CBM

7626 1993 613

R45
Ohtrome lounde

THE ALGEBRAIC RICCATI EQUATION AND SINGULAR OPTIMAL CONTROL:
 THE DISCRETE-TIME CASE

Ton Geerts

FEW 613

Communicated by Prof.dr. J.M. Schumacher
K.U.B.

BIBLIOTHEEK TILBURG

THE ALGEBRAIC RICCATI EQUATION AND SINGULAR OPTIMAL CONTROL:
 THE DISCRETE-TIME CASE*

Ton Geerts ${ }^{1}$
Tilburg University, Department of Economics, P.O. Box 90153, NL- 5000 LE Tilburg, The Netherlands, fax: (0)13-663280, e-mail: geerts@kub.nl

Abstract

We consider a general infinite-horizon linear-quadratic control problem, with arbitrary stability constraints, subject to a standard discrete-time system. In particular, we derive necessary and sufficient conditions for the existence of the optimal cost, and we characterize this optimal cost as a certain solution of the associated linear matrix inequality. This solution turns out to satisfy the corresponding (possibly singular) algebraic Riccati equation, and thus we can establish a map from all possible stability constraints to the set of positive semidefinite solutions of this equation. As a by-result, we present a necessary and sufficient condition for the existence of a positive semidefinite solution of the general Riccati equation. Finally, we derive necessary and sufficient conditions for the existence of optimal controls if the underlying discrete-time system is left invertible, and these optimal controls turn out to be implementable by a unique feedback law.

Keywords Infinite-horizon linear-quadratic control, discrete-time system, arbitrary stability constraints, regularity and singularity, linear matrix inequality, algebraic Riccati equation, left invertibility, feedback law.

1. Introduction and preliminaries.

Consider the standard discrete-time system Σ

$$
\begin{equation*}
x(i+1)=A x(i)+B u(i), y(i)=C x(i)+D u(i) \tag{1}
\end{equation*}
$$

together with the additional output variable

$$
\begin{equation*}
z(i)=S x(i)+T u(i), \tag{2}
\end{equation*}
$$

where, for all $i \geq 0, u(i) \in \mathbf{R}^{m}, x(i) \in \mathbf{R}^{n}$ and $x(0)=x_{0}, y(i) \in \mathbf{R}^{r}$ and $z(i) \in \mathbf{R}^{s}$. All matrices involved are real and constant. Also, for every x_{0} and every control sequence $u=\{u(i)\}_{i=0}^{\infty}$, we define the function $J\left(x_{0}, u\right):=\sum_{i=0}^{\infty} y^{\prime}(i) y(i)$.
Then we are interested in the Linear-Quadratic Control Problem with z-stability $(L Q C P)_{z}$: For all x_{0}, determine $J_{z}\left(x_{0}\right):=\inf \left\{J\left(x_{0}, u\right) \mid u\right.$ is such that $\left.\lim _{i \rightarrow \infty} z(i)=0\right\}$,
and if, for every $x_{0}, J_{z}\left(x_{0}\right)<\infty$, then compute (if possible) for every x_{0} a control sequence \bar{u} such that $J_{z}\left(x_{0}\right)=J\left(x_{0}, \bar{u}\right)$ and $\lim _{i \rightarrow \infty} z(i)=0$. The problem is called regular if ker $(D)=0$ and singular if $\operatorname{ker}(D) \neq 0$. If $\operatorname{ker}(S)=0$ and $T=0$, then (LQCP) $)_{z}$ will be called the LQCP with (state) stability, and if $s=0$, then we will speak of the LQCP without stability. Regular as well as singular cases for these two problems are discussed in the lengthy [1], by means of Silverman's structure algorithm. In the present paper, we will treat (LQCP) with S and T arbitrary, regardless whether D is left invertible or not, by a more direct algebraic approach. In Section 2 we will derive necessary and sufficient conditions for existence of the optimal cost (1.4). Finally, in Section 3 we will present necessary and sufficient conditions for existence of optimal controls if the underlying system Σ is left invertible [1, p. 351], i.e., if ρ : $=$ normal $\operatorname{rank}(T(z))=m$, with $T(z):=D+C(z I-A)^{-1} B[1, \mathrm{p} .350]$.

We will need a few well-known observations, as well as some new statements. Assume that there exists a matrix $M_{z} \geq 0$ such that, for all $x_{0} \in \mathbf{R}^{n}, J_{z}\left(x_{0}\right) \leq x_{0}^{\prime} M_{z} x_{0}$. Then there exists a unique $K_{z} \in \mathbf{R}^{n \times n}, K_{z} \geq 0$, such that, for all $x_{0}, J_{z}\left(x_{0}\right)=x_{0}^{\prime} K_{z} x_{0}$ [2, Lemma 5]. Next, let

[^0]$i \geq 1$, and assume that $u(j)(j=0,1, \ldots,(i-1))$ are given. Then the function $J_{z}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{+}$ satisfies the Dissipation Inequality (e.g. [2, Lemma 1])
\[

$$
\begin{align*}
& x_{0}^{\prime} K_{z} x_{0} \leq \Sigma_{j=0}^{i-1} y^{\prime}(j) y(j)+x^{\prime}(i) K_{z} x(i), \tag{5}\\
& \text { and } x_{0}^{\prime} K_{z} x_{0}=\inf \left\{\Sigma_{j=0}^{i-1} y^{\prime}(j) y(j)+x^{\prime}(i) K_{z} x(i) \mid u(j), j=0, \ldots,(i-1)\right\} \tag{6}
\end{align*}
$$
\]

If, moreover, $P(K):=\left[\begin{array}{ll}C^{\prime} C+A^{\prime} K A-K & C^{\prime} D+A^{\prime} K B \\ D^{\prime} C+B^{\prime} K A & D^{\prime} D+B^{\prime} K B\end{array}\right]$, with $K=K^{\prime} \in \mathbf{R}^{n \times n}$,
then $\Sigma_{j=0}^{i-1} y^{\prime}(j) y(j)+x^{\prime}(i) K x(i)-x_{0}^{\prime} K x_{0}=\Sigma_{j=0}^{i-1}\left[x^{\prime}(j) u^{\prime}(j)\right] P(K)\left[\begin{array}{l}x(j) \\ u(j)\end{array}\right]$.
(Sketchy proof for (1.8): Take $i=1$. Then (1.8) is clear form (1.1) and (1.7). Next, take $i=2$. Then the left hand-side of (1.8) is equal to $\left\{y^{\prime}(1) y(1)+x^{\prime}(2) K x(2)-x^{\prime}(1) K x(1)\right\}+$ $\left.\left\{y^{\prime}(0) y(0)+x^{\prime}(1) K x(1)-x_{0}^{\prime} K x_{0}\right\}=\left[x^{\prime}(1) u^{\prime}(1)\right] P(K)\right]\left[\begin{array}{l}x(1) \\ u(1)\end{array}\right]+\left[x^{\prime}(0) u^{\prime}(0)\right] P(K)\left[\begin{array}{l}x(0) \\ u(0)\end{array}\right]$, etc.) Combination of (1.5) with (1.8) now yields that the right hand-side of (1.8) for $K=K_{z}$ is positive semidefinite, and thus, by taking $i=1$ and realizing that x_{0} as well as $u(0)$ are arbitrary, we find that

$$
\begin{equation*}
P\left(K_{z}\right) \geq 0, \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\text { and hence } K_{z} \in \Gamma:=\left\{K \in \mathbf{R}^{n \times n} \mid K=K^{\prime}, P(K) \geqslant 0\right\} \text {, } \tag{10}
\end{equation*}
$$ the solution set of the Linear Matrix Inequality (LMI). $\overline{\mathrm{If}}$, in addition,

$$
\begin{equation*}
\phi(K):=C^{\prime} C+A^{\prime} K A-K-\left(C^{\prime} D+A^{\prime} K B\right)\left(D^{\prime} D+B^{\prime} K B\right)^{+}\left(D^{\prime} C+B^{\prime} K A\right) \tag{11}
\end{equation*}
$$

(where N^{+}denotes the Moore-Penrose inverse of the matrix N), and
$\begin{aligned} F(K) & :=-\left(D^{\prime} D+B^{\prime} K B\right)^{+}\left(D^{\prime} C+B^{\prime} K A\right)\left(K=K^{\prime} \in \mathbf{R}^{n \times n}\right), \\ \text { then } K \in \Gamma & \Leftrightarrow \phi(K) \geq 0, D^{\prime} D+B^{\prime} K B \geq 0,-\left(D^{\prime} D+B^{\prime} K B\right) F(K)=D^{\prime} C+B^{\prime} K A \text { (Schur's }\end{aligned}$ Lemma), and $\operatorname{rank}(P(K))=\operatorname{rank}(\phi(K))+\operatorname{rank}\left(D^{\prime} D+B^{\prime} K B\right)$. Hence, for every $\bar{x} \in \mathbf{R}^{n}, \bar{u} \in$ \mathbf{R}^{m} and every $K \in \Gamma$,

$$
\left[\bar{x}^{\prime} \bar{u}^{\prime}\right] P(K)\left[\begin{array}{l}
\bar{x} \tag{13}\\
\bar{u}
\end{array}\right]=\bar{x}^{\prime} \phi(K) \bar{x}+\left[\bar{u}^{\prime}-\bar{x}^{\prime} F^{\prime}(K)\right]\left[D^{\prime} D+B^{\prime} K B\right][\bar{u}-F(K) \bar{x}]
$$

and thus, for every x_{0} and every $i \geq 1$, (1.6) transforms by (1.8) into

$$
\begin{array}{ll}
\inf \left\{\Sigma _ { j = 0 } ^ { i - 1 } \left[x^{\prime}(j) \phi\left(K_{z}\right) x(j)+\left[u^{\prime}(j)\right.\right.\right. & \left.-x^{\prime}(j) F^{\prime}\left(K_{z}\right)\right]\left[D^{\prime} D+B^{\prime} K_{z} B\right][u(j)- \\
& \left.\left.\left.F\left(K_{z}\right) x(j)\right]\right] \mid u(j), j=0, \ldots,(i-1)\right\}=0 . \tag{14}
\end{array}
$$

We establish that Γ contains the matrix that represents J_{z}, the optimal cost for (LQCP) ${ }_{z}$, provided that J_{z} is bounded from above by a quadratic form. Furthermore
Proposition 1.1.
$\phi\left(K_{z}\right)=0, \operatorname{rank}\left(P\left(K_{z}\right)\right)=\operatorname{rank}\left(D^{\prime} D+B^{\prime} K_{z} B\right)$.
Proof. Take $i=1$ in (1.14). Then the infimum is attained for $u(0)=F\left(K_{z}\right) x_{0}$. It follows that $x_{0}^{\prime} \phi\left(K_{z}\right) x_{0}=0$ for every x_{0}.

Lemma 1.2.

Assume that $K \in \Gamma$. Then rank $(P(K)) \geq \rho$. If $P(K)=\left[\begin{array}{c}C_{K}^{\prime} \\ D_{K}^{\prime}\end{array}\right]\left[\begin{array}{ll}C_{K} & D_{K}\end{array}\right]$, with $\left[\begin{array}{ll}C_{K} & D_{K}\end{array}\right]$ right invertible and $T_{K}(z):=D_{K}+C_{K}(z I-A)^{-1} B$, then $\operatorname{rank}(P(K))=\rho$ if and only if $T_{K}(z)$ is right invertible as a rational matrix.
Proof. Follows directly by appropriately rewriting some proofs in [3].

Corollary 1.3.

Let $K \in \Gamma$ and $\phi(K)=0$. Then $\operatorname{rank}(P(K))=\operatorname{rank}\left(D^{\prime} D+B^{\prime} K B\right)=\rho$.
Proof. It is clear that $C_{K}^{\prime}\left(I-D_{K}\left(D_{K}^{\prime} D_{K}\right)^{+} D_{K}^{\prime}\right) C_{K}=\phi(K)$ in Lemma 1.2 and since $\phi(K)=0$, it follows that D_{K} is right invertible. Hence, by Lemma 1.2, $\operatorname{rank}\left(D^{\prime} D+B^{\prime} K B\right)=\operatorname{rank}$
$(P(K))=\rho$.
Corollary 1.4.
If $\rho=m$, then $D^{\prime} D+B^{\prime} K_{z} B>0$.
Proposition 1.5.
Let $x_{0} \in \mathbf{R}^{n}, u=\{u(i)\}_{i=1}^{\infty}$ be such that $z(i) \rightarrow 0(i \rightarrow \infty)$, and set $v(i):=u(i)-$ $F\left(K_{z}\right) x(i), i \geq 0$. Then $\sum_{i=0}^{\infty} v(i)\left[D^{\prime} D+B^{\prime} K_{z} B\right] v(i)<\infty \Leftrightarrow J\left(x_{0}, u\right)<\infty$. In addition, if $J\left(x_{0}, u\right)<\infty$, then

$$
\begin{equation*}
J\left(x_{0}, u\right)=\sum_{i=0}^{\infty} v^{\prime}(i)\left[D^{\prime} D+B^{\prime} K_{z} B\right] v(i)+x_{0}^{\prime} K_{z} x_{0} \tag{15}
\end{equation*}
$$

Proof. If $J\left(x_{0}, u\right)<\infty$, then $x^{\prime}(i) K_{z} x(i) \leq \sum_{j=i}^{\infty} y^{\prime}(j) y(j)$, by definition and time-invariancy (!) and hence $x^{\prime}(i) K_{z} x(i) \rightarrow 0(i \rightarrow \infty)$. Thus, by (1.8), (1.13) and Proposition 1.1, we get (1.15). Conversely, if $\sum_{i=0}^{\infty} v^{\prime}(i)\left[D^{\prime} D+B^{\prime} K_{z} B\right] v(i)<\infty$, then, again by (1.8), (1.13) and Proposition 1.1, $J\left(x_{0}, u\right)$ cannot be infinite, as $x^{\prime}(i) K_{z} x(i) \geq 0$ for all i. Thus, $J\left(x_{0}, u\right)<\infty$ and hence, as $z(i) \rightarrow 0, x^{\prime}(i) K_{z} x(i) \rightarrow 0(i \rightarrow \infty)$, and we have (1.15).

Corollary 1.6.

Assume in Proposition 1.5 that $\rho=m$. Then $J\left(x_{0}, u\right)=x_{0}^{\prime} K_{z} x_{0} \Leftrightarrow u(i)=F\left(K_{z}\right) x(i)$ for every $i \geq 0$.
Proof. By Corollary 1.4, $D^{\prime} D+B^{\prime} K_{z} B>0$. Now apply Proposition 1.5.
It follows from Corollary 1.6 that if for every x_{0} an optimal control sequence for (LQCP) z exists, then this sequence can be given in terms of a feedback law, and this feedback law is unique, if $\rho=m$. For more details, see Section 3.

We will close this preliminary Section with the following, partly new, algebraic results. Let $\Gamma_{0} \subset \Gamma$ denote the set of solutions of the algebraic Riccati equation (ARE):

$$
\begin{equation*}
\Gamma_{0}:=\{K \in \Gamma \mid \phi(K)=0\} \tag{16}
\end{equation*}
$$

Let, further, for any $G \in \mathbf{R}^{m \times n}$ and any $K=K^{\prime} \in \mathbf{R}^{n \times n}$,

$$
\begin{equation*}
A_{G}:=A+B G, C_{G}:=C+D G, S_{G}:=S+T G \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{G}(K):=C_{G}^{\prime} C_{G}+A_{G}^{\prime} K A_{G}-K-\left(A_{G}^{\prime} K B+C_{G}^{\prime} D\right)\left(D^{\prime} D+B^{\prime} K B\right)^{+}\left(B^{\prime} K A_{G}+D^{\prime} C_{G}\right) . \tag{18}
\end{equation*}
$$

Proposition 1.7.

(a) If $K \geq 0$, then $\phi(K) \geq 0 \Leftrightarrow \phi_{G}(K) \geq 0$ and $\phi(K)=0 \Leftrightarrow \phi_{G}(K)=0$.
(b) If $K \in \Gamma_{0}$, then $K=A_{F(K)}^{\prime} K A_{F(K)}+C_{F(K)}^{\prime} C_{F(K)}$.
(c) If $D^{\prime} D+B^{\prime} K B$ is invertible, then $A_{F(K)}=A_{G}-B\left(D^{\prime} D+B^{\prime} K B\right)^{-1}\left(D^{\prime} C_{G}+B^{\prime} K A_{G}\right)$. If, moreover, $0 \leq K \in \Gamma_{0}$, then $D^{\prime} C_{F(K)}+B^{\prime} K A_{F(K)}=0$.
Proof. If $K \in \Gamma$ and $K \geq 0$, then $P(K) \geq 0 \Leftrightarrow \phi(K) \geq 0$ ad $\phi(K)=0 \Leftrightarrow \operatorname{rank}(P(K))=$ rank $\left(D^{\prime} D+B^{\prime} K B\right)$. If $\bar{P}_{G}(K)$ stands for (1.7) with A_{G} and C_{G} instead of A and C, then, obviously, $P_{G}(K) \geq 0 \Leftrightarrow P(K) \geq 0$, and thus we establish (a). For (b), see [1, (14)]. Next, if $D^{\prime} D+B^{\prime} K B$ is invertible, then $\left(D^{\prime} D+B^{\prime} K B\right)^{-1}\left(D^{\prime} C_{G}+B^{\prime} K A_{G}\right)+F(K)=G$. Finally, by (a), $\phi(K)=0 \Leftrightarrow \phi_{F(K)}(K)=0$, and the proof of (c) is then completed by applying (b).
2. Necessary and sufficient conditions for the existence of the optimal cost.

In the sequel, $<A\left|\operatorname{im}(B)>=\operatorname{im}(B)+\operatorname{Aim}(B)+\ldots+A^{n-1} \operatorname{im}(B),<\operatorname{ker}(C)\right| A>=$ $\operatorname{ker}(C) \cap \operatorname{ker}(C A) \cap \ldots \cap \operatorname{ker}\left(C A^{n-1}\right), \mathcal{X}_{s}(A)$ denotes the stable subspace of A [$\left.6, \mathrm{Ch} . \mathrm{VI}\right]$ and $\left[\begin{array}{ll}z I-A & -B \\ C & D\end{array}\right]$ is the system matrix of Σ. If $A\left(\mathcal{L}_{1}\right) \subset \mathcal{L}_{1}, A\left(\mathcal{L}_{2}\right) \subset \mathcal{L}_{2}$ and $\mathcal{L}_{1} \subset \mathcal{L}_{2}$, then $\sigma\left(A \mid \mathcal{L}_{2} / \mathcal{L}_{1}\right)$ denotes the spectrum of the quotient map induced by A on $\mathcal{L}_{2} / \mathcal{L}_{1}$, the quotient space of \mathcal{L}_{2} over \mathcal{L}_{1} (for maps and matrices we use the same symbols).
Definition 2.1 [1, Section III].
Let $\mathcal{V}=\mathcal{V}(\Sigma)$ denotes the space of points $x_{0} \in \mathbf{R}^{n}$ for which there exist $u(i)(i \geq 0)$ such that, for all $i \geq 0, y(i)=0$. Let, moreover, $\mathcal{V}_{z}=\mathcal{V}_{z}(\Sigma)$ denote the space of points $x_{0} \in \mathbf{R}^{n}$ for which there exist $u(i)(i \geq 0)$ such that, for all $i \geq 0, y(i)=0$ and $z(i)=0$.

Proposition 2.2.

\mathcal{V} is the largest subspace \mathcal{L} for which there exists a map $G: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ such that $(A+B G) \mathcal{L} \subset$ $\mathcal{L},(C+D G) \mathcal{L}=0$. If $G \in \mathcal{G}(\Sigma):=\left\{H: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m} \mid\left(A_{H}\right) \mathcal{V} \subset \mathcal{V},\left(C_{H}\right) \mathcal{V}=0\right\}$, then $\mathcal{V}=<$
ker $(C+D G) \mid A+B G>\mathcal{V}_{z}$ is the largest subspace \mathcal{L} for which there exists a map $G: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ such that $(A+B G) \mathcal{L} \subset \mathcal{L},(C+D G) \mathcal{L}=0,(S+T G) \mathcal{L}=0$. If $G \in \mathcal{G}_{z}(\Sigma):=\left\{H: \mathbf{R}^{n} \rightarrow\right.$ $\left.\mathbf{R}^{m} \mid\left(A_{H}\right) \mathcal{V}_{z} \subset \mathcal{V}_{z},\left(C_{H}\right) \mathcal{V}_{z}=0,\left(S_{G}\right) \mathcal{V}_{z}=0\right\}$, then $\mathcal{V}_{z}=<$ ker $\left.\left[\begin{array}{c}C+D G \\ S+T G\end{array}\right] \right\rvert\, A+B G>$. Furthermore, $\mathcal{G}_{z}(\Sigma) \cap \mathcal{G}(\Sigma) \neq \emptyset$.
Proof. All claims, except for the last one, are in [1, Section III]. Next, let $G \in \mathcal{G}_{z}(\Sigma) \neq \emptyset$. Then the map $G \mid \mathcal{V}_{z}$ can be extended on \mathcal{V} in such a way that the resulting extension, $\bar{G}: \mathcal{V} \rightarrow \mathbf{R}^{m}$, is such that $(A+B \bar{G}) \mathcal{V} \subset \mathcal{V},(C+D \bar{G}) \mathcal{V}=0$ (e.g. [4]). If \tilde{G} is an arbitrary extension of \bar{G} on \mathbf{R}^{n}, then $\tilde{G} \in \mathcal{G}_{z}(\Sigma) \cap \mathcal{G}(\Sigma)$.

Now let $G \in \mathcal{G}_{z}(\Sigma) \cap \mathcal{G}(\Sigma)$, then, with $v(i)=u(i)-G x(i),(1.1)-(1.2)$ transform into $x(i+1)=A_{G} x(i)+B v(i), y(i)=C_{G} x(i)+D v(i)$,

$$
\begin{equation*}
z(i)=S_{G} x(i)+T v(i) \tag{1}
\end{equation*}
$$

Suppose that \mathcal{X}_{2} is such that $\mathcal{V}_{z} \oplus \mathcal{X}_{2}=\mathcal{V}$, and that \mathcal{X}_{3} is such that $\mathcal{V} \oplus \mathcal{X}_{3}=\mathbf{R}^{n}$. Moreover, let $\left[\operatorname{ker}\left(\left[\begin{array}{c}D \\ T\end{array}\right]\right) \cap B^{-1}\left(\mathcal{V}_{z}\right)\right] \oplus \mathcal{U}_{2}=\left[\operatorname{ker}(D) \cap B^{-1}(\mathcal{V})\right]$, and let $\left[\operatorname{ker}(D) \cap B^{-1}(\mathcal{V})\right] \oplus \mathcal{U}_{3}=\mathbf{R}^{m}$. Then, with respect to suitably chosen bases, (2.1) - (2.2) transform into

$$
\begin{align*}
& {\left[\begin{array}{l}
x_{1}(i+1) \\
x_{2}(i+1) \\
x_{3}(i+1)
\end{array}\right]=\left[\begin{array}{lll}
\bar{A}_{11} & \bar{A}_{12} & \bar{A}_{13} \\
0 & \bar{A}_{22} & \bar{A}_{23} \\
0 & 0 & \bar{A}_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1}(i) \\
x_{2}(i) \\
x_{3}(i)
\end{array}\right]+\left[\begin{array}{lll}
B_{11} & B_{12} & B_{13} \\
0 & B_{22} & B_{23} \\
0 & 0 & B_{33}
\end{array}\right]\left[\begin{array}{l}
v_{1}(i) \\
v_{2}(i) \\
v_{3}(i)
\end{array}\right],} \tag{3a}\\
& y(i)=\left[\begin{array}{lll}
0 & 0 & \bar{C}_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1}(i) \\
x_{2}(i) \\
x_{3}(i)
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & D_{3}
\end{array}\right]\left[\begin{array}{l}
v_{1}(i) \\
v_{2}(i) \\
v_{3}(i)
\end{array}\right], \tag{3~b}\\
& z(i)=\left[\begin{array}{lll}
0 & \bar{S}_{2} & \bar{S}_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1}(i) \\
x_{2}(i) \\
x_{3}(i)
\end{array}\right],+\left[\begin{array}{ll}
0 & T_{2}
\end{array} T_{3}\right]\left[\begin{array}{l}
v_{1}(i) \\
v_{2}(i) \\
v_{3}(i)
\end{array}\right], \tag{4}
\end{align*}
$$

with $\operatorname{ker}\left(B_{33}\right) \cap \operatorname{ker}\left(D_{3}\right)=0$ and $\operatorname{ker}\left(\left[\begin{array}{cc}B_{22} & B_{23} \\ 0 & B_{33}\end{array}\right]\right) \cap \operatorname{ker}\left(\left[\begin{array}{cc}0 & D_{3} \\ T_{2} & T_{3}\end{array}\right]\right)=0$, by construction. Note that $y(i)$ is generated by the subsystem for $x_{3}(i)$, whereas $y(i)$ and $z(i)$ jointly are generated by the subsystem for $x_{2}(i)$ and $x_{3}(i)$. These subsystems are strongly observable $[1, \mathbf{p}$. 344] by construction, i.e., the associated system matrices are of full column rank for every $s \in \mathbb{C}$ [1, Section III], [5]. Thus, these subsystems are strongly detectable [1, p. 354], i.e., if $y(i) \rightarrow 0$, then $x_{3}(i) \rightarrow 0$, and if $\left[\begin{array}{l}y(i) \\ z(i)\end{array}\right] \rightarrow\left[\begin{array}{l}0 \\ 0\end{array}\right]$, then $\left[\begin{array}{l}x_{2}(i) \\ x_{3}(i)\end{array}\right] \rightarrow\left[\begin{array}{l}0 \\ 0\end{array}\right](i \rightarrow \infty)$, irrespective of inputs and initial states [1, Section III], [5]. This key observation leads us to the first main

result.

Theorem 2.3

$$
\begin{equation*}
\forall x_{0} \in \mathbf{R}^{n}: J_{z}\left(x_{0}\right)<\infty \Leftrightarrow \mathcal{X}_{s}(A)+<A \mid \operatorname{im}(B)>+\mathcal{V}_{z}=\mathbf{R}^{n} \tag{5}
\end{equation*}
$$

Assume this to be the case. Then there exists a unique matrix $K_{z} \in \Gamma_{0}$ such that, for all $x_{0}, J_{z}\left(x_{0}\right)=x_{0}^{\prime} K_{z} x_{0}$ and $K_{z} \mathcal{V}_{z}=0$. In addition, if $K \in \Gamma, K \mathcal{V}_{z}=0$, then $K \leq K_{z}$.
Proof. Let $x_{0} \in \mathbf{R}^{n}, J\left(x_{0}, u\right)<\infty$ and $z(i) \rightarrow 0(i \rightarrow \infty)$ for some u. Then, also, $y(i) \rightarrow 0(i \rightarrow$ $\infty)$. Now, consider (2.3)-(2.4). From the foregoing, then, $\left[\begin{array}{l}x_{2}(i) \\ x_{3}(i)\end{array}\right] \rightarrow\left[\begin{array}{l}0 \\ 0\end{array}\right](i \rightarrow \infty)$, i.e., the Euclidean distance between $x(i)$ and \mathcal{V}_{z} converges to zero as i tends to infinity. As, for every $x_{0} \in \mathcal{V}_{z}, J_{z}\left(x_{0}\right)=0$, we establish that $J_{z}\left(x_{0}\right)<\infty$ for every $x_{0} \in \mathbf{R}^{n}$ only if

$$
\left(\left[\begin{array}{ll}
\bar{A}_{22} & \bar{A}_{23} \tag{6}\\
0 & \bar{A}_{33}
\end{array}\right],\left[\begin{array}{ll}
B_{22} & B_{23} \\
0 & B_{33}
\end{array}\right]\right) \text { is stabilizable }
$$

$[6, \mathrm{Ch} . \mathrm{VI}]$. Assume this to be the case. Then there exists a feedback $\left[\begin{array}{l}v_{2}(i) \\ v_{3}(i)\end{array}\right]=$ $\left[\begin{array}{ll}H_{22} & H_{23} \\ H_{32} & H_{33}\end{array}\right]\left[\begin{array}{l}x_{2}(i) \\ x_{3}(i)\end{array}\right]$ such that the resulting closed-loop matrix for $x_{2}(i)$ and $x_{3}(i)$ has all its eigenvalues within the unit circle $[6, \mathrm{Ch} . \mathrm{VI}]$. Therefore there exists a matrix $M_{z} \geq 0$, with $\mathcal{V}_{z} \subset \operatorname{ker}\left(M_{z}\right)$, such that, for all $x_{0}, J_{z}\left(x_{0}\right) \leq x_{0}^{\prime} M_{z} x_{0}$, and hence there also exists a unique $K_{z} \geq 0$ such that, for all $x_{0}, J_{z}\left(x_{0}\right)=x_{0}^{\prime} K_{z} x_{0}$ [2, Lemma 5], and $K_{z} \mathcal{V}_{z}=0$. From Proposition 1.1, then, $K_{z} \in \Gamma_{0}$. On the other hand, if V_{z} denotes a basis matrix for \mathcal{V}_{z}, then, obviously, by the Hautus test, $(2.6) \Leftrightarrow\left(A_{G},\left[B V_{z}\right]\right)$ is stabilizable $\Leftrightarrow \mathcal{X}_{s}(A)+<A \mid \operatorname{im}\left(\left[B V_{z}\right]\right)>=\mathbf{R}^{n}$ $[6$, Ch. VI $] \Leftrightarrow \mathcal{X}_{s}(A)+<A \mid \operatorname{im}(B)>+\mathcal{V}_{z}=\mathbf{R}^{n}$, since, $<A\left|\operatorname{im}\left(\left[B V_{z}\right]\right)>=<A\right| \operatorname{im}(B)>$ $+\mathcal{V}_{z}+A\left(\mathcal{V}_{z}\right)+\ldots+A^{n-1}\left(\mathcal{V}_{z}\right)=<A \mid i m(B)>+\mathcal{V}_{z}$, as $(A+B G) \mathcal{V}_{z} \subset \mathcal{V}_{z}$. Finally, assume that (2.5) holds and let $K \in \Gamma, K \mathcal{V}_{z}=0$. If $J\left(x_{0}, u\right)<\infty$ and $z(i) \rightarrow 0(i \rightarrow \infty)$, then $x_{2}(i) \rightarrow 0$ and $x_{3}(i) \rightarrow 0(i \rightarrow \infty)$ in (2.3)-(2.4), and hence $x^{\prime}(i) K x(i) \rightarrow 0(i \rightarrow \infty)$. Thus, from (1.8), $x_{0}^{\prime} K_{z} x_{0}=J_{z}\left(x_{0}\right) \geq x_{0}^{\prime} K x_{0}$ and $K_{z} \geq K$. This completes the proof.

Definition 2.4.

Σ is output stabilizable if $\mathcal{X}_{s}(A)+<A \mid \operatorname{im}(B)>+\mathcal{V}=\mathbf{R}^{n}$.

Corollary 2.5.

Let J_{+}, J_{-}denote the optimal costs for the LQCP with and without stability, respectively. For every $x_{0} \in \mathbf{R}^{n}, J_{+}\left(x_{0}\right)<\infty$ if and only if Σ is stabilizable. If this is the case, for all $x_{0}, J_{+}\left(x_{0}\right)=x_{0}^{\prime} K_{+} x_{0}$ with $K_{+} \in \Gamma_{0}$ and, if $K \in \Gamma$, then $K \leq K_{+}$. For every $x_{0} \in \mathbf{R}^{n}, J_{-}\left(x_{0}\right)<$ ∞ if and only if Σ is output stabilizable. If this is the case, then, for all $x_{0}, J_{-}\left(x_{0}\right)=x_{0}^{\prime} K_{-} x_{0}$ with $K_{-} \in \Gamma_{0}$, $\operatorname{ker}\left(K_{-}\right)=\mathcal{V}$, and, if $K \in \Gamma$ and $K \mathcal{V}=0$, then $K \leq K_{-}$. Moreover, $u(i)=F\left(K_{-}\right) x(i)(i \geq 0)$ is optimal.
Proof. If $\operatorname{ker}(S)=0$ and $T=0$, then $\mathcal{V}_{z}=0$; if $s=0$, then $\mathcal{V}_{z}=\mathcal{V}$. Now, combine Theorem 2.3 with Proposition 1.5.

Corollary 2.6.

$\left\{K \in \Gamma_{0} \mid K \geq 0\right\} \neq \emptyset \Leftrightarrow \mathcal{X}_{s}(A)+<A \mid i m(B)>+\mathcal{V}=\mathbf{R}^{n}$.
Proof. \Rightarrow let $\overline{\phi(K)}=0, K \geq 0$. Then, by (1.8), (1.13), $J\left(x_{0}, u\right) \leq x_{0}^{\prime} K x_{0}$ if, for all $i \geq 0$ we take $u(i)=F(K) x(i)$. Now, apply Corollary $2.5 . \Leftarrow$ Corollary 2.5 .

It should be stressed that Theorem 2.3 determines K_{z} unambiguously in terms of solutions of Γ; if $\tilde{K} \in \Gamma, \tilde{K} \mathcal{V}_{z}=0$ and $K \leq \tilde{K}$ if $K \in \Gamma, K \mathcal{V}_{z}=0$, then $K_{z} \leq \tilde{K} \leq K_{z}$. In words, one can say that K_{z} is the largest element of $\left\{K \in \Gamma \mid K \mathcal{V}_{z}=0\right\}$. Yet, $K_{z} \in \Gamma_{0}$ and K_{z} corresponds to $\left[\begin{array}{cc}0 & 0 \\ 0 & \bar{K}_{+}\end{array}\right]$, with \bar{K}_{+}the largest solution of the LMI that corresponds to the subsystem for $x_{2}(i)$ and $x_{2}(i)$ in (2.3) (Proposition 1.7 (a)). If $s=0$, then $\bar{K}_{+}=\left[\begin{array}{cc}0 & 0 \\ 0 & K_{33}\end{array}\right]$, and K_{33} denotes the unique positive semidefinite solution of the ARE that is associated with the subsystem for $x_{3}(i)$ [1, Section IV].

3. Existence of optimal controls for left invertible systems.

In the final Section we assume that $\rho=m$ [1, p. 350-351]. Moreover, we assume (2.5) to be valid and hence (Corollary 1.4) $D^{\prime} D+B^{\prime} K_{z} B>0$. For notational ease, set $A_{z}:=A_{F\left(K_{z}\right)^{\prime}} C_{z}:=$ $C_{F\left(K_{z}\right)^{\prime}} S_{z}:=S_{F\left(K_{z}\right)^{\prime}} D_{1}:=\{z \in \mathbb{C}| | z \mid \leq 1\}, D_{1}^{0}:=\{z \in \mathbb{C}| | z \mid<1\}$.
Proposition 3.1.
$\forall x_{0} \in \mathbf{R}^{n} \exists u: J_{z}\left(x_{0}\right)=J\left(x_{0^{\prime}} u\right)$ and $z(i) \rightarrow 0(i \rightarrow \infty) \Leftrightarrow \sigma\left(A_{z} \mid \mathbf{R}^{n} / \mathcal{V}_{z}\right) \subset D_{1}^{\mathbf{0}}$.
Proof. \Rightarrow From Corollary 1.6, for every $x_{0} \in \mathbf{R}^{n}, u(i)=F\left(K_{z}\right) x(i)(i \geq 0)$ and hence (1.1)-(1.2) transform into $x(i+1)=A_{z} x(i), y(i)=C_{z} x(i), z(i)=S_{z} x(i)$. From Proposition $1.7(\mathrm{c})$, then, $F\left(K_{z}\right) \in \mathcal{G}_{z}(\Sigma)$ (take $G \in \mathcal{G}_{z}(\Sigma)$, and recall that $\left.K_{z} \mathcal{V}_{z}=0\right)$. Thus, if $\mathcal{V}_{z} \oplus \mathcal{X}_{2}=\mathbf{R}^{n}$, then the transformed system (1.1)-(1.2) can be partitioned into $\left[\begin{array}{l}x_{1}(i+1) \\ x_{2}(i+1)\end{array}\right]=$ $\left[\begin{array}{ll}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right]\left[\begin{array}{l}x_{1}(i) \\ x_{2}(i)\end{array}\right], y(i)=C_{2} x_{1}(i), z(i)=S_{2} x_{1}(i)$, and $\sigma\left(A_{22}\right)=\sigma\left(A_{z} \mid \mathbf{R}^{n} / \mathcal{V}_{z}\right)$. As
$x_{2}(i) \rightarrow 0(i \rightarrow \infty)$ for every x_{02} (see proof of Theorem 2.3), it follows that $\sigma\left(A_{22}\right) \subset D_{1}^{0}$. \Leftarrow If $\sigma\left(A_{22}\right) \subset D_{1}^{0}$, then choosing $u(i)=F\left(K_{z}\right) x(i)(i \geq 0)$ yields that $x_{2}(i) \rightarrow 0$ for every x_{02} and thus, for every $x_{0} \in \mathbf{R}^{n}, z(i) \rightarrow 0(i \rightarrow \infty)$. Now, apply Proposition 1.5.
Proposition 3.2.
$\sigma\left(A_{z} \mid \mathbf{R}^{n} / \mathcal{V}_{z}\right) \subset D_{1}$.
Proof. Consider (2.3). Since $\rho=m$, $\operatorname{ker}(D) \cap B^{-1}(\mathcal{V})=0[1$, p. 352], and thus the first two columns of B in (2.3) are not appearing, and $D=D_{3}$. Let, further, $\bar{A}=\left[\begin{array}{ll}\bar{A}_{22} & \bar{A}_{23} \\ 0 & \bar{A}_{33}\end{array}\right], \bar{B}=$ $\left[\begin{array}{l}B_{23} \\ B_{33}\end{array}\right], \bar{C}=\left[0, C_{3}\right]$. As (\bar{A}, \bar{B}) is stabilizable by (2.5), the largest solution \bar{K}_{+}of the LMI associated with $\bar{\Sigma}=(\bar{A}, \bar{B}, \bar{C}, D)$ exists (Corollary 2.5), and $K_{z}=\left[\begin{array}{ll}0 & 0 \\ 0 & \bar{K}_{+}\end{array}\right]$(see end of Section 2). Moreover, $D^{\prime} D+B^{\prime} K_{z} B=D^{\prime} D+\bar{B}^{\prime} \bar{K}_{+} \bar{B}>0$, and it follows that $\sigma\left(A_{z} \mid \mathbf{R}^{n} / \mathcal{V}_{z}\right)=$ $\sigma\left(\bar{A}-\bar{B}\left(D^{\prime} D+\bar{B}^{\prime} \bar{K}_{+} \bar{B}\right)^{-1}\left(D^{\prime} \bar{C}+\bar{B}^{\prime} \bar{K}_{+} \bar{A}\right)\right)$. Hence we are done if the largest solution K_{+} of Γ satisfies $\sigma\left(A_{F\left(K_{+}\right)}\right) \subset D_{1}$ if (A, B) is stabilizable and $\rho=m$ (existence of K_{+}is clear by Corollary 2.5). Now, consider, besides (1.1), the system $\Sigma_{n}(n \geq 1)$ with, instead of $y(i), y_{n}(i)=$ $\left[y^{\prime}(i)(1 / n) x^{\prime}(i)\right]^{\prime}$. The system matrix for Σ_{n} is left invertible for every $s \in \mathbb{C}$, as $\operatorname{ker}(B) \cap$ $\operatorname{ker}(D)=0$, and hence the unique positive semidefinite solution of $n^{-2} I+\phi(K)=0, K_{n}$, is such that $\sigma\left(A_{F\left(K_{n}\right)}\right) \subset D_{1}^{0}\left[1\right.$, Section IV]. As $K_{n_{1}} \geq K_{n_{2}} \geq K_{+}\left(n_{1} \geq n_{2}\right)$, by (1.4) and Corollary 2.5, we establish that $\bar{K}:=\lim _{n \rightarrow \infty} K_{n} \geq K_{+}$, but also $\bar{K} \leq K_{+}$, since $P\left(K_{n}\right)+\left[\begin{array}{cc}n^{-2} I & 0 \\ 0 & 0\end{array}\right] \geq 0$, and thus, by continuity, $\bar{K} \in \Gamma$. Hence $K_{+}=\bar{K}$ and therefore $\sigma\left(A_{F\left(K_{+}\right)}\right) \subset D_{1}$, again by continuity (note that, for all $n \geq 1, D^{\prime} D+B^{\prime} K_{n} B \geq D^{\prime} D+B^{\prime} K_{+} B>0$).
Proposition 3.3.
If $G_{1,2} \in \mathcal{G}(\Sigma)$, then $\sigma\left(A_{G_{1}} \mid \mathcal{V}\right)=\sigma\left(A_{G_{2}} \mid \mathcal{V}\right)$. Let $G \in \mathcal{G}_{z}(\Sigma) \cap \mathcal{G}(\Sigma)$. Then $\sigma\left(A_{z} \mid \mathbf{R}^{n} / \mathcal{V}_{z}\right) \cap$ $\left(D_{1} \backslash D_{1}^{0}\right)=\emptyset \Leftrightarrow \sigma\left(A_{G} \mid \mathcal{V} / \mathcal{V}_{z}\right) \cap\left(D_{1} \backslash D_{1}^{0}\right)=\emptyset$.
Proof. First claim: [1, p. 353]. Second claim: \Rightarrow Let $\left(A_{G}-\lambda I\right) v \in \mathcal{V}_{z^{\prime}} v \in \mathcal{V}, v \notin \mathcal{V}_{z^{\prime}}|\lambda|=1$. Then, with $K=K_{z}$ in Proposition 1.7 (a), we find that $B^{\prime} K_{z} v=0$, as $D^{\prime} D+B^{\prime} K_{z} B>0$. Hence, by Proposition 1.7 (c), $A_{z} v=A_{G} v$, which contradicts our assumption. \Leftarrow Let $\left(A_{z}-\right.$ $\lambda I) v \in \mathcal{V}_{z^{\prime}} v \notin \mathcal{V}_{z^{\prime}}|\lambda|=1$. Then, by Proposition 1.7 (b) with $K=K_{z}, v \in<\operatorname{ker}\left(C_{z}\right) \mid A_{z}>\subset$ $\mathcal{V}\left(u(i)=F\left(K_{z}\right) x(i)\right.$ yields $y(i)=0$ for all $i \geq 0$ if $\left.x_{0}=v\right)$. Now K_{-}. exists, by Corollary 2.5 . Thus, by Proposition 1.7 (c), $A_{F\left(K_{-}\right)} v=A_{G} v$. On the other hand, again by Proposition 1.7 (c), $A_{F\left(K_{-}\right)} v=A_{z} v-B\left(D^{\prime} D+B^{\prime} K_{-} B\right)^{-1}\left(D^{\prime} C_{z}+B^{\prime} K_{-} A_{z}\right) v=A_{z} v$, and we have a contradiction with our assumption.

Theorem 3.4.

Assume that (2.5) is valid and that Σ is left invertible. Then for every $x_{0} \in \mathbf{R}^{n}$ an optimal control for (LQCP) $)_{z}$ exists if and only if $\sigma\left(A_{G} \mid \mathcal{V} / \mathcal{V}_{z}\right) \cap\left(D_{1} \backslash D_{1}^{0}\right)=\emptyset$, with $G \in \mathcal{G}_{z}(\Sigma) \cap \mathcal{G}(\Sigma)$. If this is the case, then this optimal control is unique, and it can be given by the unique feedback law $u(i)=F\left(K_{z}\right) x(i)$, for all $i \geq 0$.
Proof. Combine Propositions 3.1-3.3.

Remarks.

1. Observe that Theorem 2.3 links any (LQCP) $)_{z}$ to one $K_{z} \in \Gamma_{0}$. Thus, Theorem 2.3 maps the set $\left\{(S, T) \in\left(\mathbf{R}^{s \times n}, \mathbf{R}^{s \times m}\right) \mid s \geq 0\right\}$ to $\left\{K \in \Gamma_{0} \mid K \geq 0\right\}$ if (A, B) is stabilizable. One can show that this map is, in fact, onto; for every $0 \leq K \in \Gamma_{0}, J_{z}\left(x_{0}\right)=x_{0}^{\prime} K x_{0}$ on \mathbf{R}^{n}, with $z(i)=K x(i)(i \geq 0)$.
2. Corollary 2.6 generalizes [7, Theorem 3.1].
3. Proposition 3.2 is untrue if $\rho \neq m$. For example, let $A=2, B=1, C=D=0, S=1, T=0$. The ARE is $0=4 K-K-4 K=-K ; K_{+}=0$ and $A_{F\left(K_{+}\right)}=2 \notin D_{1} ;$ note that $T(z)=0$.

References.

1. L.M. Silverman, "Discrete Riccati equations: Alternative algorithms, asymptotic properties, and system theory interpretations", in Control and Dynamic Systems 12,

Academic, New York, pp. 313-385, 1976.
2. B.P. Molinari, "The time-invariant linear-quadratic optimal control problem", Automatica 13, pp. 347-357, 1977.
3. J.M. Schumacher, "The role of the dissipation matrix in singular optimal control", Syst. Cont. Lett. 2, pp. 262-266, 1983.
4. W.M. Wonham, Linear Multivariable Control: A Geometric Approach, Springer, New York, 1979.
5. M.L.J. Hautus, "Strong detectability and observers", Lin. Alg. Appl. 50, pp. 353-368, 1983.
6. H. Kwakernaak \& R. Sivan, Linear Optimal Control Systems, Wiley, New York, 1972.
7. H.K. Wimmer, "Existence of positive-definite and semidefinite solutions of discrete-time algebraic Riccati equations", Int. J. Cont., to be published.

IN 1992 REEDS VERSCHENEN

532 F.G. van den Heuvel en M.R.M. Turlings
Privatisering van arbeidsongeschiktheidsregelingen
Refereed by Prof.Dr. H. Verbon
533 J.C. Engwerda, L.G. van Willigenburg LQ-control of sampled continuous-time systems Refereed by Prof.dr. J.M. Schumacher

534 J.C. Engwerda, A.C.M. Ran \& A.L. Rijkeboer
Necessary and sufficient conditions for the existence of a positive
definite solution of the matrix equation $X+A^{*} X^{-1} A=Q$.
Refereed by Prof.dr. J.M. Schumacher
535 Jacob C. Engwerda
The indefinite LQ-problem: the finite planning horizon case Refereed by Prof.dr. J.M. Schumacher

536 Gert-Jan Otten, Peter Borm, Ton Storcken, Stef Tijs
Effectivity functions and associated claim game correspondences
Refereed by Prof.dr. P.H.M. Ruys
537 Jack P.C. Kleijnen, Gustav A. Alink
Validation of simulation models: mine-hunting case-study
Refereed by Prof.dr.ir. C.A.T. Takkenberg
538 V. Feltkamp and A. van den Nouweland Controlled Communication Networks
Refereed by Prof.dr. S.H. Tijs
539 A. van Schaik
Productivity, Labour Force Participation and the Solow Growth Model Refereed by Prof.dr. Th.C.M.J. van de Klundert

540 J.J.G. Lemmen and S.C.W. Eijffinger
The Degree of Financial Integration in the European Community Refereed by Prof.dr. A.B.T.M. van Schaik

541 J. Bell, P.K. Jagersma
Internationale Joint Ventures
Refereed by Prof.dr. H.G. Barkema
542 Jack P.C. Kleijnen
Verification and validation of simulation models
Refereed by Prof.dr.ir. C.A.T. Takkenberg
543 Gert Nieuwenhuis
Uniform Approximations of the Stationary and Palm Distributions
of Marked Point Processes
Refereed by Prof.dr. B.B. van der Genugten

544 R. Heuts, P. Nederstigt, W. Roebroek, W. Selen
Multi-Product Cycling with Packaging in the Process Industry
Refereed by Prof.dr. F.A. van der Duyn Schouten
545 J.C. Engwerda
Calculation of an approximate solution of the infinite time-varying LQ-problem
Refereed by Prof.dr. J.M. Schumacher
546 Raymond H.J.M. Gradus and Peter M. Kort
On time-inconsistency and pollution control: a macroeconomic approach Refereed by Prof.dr. A.J. de Zeeuw

547 Drs. Dolph Cantrijn en Dr. Rezaul Kabir
De Invloed van de Invoering van Preferente Beschermingsaandelen op
Aandelenkoersen van Nederlandse Beursgenoteerde Ondernemingen
Refereed by Prof.dr. P.W. Moerland
548 Sylvester Eijffinger and Eric Schaling
Central bank independence: criteria and indices
Refereed by Prof.dr. J.J. Sijben
549 Drs. A. Schmeits
Geïntegreerde investerings- en financieringsbeslissingen; Implicaties voor Capital Budgeting
Refereed by Prof.dr. P.W. Moerland
550 Peter M. Kort
Standards versus standards: the effects of different pollution restrictions on the firm's dynamic investment policy
Refereed by Prof.dr. F.A. van der Duyn Schouten
551 Niels G. Noorderhaven, Bart Nooteboom and Johannes Berger
Temporal, cognitive and behavioral dimensions of transaction costs; to an understanding of hybrid vertical inter-firm relations
Refereed by Prof.dr. S.W. Douma
552 Ton Storcken and Harrie de Swart
Towards an axiomatization of orderings
Refereed by Prof.dr. P.H.M. Ruys
553 J.H.J. Roemen
The derivation of a long term milk supply model from an optimization model
Refereed by Prof.dr. F.A. van der Duyn Schouten
554 Geert J. Almekinders and Sylvester C.W. Eijffinger
Daily Bundesbank and Federal Reserve Intervention and the Conditional
Variance Tale in DM/\$-Returns
Refereed by Prof.dr. A.B.T.M. van Schaik
555 Dr. M. Hetebrij, Drs. B.F.L. Jonker, Prof.dr. W.H.J. de Freytas "Tussen achterstand en voorsprong" de scholings- en personeelsvoorzieningsproblematiek van bedrijven in de procesindustrie Refereed by Prof.dr. Th.M.M. Verhallen

556 Ton Geerts
Regularity and singularity in linear-quadratic control subject to implicit continuous-time systems
Communicated by Prof.dr. J. Schumacher
557 Ton Geerts
Invariant subspaces and invertibility properties for singular systems: the general case
Communicated by Prof.dr. J. Schumacher
558 Ton Geerts
Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case
Communicated by Prof.dr. J. Schumacher
559 C. Fricker and M.R. Jaïbi
Monotonicity and stability of periodic polling models
Communicated by Prof.dr.ir. O.J. Boxma
560 Ton Geerts
Free end-point linear-quadratic control subject to implicit conti-nuous-time systems: necessary and sufficient conditions for solvability
Communicated by Prof.dr. J. Schumacher
561 Paul G.H. Mulder and Anton L. Hempenius
Expected Utility of Life Time in the Presence of a Chronic Noncommunicable Disease State
Communicated by Prof.dr. B.B. van der Genugten
562 Jan van der Leeuw
The covariance matrix of ARMA-errors in closed form
Communicated by Dr. H.H. Tigelaar
563 J.P.C. Blanc and R.D. van der Mei
Optimization of polling systems with Bernoulli schedules
Communicated by Prof.dr.ir. O.J. Boxma
564 B.B. van der Genugten
Density of the least squares estimator in the multivariate linear model with arbitrarily normal variables
Communicated by Prof.dr. M.H.C. Paardekooper
565 René van den Brink, Robert P. Gilles
Measuring Domination in Directed Graphs
Communicated by Prof.dr. P.H.M. Ruys
566 Harry G. Barkema
The significance of work incentives from bonuses: some new evidence Communicated by Dr. Th.E. Nijman

Rob de Groof and Martin van Tuijl
Commercial integration and fiscal policy in interdependent, financially integrated two-sector economies with real and nominal wage rigidity.
Communicated by Prof.dr. A.L. Bovenberg
568 F.A. van der Duyn Schouten, M.J.G. van Eijs, R.M.J. Heuts The value of information in a fixed order quantity inventory system Communicated by Prof.dr. A.J.J. Talman

569 E.N. Kertzman
Begrotingsnormering en EMU
Communicated by Prof.dr. J.W. van der Dussen
570 A. van den Elzen, D. Talman
Finding a Nash-equilibrium in noncooperative N-person games by solving a sequence of linear stationary point problems
Communicated by Prof.dr. S.H. Tijs
571 Jack P.C. Kleijnen
Verification and validation of models
Communicated by Prof.dr. F.A. van der Duyn Schouten
572 Jack P.C. Kleijnen and Willem van Groenendaal
Two-stage versus sequential sample-size determination in regression analysis of simulation experiments

573 Pieter K. Jagersma
Het management van multinationale ondernemingen: de concernstructur
574 A.L. Hempenius
Explaining Changes in External Funds. Part One: Theory
Communicated by Prof.Dr.Ir. A. Kapteyn
575 J.P.C. Blanc, R.D. van der Mei
Optimization of Polling Systems by Means of Gradient Methods
and the Power-Series Algorithm
Communicated by Prof.dr.ir. O.J. Boxma
576 Herbert Hamers
A silent duel over a cake
Communicated by Prof.dr. S.H. Tijs
577 Gerard van der Laan, Dolf Talman, Hans Kremers
On the existence and computation of an equilibrium in an economy with constant returns to scale production
Communicated by Prof.dr. P.H.M. Ruys
578 R.Th.A. Wagemakers, J.J.A. Moors, M.J.B.T. Janssens Characterizing distributions by quantile measures
Communicated by Dr. R.M.J. Heuts

579 | J. Ashayeri, W.H.L. van Esch, R.M.J. Heuts |
| :--- |
| Amendment of Heuts-Selen's Lotsizing and Sequencing Heuristic for |
| Single Stage Process Manufacturing Systems |
| Communicated by Prof.dr. F.A. van der Duyn Schouten |

580 | H.G. Barkema |
| :--- |
| The Impact of Top Management Compensation Structure on Strategy |
| Communicated by Prof.dr. S.W. Douma |

581 | Jos Benders en Freek Aertsen |
| :--- |
| Aan de lijn of aan het lijntje: wordt slank produceren de mode? |
| Communicated by Prof.dr. S.W. Douma |

582 | Willem Haemers |
| :--- |
| Distance Regularity and the Spectrum of Graphs |
| Communicated by Prof.dr. M.H.C. Paardekooper |

583 | Jalal Ashayeri, Behnam Pourbabai, Luk van Wassenhove |
| :--- |
| Strategic Marketing, Production, and Distribution Planning of an |
| Integrated Manufacturing System |
| Communicated by Prof.dr. F.A. van der Duyn Schouten |

584 | J. Ashayeri, F.H.P. Driessen |
| :--- |
| Integration of Demand Management and Production Planning in a |
| Batch Process Manufacturing System: Case Study |
| Communicated by Prof.dr. F.A. van der Duyn Schouten |

585 | J. Ashayeri, A.G.M. van Eijs, P. Nederstigt |
| :--- |
| Biending Modelling in a Process Manufacturing System |
| Communicated by Prof.dr. F.A. van der Duyn Schouten |

586 J. Ashayeri, A.J. Westerhof, P.H.E.L. van Alst
Application of Mixed Integer Programming to
A Large Scale Logistics Problem
Communicated by Prof.dr. F.A. van der Duyn Schouten

IN 1993 REEDS VERSCHENEN

```
588 Rob de Groof and Martin van Tuijl
The Twin-Debt Problem in an Interdependent World Communicated by Prof.dr. Th. van de Klundert
```

589 Harry H. Tigelaar
A useful fourth moment matrix of a random vector Communicated by Prof.dr. B.B. van der Genugten

590 Niels G. Noorderhaven Trust and transactions; transaction cost analysis with a differential behavioral assumption
Communicated by Prof.dr. S.W. Douma
591 Henk Roest and Kitty Koelemeijer
Framing perceived service quality and related constructs
A multilevel approach
Communicated by Prof.dr. Th.M.M. Verhallen
592 Jacob C. Engwerda
The Square Indefinite LQ-Problem: Existence of a Unique Solution Communicated by Prof.dr. J. Schumacher

593 Jacob C. Engwerda
Output Deadbeat Control of Discrete-Time Multivariable Systems Communicated by Prof.dr. J. Schumacher

594 Chris Veld and Adri Verboven
An Empirical Analysis of Warrant Prices versus Long Term Call Option Prices
Communicated by Prof.dr. P.W. Moerland
595 A.A. Jeunink en M.R. Kabir
De relatie tussen aandeelhoudersstructur en beschermingsconstructies Communicated by Prof.dr. P.W. Moerland

596 M.J. Coster and W.H. Haemers Quasi-symmetric designs related to the triangular graph Communicated by Prof.dr. M.H.C. Paardekooper

597 Noud Gruijters
De liberalisering van het internationale kapitaalverkeer in histo-risch-institutioneel perspectief
Communicated by Dr. H.G. van Gemert
598 John Görtzen en Remco Zwetheul
Weekend-effect en dag-van-de-week-effect op de Amsterdamse effectenbeurs?
Communicated by Prof.dr. P.W. Moerland
599 Philip Hans Franses and H. Peter Boswijk
Temporal aggregration in a periodically integrated autoregressive process
Communicated by Prof.dr. Th.E. Nijman

600 René Peeters
On the p-ranks of Latin Square Graphs
Communicated by Prof.dr. M.H.C. Paardekooper
601 Peter E.M. Borm, Ricardo Cao, Ignacio García-Jurado
Maximum Likelihood Equilibria of Random Games
Communicated by Prof.dr. B.B. van der Genugten
602 Prof.dr. Robert Bannink
Size and timing of profits for insurance companies. Cost assignment for products with multiple deliveries.
Communicated by Prof.dr. W. van Hulst
603 M.J. Coster
An Algorithm on Addition Chains with Restricted Memory
Communicated by Prof.dr. M.H.C. Paardekooper
604 Ton Geerts
Coordinate-free interpretations of the optimal costs for LQ-problems subject to implicit systems
Communicated by Prof.dr. J.M. Schumacher
605 B.B. van der Genugten
Beat the Dealer in Holland Casino's Black Jack
Communicated by Dr. P.E.M. Borm
606 Gert Nieuwenhuis
Uniform Limit Theorems for Marked Point Processes
Communicated by Dr. M.R. Jaïbi
607 Dr. G.P.L. van Roij
Effectisering op internationale financiële markten en enkele gevolgen voor banken
Communicated by Prof.dr. J. Sijben
608 R.A.M.G. Joosten, A.J.J. Talman
A simplicial variable dimension restart algorithm to find economic equilibria on the unit simplex using $n(n+1)$ rays
Communicated by Prof.Dr. P.H.M. Ruys
609 Dr. A.J.W. van de Gevel
The Elimination of Technical Barriers to Trade in the European Community
Communicated by Prof.dr. H. Huizinga
610 Dr. A.J.W. van de Gevel
Effective Protection: a Survey
Communicated by Prof.dr. H. Huizinga
611 Jan van der Leeuw
First order conditions for the maximum likelihood estimation of an exact ARMA model
Communicated by Prof.dr. B.B. van der Genugten

612 Tom P. Faith
Bertrand-Edgeworth Competition with Sequential Capacity Choice Communicated by Prof.Dr. S.W. Douma

Bibliotheek K. U. Brabant

17000011335313

[^0]: *: Part of this research was carried out in the course of 1991, when the author was with the Mathematical Institute of Würzburg University, Germany, as an Alexander von Humboldt-research fellow.

 1: Supported by the Dutch Organization for scientific research (N.W.O.).

