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Abstract We consider a general infinite-horizon linear-quadratic control problem, with ar-
bitrary stability constraints, subject to a standard discrete-time system. In particular, we derive
necessary and sufficient conditions for the ezistence of the optimal cost, and we characterize
this optimal cost as a certain solution of the associated linear matriz inequality. This solution
turns out to satisfy the corresponding (possibly singular) algebraic Riccati equation, and thus
we can establish a map from all possible stability constraints to the set of positive semidefinite
solutions of this equation. As a by-result, we present a necessary and sufficient condition for
the eristence of a positive semidefinite solution of the general Riccati equation. Finally, we
derive necessary and sufficient conditions for the ezistence of optimal controls if the underlying
discrete-time system is left invertible, and these optimal controls turn out to be implementable
by a unique feedback law.

Keywords Infinite-horizon linear-quadratic control, discrete-time system, arbitrary stability
constraints, regularity and singularity, linear matrix inequality, algebraic Riccati equation, left
invertibility, feedback law.

1. Introduction and preliminaries.
Consider the standard discrete-time system ¥
z(i+1)= A:c(gz('f + Bu(i),y(i) = Cz(z) + Du(), (1)
together with the additional output variable

2(3) = S2(i) + Tu(i), )
where, for all 7 > 0,u(i) € R™,z(:) € R" and z(0) = z0,y(z) € R” and 2(¢) € R’. All matrices

involved are real and constant. Also, for every z, and every control sequence u = {u(z)}32,, we
define the function P

J(zo,u) := EZoy'(1)y(2). _ . _ (3)
Then we are interested in the Linear-Quadratic Control Problem with z-stability (LQC P),: For

all zy, determine
J.(zo) := inf {J(zo,u)|u is such that lim;_.z2(:) = 0}, (4)
and if, for every zg, J,(zo) < 00, then compute (if possible) for every z, a control sequence u

such that J,(z¢) = J(xg, %) and lim;_2(i) = 0. The problem is called regular if ker SD) =10
and singular if ker (D) # 0. If ker (S) = 0 and 7' = 0, then (LQCP), will be called the
LQCP with (state) stability, and if s = 0, then we will speak of the LQCP without stability.
Regular as well as singular cases for these two problems are discussed in the lengthy [1], by
means of Silverman’s structure algorithm. In the present paper, we will treat (LQCP), with
S and T arbitrary, regardless whether D is left invertible or not, by a more direct algebraic
approach. In Section 2 we will derive necessary and sufficient conditions for ezistence of the
optimal cost (1.4). Finally, in Section 3 we will present necessary and su?icient conditions for
eristence of optimal controls if the underlying system X is left invertible [1, p. 351], i.e., if p :
= normal rank (7'(z)) = m, with T'(z) :== D + C(2] — A)"'B [1, p. 350].

We will need a few well-known observations, as well as some new statements. Assume that
there exists a matrix M, > 0 such that, for all zo € R", J,(zo) < zugM,zo. Then there ezists

a unique K, € R™", K, > 0, such that, for all zo,J,(z0) = z4K,zo [2, Lemma 5]. Next, let

*. Part of this research was carried out in the course of 1991, when the author was with the Mathematical
Institute of Wiirzburg University, Germany, as an Alexander von Humboldt-research fellow.
1: Supported by the Dutch Organization for scientific research (N.W.0.).
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i > 1, and assume that u(j) ( =0,1,...,(¢ — 1)) are given. Then the function J, : R® — R*
satisfies the Dissipation Inequality (e.g. [2, Lemma 1])

zoK.zo < Ei0y'(7)y () + 2'(1) K.z (i), (5)
and zoK.zo = inf{Z;_4y'(j)y(j) + 2'({) K.2(i)|u(5),j = 0,..., (i — 1)} (6)

C'C+AKA—-K C'D + AKB

If, moreover, P(K) := D'C+BKA D'D + B'KB

]’mmx=mem“,m

then {2/ (1)) + =/()K=(9) = 2oKz0 = Bzle') wiIP(K) | Z0) | (®)
(Sketchy proof for (1.8): Take ¢ = 1. Then (1.8) is clear form (1.1) and (1.7). Next, take
¢ = 2. Then the left hand-side of (1.8) is equal to {y'(1)y(1) + z'(2)Kz(2) — z'(1)Kz(1)} +

/ / / ’ Lf 1 !
(O0) + #(0)K=() 4} = [0) w]PU] | 1) |+ 1240) w0 |
etc.) Combination of (1.5) with (1.8) now yields that the right hand-side of (1.8) for K = K,
is positive semidefinite, and thus, by taking i = 1 and realizing that z, as well as u(0) are
arbitrary, we find that

P(K.) >0, (9)

and hence K, € I := {K € R""|K = K', P(K) > 0}, (10)
the solution set of the Linear Matriz Inequality (LMI). If, in addition,

HK)=C'C+AKA—-K - (C'D+A'KB)(D'D+ B'KB)*(D'C + BKA) (11)
(where N* denotes the Moore-Penrose inverse of the matrix N), and

F(K):=—(D'D+ B'KB)*(D'C + BKA) (K =K' € R""’?, (12)
then K €T & ¢(K) > 0,D'D+ B'KB > 0,—(D'D + B'KB)F(K) = D'C + B'K A (Schur’s

Lemma(?, and rank (P(K)) = rank (¢(K))+ rank (D'D+ B'K B). Hence, for every 7 € R, 4 €
R™ and every K € T

[z'a'|P(K) [
and thus, for every zo and every ¢ > 1, (1.6) transforms by (1.8) into

inf{E{2b2/(7)6(K.)2() + () —=/G)F'(K.)]D'D + BK. Bl[u(j)- s}
F(K.)z())lu(),j = 0,...,(i—1)} = 0.
We establish that I' contains the matrix that represents J,, the optimal cost for (LQCP),,

provided that J, is bounded from above by a quadratic form. Furthermore
Proposition 1.1.
¢(K,) =0, rank (P Kﬁgzl = rank %D'D + B'K.B).
Proof. Take ¢ = 1 in (1.14). Then the infimum is attained for u(0) = F(K,)zo. It follows that

zo@(K;)zo = 0 for every z,.
Lemma 1.2.
Ck

Assume that K € I'. Then rank (P(K)) > p. If P(K) = D [Ck Dk], with [Cx Dk]
K

right invertible and Tk (z) := Dk + Ck (2] — A)~' B, then rank (P(K)) = p if and only if Tx(z)
is right invertible as a rational matrix.
Proof. Follows directly by appropriately rewriting some proofs in [3].
Corollary 1.3.

Let K € T and ¢(K) = 0. Then rank (P(K)) = rank (D'D + B'KB) = p.
Proof. 1t is clear that Cy (I — Dg (D D )* Dy )Ck = ¢(K) in Lemma 1.2 and since ¢(K) = 0,
it follows that Dy is right invertible. Hence, by Lemma 1.2, rank (D'D + B'KB) = rank

=7'¢(K)z + o' — ' F'(K)][D'D + B'K B][u — F(K)z] (13)

z
u
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(P(K)) = p.
Corollary 1.4.

If p=m, then D'D + B'K,B > 0.
Proposition 1.5.

Let zo € R",u = {u(i)}2, be such that zﬁi) — 0(¢ —» o00), and set v(i) := u(z) —
F(K,)z(i),i > 0. Then ¥2v'(:)[D'D + B'K.B]v(i) < oo ¢ J(zo,u) < oco. In addition,
if J(zo,u) < oo, then

J(zo,u) = ZX,0'(2)[D'D + B'K,B]v(i) + zo K, zo. (15;

Proof. If J(zo,u) < oo, then 2/(1)K,z(1) < £%2,3'(j)y(j), by definition and time-invariancy (!

i=i
and hence x'gi K.z(i) = 0(i — o0). Thus, by (1.8), (1.13) and Proposition 1.1, we get (1.15).
Conversely, if £2v'(:)[D'D + B'K,B]v(i) < oo, then, again by (1.8), (1.13) and Proposition
1.1, J(zo,u) cannot be infinite, as z’(1) K,z (i) > 0 for all 7. Thus, J(zo,u) < oo and hence, as
2(i) —= 0,2'(1) K, z(i) — 0(z — 00), and we have (1.15).

Corollary 1.6.

Assume in Proposition 1.5 that p = m. Then J(zo,u) = z,K.zo < u(i) = F(K,)z(i) for
every 1 > 0.

Proof. By Corollary 1.4, D'D + B'K.B > 0. Now apply Proposition 1.5.

It follows from Corollary 1.6 that if for every z, an optimal control sequence for (LQCP),
exists, then this sequence can be given in terms of a feedback law, and this feedback law is
unique, if p = m. For more details, see Section 3.

We will close this preliminary Section with the following, partly new, algebraic results. Let
[y C I denote the set of solutions of the algebraic Riccati equation (ARE):

To == {K € |¢(K) = 0}. (16)
Let, further, for any G € R™*" and any K = K’ € R"*",
Ag := A+ BG,Cg =C+ DG,S¢ =S5+ TG, (17)

¢c(K) := CCo + AgKAg — K — (AgKB + C;D)(D'D + B'KB)*(B'KAg + D'Cg). (18)
Proposition 1.7.

(a) If K >0, then ¢(K) >0« ¢g(K)>0and ¢(K) =0« ¢c(K) =0.
(b) If K € Ty, then K= A'F(K)KAF(K) -+ C;:‘(K)CF(K)-

(c) If D'D + B'K B is invertible, then Apx) = Ag — B(D'D + B'KB)™'(D'Cg + B'K Ag).
If, moreover, 0 < K € T, then D'Cpky + B'K Apx) = 0.
Proof. If K € T and K > 0, then P(K) > 0 < ¢(K) > 0 ad ¢(K) = 0 < rank (P(K)) =
rank (D'D + B'KB). If Pg(K) stands for (1.7) with Ag and Cg instead of A and C, then,
obviously, Pg(K) >0 < P(K) > 0, and thus we establish (a). For (b), see [1, (14)]. Next, if
D'D + B'K B is invertible, then (D’'D + B'K B)~'(D'Cg + B'K Ag) + F(K) = G. Finally, by
(a), 3(K) = 0 & ¢r@)(K) =0, and the proof of (c) is then completed by applying (b).

2. Necessary and sufficient conditions for the existence of the optimal cost.
In the sequel, < Alim(B) >= im(B) + Aim(B) + ... + A" lim(B),< ker (C)|A >=
ker (C) N ker (CA)N ...N ker (CA™!), X,(A) denotes the stable subspace of A [6, Ch. VI]
and [ ZCI - DB ] is the system matriz of £. If A(L,) C Ly, A(L3) C £, and £, C L, then
o(A|L2/L,) denotes the spectrum of the quotient map induced by A on L,/L4, the quotient
space of £, over £, (for maps and matrices we use the same symbols).
Definition 2.1 [1, Section III].

Let V = V() denotes the space of points zo € R" for which there exist u(:) (i 2 0) such
that, for all 7 > 0,y(i) = 0. Let, moreover, V, = V.(X) denote the space of points zo € R" for
which there exist u(i) (i > 0) such that, for all z > 0,y(:) = 0 and 2(z) = 0.

Proposition 2.2.

V is the largest subspace £ for which there exists amap G : R" — R™ such that (A+BG)L C

L,(C+DG)L =0. 1fGegGE):={H:R" > R"|(A4x)V C V,(Cy)V = 0}, then V =<
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ker (C+DG)|A+BG > .V, is the largest subspace L for which there exists amap G : R® - R™
such that (A + BG)L C L,(C+ DG)L =0,(S+TG)L =0. f G € G,(X) :={H:R" -

R™(Ag)V, C V,,(Cu)V. = 0,(Sg)V. = 0}, then V, =< ker [€ + De |A + BG >.

S + TG
Furthermore, G.(X) N G(Z) # 0.
Proof. All claims, except for the last one, are in [1, Section III]. Next, let G € G,(X) # 0. Then
the map G|V, can be extended on V in such a way that the resulting extension, G : ¥V — R™,
is such that (A 4+ BG)Y C V,(C+ DG)V =0 (e.g. [4]). If G is an arbitrary extension of G on
R", then G € G.(£)NG(X).
Now let (G € G.(¥) N G(X), then, with v(? = u(z) — Gz(2), (1.1)-(1.2) transform into
z(i+ 1) = Agz(z) + Bv(i),y(z) = Cgz(i) + Dv(7), (1)

2(1) = Sgz(z) + Tv(2). 82)
Suppose that X; is such that V, ® X, = V, and that X3 is such that V @ X3 = R". Moreover, let

[ ker ([ ? ]) N B~Y(V,)] ®U, = [ker (D)N B~'(V)], and let [ ker (D) N B~Y(V)]®U; = R™.

‘U](i)
va(i) |, (3a)
v3(1)

Then, with respect to suitably chosen bases, (2.1) - (2.2) transform into
z1(1+1) An An Agp z1(2) By B2 Bis
zo(t4+1) | =0 Ay A zo(2) | + { 0 By Bas
z3(i+1) 0 0 Agp z3(7) 0 0 B

[ =) vi(2)
y(@) =[00 Co] | o5(i) | + (00 Ds] | v2(a) |, (3b)
z3(1) v3(2)
[ =) vi(7)
Z(Z) = [0 52 53] Iz(i) ) +[0 T2 T3] Ug(i) N (4)
z3(7) vs(e

with ker (Ba3) N ker (D3) =0 and ker ([ 522 ]—B;B ]) N ker ([ 2, ?3 ]) =0, by construc-
33 3 43

tion. Note that y(z) is generated by the subsystem for z3(i), whereas y() and 2(z) jointly are
generated by the subsystem for z,(z) and z3(i). These subsystems are strongly observable [1, p.
344& by construction, i.e., the associated system matrices are of full column rank for every s € C
1, Section III], [5]. Thus, these subsystems are strongly detectable [1, p. 354], i.e., if y(z) — 0,
5 . | y(@) 0 z5(1) 0. ; .

then z3(z) — 0, and if [ by ] — [ 0 ] , then [ wsld) = [ (i = o0), irrespective of
inputs and initial states [1, Section III], [5]. This key observation leads us to the first main
result.
Theorem 2.3

Vzo € R : J.(20) < 00 & X,(A)+ < Alim(B) > +V, = R". 5
Assume this to be the case. Then there exists a unique matrix K, € I’y such that, for all
€9, J2(z0) = 24K.z0 and K.V, = 0. In addition, if K € ', KV, =0, then K < K.
Proof. Let zo € R",J(zo,u) < 00 and z(i) — 0(z — oo) for some u. Then, also, y(i) — 0(z —

o0). Now, consider (2.3)-(2.4). From the foregoing, then, [ ?EZ; ] — [ g ] (i = o00), i.e., the
3

Euclidean distance between z(i) and V, converges to zero as i tends to infinity. As, for every
o € Vs, J:(z0) = 0, we establish that J;(zo) < oo for every zo € R™ only if

Agz A23 B22 B23 = =38
([ 5 Any ] , [ 0 By ]) is stabilizable (6)
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[6, Ch. VI]. Assume this to be the case. Then there erists a feedback [vz?;]
v3(?
[ Hy, Hoys ] [ Iz(i)

Hy, Ha oy ] such that the resulting closed-loop matrix for z,(z) and z3(z) has all

its eigenvalues within the unit circle [6, Ch. VI]. Therefore there ezists a matrix M, > 0, with
V, C ker (M,), such that, for all zg,J,(z9) < zuM, 2, and hence there also ezists a unique
K, > 0 such that, for all z¢, J.(z0) = 4, K,z¢ [2, Lemma 5], and K,V, = 0. From Proposition
1.1, then, K, € T'y. On the other hand, if V, denotes a basis matrix for V,, then, obviously,
by the Hautus test, 82.6) & (Ag,[B Vi]) is stabilizable & X,(A)+ < Alim([B V,]) >= R"
[6, Ch. VI] & X,(A)+ < Alim(B) > +V, = R", since, < Aﬁim([B V,]B >=< A\im(B) >
+V. + AV.) + ... + A" Y(V,) =< A|lim(B) > +V;, as (A 4+ BG)V, C V.. Finally, assume that
(2.5) holds and let K € I', KV, = 0. If J(zo,u) < oo and z(i) — 0(; — o), then z,(z) — 0
and z3(i) — 0(i — o) in (2.3)-(2.4), and hence z'(i)Kz(:) — 0(: — oo). Thus, from (1.8),
zhK.zo = J,(z0) > 2y Kz and K, > K. This completes the proof.

Definition 2.4.

¥ is output stabilizable if X,(A)+ < Alim(B) > +V = R".

Corollary 2.5.

Let J,,J_ denote the optimal costs for the LQCP with and without stability, respectively.
For every zo € R",Jy(z0) < oo if and only if ¥ is stabilizable. If this is the case, for all
zo, J4(x0) = zp K120 with Ky € T and, if K € T, then K < K. For every zo € R",J_(20) <
oo if and only if ¥ is output stabilizable. If this is the case, then, for all zo, J_(z0) = z(K_z0
with K_ € To ker (K_) = V, and, if K € T and KV = 0, then K < K_. Moreover,
u(z) = F(K_)z(¢) (: 2 0) is optimal.

Proof. 1f ker(S) = 0 and T = 0, then V, = 0; if s = 0, then V, = V. Now, combine Theorem
2.3 with Proposition 1.5.
Corollary 2.6.

{K €To|K >0} #0 & X,(A)+ < Alim(B) > +V = R".

Proof. = let ¢(K) = 0, K > 0. Then, by (1.8), (1.13), J(zo,u) < 25Kz, if, for all 2 > 0 we
take u(¢) = F(K)z(i). Now, apply Corollary 2.5. <= Corollary 2.5.

It should be stressed that Theorem 2.3 determines K, unambiguously in terms of solutions
of T;if KeT,KV,=0and K < Kif K €', KV, =0, then K, < K < K. In words, one
can say that K, is the largest element of {K € T'|KV, = 0}. Yet, K, € ['o and K, corresponds

to [ g RO ], with K, the largest solution of the LMI that corresponds to the subsystem for
o
0 0

0 Kij;
the unique positive semidefinite solution of the ARE that is associated with the subsystem for
z3(t) [1, Section IV].

z5(1) and z,(1) in (2.3) (Proposition 1.7 (a)). If s = 0, then K, = , and K33 denotes

3. Existence of optimal controls for left invertible systems.

In the final Section we assume that p = m [1, p. 350-351]. Moreover, we assume (2.5) to be
valid and hence (Corollary 1.4) D'D+ B'K.B > 0. For notational ease, set A, := Apk,yC. :=
Cr(Ky)S: = Sry D1 := {2 € C||2| £ 1}, D} := {z € C||2| < 1}.
Proposition 3.1.

V 2o € R"3u : J,(z0) = J(zoru) and z(z) — 0(i — o0) & o(A,|R"/V;) C Dy.
Proof. = From Corollary 1.6, for every zo € R",u(z) = F(K.)z(i) (: = 0) and hence
(1.1)-(1.2) transform into z(i + 1) = A.z(:),y(s) = C.z(i),2(i) = S.z(:). From Proposi-
tion 1.7 (c), then, F(K.) € G.(X) (take G € G.(E), and recall that K.V, = 0). Thus, if
.’E](l. + 1) -
z(2 +1)

[OA“ ﬁz] [Zgg]y(z) = Cymli),2(i) = Sazi(i), and o(Am) = o(AJR™/V,). As

V. ® X, = R", then the transformed system (1.1)-(1.2) can be partitioned into [



z2(t) — 0(i — o0o) for every zo; (see proof of Theorem 2.3), it follows that o(Aj;) C DY. < If
a(Az;) C D?, then choosing u(z) = F(K,)z(z) (z > 0) yields that z,(2) — 0 for every zo, and
thus, for every zo € R",2(1) — 0(: — o0). Now, apply Proposition 1.5.

Proposition 3.2.

a(A.|R"/V,) C D;.

Proof. Consider (2.3). Since p = m, ker (D)N B™'(V) =0 [1, p. 352], and thus the first two
Ayp An | 3
R asl'®

columns of B in (2.3) are not appearing, and D = Dj. Let, further, A =

B A P - -
[ 323 ] ,C = [0,C3]. As (A, B) is stabilizable by (2.5), the largest solution K of the LMI
33
associated with £ = (A, B,C, D) exists (Corollary 2.5), and K, = [g %, (see end of
+

Section 2). Moreover, D'D + B'K.B = D'D + B'K,B > 0, and it follows that o(A,|R"/V,) =
o(A— B(D'D + B'K,B)™'(D'C + B'K;A)). Hence we are done if the largest solution K
of T satisfies o(Ap(k,)) C D if (A, B) is stabilizable and p = m (existence of K, is clear by
Corollary 2.5). Now, consider, besides (1.1), the system X,(n > 1) with, instead of y(z), y,,% =
[¥'(¢) (1/n)z'(2)]'. The system matrix for X, is left invertible for every s € C, as ker ( g N
ker (D) = 0, and hence the unique positive semidefinite solution of n 2[+¢(K) = 0, K,,, is such
that o(AFk,)) C DY [1, Section IV]. As K, > K, > K;(n 2 n2), by (1.4) and Corollary 2.5,

_ _ -2
we establish that K := lim,_. K, > K4, but also K < K, since P(K,) + [ nO J g ] =0,

and thus, by continuity, K € I'. Hence K, = K and therefore o(Apk,)) C D, again by
continuity (note that, for alln > 1,D'D + B'K,B> D'D + B'K,B > 0).
Proposition 3.3.

If G1; € G(T), then o(Ag,|V) = 0(Ag,|V). Let G € G.(£) NG(XZ). Then o(A.|R"/V;) N
(D)\DY) = 0 & o(Ag|V/V.) N (DI\DY) = 0.

Proof. First claim: [1, p. 353]. Second claim: = Let (Ag — AlI)v € Vv € V,v € Vu|)| = 1.
Then, with K = K, in Proposition 1.7 (a), we find that B'K,v = 0, as D'D + B'K.B > 0.
Hence, by Proposition 1.7 (c), A,v = Agv, which contradicts our assumption. <= Let (A, —
M)v € V,v € Vu|A| = 1. Then, by Proposition 1.7 (b) with K = K,,v €< ker (C;)|4, >C
V(u(i) = F(K,)z(i) yields y(i) = 0 for all ¢ > 0 if zo = v). Now K_ exists, by Corollary 2.5.
Thus, by Proposition 1.7 (¢), Ap(x_)v = Agv. On the other hand, again by Proposition 1.7 (c)s
Ark_yv=A.,v— B(D'D + B'K_B)™(D'C,+ B'K_A,)v = A,v, and we have a contradiction
with our assumption.

Theorem 3.4.

Assume that (2.5) is valid and that £ is left invertible. Then for every zo € R™ an optimal
control for ( LQCP ), exists if and only if a(Ag|V/V,) N (D,\D]) = 8, with G € G.(X) NG(X).
If this is the case, then this optimal control is unique, and it can be given by the unique feedback
law u(?) = F(K,)z(z), for all z > 0.

Proof. Combine Propositions 3.1-3.3.

Remarks.

1. Observe that Theorem 2.3 links any ( LQCP ), to one K, € TI'y. Thus, Theorem 2.3 maps
the set {(S,T) € (R”*,R*™*™)|s > 0} to {K € Io|K > 0} if (A, B) is stabilizable. One
can show that this map is, in fact, onto; for every 0 < K € I'o, J.(z0) = z5Kzo on R", with
2(1) = Kz(3) (: > 0).

2. Corollary 2.6 generalizes [7, Theorem 3.1].

3. Proposition 3.2 is untrue if p # m. For example, let A=2,B=1,C=D=0,S=1,T=0.
The AREis 0 = 4K — K —4K = —K; K4 = 0 and Apk,) =2 ¢ Dy; note that T(z) = 0.
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