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Abstract

The impact of opportunities on the optimal maintenance policy of a Markov-

degrading unit is analyzed. The case where preventive maintenance is restrio-

ted to opportunities arising from a Poisson process is compared to the situati-

on that the repair facility is continuously available. For both cases it is shown

that the optimal policy is of the control limit type and that the average cost is

a unimodal function of the control limit. The embedding technique is then

applied to develop an efficient optimizatíon procedure. The analysis extends

and unifies existing results.

1 Introduction

A basic model in maintenance optimisation is that of a single unit, which is subject to

Markov-degradation and can be replaced, either preventively or correctively, hy a new one

without time delay. In a discrete-time setting this model includes the standard agc;-rcplace-

ment model (see 0zeki4i [9]). In this paper we consider two practically important extensions.

Firstly, we relax the assumption that the state after performing maintenance is as-good-as-

new and allow the state to be inferior, however not depending on the state just before

maintenance. This will be called the continuous model. Secondly, the assumption that

preventive maintenance can start at any time is replaced by the assumption that this is

restricted to opportunities arising from a Poisson process, independently of the degradation

process. The continuous model can be considered as a limiting case of this model, which we

will refer to as the opportunity modeL The main purpose of this paper is to analyze the

opportunity model and compare it to the continuous model.

To illustrate the importance of opportunities we mention two practical considerati-



ons, relating to both the production as well as the maintenance envirunment. As argued in
Dekker and Dijkstra [1], it is often desired for reasons of cost effectiveness that preventive
maintenance is carried out at moments at which the system is not required for service, like
the epoch of a major overhaul. Furthermore, in case the repair-crew has to maintain several
systems, it will often be unavailable due to other maintenance activities with higher priurity.

Another practical observation is that maintenance is often imperfect. E.g. in
electricity plants performing maintenance may disturb the system, thereby causing a
breakdown instead of preventing it. Therefore we allow for a general state-after-repair

distribution.

After stating the model in a Markov decision framework in the next section we

obtain optimality results in section 3. We prove that the optimal policy is of the control limit
type, and that the average cost is a unimodal function of the control limit. The latter proof is

established, using the policy improvement procedure. As we believe, this is a new approach

to obtain structural results in Markov decision processes. The connection between the
continuous and the opportunity model is explained in section 4. Conditions are given, which

guarantee that the optimal control limit in the opportunity case is lower than or equ,il than

the optimal control limit in the continuous model. As illustrated by a counterexample, this

inequality does not generally hold, when these conditiuns are not met. In section 5, we

present an efficient algorithm to obtain the optimal policy. This algorithm is based on the

embedding technique and the optimality results of section 2. We conclude with a hrief

discussion of two existing models and their relation with our model so as to indicate its

flexihility.

Ózeki~i [9] shows that under the increasing failure rate (IFR) assumption the

optimal policy for the discounted cost criterion is of the control limit type. Hopp and Wu [5]

consider the same problem but they allow for a general type of repair, possibly state-

dependent, which includes uur extension. However, they do not consider opportunities.

Actually, opportunity-models are relatively scarse. For a survey of the literature we refer to

Dekker and Dijkstra [1] who discuss the age-replacement model extended with opportu-

nities. Their analysis is however not based on Markov-decision theory, which is in our view a

nice and flexible tool for analysing maintenance problems. The connection with our paper

will be discussed in more detail in the final section. In this paper the opportunity process is

supposed to be independent of the degradation process of the unit under consideration. For
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an example of a system where the opportunity- and the degradation process are dependent

we refer to van der Duyn Schouten and Vanneste [3], who consider a two-componen[ system

where the replacement of one component constitutes an opportunity for the other.

2 Model and preliminaries

We start with a discription of the continuous model. Consider a single unit, whose condition
is described by a state variable, taking on values from the state space

S - {O,l,...,n:f 1}

State 0 denotes the good condition, states 1 to m are degraded conditions and m t 1 is the

breakdown state. in the absence of maintenance the unit deteriorates according to a

continuous-time Markov chain with transition rates q,~-,l; p;, (i,jES). Transitions are only

possible from state i to it 1 or mf 1, so we can write p4,,,-p, and p,.,„„-1p, ,05i5m. (Here

p,,,:-0). The following assumption is made throughout the paper:

Assumption 1. (a) O~~o57~,s...~~m (~oo)

(b) ~-PmcPm-i~...spoc 1 p

Note that (lp;),l; is the intensity of jumps from i to the failed state. Assumption 1 implies

that this intensity increases with i. When the unit fails, i.e. enters state mtl, corrective

maintenance (CM) is required. As long as this state is not reached, there is the possibility of

starting preventive maintenance (PM). Each type of maintenance has its own characteristics,

viz. the state after repair, the amount of time associated with it and the cost involved. Costs

may comprise e.g. the purchase costs of a new unit and cost due to production losses. The

(nonnegative) expected costs are denoted by cy and cf respectively, where the subscript refers

to the type of repair (p-PM, f-CM). The repairtime distribution associated with prevcntive

maintenance is denoted by A(~), with expectation a, and similarly we use the notation B(~)

and a in case of CM. Let Yo and Y~ , respectively, be the generic random variable denoting

the state-after-maintenance, and define for ieS: a;:-P(Y,-i) and 6,:-P(Y~-i). The time

needed for preventive maintenance nor the state-after-maintenance depends on the state in

which preventive maintenance is initiated. This reflects the case when components have to

be replaced, since then the state-after-repair is determined by the quality of the new, not the

old, components. Preventive maintenance can be advantageous with respect to each

characteristic, but we do not pose any a priori conditions at this point. Actually, it seems to
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us that the more interesting cases are the ones where advantages in one respect have to be
balanced with disadvantages in the other, like PM being less costly but resulting in a higher

state-after-maintenance. We say that the state-after-maintenance is better under PM than

under CM if it is stochastically smaller (and vice versa), and we denote Yo s Y~ (see e.g.
Ross [10, p.153] for a precise definition).

The decisions to be taken are, for each possible state of the working unit, whether or

not to start PM. In view of the exponential nature of the sojourn time in each state, we
notice that PM in state 0 need not be considered, and in addition we may assume that PM

starts upon entrance of a certain state. Thus, a policy R prescribes for each intermediate

state, whether to start PM upon entrance of that state (action 1) or not (action 0). Denote

by XR~`~(t), t?0 the state of the working unit at time t under policy R (the superscript c refers

to continuous model). For every stationary policy R, the process {XR~`~(t),t?0} constitutes a

semi-Markov process on S. Assumption lb guarantees that there exists only one recurrent

class under every policy R, and that the process is aperiodic. We are interested in that

stationary policy R that minimizes the long-run average cost g(R). From Markov clecision

theory it is known that the average optimal policy R' can be found as the minimizing action

in the average cost optimality equation (see Tijms [11]):

v(i)-mina{c(i,a)-gT(i,a)f~p (a)v(j)}, iES (2.1)
,~

v(n: t 1) -0

where the minimization is over actions aE,4(i), the action space of state i, and

p,~(a):- the probability that at the next decision epoch the system will be in

state j if action a is chosen in the present state i,

z(i,a): - the expected time until the next decision epoch if action a is chosen

in the present state i, and

c(i,a): - the expected cost incurred until the next decision epoch if action a is

chosen in the present state i.

Decision epochs are the moments at which a transition of state occurs. The set of equations

(2.1) uniquely determines the relative values v(i), iES and the average cost g of the optimal

policy. Applied to the continuous model, this results in the following set of equations:
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v(0) --g~o~ }Pov( I) t(1-po)v(m t 1)
m.i

v(i)-min{-g~.'tpv(itl)t(I p;)v(rr:.1),cy-gat~av(i')}, l~i5m
;-0

v(m t 1)-cr-K[3'~ bvU)
i-a

v(mtl)-0

(2.2)

Let us now turn to the modelling of opportunities. Opportunities for preventive

maintenance are supposed to arrive according to a Poisson process with rate ~, independent-

ly of the state of the unit. When it is difficult to predict the moment of an opportunity in

advance, an exponential time between opportunities might be considered. Indeed, this was
the approach followed by Jardine and Hassounah [6], who observed during their research on

a vehicle-fleet inspection schedule, that deviations from the scheduled inspection intervals
were common practice, and they approximated the time between inspections with the

geometric distribution (the discrete counterpart of the exponential distribution). When ~
tends to infinity, the continuous model appears as a limiting case.

The decision problem is now related to the yuestion: suppose an opportunity
presents itself while the unit is in state i(lsism), should the opportunity to perform PM be

taken or not? An appropriate way of modelling this is as follows. For each state i(I~ism),

we distinguish two actions:

action 0: do not perform PM during the visit to state i

action 2: start PM at the next opportunity, provided it occurs before the

present state is left.

The probability that an opportunity occurs during the visit to state i is obviously equal to

r, :- ~(J~;f~,)'. Therefore, we have, e.g.

P~;.~(2)-(I-r,)P, t r~a;.~

T(t,2)- (,l,ffc)' f!l(,1;f1~)~' a- (1'r',).i,~' t r; a

~(1~2)-r~ ~v

ln terms of the relative values w(i), iES and the minimal average cost h, the average-cost

optimality equations now yield:
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w(0)--h~ló`tpow(1)t(1-po)w(nltl)
w(i)-min{-h~.;'tp;w(itl)t(1 p)w(tntl),

~.,
(1-c)[-h~l;'tPw(itl)t(1-P;)w(mtl)]tr[cP-ha.~aw(!)]}, 15tsm

,.om.,
w(mtl)-ct-hRt~bw(!)

w(m t 1) -0

(2.3)

Suppose that in the opportunity model also action 1(start PM upon entrance of a state)

would be allowed, then the term in (2.3) associated with action 2 can be considered as a

convex combination of the terms related to action 0 and 1, where the weights are given by r,

and 1-r; respectively.

It is important to note that, although we presented the model in a continuous-time

setting, the analysis eyually well applies in a discrete-time framework with the following

modifications: the unit deteriorates according to a discrete-time Markov chain (equal time
intervals between transitions, i.e. ~,-1, iES) and the time between opportunities is geometri-

cally distributed with parameter r.

We conclude this section with two definitions and a brief discussion of the policy-

improvement theorem.

Defïnition 1(Control limit rule) A policy Rk is a control limit rule (CLR) with control limit k,

l~k5m~ 1, if we have: Rk(i)-0, i~k and R~(i)~ 0, i?k p

This definition applies to both the continuous as well as the opportunity model.

Detinition 2 (Unimodality) A function f(~) on S is unimodal if.-

(i) if f(i)~f(if I) then f(i)Sf(ifk) forall k?2

(ii) iff(i)~f(i-1) t{:en f(i)sf(i-k) forall k?2

(cf. Federgruen and So [4, p.390])

O

Let us denote the average cost and relative values associated with a fixed policy R hy

g(R) and vk(i), iES. The following theorem is adopted from Tijms [11], p.208:

Theorem 2.1 (Policy improvement) Suppose that g(R) and vR(i), iES are the average cost and

relative values of a stationary policy R If the stationary pvlicy 1~ is such that, for each state i ES,
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c(i.R(i))-8(R)T(i.R(i))t~P,,(R(i))vR(1)~vR(i) (2.4)
;E.s

then g(1~)sg(R).

Moreover, tlze strict ifiequality holds if (2.4) holdr for each iES x~ith strict inequality for at least

one state which is recurrent under li` p

Remark 2.1 The theorem is also true with the inequality signs reversed.

Remark 2.2 The quantities g(R) and vR(i), iES satisfy eq. (2.1), when the action spoce is

restriced to A(i)-{R(i)}, iES. Hence, with each policy, we can associate an adapted version

of the equations (2.2) resp. (2.3).

For notational convenience we introduce for every iES and aE,4(i) and fixed policy R, the

policy-improvement quantity:

TR(t~a). -c(t~a) -OlR)T (i.a) t~P~,(a)vR(I ) (2.5)
jF5

3 Optimality results

3.1 Continuous model

Theorem 3.1 Any solution of the equations (2.2) satisfies:

v(i)~v(itl), 15ism

Proof. By induction to the state variable i. For i-m, the ineyuality immediately follows from

(2.2): v(m)s-g,lm'tv(mt 1)5 v(mt 1) (the costs are nonnegative). Now, suppose (3.1) holds

for i-l~ kf 1,..,m. Then it follows that (v(mf 1)-v(kf 1))?(v(mt 1)-v(kf2)?0, which together

with assumption 1 yields:

v(k) -min { -g,Lk'tv(in t 1) -pk(v(m t 1)-v(k' 1)),co-Sa t~ a,v(l) }
,A .~

5min{-g.14'~tv(mtl) pk.~(v(mtl)-v(kt2)),c~-gat~av(~')}-v(ktl) O
j-o
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Corollary 3.1 There exuts an optimal policy which is of the control limit type.

Proof. A direct consequence of Theorem 3.1.

The corollary implies that, in looking for an optimal policy, we may restrict ourselves to

control limit rules. Hence it is important, to know whether the average cost is a unimodal

function of the control limit. Before we address this yuestion, we introduce an additional

assumption in order to avoid technicalities in the subseyuent analysis.

Assumption 2(aof bo) ~ 0 and bm„ ~ l.

Indeed, Ihis can be done without loss of generality. For, suppose that a~-b~-0, O~jSk. Then

the states 0 to k are all transient states under every stationary policy and are irrelevant for

the long-run average cost. 'I'herefore, we might as well leave them out of consideration and

renumber the states from kf 1 onwards. Moreover, if b,,,,, - 1 then all states except m t 1 are

transient. Assumption I and 2 together ensure that for each control limit policy R, , 1 ~i5m,

the states 0 to i are recurrent and for the CLR Rm„ at least state n: is recurrent.

Lemma 3.l ( a) g(R,)sg(R,,,) iff TX(t,0)wR,(~), 15ism

(b)8(R;)sg(R;-,) iff TR'(i-1,1)?vR(i-1),2sismtl

Proof. Part ( a). Notice that the policies R; and R;,, differ only with respect to the action

prescribed in state i. We have R,(j)-R;,,(j) for a(1 jES`{i} and R,(i)- 1, R,,,(i)-0. Conse-

quently, TR(j,R,,,(j))-vR(j), jES`{i}. According to the policy-improvemen[ theorem the

inequality TR(i,R,,,(i))-TR(i,0)?vR(i) then implies that g(R;,,)?g(R;). Also, TR(i,0)~vX(i)

implies that g(R,,,)~g(R,), since state i is recurrent under policy R,,,, due to assumption 2.

Together these implications establish the equivalence ( a). The same reasoning applies to

part ( b). We have that R;(j)-R;-,~') for all jeS`{i-1} and R,(i-1)-0, R;-,(i)-1 so that

Tk(j,R;.,(j))-v~(j), jES`{i-1}. Now, TR(i-1,1)?vR(i-1) implies that g(R;-,)?g(R;) and

T~z(i-1,1)~vR(i-1) impliesg(R;.,)~g(R,) ( state i-1 is recurrent under policy R,.,). ~

Theorem 3.2 g(R,) is a unimodal function of i, 15i 5m f 1

Proof. Referring to the definition of unimodality, we have to prove that:
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(a)g(R;)sg(R;,,) impliesg(R,)~g(R„k) for all k?2, ]~ism-1 and

(h) g(R,)~g(R,.,) implies g(R,)sg(R,-k) for all k?2, 2~ismt 1.

ln the proof of each part, we distinguish two cases:

(1) vR(m)5vR(mt 1) and

(2) vR(m)~vR(mf 1)

(al) Choose i, lsism-1. According to Lemma 3.1, g(R,)sg(R;,,) implies TR(i,0)?vR(i).

Using Remark 2.1 it is easily verified that TR(it1,0)?vR(if[), Oslsk implies g(R„k)?g(R;).

Hence, it is sufficient to prove that

TR(i tk,0)?vR (ifk), k? 1 (3.2)

Now it follows from the definition of R, and the average cost equations for a fixed policy (cf.

Remark 2.2) that:

v~(i ) -v~ (i t1) -... -v~ (m)

which together with assumption I and the fact that vR (m)w~z (m t l) yields:

TK,~,O)--8(R,)~;'tv~(mtl) p(v~(mtl)-v~(J))

~-S(R;)Z,',tv~(mtl) pJ.~(v~(mfl)-v~(jtl))-TR()t1,0), icj~m-1

( 3.3 )

(3.4)

So, the numbers TK(j,0) constitute an increasing sequence for isjsm, whereas the numbers

v~l(j), i5jsm are constant. Together with the fact that Tk(i,0)?vR(i) this yields (3.2).

(a2) The inequality vR(m)~vR(mt 1) together with (3.3) implies that:

T~,(i,0)--8(R,)~, ~tPv~(it 1)f(1-P,)v~(m f 1)
5 v m t 1- , v mf1 ~v n: -v i

(3.5)
P, ~,( ) ( P) R( ) R,( )- ,~( )

But this contradicts our assumption g(R,)~g(R,,,) in view of Lemma 3.1.

(bl) Choose i, 25i5mt 1 and suppose that g(R,)5g(R,-,). This implies, according to

Lemma 3.1 thc~t Ttt(i-l,l)?vH(i-1). We will show that

vli(J)SvKU't 1), 05jti-1 (3.G)

That is, the values v1z~'), Osjsi-1 constitute an increasing sequence, whereas the values

TR(J',1) are constant. As a consequence, TR(i',1)?vR(i'), Osj~i and using Remark 2.1 the

desired result then follows. To prove ( 3.6) we first note that vR(i-1)sv~l(i). This is immedia-

te from the assumptions in case i-mf1, and follows from TR(i-1,1)-vR(i) in case ism.

Starting with this inequality, we ohtain ( 3.G) hy induction, using the assumption that
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v1z(m)sv1z(~nf 1) (cf. the proof of (3.1)).

(62) Suppose ism. In this case, the result immediately follows from:

v,~(j)--g(R,),L;`tP,vRUtl)t(1 p)v~(mtl)w~(m)-T~~',1), 05j~i (3.7)

The inequality in (3.7) can be proved by induction, using vR (m) ~ vR`(m f 1). For the basis of
the induction, (j -i-1) we use the fact that vR (é) -vR`(m). If i-m t 1 case (62) does not apply,
since vRm (m)--g(R,,,,,)lm't vkm. (mt 1)~vRm (mt 1). p

3.2 Opportunity model

Thearem 33 Any solution of the equations (2.3) satisfes:

w(i)5w(it1), lsism (3.8)

Proof. For i-m the result follows immediately (see the proof of Theorem 3.1), so let us

assume that (3.8) holds for i-kf l,kf2,..,m. We have to show that w(k)5w(kt 1). For ease

of notation we introduce

w(PM): -cy-ha t~ a~wU )
i-o

and rewrite (2.3) into:

w(i)-min{-h~.~'tw(nttl) p(w(mtl)-w(itl)),
(1-r;)[-h,l;'tw(mtl)-p,(w(mtl)-w(it]))]tr w(PM)} t 5i~m

(3.`~)

(3.10)

Since, for pE[0,1] and x,yEIB,

px t(1 P)y ~Y ~ff x~Y (3.11)

the first term in de RHS of (3.10) is greater (smaller ) than the second term if and only if

the first term is greater (smaller) than w(PM). From the induction hypothesis and assumpti-

on I we have:

(-h,l~'tw(mfl) pk(w(mfl)-w(ktl)))
5(-h~.k'~tW(nI ,1)-pk.l(w(m t1)-w(kt2))

(3.12)

and
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1-r -1- ~ sl- ~ -1-r
k ~k r~ ~k 1 }~

k.l

We distinguish two cases. First suppose that

(3.13)

(-h~.k'~fw(m}1) pk.,(w(mtl)-w(kt2)))~w(PM) (3.14)

Then (3.10), (3.12) and (3.14) imply:

w(k)s(-h,lk'tw(m t 1)-pk(w(mt 1)-w(kt 1)))
(3.15)

s(-Irxk~~tW(nltl) Pk.l(w(m.l)-w(kt2)))sw(PM)

From ( 3.15) we conclude, in view of (3.11):

w(k)-(-h~k'tw(mtl) pk(w(mtl)-w(ktl))) (3.1G)
5(-h~.k'~tw(mtl) pk,~(w(m}1)-w(kt2))-w(ktl)

Next, suppose that the opposite inequality holds in (3.14). Then we conclude from (3.10),

(3.1 I), (3.12) and (3.13):

w(k)5w(PM)t(1-rk)~[-h.lk'tw(mtl) pk(w(mt])-w(ktl))]-w(PM)~ (3.17)
sw(PM)t(1-r~.~)~[-h.lk!~tw(mtl) pk,~(w(mtl)-w(kt2)]-w(PM)~-w(ktl)

This completes the induction argument. O

Corollary 3.2 There exirts an optimal policy which ir of the control limit rype.

Proof. Immediate from Theorem 3.2.

Remark 3.1 "I'he control limit concept has more meaning in the opportunity model than in

the continuous model, since in the presence of opportunities, the decision to do PM at the

next opportunity in state i may not be implemented, and it is conceivable that when the

opportunity finally occurs, the system has arrived in state j ~i, and PM might not be optimal

in state j. This situation cannot occur in the continuous model, where a PM action is

immediately carried out.

Remark 3.2 By adding a state PM to the decision process, representing the situation that

preventive maintenance is actually being carried out, we can model the start of a preventive

maintenance action in state i by a transition from i to state PM. The action in PM is fixed:
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start immediately with maintenance. We then have the relation:

w(i)-min{-h.l~'tpw(itl)t(1 p)w(mtl),

-h ~ } tr w(PM)f(1-r)(pw(itl)t(1 p)w(mtl))} lsi~m (3.18)

;p

Rewriting (3.18) yields (3.10). So, we can interpret (3.9) as the relative value corresponding

to state PA1, when the state space S is augmented with {PM}. In the continuous model a
preventive maintenance action can be started upon entrance of a certain state, so we obtain:

v(i)-min{-g~.~'fpv(itl).(1-p)v(m}1), v(PM)} lsi5n:

with

v(P~-c,-b'a t~ a,vU)
;~

Clearly, this procedure can also be applied under a fixed policy.

(3.19)

(3.20)

The proof of the following theorem proceeds along the same lines as in the continuous case,

but due to the opportunities the arguments are more intricate. Therefore the proof is

deferred to appendix A.

Theorem 3.4 h(R,) is a unimodal function of i, 1 sismf 1.

4 Relation between continuous and opportunity model

First we introduce some additional notation. We will refer to the continuous model

as model C, and denote by K~ the optimal control limit for this model ( if there are more

th,in one, the smallest). Similarly, the opportunity model is indicated hy model O, and the

optimal CLR by K. Recall that g is the minimal average cost in model C and h in model O.

Theorem 4.1 g 5 h

Proof. Model C and O only differ with respect to the decision structure. A general model,

that comprises both model C and O, is obtained by considering 4 possible actions: 0(do

nothing); 1(start PM); 2(start PM at the next opportunity, provided it occurs before the
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present state is left); 3(start CM), and the action spaceA(0)-{0},A(i)-{0,1,2}, 15ism,

and A(mt l)-{3}. The average cost optimality equation in terms of the average cost f and

the relative values z(i), iES yields:

z(~)--Ï~o~}Paz(1)t(1 Pok(mtl)

z(i)-min{ f~l'tPz(itl)t(1 p,)z(m31), cofat~az(j),
1 `Q

(1-r)[ f,l'tP~(!tl)t(1 p,}z(mtl)]tr,[cp fat~az(j)]}.15i5m
i-o

z(~n f 1) -cf-i(i t~ n,zU)
~~

z(iii } I)-U

This generalized model will be called model G and its policies R~g'. By restricting the action

space on the intermediate states to {0,1} resp. {0,2} we obtain the models C and O as

special cases. Now, choose a policy R~~ for model G with R'8~e{0,2} such that it is optimal

for model O. Then, clearly, f(R'x')-h(R'~)-h. Suppose this policy never chooses action 2,

then it is also a feasible policy for model C and we obtain: gsg(R'x')-f(R's1)-h. Next,

suppose it chooses action 2 ín at least one state i. Because the eorresponding term in (4.1),

the third one, is a convex combination of the first two terms, it follows that one of these

terms is lower than or equal to the third, so the action can be improved. From Theorem 2.1

we conclude that an improved policy can be constructed by replacing all actions of type 2 by

either 0 or 1, whichever is the best. This improved policy for model G, which we denote by

IF`x' , is now a feasible policy for model C, so we obtain:

8~K(Rc~i) f(Rc~i)~f(R~i)-h

t]
Proposition 4.1 g(R,„„)-h(R„,,,) and vR„,i ( i)-w~m (i), iES

i ~
Proof. The policy Rm„ assigns action 0 on all intermediate states. Therefore (g(R,„„),vRm. (i))

and (h(R„,,,),w~t„ ( i)) are solutions of the same set of equations. '

Proposition 4.2 K~-mf 1 iff K„-mf 1

Proof. Suppose that K~-mt1. This means that g(R,„)~g(Rm„), which implies that

TRm (m,l)~vK„ ( m) (by the same reasoning as in Lemma 3.1(b)). So:



14

(c,-8(Rm.~)at~a;v~t.~V)) ~ (-g(Rm.~)~,~~tv~t.~(nttl)) (4.2)
~-o

By Proposition 4.1, (4.2) holds equally well in terms of h and w. Using ( 3.11), we then obtain
the ineyuality TRm (m,l)~wKm, (m) for the opportunity case, or h(Rm)~h(Rm„). In view of
the unimodality of h(R,) we conclude that K-mf 1. The proof of the other implication is
similar. ~

Theorem 4.2 If (i) uo- 1, or

(ii) aotam„-óofb,„„-1

Then Ko s K~

Proof. Recall that K~ resp. K„ are the srnallest optimal control limits. In view of Proposition
4.2, there is nothing to prove in case K-mf 1 or K-m. So we may assume that K sm-l

and also that Kpsm. lt is convenient to consider the decision process, augmented with the
state PM (see Remark 3.2), and to set the relative values for this state equal to zero. That is,

we put v(PM)-w(PM)-0 instead of v(nzf 1)-w(rnf I)-0, as before. The following two
claims show that the assumption K ~K is contradictory to the conditions (i) or (ii). Claim

(a): Ko~K~ implies that w(0)~v(0). Claim (b): conditions (i) and (ii) of the theorem imply

w(0)?v(0). We first prove Claim (a). We have:

v(i)-v(PM), IC sism
v(PM)~-g,1-'tpv(ifl)t(1 p)v(m}1), ICsism

w(i)?w(P1lT), IC ~ism
w(PM) ~ -h,lti-~ }pti-,w(Ka)t(1 P,:,-~)w(rn t l )

The first equation follows from (3.19). The second equation is easily verified for i-K~

(suppose the inequality does not hold, then action 1 in K~ can be improved and K is not

optimal, according to Theorem 2.1) and the result then follows for i~K~ since the RHS

increases with i(cf. the proof of Theorem 3.1). Similarly, w(K ) ~ w(PM) would contradict the

optimality of K, which yields the third equation for i-K, and the result for i~K then

follows upon application of Theorem 3.3. Fínally, the fourth equation is valid, for if it were

not true, K~ would not be the smalles[ op[imal control limit. From (4.3) and K„~K~ we

obtain:
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-hx~ ~'P~-~w(x)t(1-P~ ~)w(n,.l)~w(PM)-
- ~(PM)~-gx~ ~tP~-~v(Ko)i(1-P~-~)v(,,,t1)

or,

(h-g)~`~-~ ' P~-~(w(K)-v(Ko)) t (1 n,~-,)(w(mtl)-v(m~l))

(a.a)

From (a.3) we know that w(K )?w(PM)-v(PM)-v(Ko). Hence, (4.6) below, holds for i-K-1.

When w(m t 1)?v(mt 1) we obtain (a.6) for all i by using Assumption 1, and in the opposite

case (a.6) is immedia[e, since (h-g)?0 (Theorem 4.1):

(h-g)~~1,(1-P)(w(,ntl)-v(n:tl)), 05i5Ko-1 (a.6)

We are now able to prove by induction that w(j)w~'), OSj~K-1, which particularly proves

(a). To establish the inequality for j-Ko 1 we note that w(K-1)~w(PM)-v(PM)-v(K-1)

according to (4.3). Next, suppose w~')sv(j) for j-kf 1 (~Kà 1), then the induction hypothe-

sis together with (a.6) yields:

w(k) pkw(ktl)t(-hxk't(] pk)w(,n,l)) ~ pkv(ktl)t(-g~lk~~(1-Pk)v(mtl))-v(k) (4.7)

which establishes the result for j-k. Proof of Claim (b). If aa-1 then we have according to

(3.10) and (3.20) that w(PM)-c,,hatw(0) and v(PM)-c;gatv(0). Since gsh and

v(PM)-w(PM), we conclude that w(0)?v(0). A similar reasoning applies to condition (ii).

From v(PM)-c~-l,~ataov(0)fa,,,,,v(,ntl) and v(mtl)-cfg(ithov(0)fh,,,,v(mtl) we obtain

v(PM) -(cotHc~) -é(a~Hp) t(aatHho)v(0)

where H: ~,m,~(1-h,n,~)-'

and similar expressions for w(PM) and w(n,f 1). Again, this leads to w(0)?v(0). O

Notice that Theorem 4.2 holds without any restrictions on the costs c~ , c~ and repair-

tirne distributions A(~), B(~). Numerical experiments support our conjecture that K~SK is

ensured by the more general condition that YoSY~ , but we were not able to prove this. That

the inequality does not generally hold is illustrated by the following
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Counterexample: Choose m-14; ao-0.4; a„-a,Z-a„-0.2; bo-1; co-1, c~-20; a-(i-0;
~,-0.2~; x,- I, iES. Then K~-2 and K~-S. To give an impression of the average cost
function, we present its value for three different control limits:

~(~z,)-s.x9 ~-~,.(~l,)-s.sH b(R~5)-c~.lt;
h(R,)-G.47 h-h(RS)-6.1G h(R15)-6.18 O

Indeed, it does not seem unrealistic to assume in practical situations that CM is, although

much more costly, better with repect to the state-after-maintenance. The example reveuls a

counterintuitive property of opportunity maintenance.

5 Optimization algorithm

In contrast with the preceding sections, which primarily focussed on theoretical

issues, this section addresses the computational aspects. Exploiting the special structure of

the problem, we are able to develop an efficient optimization procedure. This procedure

consists of two parts an iterative search procedure within the space of control limit policies,

leading to the optimal control limit rule, and a method to compute the average costs for a

fixed policy in each iteration. The latter method is based on the embedding technique,

whereas the search procedure relates to the optimality results, obtained in section 2.

Assume for the moment that the average costs and relative values of any CLR can

be efficiently calculated. In view of the unimodality, a simple bisection procedure as in

Federgruen and So [4, p.391] can now be applied to find the optimal policy. This procedure

only requires the average cost of a CLR in each iteration. Alternatively, a search procedure

can be based on the policy-improvement quantity (cf. van der Duyn Schouten and Vanneste

[3]). This procedure requires in each step the average costs and relative values for the

present strategy to construct an improved policy, which forms the initial policy for the next

iteration. Thus a sequence of improved policies is constructed, which eventually yields the

optimal policy, in view of the unimodality of the average cost function. A step in this

adapted version of the general policy-improvement step proceeds as follows. Suppose Rk is

the initial policy, for which the relative values and average cost have been determined. By

comparíng the policy-improvement test yuantity with the relative values, it is easily establis-

hed whether g(R,.,) ~g(Rk) or g(Rk.,) ~g(Rk) (if the opposite inequality holds in both cases, or

equality in either of these cases, then we may concludC from the unimodality results that Rk
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already is an optimal policy). Next, suppose that TRk(k-1,1)~vRk(k-1) (or g(R,,.,)~g(Rk)) then

we put 1: -k-1 and we continue lowering the control limit 1 als long as TRk(1,1)~vRk(1). This

yields an improved policy R,. An analogous procedure applies for the case Tttk(k,0)~v~t4(k)

(or ~(Rk.,) ~~(Rk)).
Now we turn to the computation of the average cost and relative values for a fixed

CLR R,. The method will be presented for the opportunity case, but the analysis similarly

applies to the other case. The quantities (h(R,), wR(i)) satisfy the equations:,

wR(i)--h(R~)Z~~}P,w,y(itl)t(1 P,)wR,(mtl), 05i~1

wR(i)-(1-r)[-h(R,),l'tP;wR(itl)t(1 P;)wR(mt1)]tr w~(pty), lSeSrn
m.~

wx,(P~ -co-h (R~)a t~ a;wR, U )
;-~ (5.1)

wk (nI t 1 ) -ct-h (R,) a t~ h,wR~ U)
~ -o

wR(rrttl)-0

where we use the auxiliary state PM again (see Remark 3.2). In addition, we will identify

state m f 1 with CM. As in section 2, we denote by XRl""(t) the state of the unit at time t.

From the semi-Markov process {X 'o'(t), t?0} we derive the embedded process {Y (t),R, R,
t?0} where Y(t):-1 if the last maintenance activity on or before t was PM and Y(t):-2 in

case of CM. The process {YR(t), t?0} is another semi-Markov process on the embedded

state space E-{l,2}. Let us denote the associated relative values by w~(i) (-w~F(i)), i- 1,2,

and the average costs by hF (-hF(R,)). These quantities satisfy the equations:

W E( 1) -C E-lI ETl tp ~W E(1) fpl2w E(2)

wE(2)-cZ -hE~}p21wF(1)tp,~WE(2)
wE(2)-0

where c,E (-c,E(R,)), T,E (--r,E(R,)), p,E (-p;,E(R,)) represent the expected cost, time and

transition probabilities of the embedded process. According to Tijms [I l, p.230] we have that

wR (PM) - wF(1), wR (CM) -wF(2) and h(R') -hE. Therefore, by solving (5.2) we obtain:

h(R)-Pz~c~ }p~cz

p21~}pu~ (5.3)
w~(P~- c,E~-c2~

P,:T? tp:, ~

It is now an easy matter to solve (5.1) from (5.3). Using (5.3) we obtain wtt(m) directly from
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(5.1) and by proceeding downwards with i we find all relative values for iES hy single-step
calculations in a recursive way.

What remains is to find expressions for c,E, p,E and -r,E. To that end, we analyze the
absorbing Markov chain {Z~(t), t?0} obtained from the process {XR""(t), t?0} by conver-
ting PM and CM into absorbing states. Let us now define x, (-r~(R,)) and o~ (-o,(R,)) for
0 ~j sm t 1 ~ts follows:

x~: - probability of absorption into state PM from initial state j

o~:- mean time until ahsorption (either in PM or CM} starting from state j.
Then it can be verified that, for example:

C E-C
v

E-~aKp~~ , i
i-0

m
~-at~aa

,i~-0

and similar expressions for the other quantities. The following theorem Sives recursive

relations by which the numbers x~ and o~ for Osjsm can be easily calculated.

Theorem 5.3 Tlze quantities x~ and a~, 05jsm, satirfy the relations:

(i) x~ - r~ t(1-r,)P; xrt~~ l~l~m
(ii) x~ - p~ x~,,, 05j ~l

(iil) o~ - (1-r~)(.l~'t p~a~„), 15j5m

(iv) a~ - .l~'t p~a~,,, 05j~1

(Here om„-0 and x,,,,,-0) p

Proof. By conditioning on the epoch of first transition of {ZR(t), t?0} (cf. Karlin and Taylor
[7, p.148]). p

This completes the description of the embedding procedure.

As a final remark, we mention that the analysis of the C-model results in the same
expressions as above when 1~ - t oo (or r,-1) is substituted.

6 Two special cases

The analysis presented in the previous sections extends and unifies existing results

from the literature. In this section we will particularly focuss on two known models and
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relate them to ours. It was already noted in the introduction that the basic model includes
the standard age-replacement model as a special case. An age replacement policy with
paramcaer Y' prescrihes to replace a component with lifetime clistrihutiun F(~), when il has
failed or reached the age T, whichever occurs first. Dekker and Dijkstra [1] consider this

model in a continuous-time setting, and extend it with opportunity-based replacements.
Using methods from classical analysis, they analyse the average-cost function as a function of
7-. Although their approach is quite different from ours, the results are very much in
agreement. The discretized version of their model is identical to our model with the

following specifications: ao-6a-1; a-p-0; ,1;-1,p,-(I-F(itl))~(1-F(i)), iES. For numerical
results, we refer to their paper. In particular, ít is observed that a pretty high cost ratio cf~co

is needed to ohtain a significant reduction in the value of the optimal control limit when

opportunities are taken into account. Our own numerical investigations confirm this

conclusion.

By imposing an appropriate cost structure, the model can also be applied to study
availability issues. Kawai [8] e.g., considers the availability of a two-unit parallel system with

a single repair facility (see also van der Duyn Schouten and Ronner [2]). In short, their
system is described as follows. Initially, their are two identical units, one of which is in

working condition and the other in (cold) standby position. While functioning, the operating

unit gradually deteriorates, whereas the cold standby remains as good as new. When the

working unit goes under repair (either PM or CM), the standby takes over its position and

we return to the initial situation as soon as the repair is completed. The system is unavaila-
ble when the working unit has failed, while the other is still under repair. Our single unit

model can he used to describe this system if we introduce a super-unit, which comprises a

working unit and a standby unit. If one unit is under repair then we say that the superunit is

under repair, otherwise its state is equal to the state of the working unit. Thus, after

completion of a repair, the superunit has state i, whenever the unit in working position has

state i (possibly mfl). The parameters a, and cP, e.g., now depend on the repair time

distribution. Recall from section 2 that the deterioration of the working unit in the absence

of maintenance can be descrihed by a contínuous-time Markov chain on S with absorbing

state rnt 1. Let us denote this process by {D(t), t?0} and define:

H,~(t):-P(D(t)-j ~D(0)-i) (6.1)

Then it can he verified thar.
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a,-~Hd(tk~(t)

cP-~Ha„„~(t)(1 A(t)kit

(G.2)

The repair cost now represents the expected unavailability during the repair. We note that

Kawai allows for a more general transition mechanism, namely from each state to all higher

states, but he does not consider opportunities. Refering to the O-model, it will be clear that

this is easily incorporated. The equivalence between the C-model and the Kawai model is

immediately clear from the optimality equations presented in the paper of Kawai (eq. (I1)-

(13)) and ours ( eq. (2.2)). In contrast with the article of Kawai, we do not need any

conditions on the repair time distribution to prove unimodality. Finally, we note that the

computation of the quantities as in (6.1) is an easy matter when analytical expressions for

the Laplace transforms of A(~), Ei(~) are available. The procedure is given in the appendix

and generalizes the results obtained by van der Duyn Schouten and Ronner [2].
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Appendix A Proof of Theorem 3.4

Proof. The proof of the unimodality of h(R,) closely follows the line of argument in the

proof of Theorem 3.2 and we will therefore concentrate on the parts that deviate from this

proof. We will frequently use Lemma 3.1, which equally well applies to the opportunity

model, in terms of h and w. The values (h(R;),wR(j)) are a solution of the set (5.1) (note

that we again use the additional state PM, see Remark 3.2). We distinguish case (a) and

(b) as in proof 3.2 and furthermore case (1) and (2) according to:

(1) wa,(PM)`wrt,(rnf 1)

(2) wk (PM) ~ wR (nt f 1)

Notice that wK(PM) plays the role of vK(m) in proof 3.2. Indeed, vR(m)-vK(PM) if ism.

(al) Choose i, l~isnt-1. It follows from h(R,)slt(R,,,) that TR(i,0)?wRf(i) or, by (3.11),

wR,(i ) ? wR (PM) (A.1)

It suffices to prove that:

wrt~')?wR(PM), if ]sj~m (A.2)

We prove (A.2) by induction. First, the case j-rn. Suppose to the contrary that
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w~ (ni) ~ w~l (PM), or, in view of (3.1 1):

-h(R,)xm'tw~(m t 1) ~ w~(PM) (A.3)

Rewriting yields (A.4) below for k-m (no[e that pm-0). By assumption 1 and using the

assumption that w~z (PM) ~ w1~ ( m t 1), we obtain

h(R)~,lk(1-Pk)(w~(mtl)-w~(PM)), isk~m (A.4)

or, equivalently,

-h(R),lk'tpkwR(PM)t(1-pk)w~(mtl) ~ wR(PM), i5k5m (A.5)

Starting with w1z(m)~wr;(PM), and using (A.5) it follows by induction that

(i) -h(R)~k'tpkiv~(ktl)t(1 Pk)wx,(mtl)~

~-h(R,)~k~tPkwR;(P~t(1-Pk)w~(mtl) and (i~ksm) (A.G)

(ii) wk (k) ~wR (PM)

In particular, w~r(i)~wk(PM), which contradicts our first conclusion, (A.1). Hence,

w~z(nt)?w~r(PA~). Next, suppose (A.2) holds for k-{t 1,..~ii ({?i). "1'hen, we show that

wtt({)?w~z(PM), again by contradiction. For, suppose to the contrary, that wK({)~wa(PM).

Using the induction hypothesis wH({f 1)?w~l(PM), it can be verified that

-h(R,)~~~tP,wR(P~t(1 P~)w~,(mtl) (A.7)
-`-h(R~)~~~tP,w~,({tl)t(1 p~)w~(mtl)5wR(PM)

where the latter inequality follows from the induction hypothesis and (3.11). Eq. (A.7) yields

(A.8) below, for j-{. By assumption 1, we obtain :

h(RJ'-~,(1 p,)(w~,(m~l)-wR,(P~), j~{ (A.g)

Stxrting with wR ({) ~ wR ( PM) we arrive a[ wR (i) ~ wR (PM) by the same reasoning as in

(A.3)-(A.C), which yields a contradiction with (A.1). Hence, wR({)?wK(PM) which comple-

tes the induction step, and thus the proof of (A.2).

(a2) Analogously to proof 3.2, we can show that the assumption wR (PM) ~ wR (m f 1) is in

contradiction with h(R,)5h(R,,,). The former assumption implies that w~~(j)~wR(PM),

i~j~m, which can he established by induction: For j-m this inequality is easily verified, and
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furthermore wtl ~' f 1) ~ w~f(PM) implies:

wR,(i)-(1-r)[-!:(R,)~1,~tp,wHU'tl)t(1-p)w~(mtl)]tr, wR(PM)~wR(Pt1~ (A.9)

(bl) The proof of part ( b) is based on the relation

-h(R),L-`tpw,~(jtl)t(1 p)w~(n1f1)~w,~(PM), js!-1 (A.10)

Note that the LHS eyuals wK (~'), j si-1. From h(R,)~h(R,-,) we have: T~ (i-l, l)?wR (i-1) or

w12(PM)?w~(i-1). Ey. (A.10) now easily follows by induction in case i-mt 1(cf. (A.3)-

(A.G)). Suppose i~nt. Now, wR(PM)~wR(mt 1) implies wR(m)5w~1(mt 1). Proceeding

downwards with k (k?i) we obtain wR(k)5wR(kf 1) as long as wR(kt 1)?wR(PM) (cf.

(3.14) and (3.17)). Should we have wR(k)~wk(PA~ at a certain stage k (whereas w1z(kt 1)-

?w~t(PM)), then we obtain from

h(R)~k~fnkwl~(P~1(1 nk)wR'(mt])

`-h(R,)~~`tpkw~,(ktl)t(1 Pk)wR(m}1)~wR,(~'~
(A.I1)

that wR(i)~wH(PM), for all isk, (cf. (A.4) and (A.5)), which establishes (A.10). In the other

case, i.e. wR(k)?wK`(PM) for aLl k?i, we particularly have wR(i)?w~(PM), so wR(i-1)(~

w~t(PM))sw1z(i), which provides the start for an inductive proof of wrt(~')SwRU'tl), jsi-l,

which yields (A.10) (cf. (3.12); use the fact that wK(~')swa(mt 1) tbr all j, which is easily

proved).

(h2) Ey. (A.10) now follows directly by induction, starting with wR(i-1)swH(PM) and

using wR (PM) ? w2 (m t 1). O

Appendix K Recursive schemes for the Kawai model

We present an efficient procedure to compute the quantities {a;},ES and co, as specified for

the Kawai-model (see (6.2)). When the Laplace-transform of the repair time distribution

A(~) is explicitly known, the recursive schemes given below should yuickly yield a solution.

The proceclure similarly applies to the computation of f h,},F,. and c~ .

Define:
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A(s):-~e A(x)dz

A~:-~Hy(t)(1 A(t)~t

(B.1)

(with H,~(t) as cJefined in (6.1))

Suppose, as in the Kawai madel, that the sequence {.l,}mo is strictly increasing an~ that

transitions to lower states are impossíble. It follows from ey.(4) in Kawai (1981) and the

definition of H,,(t) that:

,,,H (t)-e

~1 ; l
H,(t)-(A-,l~) 1 ~qk,H,k(t)-~ q,kHk,(t) J. ~~f~j~m (B.2)

kd ka.l

H;,,..1(t) - I -~ H,k(t)
k -~

From ( B.I) ancJ (B.2) we have:

A;,-~,1-A(~~)

A,;-(~,-~,) 1I ~ 9k(I;k- ~ q,kAk;)~Osf ~j~m (B.3)
lk kv.l

A,~.1(t)-a-~A,~
k -i

(Note that A;;-O when j~i)

From these eyuations we can recursively solve forA,;, OsisjSmf 1. Tn particular, we obtain

Aa ,Osi~mt 1. Using the relations between a, and A~;, Osi~mt 1, given hy Kawai (ey. (14)-

(]fi)) and noting that cP-A~,,,, , we obtain the desired yuantities.
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