misspelled, or she can become L. G. Wouters-Jansen. The information system wants to mirror the structure of the real world, and therefore it will contain something that corresponds to these unique entities, abstracted from any properties or characteristics they might have at any given moment.

In the design phase we may think of a real person, with black hair and a smile with a dimple, but when it comes to implementation we make the system (or the computer) think of a unique system identifier (surrogate). Sets of such real world entities (or their intemal counterparts in the system) we call NOLOTs. Their characteristics like names, dates, amounts of money, addresses, etc. are collected in LOTs.
The system has two kinds of relations: relations between two sets of the real world entities (NOLOTs) and relations between a NOLOT and data about some characteristics (LOTs).
So if Ms Jansen attends the conference mentioned, this will be expressed as part of a relation between two elements, of NOLOTs person and conference. There certainly will not be any direct relation between Ms Jansen's name-string "Jansen L G" (an element in LOT person_name) and the conference identifier "IFIP92june" (an element in LOT conf id).
The distinction between a LOT and a NOLOT is important when we design and implement a semantical network. This article is about constraints which are established after the design. We treat a LOT and a NOLOT almost the same way when we classify and define the constraints. However, in the implementation of a NOLOT, the elements are represented by system identifiers or surrogates. The identifiers are distinct and they are generated by the system. They are not directly changeable by users. We use symbols like \#1, \#2, etc. to represent these identifiers.

A diagram is often used to express a binary relation. For example, see Fig. 1.

Fig. 1 Typical diagram for a relation.
We can read such a diagram in two ways:

> person with person_name
> person_name of person

Notice a NOLOT is expressed in solid circle and a LOT is expressed in a dotted circle. The two rectangles are used symbolically to represent a table and this table gives a binary relation. The left column of the table has the name with and the right column has the name of. We call these columns roles. They are also coroles of each other. The table can have for example the following contents at a certain moment:

with	of
\#1	Jansen L G
\#2	Koffman M
\#3	Jansen L G

Note that the same name occurs twice, apparently it belongs to different persons. Although a role means originally a column, we can think of a role as a set of pairs, namely:

```
of \(=\{(\# 1\), Jansen L G), (\#2, Koffman M), (\#3, Jansen L G) \}
with \(=\{(\) Jansen L G, \#1), (Koffman M, \#2), (Jansen L G, \#3) \}
```

We can see that an object type contains some elementary data and a role contains pairs of such data.
A design of a binary semantical network can be expressed by a diagram which is the combination of some simpler diagrams like the one above. Such a diagram tells how all object types are
related to each other by roles and it is called a graphical representation of a conceptual scheme of a semantical network. We say for short conceptual scheme. We present such a conceptual scheme in the end of this article. This scheme is called CRIS because it is originated from the scheme in CRIS ${ }^{4}$.

2 What are the data types and the permissible operations on the data types?

We distinguish a few data types: strings, numbers and sets. Elementary data are data that are allowed in a LOT or a NOLOT. A LOT consists essentially of numbers only or of strings only. The elements of a NOLOT are essentially different. As we are interested in the abstract theory, we consider elements of NOLOTS temporarily as strings. In a practical situation we can always distinguish more types. Sets are homogeneous: they either consist of strings only, or numbers only, or they consist of pairs of coordinates where the first coordinates (and the second coordinates) are homogeneously all numbers or all strings. Roles are considered as sets of pairs. Operations on numbers, strings and sets are the usual ones: arithmetical and relational operators for numbers, lexicographic comparison for strings, set operations like intersection, union, difference, membership for sets. It is possible to refine "number" into integer, real, also to refine string type by adding a new type "date", but for the time being we keep it simple.

3 What are constraints?

We have to have certain restrictions in inserting, changing or deleting data in a semantical network. We call such restrictions constraints. For example, if a conference begins on a date and ends on another date, we expect that the end is not earlier than the beginning. If we give the computer an instruction to check such requirements every time when there is an updating, then a constraint is built into the semantical network. What the computer should do if the check fails, is an implementation detail that does not concern us now. Here we merely classify the constraints.
The same classification and definitions can lead to different designs of constraint languages and a design can be influenced by personal taste and practical use. The grammar (see appendix) and the examples which we give in this article show only one such possibility. In fact, the ideas of the constraints are originated from the original RIDL language ${ }^{1,2,3}$. This article intends to give a more formal approach to the constraints.
Constraints can be represented in three ways: graphically, declaratively and non-declaratively. These three ways are listed here in order of increasing power. In our discussion we will sometimes mention the graphical representations for illustrative purposes. The CRIS scheme contains also examples of graphical constraints.

Constraints can be defined by boolean expressions because a constraint is a boolean expression which should be true all the time. According to the kinds of constraints, we distinguish between declarative boolean expressions and non-declarative boolean expressions. The declarative boolean expressions have standard forms and they are designed to express some declarative constraints. On the other hand, a non-declarative boolean expression uses logical operators, mathematical manipulations, etc.
We divide this article into 11 chapters. The following chapter (II) is about some basic mathematical concepts with respect to relations. The chapters III to X are devoted to the declarative constraints. We discuss the constraints in chapter IV-VII only for the situations of one path or two paths. The readers can generalize them to the general situation of n paths with $n \geq 1$. Chapter XI is about non-declarative constraints.

4 Notes on the appendices and implementation.

To try out the syntax of the language we have written a YACC-program for the UNIX-system ${ }^{5}$. This program consists essentially of a grammar and associated actions. We have given the grammar without actions in the appendix. The YACC program interfaces with a LEX program which scans the input and returns the tokens. For determining the tokens we need also some other programs to interface with the conceptual schemes of a semantical network. The LEX and other programs are left out of the appendices. The graphical conceptual scheme of CRIS is also given in the appendix. The graph takes a few pages (C1-C4) and some pages have things in common. In this way you can look up things from one page to other pages via the common part. This graphical representation is transferred by the program RIDL_G, written by my colleagues, to the usual concept scheme.

II RELATIONS AND PATHS

We introduce a system to discuss states of roles, object types and their constraints. We start with basic mathematical concepts.
1 Definition. A relation f from a set A to a set B, denoted by

$$
f: A \rightarrow B
$$

is a subset of the Cartesian product $A \times B$. We can then define the following concepts with respect to f.

$$
\begin{aligned}
& \operatorname{source}(f)=A, \\
& \operatorname{target}(f)=B, \\
& \operatorname{support}(f)=\{x \in A \mid(x, y) \in f\}, \\
& \operatorname{range}(f)=\{y \in B \mid(x, y) \in f\}, \\
& f(U)=\{b \in B \mid \exists a \in U \text { such that }(a, b) \in f\} \quad \text { for } U \subset A, \\
& f^{-1}=\{(x, y) \mid(y, x) \in f\} .
\end{aligned}
$$

We call f^{-1} the inverse of f. If $(x, y) \in f$, then x is an original of y and y is an image of x. If y is the only image of x, then we can use $f(x)$ to denote y. So we have in this situation $\{f(x)\}=f(\{x\})$.
2 Interpretation. In a semantical network, a state of a role from an object-type A to an objecttype B is in fact a relation from A to B. The corole is just its inverse. For example, we consider the diagram and the table in section 1 of chapter I. It means that we have the following two relations:

$$
\begin{gathered}
\text { of : person } \rightarrow \text { person_name } \\
\text { with : person_name } \rightarrow \text { person }
\end{gathered}
$$

These two roles are inverses of each other. In this example it is clear which role we mean when we only use the name of the role. In a semantical network there are many roles with the same role name. However, we assume that a role will be uniquely defined if the object types on both sides are given too. Thus we use often the following kind of expressions:

```
person_name of person ({#1})={Jansen L G }
person with person_name ({Jansen LG})={# 1,# 3 }
```

3 Definition. A path is a composition of known relations, hence also a relation. Given $f_{1}: A_{1} \rightarrow A_{2}, f_{2}: A_{2} \rightarrow A_{3}, \ldots, f_{n}: A_{n} \rightarrow A_{n+1}$, we can define the composition $f_{n} f_{n-1} \cdots f_{1}$ of $f_{1}, f_{2}, \ldots, f_{n}$ as the relation f from A_{1} to A_{n+1} with the following property:

$$
\begin{aligned}
& (x, y) \in f \Leftrightarrow \\
& \text { there exist } z_{2}, z_{3}, \ldots, z_{n} \\
& \text { such that }\left(x, z_{2}\right) \in f_{1},\left(z_{2}, z_{3}\right) \in f_{2}, \ldots,\left(z_{n}, y\right) \in f_{n} .
\end{aligned}
$$

We denote this composition sometimes in the following way:

$$
f_{n} f_{n-1} \cdots f_{1}: A_{1} \rightarrow A_{2} \cdots \rightarrow A_{n} \rightarrow A_{n+1}
$$

It is clear that $\operatorname{source}(f)=A_{1}$ and $\operatorname{target}(f)=A_{n+1}$. Suppose inverses of $f_{1}, f_{2}, \ldots, f_{n}$ are $g_{1}, g_{2}, \ldots, g_{n}$, respectively. It is easy to see that in this case the inverse g of f is given by $g=g_{1} g_{2} \cdots g_{n}$. We say g is the copath of f. In this case f is also the copath of g.
Let us consider two paths in CRIS case: one is from date to conf_title and one is from conf_title to date. Sce Fig. 2.

Fig. 2 A path and its inverse in CRIS.
We denote these two examples of paths which are inverse to each other in the following way:

```
date to_start conference with conf_title
conf_title of conference starting_at date
```

4 Remark. In a network certain relations, the roles, are given a priori. A "path" is usually a composition of n such roles. Especially, a role is also a path with $n=1$. In the rest of the article we use often sentences like " f is a path in a semantical network" to mean

$$
f=f_{n} f_{n-1} \cdots f_{1}: A_{1} \rightarrow A_{2} \cdots \rightarrow A_{n} \rightarrow A_{n+1}
$$

where f_{i} is a role and A_{i} is an object type for every i and $\operatorname{source}(f)=A_{1}$ and $\operatorname{target}(f)=A_{n+1}$.

III CONSTRAINTS ABOUT SUBTYPES

Theoretically, we should discuss the constraints about subtypes after some other declarative constraints. On the other hand we use paths to build up constraints in general, we need to make agreements about paths with respect to subtypes already at beginning. So we begin with constraints about subtypes.
1 Definition. If $A \subset B$ we say A is a subtype of B and B is a supertype of A. See Fig. 3.

Fig. 3 Subtype and supertype.
We can think of the arrow as a trivial role, namely, the "identity" relation.

2 Path through subtypes. If a role is between a supertype and some object type then we can also consider it as a role between a subtype and that object type. To formulate it more precisely, let us consider A, a subtype of $B, f: B \rightarrow C$ a role. Then define $f_{1}: A \rightarrow C$ as

$$
f_{1}=\{(x, y) \in f \mid x \in A\}
$$

Because we always specify the two object types where a role starts and where it ends, we can use f instead of f_{1}. For example, consider the following path in CRIS (C4):
paper_title of submitted_paper getting paper_ref_assmt on date .
Of is originally a relation from paper to paper_title but now it is considered as a relation from submitted paper to paper_title.
On the other hand, if we have a role between a subtype and some object type, we can also consider it as a role between its supertype and that object type. We only have to consider it as a subset of a bigger Cartesian product.
We can also generalize the idea of subtypes transitively. That means if A is a subtype of B and B is a subtype of C then A is also a subtype of C.
3 Definition. If B has several subtypes $A_{1}, A_{2}, \ldots, A_{n}$, then we say $A_{1}, A_{2}, \ldots, A_{n}$ satisfy the total constraint for subtypes with respect to B if $B=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$. It shall be clear that the total constraint for subtypes defined here is a special case of the total constraint we shall define later. We often use a diagram to denote the total constraint for subtypes. For example, we have the diagram of Fig. 4 for $n=3$.

Fig. 4 Total constraint for 3 subtypes.
4 Definition. If $A_{1}, A_{2}, \ldots, A_{n}$ are subtypes of B and $A_{i} \cap A_{j}=\varnothing$ for every A_{i}, A_{j} where $i \neq j$, then we say these subtypes satisfy exclusion for subtypes.
5 Example. If we consider CRIS (C4), we use for example the following way to describe subtype exclusion:
rejected_paper, accepted_paper
SUBTYPE_EXCL submitted_paper

IV UNIQUENESS CONSTRAINTS

1 Convention

In this article we shall assume that roles are sets in the mathematical sense, namely, they do not
contain repeated elements. This is considered by others as a special unique constraint.

2 Injective constraints for a path

2.1 Definition. A relation $f: A \rightarrow B$ is injective if for every $b \in B$ there is at most one $a \in A$ such that $(a, b) \in f$. If we want a path f in a semantical network to be injective then we have an injective constraint for f.
2.2 Diagram. In a diagram the injective constraint for a role f is indicated by a double arrow above or below the box of f.
2.3 Example. Consider the graphical concept scheme of CRIS (C2). We use the following way to express an example of injective constraint:

time IDENTIFIED_BY session_nr of session starting_at time

In other words, if you know the session number of a conference, then you also know the starting time. There can not be two different times for the same session number.
2.4 Proposition. Given

$$
f=f_{n} f_{n-1} \cdots f_{1}: A_{1} \rightarrow A_{2} \cdots \rightarrow A_{n} \rightarrow A_{n+1}
$$

If f_{i} satisfies the injective constraint for every i, then f satisfies the injective constraint.

3 Injective constraint for more than one path.

3.1 Diagram. The diagram of Fig. 5 represents a uniqueness constraint traditionally with the following two characteristics:
(1) $\operatorname{support}(f)=\operatorname{support}(g)$.
(2) If $(a, b),\left(a^{\prime}, b\right) \in f$ and $(a, c),\left(a^{\prime}, c\right) \in g$, then $a=a^{\prime}$.

Fig. 5 A uniqueness constraint
3.2 Proposition. Define a relation $h: A \rightarrow B \times C$ induced by the paths $f: A \rightarrow B, g: A \rightarrow C$ where support $(f)=\operatorname{support}(g)$ as follows:

$$
(a,(b, c)) \in h \Longleftrightarrow(a, b) \in f \text { and }(a, c) \in g
$$

Then the h is an injective if and only if f, g have the characteristics (2).
Notice that h is usually denoted by $f \times g$ in mathematics.
3.3 Definition. In a semantical network, a pair (f, g) of paths sharing sources is said to satisfy the injective constraint if support $(f)=\operatorname{support}(g)$ and $f \times g$ from the same source to the Cartesian product $\operatorname{target}(f) \times \operatorname{target}(g)$ is injective.
3.4 Example. Consider CRIS (C4). We have an example of an injective constraint of more than one path expressed in the following way:

```
paper_ref_assmt
IDENTIFIED_BY
person referee_for paper_ref_assmt,
submitted_paper of paper_ref_assmt
```

This means if a paper and a referce (there can be more than one referee for a paper) are known, then there is at most one paper-referec-assignment which concerns this paper and this referee.

4 Functional constraints

Functionality is the dual concept of injectivity. We mean by this that a functional constraint on a path is equivalent to an injective constraint on its copath.
4.1 Definition. A relation $f: A \rightarrow B$ is a function if

$$
(a, b),\left(a, b^{\prime}\right) \in f \Rightarrow b=b^{\prime}
$$

So if a path f in a semantical network is a function then we say f satisfies the functional constraint.
4.2 Diagram. Consider the diagram mentioned in 2.2., where f satisfies the injective constraint. We can also use the same diagram to denote the functional constraint of f^{-1}.
4.3 Remark. If f is a path which satisfies the functional constraint, then the notation $f(a)$ makes sense if the set of all images of a under f is not empty. See also section 1 of chapter II.
4.4 Definition. The pair (f, g) is said to satisfy the functional constraint if the pair $\left(f^{-1}, g^{-1}\right)$ satisfies the injective constraint.

V TOTALITY CONSTRAINTS

1 Total constraints

1.1 Definition. Given $f: A \rightarrow B$. We say that f is surjective if range $(f)=B$. If we have a path f in a semantical network which satisfies the surjective property, we can say f satisfies the surjective constraint or the total constraint.
1.2 Proposition. Given a path $f=f_{n} f_{n-1} \cdots f_{1}$ in a semantical nctwork. If every f_{i} satisfies total constraint, then f also satisfies the total constraint.
1.3 Diagram. If f is a role, then f satisfies the total constraint is denoted by the following diagram of Fig. 6:

Fig. 6 Total constraint for f
1.4 Definition. Given two paths f and g in a semantical network where $\operatorname{target}(f)=\operatorname{target}(g)$. Then the pair (f, g) is said to satisfy the total constraint if

$$
\operatorname{range}(f) \cup \operatorname{range}(g)=\operatorname{target}(f)=\operatorname{target}(g) .
$$

1.5 Diagram. In diagram form this is indicated by connecting the boxes for f and g by a " T " in a small circle.
1.6 Proposition. Given two relations $f: A \rightarrow C$ and $g: B \rightarrow C$. Define $h: A \cup B \rightarrow C$, as follows:

$$
(x, c) \in h \Longleftrightarrow(x, c) \in f \text { or }(x, c) \in g
$$

So the surjectivity of h is equivalent with the definition of surjectivity of the pair (f, g).
1.7 Example. Consider the concept scheme CRIS (C2). We can give for example the following total constraint with our language:

```
accepted_paper
TOTAL_IN
accepted_paper presented_in lecture during session,
accepted_paper with abstracts
```

It means if a paper is accepted, it is either presented in a lecture of a session or it is collected in a bundle of abstracts for the conference.
If you think there are too many "accepted_paper" in this expression, you can change the grammar in the implementation. For clearness we keep this structure for the time being because our definition of a path begins always from an object type.

2 Constraints of total support

2.1 Definition. A relation $f: A \rightarrow B$ has total support if support $(f)=A$. Thus for a path f in a semantical network, f is said to satisfy the constraint of total support if support $(f)=\operatorname{source}(f)$. The diagram of Fig. 6 can also be used to denote the constraint of total support of f^{-1}.
2.2 Definition. If support $(f) \cup \operatorname{support}(g)=\operatorname{source}(f)=\operatorname{source}(g)$ for two paths f and g in a semantical network, then the pair (f, g) is said to satisfy the constraint of total support.

VI KEY CONSTRAINTS

Key constraint is a kind of combination of total support, injective and functional constraints. Because the concept of "key" is important for database, we need to know the corresponding concept in semantical networks.
1 Definition. Given a path f, then f satisfies the key constraint if f is injective, functional and has the property of total support.
This means that the elements of source (f) and range (f) determine each other uniquely. We say b is the key of a if $(a, b) \in f$. Observe that it is possible that there are elements in target (f) that are not in range (f), and hence not key of an element in source (f).
2 Diagram. If we consider the simplest situation that f is a role, then the key constraint can be presented with the diagram of Fig. 7.

Fig. 7 Key constraint for one role f
3 Definition. Given two paths $f: A \rightarrow \cdots \rightarrow B$ and $g: A \rightarrow \cdots \rightarrow C$. The combination (f, g) is said to satisfy the key constraint if $f \times g: A \rightarrow B \times C$ satisfies the properties of total support, injectivity and functionality.

In other words, if $f \times g: A \rightarrow B \times C$ is defined in the same way as theorem 3.2 of chapter IV, then the pair (f, g) satisfies the key constraint if and only if $f \times g$ satisfies the properties of total support, injectivity and functionality.
4 Diagram. Fig. 8 represents the diagram for the key constraint on two roles. It can be proved that the functionality of $f \times g$ is equivalent with the functionality of f and functionality of g together in this situation. That is why we use such diagram to denote the key constraint of (f, g).

Fig. 8 Key constraint for two roles
5 Example. We can give a simple key constraint in our language for CRIS (C3):
nat_repr_TC
HAVING_KEY
society of nat_repr_TC, TC of nat_repr_TC, nat_repr of nat_repr_TC

You can think that a nat_repr_TC is an abstract object which is a combination of three other less abstract objects, namely, a society, a TC, and a national representative. The choice of these three objects is also unique.

VII SUBSET CONSTRAINTS

Subset constraints express a subset relationship between supports, ranges of two paths or a subset relationship between the two paths themselves.
1 Definitions. Let us consider paths f and g in a semantical network. Suppose that $\operatorname{source}(f)=\operatorname{source}(g)$. If support $(f) \subset \operatorname{support}(g)$, then we say the pair (f, g) satisfies the subsupport constraint. Now suppose f and g share the same target, rather than the same source. If range $(f) \subset$ range (g), then we say the pair (f, g) satisfies the subrange constraint. Now suppose that both source $(f)=\operatorname{source}(g)$ and $\operatorname{target}(f)=\operatorname{target}(g)$. We say the pair (f, g) satisfies the subpath constraint if $f \subset g$. That is to say, every element (x, y) in f is also an element in g.
2 Diagrams. The subsupport constraint on two roles can be denoted by the diagram of Fig. 9. The diagram of Fig. 10 is sometimes used to denote the subpath constraint in the simplest situation, namely, relationship between two roles.
3 Examples. With our language we can express an example of subsupport constraint in CRIS (C2) in the following way:
person presenting acc_paper
SUB_SUPPORT
session comprising lecture about acc_paper

Fig 9 Subsupport constraint

Fig. 10 A simple subpath constraint
This constraint requires that if an accepted paper is known to be presented by someone, then it must be already scheduled for a lecture in a session.
We can give an example of a subpath constraint in CRIS (C1):

```
member_country holding conference
SUBPATH_OF
member_country location_of body of conference
```

This constraint requires that the conference must be held in a country where one of the sponsoring bodies of the conference also is located.

VIII EQUIVALENCE CONSTRAINTS

The equivalence constraints expresses the set equality between supports or ranges of two paths or with the set equality between the paths themselves.
1 Definitions. Let us consider two paths f and g in a semantical network. If f and g share the same source, we say they are support equivalent if support $(f)=\operatorname{support}(g)$. Dually, if they share the same target, we say they are range equivalent if range $(f)=\operatorname{range}(g)$. If they share the same source and also the same target then we say f, g are path equivalent if $f=g$.
If f, g are roles then we can express these properties in diagrams. They are similar to the diagrams for subset constraints. We use $=$-signs in a small circle in the appropriate places to indicate the equality between sets.
2 Examples. We give now an example of support equivalence for CRIS (C2) with our language.
time starting session SUPPORT_EQ time ending session
This requires that if the starting time of a session is known, then the ending time is known too and vice versa. A path equivalence of two paths in CRIS (C1)can be expressed in the following ways:
org_unit being IFIP_sponsor of conference
PATHEQ
org_unit organizing conference
This constraint requires that an organization unit which is involved in the organization of the conference is automatically an IFIP-sponsor of the conference and vice versa.

IX EXCLUSION CONSTRAINTS

1 Exclusion constraints are always about the disjoint property between supports of two paths, ranges of two paths and the disjoint property between the two paths themselves. They can be formulated just like subset constraints, equivalence constraints. We only have to change support $(f) \subset \operatorname{support}(g)$ into $\operatorname{support}(f) \cap \operatorname{support}(g)=\varnothing$, for example.
2 Diagrams. When we consider the simplest path, namely, f, g are roles, then we can use diagrams to express the exclusion constraints. The diagrams look like the diagrams for subset, equivalence constraints. You use an " X " to denote the exclusive property.
3 Example. Consider the concept scheme CRIS (C4).
An example of a path exclusion can be expressed in the following way:
person author_of submitted_paper
PATHEXCL
person referee_for paper_ref_assmt of submitted_paper
This example simply tells that the author of a paper is not the referee of the same paper.

X NUMERIC CONSTRAINTS

This is a very simple declarative constraint. There are two kinds of object types. One kind is a set of strings. The other kind is a set of numbers. We need to know which ones are of number types, then we also know which ones are not. This constraint tells that an object type is a number type. We can give the following example to illustrate how it is defined in our language:

NUMERIC conf_fee, hotel_rate, fee, expense, days, years

XI NON-DECLARATIVE CONSTRAINTS

1 Basic building bricks for non-declarative constraints

"Path" is an important concept to build up the declarative constraints as well as non-declarative constraints (see also Meersman ${ }^{2}$ for the original examples). Let us take an example of a path in CRIS (C1),

> expense of conference starting_at date with year

Consider some simple data in these roles:

with			starting_at		of
year	date	conference	expense		
88	880101	$\# 1$	20000		
88	880304	$\# 2$	30000		
88	880501	$\# 3$	20000		
89	890405	$\# 4$	40000		

If we have a constraint which requires the expense of a conference in 1988 not to exceed 40000 dollars, then we have to do with the image set of 88 , namely $\{20000,30000\}$.

$$
\{(88,20000),(88,30000)\}
$$

The second coordinate may not exceed 40000 . On the other hand, if we require the sum of the expenses of conferences in 1988 not to exceed 100000 dollars, then we should break this path in two pieces with conferences as boundary.

$$
\text { conference starting_at date with year }(88)=\{\# 1, \# 2, \# 3\}
$$

$$
\{(\# 1,20000),(\# 2,30000),(\# 3,20000)\} \subset \text { expense of conference }
$$

The sum of expenses is the sum of the second coordinates of the three elements.
We notice what we need for the constraints are concepts of paths, subsets of paths, sum of a number set, sums of coordinates of a set of pairs, maximum of a set, etc. So we try to define some standard functions for these concepts. We use such functions and paths as the building bricks of number expressions or set expressions. These expressions are again used to build up boolean expressions. The boolean expressions are the basis for constraints.

2 Standard set functions

Our sets are sets of strings, sets of numbers, sets of pairs where the first coordinates (and the second coordinates) are homogeneously either all numbers or all strings.
2.1 Definition. Given a role $f: A \rightarrow B$ in a semantical network. We have

$$
f(\{a\})=\{b \in B \mid(a, b) \in f\}
$$

The way to find such a set for a given role and an element is a standard function. With this as basis we can define another two standard functions:

$$
\begin{gathered}
f(U)=U\{f(\{a\}) \mid a \in U\} . \\
f \mid U=\{(a, b) \in f \mid a \in U \text { and } b \in f(\{a\})\} .
\end{gathered}
$$

The last formula is the restriction of f to U.
We can generalize the functions above to $f=f_{n} f_{n-1} \cdots f_{1}$, because

$$
f(U)=f_{n}\left(f_{n-1} \cdots\left(f_{1}(U) \cdots\right)\right)
$$

Evidently, the type (string set or number set) of $f(U)$ is the same as the type of the last object type of the path. The type of $f \mid U$ is the same as the type of f.
2.3 Definition. If g is a set of pairs with the first (and the second) coordinates homogeneously either numbers or strings, then

SET1 $(g)=$ the set of the first coordinates of g;
SET2 $(g)=$ the set of the second coordinates of g;
$\operatorname{INV}(g)=\{(y, x) \mid(x, y) \in g\}$.

A special case is when $g=f \mid U$. In fact, $f(U)=\operatorname{SET} 2(f \mid U)$.

3 Standard number and string functions

3.1 Definition. For a set S of numbers or strings or a set of pairs S in a semantical network we define the following function:

$$
\operatorname{CARD}(S)=\#\{x \mid x \in S\} .
$$

So $\operatorname{CARD}(f)$ is the number of elements in the path $f ; \operatorname{CARD}(f(U))$ is the number of elements of image set of U under f, etc.
3.2 Definition. If we have a set of strings or a set of numbers, then we can compare two such elements (strings lexicographically and numbers in the usual way). Thus there exist a maximum and a minimum of such a set. So if S is a set of numbers, then

$$
\begin{aligned}
& \operatorname{MAX}(S)=x \text {, where } x \in S \text { and } x \geq y \text { for every } y \in S \text {; } \\
& \operatorname{MIN}(S)=x \text {, where } x \in S \text { and } x \leq y \text { for every } y \in S .
\end{aligned}
$$

If S is a set of strings, then we use MAXSTR, MINSTR instead of MAX, MIN, respectively.
3.3 Definition. Let us consider a set of numbers $S=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, where $n \geq 1$, then

$$
\begin{aligned}
& \operatorname{SUM}(S)=a_{1}+a_{2}+\cdots+a_{n} ; \\
& \operatorname{AVG}(S)=\operatorname{SUM}(S) / \operatorname{CARD}(S)
\end{aligned}
$$

3.4 Definition. We want to pay special attention to sum and average of the coordinates of a subset of a relation. (See section 1 for motivation.) Let $K=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \cdots,\left(a_{n}, b_{n}\right)\right\}$:

SUM1 $(K)=a_{1}+a_{2} \cdots+a_{n}$, if the a_{i} are numbers ;
$\operatorname{SUM} 2(K)=b_{1}+b_{2} \cdots+b_{n}$, if the b_{i} are numbers ;
AVG1, AVG2 are defined analogously to AVG.

4 Expressions and operators.

There are essentially three kinds of expressions: number, set and boolean. Constraints are just boolean expressions with special meanings, namely, they should always get true as value. This article concentrates on constraints, so numbers and sets are only the basis for constructing boolean expressions.
4.1 Operators. If we have number expressions, we can do mathematical computations with them. The operations are the binary $+,-, *, /$ and unary operation minus - .
From two sets of the same type we can construct a third set by using the set operators: UNION, INTERSECT, MINUS. The mathematical meanings of such operations are well known.
We can compare two numbers by the relational operators: $<, \leq,>, \geq, \neq,=$. We can also compare two sets with the relational operators: $\subseteq, \supseteq,=, \neq$. We can also compare two strings lexicographically with the same relational operators as for numbers. There is a special relational operator IN (ϵ) which establishes membership of a set.
To construct a new boolean expression from simpler boolean expressions, we can use the boolean operators like AND, OR, NOT, IFF, IMPLY.
4.2 Number expressions. Number expressions are essentially made of number constants, number identifiers and results of number expressions. Furthermore, we can call a standard function which yields a number as the result.
4.3 Set expressions. The simplest set expression are empty set, an object type, a role, a path, an explicit expression of a set of numbers or strings and an explicit expression of a set of pairs where
the first coordinates (and the second coordinates) are all numbers or are all strings. One can also call a standard function which deliver a set as value. Furthermore one can use set operators to combine two set expressions of the same type in order to get a new set expressions.
4.4 Boolean expressions. The simplest boolean expressions are the constants TRUE and FALSE. One can also apply all kinds of relational operators in sets, numbers and strings to obtain a boolean expression. One can combine boolean expressions with operators like IFF, OR, IMPLY to obtain new boolean expressions. Furthermore we have the special boolean expressions as follows:

> IF boolean expression THEN boolean expression
> IF boolean expression THEN boolean expression
> ELSE boolean expression
> FOR EACH identifier FROM set expression, identifier FROM set expression, ... : boolean expression

The first and the second constructions look like a standard if statement. We can also use IMPLY instead of if and then in the first expression. The third construction can be explained by the following example:

FOR EACH x FROM conference:
expense of conference $(\mathrm{x})<=200000$
means no conference should spend more than 200000 dollars. It delivers false as value if some conference spends more than this amount. Notice the type of the identifier is determined by the set expression after FROM. We are allowed to use the notation expense of conference (x) because of the functional constraint of the path. (See chapter II).

5 Examples of non-declarative constraints

All the examples here are originated from CRIS. The constraint language uses sometimes a notation that differs from the mathematical notation, for example $<>$ instead of \neq, and $[x]$ instead of $\{x\}$.
5.1 Example. We want the expense of every conference which starts in 1988 not to exceed 40000 dollars (CRIS C1).

```
for each x from conference:
if year of date to_start conference (x) = 88
then expense of conference (x) <= 40000
```

5.2 Example. We want to construct a constraint which requires that the sum of all expenses of conferences in 1988 be less than or equal to 100000 dollars. We have in section 1 of this chapter explained why we need to break the path expense of conference starting_at date with year in two pieces at the point of conference. The essential idea is that the sum has to range over all conferences starting at 1988. Thus we should formulate this constraint in the following way (CRIS C1):

```
SUM2 (expense of conference
    | conference starting_at
        date with year ([88])) <= 100000
```

where expense of conference is a relation. This relation is restricted to a subset in conference, namely, the set of images of 88 under the relation conference starting_at date with year.
5.3 Examples. We require that the same person may not submit more than 3 papers per conference. This constraint can be formulated as follows (CRIS C4):

```
for each x from conference:
    for each y from
        person author_of
        submitted_paper for conference([x]):
        CARD (submitted paper for
            conference([x]) intersect
            submitted paper written_by
            person([y])) <= 3
```

Notice that from the second FOR EACH until the end is the boolean expression needed for after "conference:" in the first FOR EACH expression.
We can also formulate the same constraint in a shorter way:

```
for each x from conference:
    for each y from person:
        CARD( submitted_paper written_by
                person([y]) intersect
                submitted_paper for
                conference([x])) <=3
```

Acknowledgements. Hereby I thank Professor R. Meersman for his advices. Furthermore, I have also used the RIDL_G ${ }^{3}$ developed by my colleagues for drawing the graphical conceptual scheme and mapping the graphical representation to the usual conceptual scheme.

REFERENCES

1. Wintraecken, J.J.V.R., Informatie-analyse volgens NIAM. Academic Service, The Hague (1985). English translation to appear, published by Reidel Company, Holland.
2. Meersman, R., The RIDL conceptual language. Control Data DMRL Report (1982).
3. Verheijen, G.M.A., J. van Beckum, NIAM: An information analysis method. Proceedings of IFIP WG 8.1 Working Conference on Comparative Review of Information Systems Design Methodologies (1982).
4. De Troyer, O., R. Meersman, P. Verlinden, RIDL* on the CRIS case: A workbench for NIAM. Infolab, Tilburg University (1988).
5. Kernighan, B.W., R. Pike, UNIX Programming Environment. Prentice-Hall, Inc., USA (1984).

APPENDIX: GRAMMAR FOR YACC

Remarks. In the following ε stands for empty, not to be confused with EMPTY which corresponds to the empty set (of numbers, strings, etc.). The following production rules are almost identical to those of the YACC source. We use be, ne and se for boolean expression, numerical expression and string expression, respectively.
/* constrform is a collection of constraints */
constrform
:: CONSTRAINTS BEGCONS constraints ENDCONS
constraints $\quad:: \varepsilon \mid$ constraints constraint I constraints error ';'
constraint :: be ';'
be :: declarative I nondeclarative

declarative	:: subtype \| uniqueness	totality	key	subset	equivalence	exclusion numeric		
subtype	:: subtypedef \| subtypetotal	subtypeexcl						
uniqueness	:: ot IDENTIFIED paths							
totality	:: ot TOTAL paths							
key	:: ot KEY paths							
subset	:: subsupport \| subpath							
equivalence	:: suppeq I patheq							
exclusion	:: suppexcl I pathexcl							
subtypedef	:: SUBTYPE ots OF STROT							
subtypetotal	:: ots SUBTYPETOTAL ot							
subtypeexcl	$::$ ots SUBTYPEEXCL ot							
subsupport	:: path SUBSUPPORT path							
subpath	:: path SUBPATH path							
suppeq	:: path SUPPEQ path							
patheq	: path PATHEQ path							
suppexcl	:: path SUPPEXCL path							
pathexcl	: path PATHEXCL path							
numeric	:: NUMERIC ots							
/* ots, paths */								
ots	:: ot ots1							
ots1	:: $\varepsilon 1$ ',' ot ots1							
ot	:: NUMOT I STROT							
paths	: path paths 1							
paths 1	:: $\varepsilon 1$ ',' path paths 1							
path	:: strtonumpath \| strtostrpath	numtostrpath	numtonumpath					
strtonumpath	:: NUMOT refersstr							
strtostrpath	:: STROT refersstr							
numtostrpath	:: STROT refersnum							
numtonumpath	:: NUMOT refersnum							
refersstr	:: refers1 ROLE STROT							
refersnum	:: refers1 ROLE NUMOT							
refers 1	:: ε \| refers 1 refer							
refer	:: ROLE ot							
/* nondeclarative boolean expressions are defined here */								
/* the other expressions can be sets, numbers, strings, set of pairs */								
nondeclarative	:: simplebe I NOT be I be AND be I be OR be I be IFF be I be IMPLY be I IF be THEN be ELSE be I IF be THEN be I foreach be							
simplebe	:: TRUE I FALSE I '(' be ')' I ne rel ne I se rel se I strmum rel stmum I numstr rel numstr I numnum rel numnum I strstr rel strstr I numset rel numset I strse rel strset \| numnumset rel numnumset	numstrset rel numstrset	stmumset rel strnumset I ne IN numset I se IN strset I strnums IN strnumset I strstrs IN strstrset	numnums IN numnumset	numstrs IN numstrset	empty1	empty2 empty3	empty 4 I empty 5 I empty 6
rel								
empty 1	:: EMPTY rel numset \| numset rel EMPTY							
empty2	:: EMPTY rel strset \| strset rel EMPTY							
empty3	:: EMPTY rel numnumset I numnumset rel EMPTY							
empty 4	:: EMPTY rel strstrset \| strstrset rel EMPTY							

empty5	:: EMPTY rel numstrset \| numstrset rel EMPTY
empty6	:: EMPTY rel strnumset \| stmumset rel EMPTY
foreach	:: FOREACH idsfromexprs ' $:$ '
idsfromexprs	:: idsfromexprs1 idsfromexpr
idsfromexprs 1	:: ε l idsfromexprs 1 ', idsfromexpr
idsfromexpr	:: ids FROM numset I ids FROM strset I idpairs FROM numnumset I idpairs FROM numstrset I idpairs FROM strstrset I idpairs FROM stmumset
ids	:: ids1 IDENTIFIER
ids1	:: ε l ids1 IDENTIFIER ',
idpairs	:: idpairs 1 idpair
idpairsl	:: ε l idpairs l idpair ',
idpair	:: '(' IDENTIFIER ',' IDENTIFIER ')'
ne	:: simplene I '-' ne \%prec UMINUS I ne numop ne
simplene	:: NUMBER I NUMVAR I '(' ne ')' I strtonumpath '(' se ')' I numtonumpath '(' ne ')' I standardnumfunc
numop	:: '+' I'-'।'*'।'/'
standardnumfunc	```:: CARD '(' setexpr ')' I SUM '(' numset ')' I MAX '(' numset ')' I MIN '(' numset ')' I AVG '(' numset ')' I SUM1 '(' numstrset ')' I SUM1 '(' num- numset ')' I SUM2 '(' stmumset ')' I SUM2 '(' numnumset ')' I AVG1 '(' numstrset ')' I AVG1 '(' numnumset ')'। AVG2 '(' strnumset ')'। AVG2 '(' numnumset ')'```
se	:: strconst I STRVAR I numtostrpath '(' ne ')' I strtostrpath '(' se ')' I stan- dardstrfunc
strconst	: ' '"' IDENTIFIER '"'\| '"' NUMBER '"'
standardstrfunc	:: MAXSTR '(' strset ')' I MINSTR '(' strset ')'
setexpr	: numset I strset I numnumset I stmumset I strstrset I numstrset
numset	:: NUMOT I strtonumpath '(' strset ')' I numtonumpath '(' numset ')' I '[' nes ']' I numset setop numset I standardnumsetfunc I '(' numset ')'
nes	:: ne nes 1
nes 1	: $\boldsymbol{\varepsilon}$ l ',' ne nes1
ses	:: se ses 1
ses 1	:: ε l ',' se ses 1
standardnumsetfun	SET2 '(' numnumset ')' ' SET1 '(' numnumset ')' । SET2 '(' stmumset ')' । SET2 '(' numnumset ')'
setop	:: INTERSECT I UNION I MINUS
strset	:: STROT I numtostrpath '(' numset ')' I strtostrpath '(' strset ')' I '[' ses ']' । strset setop strset I standardstrsetfunc I '(' strset ')'
standardstrsetfunc	
numnumset	:: NUMOT ' X ' NUMOT I numtonumpath I numtonumpath ' I ' numset I '[' numnums ']' I numnumset setop numnumset I INV '(' numnumset ')'
numnums	:: numnum numnums1
numnums1	$:: \varepsilon 1$ ',' numnum numnums1
numnum	:: '(' ne ',' ne ')'
strstrset	:: STROT 'X' STROT I strtostrpath I strtostrpath 'l' strset I '[' strstrs ']' । strstrset setop strstrset I INV '(' strstrset ')' I '(' strstrset ')'
strstrs	:: strstr strstrs 1
strstrs1	:: ε \| ',' strstr strstrs 1
strstr	:: '('se ',' se ')'
numstrset	:: NUMOT 'X' STROT I numtostrpath I numtostrpath '\|' numset I '[' numstrs

```
numstrs
numstrs1 :: \varepsilon|',' numstr numstrs1
numstr :: '(' ne ',' se ')'
strnumset :: STROT 'X' NUMOT I strtonumpath I strtonumpath 'l' strset I '[' strnums
    ']' I INV '(' numstrset ')' | '(' strnumset ')'
stmums :: strnum strnums1
stmums1 :: \varepsilon|',' stmum stmums1
stmum :: '(' se ',' ne ')'
```


IN 1987 REEDS VERSCHENEN

```
242 Gerard van den Berg
    Nonstationarity in job search theory
```

243 Annie Cuyt, Brigitte Verdonk
Block-tridiagonal linear systems and branched continued fractions
244 J.C. de Vos, W. Vervaat
Local Times of Bernoulli Walk
245 Arie Kapteyn, Peter Kooreman, Rob Willemse
Some methodological issues in the implementation
of subjective poverty definitions
246 J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur, J.H.F. Pardoel Sampling for Quality Inspection and Correction: AOQL Performance Criteria

247 D.B.J. Schouten
Algemene theorie van de internationale conjuncturele en strukturele afhankelijkheden

248 F.C. Bussemaker, W.H. Haemers, J.J. Seidel, E. Spence On (v, k, λ) graphs and designs with trivial automorphism group

249 Peter M. Kort
The Influence of a Stochastic Environment on the Firm's Optimal Dynamic Investment Policy

250 R.H.J.M. Gradus Preliminary version The reaction of the firm on governmental policy: a game-theoretical approach

251 J.G. de Gooijer, R.M.J. Heuts Higher order moments of bilinear time series processes with symmetrically distributed errors

252 P.H. Stevers, P.A.M. Versteijne Evaluatie van marketing-activiteiten

253 H.P.A. Mulders, A.J. van Reeken DATAAL - een hulpmiddel voor onderhoud van gegevensverzamelingen

254 P. Kooreman, A. Kapteyn On the identifiability of household production functions with joint products: A comment

255 B. van Riel
Was er een profit-squeeze in de Nederlandse industrie?
256 R.P. Gilles
Economies with coalitional structures and core-like equilibrium concepts
P.H.M. Ruys, G. van der Laan

Computation of an industrial equilibrium
258 W.H. Haemers, A.E. Brouwer
Association schemes
259 G.J.M. van den Boom
Some modifications and applications of Rubinstein's perfect equilibrium model of bargaining

260 A.W.A. Boot, A.V. Thakor, G.F. Udell
Competition, Risk Neutrality and Loan Commitments
261 A.W.A. Boot, A.V. Thakor, G.F. Udell
Collateral and Borrower Risk
262 A. Kapteyn, I. Woittiez
Preference Interdependence and Habit Formation in Family Labor Supply
263 B. Bettonvil
A formal description of discrete event dynamic systems including perturbation analysis

264 Sylvester C.W. Eijffinger
A monthly model for the monetary policy in the Netherlands
265 F. van der Ploeg, A.J. de Zeeuw Conflict over arms accumulation in market and command economies

266 F. van der Ploeg, A.J. de Zeeuw
Perfect equilibrium in a model of competitive arms accumulation
267 Aart de Zeeuw
Inflation and reputation: comment
268 A.J. de Zeeuw, F. van der Ploeg
Difference games and policy evaluation: a conceptual framework
269 Frederick van der Ploeg Rationing in open economy and dynamic macroeconomics: a survey

270 G. van der Laan and A.J.J. Talman
Computing economic equilibria by variable dimension algorithms: state of the art

271 C.A.J.M. Dirven and A.J.J. Talman
A simplicial algorithm for finding equilibria in economies with linear production technologies

272 Th.E. Nijman and F.C. Palm
Consistent estimation of regression models with incompletely observed exogenous variables

273 Th.E. Nijman and F.C. Palm
Predictive accuracy gain from disaggregate sampling in arima - models

274 Raymond H.J.M. Gradus
The net present value of governmental policy: a possible way to find the Stackelberg solutions

275 Jack P.C. Kleijnen
A DSS for production planning: a case study including simulation and optimization

276 A.M.H. Gerards
A short proof of Tutte's characterization of totally unimodular matrices

277 Th. van de Klundert and F. van der Ploeg
Wage rigidity and capital mobility in an optimizing model of a small open economy

278 Peter M. Kort
The net present value in dynamic models of the firm
279 Th. van de Klundert
A Macroeconomic Two-Country Model with Price-Discriminating Monopolists

280 Arnoud Boot and Anjan V. Thakor
Dynamic equilibrium in a competitive credit market: intertemporal contracting as insurance against rationing

281 Arnoud Boot and Anjan V. Thakor
Appendix: "Dynamic equilibrium in a competitive credit market: intertemporal contracting as insurance against rationing

282 Arnoud Boot, Anjan V. Thakor and Gregory F. Udell
Credible commitments, contract enforcement problems and banks: intermediation as credibility assurance

283 Eduard Ponds
Wage bargaining and business cycles a Goodwin-Nash model
284 Prof.Dr. hab. Stefan Mynarski
The mechanism of restoring equilibrium and stability in polish market
285 P. Meulendijks
An exercise in welfare economics (II)
286 S. Jørgensen, P.M. Kort, G.J.C.Th. van Schijndel
Optimal investment, financing and dividends: a Stackelberg differential game
E. Nijssen, W. Reijnders

Privatisering en commercialisering; een oriëntatie ten aanzien van verzelfstandiging
C.B. Mulder

Inefficiency of automatically linking unemployment benefits to private sector wage rates

```
289 M.H.C. Paardekooper
    A Quadratically convergent parallel Jacobi process for almost diago-
    nal matrices with distinct eigenvalues
290 Pieter H.M. Ruys
    Industries with private and public enterprises
291 J.J.A. Moors & J.C. van Houwelingen
    Estimation of linear models with inequality restrictions
292 Arthur van Soest, Peter Kooreman
    Vakantiebestemming en -bestedingen
293 Rob Alessie, Raymond Gradus, Bertrand Melenberg
    The problem of not observing small expenditures in a consumer
    expenditure survey
294 F. Boekema, L. Oerlemans, A.J. Hendriks
    Kansrijkheid en economische potentie: Top-down en bottom-up analyses
295 Rob Alessie, Bertrand Melenberg, Guglielmo Weber
    Consumption, Leisure and Earnings-Related Liquidity Constraints: A
    Note
296 Arthur van Soest, Peter Kooreman
    Estimation of the indirect translog demand system with binding non-
    negativity constraints
```


IN 1988 REEDS VERSCHENEN

297 Bert Bettonvil

Factor screening by sequential bifurcation
298 Robert P. Gilles
On perfect competition in an economy with a coalitional structure
299 Willem Selen, Ruud M. Heuts
Capacitated Lot-Size Production Planning in Process Industry
300 J. Kriens, J.Th. van Lieshout
Notes on the Markowitz portfolio selection method
301 Bert Bettonvil, Jack P.C. Kleijnen
Measurement scales and resolution IV designs: a note
302 Theo Nijman, Marno Verbeek
Estimation of time dependent parameters in lineair models using cross sections, panels or both

303 Raymond H.J.M. Gradus
A differential game between government and firms: a non-cooperative approach

304 Leo W.G. Strijbosch, Ronald J.M.M. Does
Comparison of bias-reducing methods for estimating the parameter in dilution series

305 Drs. W.J. Reijnders, Drs. W.F. Verstappen
Strategische bespiegelingen betreffende het Nederlandse kwaliteitsconcept

306 J.P.C. Kleijnen, J. Kriens, H. Timmermans and H. Van den Wildenberg Regression sampling in statistical auditing

307 Isolde Woittiez, Arie Kapteyn
A Model of Job Choice, Labour Supply and Wages
308 Jack P.C. Kleijnen
Simulation and optimization in production planning: A case study
309 Robert P. Gilles and Pieter H.M. Ruys Relational constraints in coalition formation

310 Drs. H. Leo Theuns Determinanten van de vraag naar vakantiereizen: een verkenning van materiële en immateriële factoren

311 Peter M. Kort Dynamic Firm Behaviour within an Uncertain Environment

312 J.P.C. Blanc
A numerical approach to cyclic-service queueing models

313 Drs. N.J. de Beer, Drs. A.M. van Nunen, Drs. M.O. Nijkamp Does Morkmon Matter?

314 Th. van de Klundert Wage differentials and employment in a two-sector model with a dual labour market

315 Aart de Zeeuw, Fons Groot, Cees Withagen
On Credible Optimal Tax Rate Policies
316 Christian B. Mulder Wage moderating effects of corporatism Decentralized versus centralized wage setting in a union, firm, government context

317 Jörg Glombowski, Michael Krüger
A short-period Goodwin growth cycle
318 Theo Nijman, Marno Verbeek, Arthur van Soest
The optimal design of rotating panels in a simple analysis of variance model

319 Drs. S.V. Hannema, Drs. P.A.M. Versteijne
De toepassing en toekomst van public private partnership's bij de grote en middelgrote Nederlandse gemeenten

320 Th. van de Klundert
Wage Rigidity, Capital Accumulation and Unemployment in a Small Open Economy

321 M.H.C. Paardekooper
An upper and a lower bound for the distance of a manifold to a nearby point

322 Th. ten Raa, F. van der Ploeg A statistical approach to the problem of negatives in input-output analysis

323 P. Kooreman
Household Labor Force Participation as a Cooperative Game; an Empirical Model

324 A.B.T.M. van Schaik
Persistent Unemployment and Long Run Growth
325 Dr. F.W.M. Boekema, Drs. L.A.G. Oerlemans De lokale produktiestructur doorgelicht. Bedrijfstakverkenningen ten behoeve van regionaal-economisch onderzoek

326 J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur, J.H.F. Pardoel Sampling for quality inspection and correction: AOQL performance criteria

327 Theo E. Nijman, Mark F.J. Steel
Exclusion restrictions in instrumental variables equations
328 B.B. van der Genugten
Estimation in linear regression under the presence of heteroskedasticity of a completely unknown form

329 Raymond H.J.M. Gradus
The employment policy of government: to create jobs or to let them create?

330 Hans Kremers, Dolf Talman
Solving the nonlinear complementarity problem with lower and upper bounds

331 Antoon van den Elzen
Interpretation and generalization of the Lemke-Howson algorithm
332 Jack P.C. Kleijnen
Analyzing simulation experiments with common random numbers, part II: Rao's approach

333 Jacek Osiewalski
Posterior and Predictive Densities for Nonlinear Regression. A Partly Linear Model Case

334 A.H. van den Elzen, A.J.J. Talman A procedure for finding Nash equilibria in bi-matrix games

335 Arthur van Soest Minimum wage rates and unemployment in The Netherlands

336 Arthur van Soest, Peter Kooreman, Arie Kapteyn Coherent specification of demand systems with corner solutions and endogenous regimes

337 Dr. F.W.M. Boekema, Drs. L.A.G. Oerlemans
De lokale produktiestruktuur doorgelicht II. Bedrijfstakverkenningen ten behoeve van regionaal-economisch onderzoek. De zeescheepsnieuwbouwindustrie

338 Gerard J. van den Berg
Search behaviour, transitions to nonparticipation and the duration of unemployment

339 W.J.H. Groenendaal and J.W.A. Vingerhoets The new cocoa-agreement analysed

340 Drs. F.G. van den Heuvel, Drs. M.P.H. de Vor Kwantificering van ombuigen en bezuinigen op collectieve uitgaven 1977-1990

341 Pieter J.F.G. Meulendijks An exercise in welfare economics (III)

342 W.J. Selen and R.M. Heuts
A modified priority index for Günther's lot-sizing heuristic under capacitated single stage production

343 Linda J. Mittermaier, Willem J. Selen, Jeri B. Waggoner, Wallace R. Wood Accounting estimates as cost inputs to logistics models

344 Remy L. de Jong, Rashid I. Al Layla, Willem J. Selen Alternative water management scenarios for Saudi Arabia

345 W.J. Selen and R.M. Heuts
Capacitated Single Stage Production Planning with Storage Constraints and Sequence-Dependent Setup Times

346 Peter Kort
The Flexible Accelerator Mechanism in a Financial Adjustment Cost Model

347 W.J. Reijnders en W.F. Verstappen De toenemende importantie van het verticale marketing systeem

348 P.C. van Batenburg en J. Kriens E.O.Q.L. - A revised and improved version of A.O.Q.L.

349 Drs. W.P.C. van den Nieuwenhof Multinationalisatie en coördinatie De internationale strategie van Nederlandse ondernemingen nader beschouwd

350 K.A. Bubshait, W.J. Selen Estimation of the relationship between project attributes and the implementation of engineering management tools

351 M.P. Tummers, I. Woittiez
A simultaneous wage and labour supply model with hours restrictions
352 Marco Versteijne
Measuring the effectiveness of advertising in a positioning context with multi dimensional scaling techniques

353 Dr. F. Boekema, Drs. L. Oerlemans Innovatie en stedelijke economische ontwikkeling

354 J.M. Schumacher Discrete events: perspectives from system theory

355 F.C. Bussemaker, W.H. Haemers, R. Mathon and H.A. Wilbrink A $(49,16,3,6)$ strongly regular graph does not exist

356 Drs. J.C. Caanen
Tien jaar inflatieneutrale belastingheffing door middel van vermogensaftrek en voorraadaftrek: een kwantitatieve benadering

357 R.M. Heuts, M. Bronckers
A modified coordinated reorder procedure under aggregate investment and service constraints using optimal policy surfaces

358 B.B. van der Genugten
Linear time-invariant filters of infinite order for non-stationary processes

359 J.C. Engwerda
LQ-problem: the discrete-time time-varying case

Bibliotheek K. U. Brabant

17000010659598

