R
£ S o &
76 O

S S

S
o
Q@
SO
ATIA
&/
< D
& Q&
&
,\®<<, N
& &
S



REGULARITY AND SINGULARITY IN LINEAR-
QUADRATIC CONTROL SUBJECT TO IMPLICIT
CONTINUOUS-TIME SYSTEMS

£3%
Ton Geerts

FEW 556 (/ v a [ 0” not

‘

Communicated by Prof.dr. J. Schumacher



REGULARITY AND SINGULARITY IN LINEAR-QUADRATIC CONTROL
SUBJECT TO IMPLICIT CONTINUOUS-TIME SYSTEMS

Ton Geerts ', Tilburg University,
Dept. cf Econometrics, P.O. Box 90153,
5000 NL Tilburg, the Netherlands

ABSTRACT

A linear-quadratic (LQ) control problem subject to a
standard continuous-time system is called regular if
the input weighting matrix is invertible and singular
if this is not the case. Consequently, optimal inputs
for regular LQ problems are ordinary functions (state
feedbacks), whereas optimal controls for singular
problems are in general distributions, e.g. impulses.
We will show that regularity and singularity in LQ
problems subject to general (implicit) systems
depends not so much on the input weighting matrix, as
on the property that the integrand of the cost
criterion is a function only if inputs and state
trajectories are, as is the case for LQ problems
subject to standard systems. In particular, we will
provide a simple criterion for distinguishing between
regularity and singularity in LQ problems subject to
general systems. Our criterion is expressed in the
system coefficients only and reduces to the classical
one if the underlying systems are standard.

KEYWORDS
Linear-quadratic optimal control problems, implicit

systems,  distributions, strongly controllable
subspace, left invertibility.



1. Introduction.

Consider the following standard Linear-Quadratic Control
Problem (see text-books like e.g. [1] - [4]).
(LQCP) ,:

For all x,, determine

J*(xy) := infl [T[x? + u?]dt|u € £,,,__(R*), lim x(t) = 0},
1 o

loc e
subject to x(t) = u(t), t > 0, x(0) = x4,

with 2,, (R*) denoting the class of locally square-integrable

loc

functions on R* := [0, «). The problem is regular in the sense

of Hilbert [5, p. 29] since the "weighting" scalar of the input

u in the cost criterion [“[x* + u2]dt, 1, is invertible as a
o

result of which optimal controls are state feedbacks and hence
ordinary functions [1) - [4], [6, Corollary 3.4]. In particular,
we have here that u, the optimal input, can be written as
u=-x,
with x denoting the optimal state trajectory e-txo, t 205

Next, consider
(LQCP) ,:

For all x,, determine

J*(x,) := infl [x%dt|u € £,,,_ _(R*), lim x(t) = O},
2 ']

loc B
subject to x(t) = u(t), t 2> 0, x(0) = x,.
Since the weighting scalar of the control in the cost criterion
is obviously singular (not invertible), this LQCP 1is called a
singular problem. A typical aspect of singular LQCPs is the fact
that optimal inputs as well as optimal state trajectories may
not exist within the class of ordinary (measurable) functions.
For instance, it is easily seen that for every e > 0 and every
X, the control u = - X,%(2e) “'exp(- x,%(2¢) "'t)x, yields x =
exp(- x,%(2e) "*t)x, and °jmx’dt = ¢, but an optimal control

exists within L,,IOC(R’) only if x, = 0. In fact, if x, # O,

then it is suggested [7] that the impulsive control u = -
8(t)x,, with &6(t) denoting Diracs delta function, is optimal for
the latter LQCP since this input yields x(t) = 0 for t > O.



In [8) - [9] it is demonstrated that singular LQCPs can be
solved in full detail by allowing certain generalized functions
(distributions [10]) as inputs and state trajectories. What is
more, since any LQCP can be redefined in terms of distributions,
it 1is easily seen that regularity of classical LQCP is
equivalent to the property that the integrand in the associated
cost criterion is a function only if the involved inputs and
state trajectories are functions as well (see Section 2).
Indeed, in (LQCP),, a regular problem, the integrand [x* + u?]
is a function only if u and x are, but in (LQCP) ., a singular
problem, the integrand x? may be a function, whereas u is not
(see the above).

Now, let us observe an LQCP subject to an implicit system
in the formulation of [11] - [12] (for details, see Section 2):

For all [x“], determine
Xo2

s 00 2 + i x, ()] _
1nf|°j [x,? + 2x,%]dt |u € L"loc(R ) t:: [x:(t) = 01,

subject to

o o] = o]l Bl e 2o fion] - B]
The integrand of the cost criterion does not contain a control
term. Yet the LQCP is regular in the sense that optimal controls
and state trajectories are ordinary functions (see [11] - [12]).
Indeed, since u = - x,, we have that the integrand of the cost
criterion equals [x,? + x,® + u?] and hence this integrand is a
function only if u, x, and x, are.

Also, consider the same implicit system with the criterion:

For all [i‘“], determine

02

(R*), lim = 0}.

infl [ty e £, ["t“’
g t o0

X,(t)
The weighting scalar of the control is invertible. Yet the
problem is singular in the sense that optimal controls and/or
state trajectories need not be ordinary functions: It is stated
in [13], [11] that the solution of the given system with u = 0
is x, = 0, X, = - X,,6(t) and hence the optimal state trajectory

is impulsive if x4, # 0.



These two examples of LQCPs subject to implicit systems
demonstrate that regularity and singularity of LQCPs subject to
arbitrary systems may not depend solely on the invertibility of
the control's weighting matrix in the cost criterion. After the
preliminaries in Section 2, we will prove in Section 3 of the
present paper that regularity of any LQCP is equivalent to the
system property that the associated cost criterion integrand is
a function (if and) only if inputs and state trajectories are,
as is the case if the LQCP is classical, see Section 2. This
property will be expressed in the system coefficients only. In
particular, this condition reduces to the classical one
(invertibility of the control's weighting matrix in the cost
criterion) if the underlying system is standard, i.e., not

implicit.



e Preliminaries.

The first extensive treatment of singular LQCPs subject to
standard systems is given in [8]. The proposed class of allowed

distributions cimp in [8] turns out to be large enough to be

representative for the system's behaviour in LQCPs subject to
standard systems ([9], [14], [6], [15]). Since, moreover, cimp
has many nice properties, we will adopt the class cimp for
defining LQCPs subject to arbitrary (possibly implicit) systems
- compare the choice of distributions in [11].

The class Cimp is investigated in detail in [16], see also

[8], [15]; we will recall a few main points. A distribution u e

cimp is called impulsive-smooth and it can be decomposed

(uniquely!) in an impulsive part u, and a smooth part u,. A
distribution is called impulsive if it is a linear combination
of the Dirac delta distribution &8 and its distributional
derivatives a(i), i > 1 (for details on distributions, see
Schwartz (10]). A smooth distribution is a function which 1is
smooth on R* := [0, o) [8, Definition 3.1] and zero elsewhere.
The class cimp is a commutative algebra over R with convolution

* of distributions as multiplication (unit element &) and hence

(1)) and

it is closed under differentiation (= convolution with &
closed under integration (= convolution with H, the Heaviside

“unit step" distribution). It holds that sii) = g1, S0 4

> 1) with 5'9 - 5. By defining PL SR L Lot s )
51 (5 » 1), we establish that s'1*3) = 511 « 513) (5, j e 2)
and thus the inverse of 6(1), (6(1))", equals 6(-1) (i e 2)),

(8) "t =8, 6(_j) is smooth and 6(-j)(t) = tj_l/(j-l)! on R* and

0 elsewhere for j > 1. If cp-imp' csm € Cimp denote the
subalgebras of purely impulsive and smooth distributions,

respectively, and u € ¢__, then u(0*) := lim u(t) and then the
sm
tio
(1)

distributional derivative of u, & * u, equals u + u(0%)s,

where u denotes the ordinary derivative of u on R*.



Now the nonnegative definite LQCP (with stability [17])
subject to a standard system can be stated as follows [8] - [9].

Given the systen Z:

6(1) * x = AX + Bu + x,6, (2.1a)

y = Cx + Du, {2.1b)
with A e &, B e R ce %, p e ", Xo € R, ue c:mp
(the m-vector version of cimp)' It can be shown without
gifficulty that (I_6'") - R6) is invertible within ® with

inverse corresponding to exp(At) on R* [8, p. 375] (for example,

the inverse of (5(1) - 25) equals u = exp(2t) on R*, since

(6(1) - 26) *u=u+ 6u(0*) - 2u = &5). Hence for every x, € R
and every u € c?mp the equation (2.l1a) has exactly one solution

1 6(1)

x = ( - A8) "' * (Bu + Xx,6) € ® . If ue€c”, then x €
n im sm

P
C:m and x = exp(At)x, + Jxexp(h(t-r))Bu(r)dr on R*; d.e.; X
o
equals the ordinary solution of X = AX + Bu, x(0) = x,, on R*,
and we establish that the distributional framework (2.1) covers
the usual (functional) one (e.g. [1] - (4], (8] - (9], [17]) if

m ; g
€ C, u "
u imp is a function

Now, determine for every Xx,,

+ o= 1 ‘. m i =
J¥(xs) = 1nfl°j“§ ydt |u € Cen’ 1i: x(t) o} . (2.2)

The optimal cost is finite (i.e., Vx e g J*(x,) ¢ o« if and
o

only if (A, B) is stabilizable (e.g. [9]). Assume this to be the

case. If
" 5 3 m : =
34(x,) 1nft°;“& yt|u € ¢, :1m x(t) =01, (2.3
00
then
. gt = J*
on e )Y J*(x,) Jd(xo) (2.4)

[15, Proposition 2.24], and optimal controls (if any) are in
general distributions e C:mp if ker(D) # 0, i.e., if the LQCP is

singular [8), [9], [15, Section 3.2]. If ker(D) = 0, however,
then optimal inputs turn out to be ordinary functions. Our first
result tells even more: If ker(D) = 0, then the output y cannot

be a function if the input u is not.



Proposition 2.1.

The LQCP (2.1) - (2.3) is regular if and only if, for every x,,

(1)

r m = B = g 4 n
yec euec ,x (Ind As) (Bu + x,8) € Cem”

Proof. » Assume that ker(D) = 0 and y = Cx + Du is smooth. If v
:= u + (D'D)"'D'Cx, then y = Cox + Dv, C, := (I - D(D'D) ~'D')C,

0P 5 i

and hence D'y = D'Dv, smooth. Thus, v smooth and since &
= Aox + Bv + X,8, A, := A - B(D'D)"'D'C, it follows that x and u
are smooth. « Assume that Dv = 0 for some v € R'. Then x = 0 is
the solution of (2.1a) with u := vé and x, := - Bv, and the

output y equals 0. Hence u must be smooth, i.e., v = 0.

Proposition 2.1 shows that, within a distributional setup,
regularity of (2.1) - (2.3) is equivalent to the property that
the output y is a function only if u and x are. In Section 3 we
shall see that this property is equivalent to regularity of a
nonnegative definite LQCP subject to any (possibly implicit)
system. We will define such a problem (with stability) as
follows.

Definition 2.2.

Given the system Z:

Ea(l) * x = Ax + Bu + EXx,5, (2.5a)
y = Cx + Du, (2.5b)
with E, A € Rlxn' B € Rlxm' C € Rrxn' D e Rrxm' together with,

for every (x,, u) € R%x c’:mp, the solution set S(x,, u) :=

ix e ¢ |[Eo(1)
imp

- A8] * x = Bu + Ex,5}. (2.5¢)
Then, determine, for every x,, J*'(x,) :=
z , u m+n ; _
1nfl°f°y ydt|[x] € csm ¢ %€ 8{Xg, 0), lim x(t) 0}«

e (2.6)



Discussion.

No assumptions are made on the system coefficients E, A, B,
C and D. In particular, E and A are allowed to be nonsquare. If
E = I, then (2.5) - (2.6) reduces to (2.1) - (2.2), see the
above or [8, Section 3]. More generally, if E is singular, but
det(sE - A) # 0, then S(x,, u) contains exactly one element x =

x(x,, u) for every pair (x,, u) € R x c?np - yet, X may have an

impulsive part even if u is smooth: The distributional version
of the implicit system in Section 1 is

011.(1) ., [x,]_ [1 0][x, 0 0 1] [Xon

[o o]° [x,] [o 1”x, Lt loo)xes)®
(see e.g. [11]) and u = 0 yields x, = 0, X, = - X,,5, impulsive.
In [18, Proposition 3.5] it is shown why X is not automatically

smooth if u is, as is the case with E = I.
Proposition 2.3.

Assume that det(sE - A) # 0. Let x, € R', u e c:m. Then x(x,, u)

€ S(X,, w) N c:m if and only if E(x(x,, u) (0*)) = Ex,.

In [11] - [12] it is assumed that det(sE - A) # 0. Since in
[11}, c'c = In' D'D = Im and C'D = 0, it is clear that the LQCP

in (11] and Definition 2.1 are identical. Note that the cost
criterion's integrand in [11] is a function only if u and x are;
the problem is regular in the sense that optimal controls and
optimal state trajectories are functions. If D is merely of full
column rank, then (2.5) - (2.6) reduces to the problem
formulation in [12], because of Proposition 2.3. However, we
will show that there are problems of the form in [12] that are
singular in the sense that optimal inputs and state trajectories
can be distributions, whereas there are also problems (2.5) -
(2.6) with det(sE - A) # 0 and D not injective - yet the optimal
inputs and associated state trajectories are ordinary functions.



In [11] as well as in [12] it is noted that the optimal
state trajectories may be discontinuous in 0 in the sense that
%(0*) may be unequal to x,. In fact, not so much x as Ex plays
the role of "state" whose trajectory is optimized - and Ex(0*') =
Ex, if input and state trajectory are functions, according to
Proposition 2.3. If det(sE - A) = 0, however, Ex(0') may be
equal to Ex, even if u and/or x € S(x,, u) are not smooth (see
[18, Example 2.7]).

Our distributional formulation for implicit systems on R*
(2.7a) 1is in line not only with earlier papers on the subject
like [11], [19] - [20], but also with papers like [13] that are
based on the Laplace transformation approach of Doetsch [21, &
22]. Moreover, we can keep our treatment fully algebraic because

of our choice for cimp as allowed class of distributions. Also,

it can be easily shown that if x, is consistent, i.e, if the
ordinary differential-algebraic equation (DAE) Ex = Ax + Bu in
the sense of Gantmacher [22] has for a certain function u a
functional solution x with x(0*) = x,, then the distribution x €
S(Xo, u). In other words, our approach covers the usual
interpretation of singular DAEs as well (for an extensive
investigation of (2.l1la), see the recent [23], also [18]). Note,
that the set S(x,, u) in (2.5c) may be empty or even contain

infinitely many solutions for certain pairs (x,, u) € R x c?mp

since the pencil sE - A may even be nonsquare [22].

We ~close this Section with the concept of strongly
controllable subspace [24, Definition 3.2], [25, Definition
Js1) «

Definition 2.4.

A point X, € R® is called strongly controllable 1f there exists
. m : n

an input u € cp-imp and a state trajectory x € S(x,, u) N cp-imp

such that y = 0. The space of these points is denoted by w(Z).

If E = I, then our w(Z) and the one in [8] coincide.
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3. Regularity and singularity.

Backed by Proposition 2.1, we make the following definition
for regularity of the LQCP (2.5) - (2.6).

Definition 3.1.

The LQCP (2.5) - (2.6) is regular if, for every x, € Rn,
r m n
yec, euec,, X € S(x4, u) ne (3.1)

and singular if this is not the case.

The first three examples in Section 1 are regular (in
accordance with Proposition 2.1 and [11] - [12]), whereas the
fourth example is singular, although the weighting matrix of the
control in the associated cost criterion is invertible. In the
proof of our key result Theorem 3.2 we will need the Main Lemma
from (23], see also [18], [24]. For the reader's benefit, the

simple proof of the Lemma is included.

Main Lemma.

n . m m
Let X, e R, u = u, + u,, u, € cp-imp' u; € €. and x €
= n n
S(xy, W), x =%, +x,, X, € cp-imp’ X, € C - Then
Ea(l) * X, + E(x;(0%))8 = Ax, + Bu; + ExX,6; (3.2a)
Es'!) x x, = ax, + Bu, + E(x,(0%)s5. (3.2b)

(1) (1)

* x, + E(x,(0%))6 + {(E[5
(1)

* x, - x,(0%5]}

%y - %, 00%8 = %,

Proof. Since E&
= AX, + Bu, + Ex,6 + {Ax, + Bu,l and &

the smooth derivative of x, on R*, the claims are clear.
Theorem 3.2.

The LQCP (2.5) - (2.6) is regular if and only if
ker([g g]) A [A B]-'im(E) = 0. (3.3)
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Proof. Let the LQCP be regular. If X € Rn. uer" are such that
Ex = 0, Cx + Du = 0, AXx + Bu = Ev for a certain w e Rn, then x5
€ S(x,, u) with x, = - w, u := us, and the associated output y
equals Cx + Du =0, regular. Hence x=0, u=0. Conversely, let
(3.3) be valid. It is proven in [25, Theorem 3.9] that w(Z2)
(Definition 2.4) is the smallest subspace £ for which
E-'[AB]{(z®R") nker([C D]} < t. (3.4)

Hence #(Z) < ker(E), since ker (E) satisfies (3.4). On the other
hand, trivially, ker(E) < w(Z), and thus w(Z) = ker(E). Now, let

X, € R, ue c?mp' X € S(x,, u) be such that y is smooth. If u =

m n

Uy €6 s X; €6 s Xz 6
sm p-imp

n

Cgp then we must show that x, = 0 and u, = 0. By (3.2a),

m
Wy iy X = %; ¥ Ko U; € cp-imp'

£6'1) x x, = Ax, + Bu, + E(x, - x,(0")8,
y, :=Cx, + Du, =0,
and hence x, - x,(0*) € w(z) (Definition 2.4). It follows that

(1)
T A5 - E6 B& x,] _
E(x,(0*)) = Ex, and hence [ &5 Ds] * [ul] = 0. By [25,

Proposition 2.3, Corollary 2.4] (see also Remark 3.4), we
establish that ﬁ'] = 0 if Rosenbrock's system matrix Pz(s) :=

1
A - sEB
C D

loss of generality, assume that the system = (2.5a) - (2.5b) is

] [26] is left invertible as a rational matrix. Without

in the form

T O , fxi] o P Ria)lx I 0Kl
pole™ = Bl = Beaclfe] e Bele+ o olfele

y = [Cy C,][?‘] + Du.
X2

Then the condition (3.3) is equivalent to left-invertibility of

E” g’]. as a result of which Pz(s) is indeed left invertible
2

by Schur's lemma, and the proof is complete.
Remark 3.3.

If E = I, then (3.3) reduces to: ker(D) = 0. Hence Theorem 3.2
covers the usual notion of regularity in (2.1) - (2.2).
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Remark 3.4.

If C; € Cimp denotes the subalgebra of fractional impulses:

¢ i= lu ec, = ay, ® A", d,, € 5, T 10

£ mp

(u,”! denoting the inverse (w.r.t. convolution) of u,), then ¢
2 2 f

C.
p-imp

is isomorphic to the commutative field of rational functions
R(s), since the ring of polynomials with real coefficients R[s]

is isomorphic to ¢ [25, Proposition 2.3]. For instance, the

p-imp
polynomial p(s) = 2 - 3s + s? corresponds to the pulse p(s(l)) =
26 ~ 35(1) + 6(2) (recall that 5(0) = &, 6(2) = 5(1) * 5(1) 7

etc.). The rational function r(s) = s/(s - 2) corresponds to the

fractional pulse r(o(l)) = 6(1) * (6(1) - 28"t = 6(1) xu=nu+

u(0*)5 with u = exp(2t) on R*. Consequently, if k,,, are any two

nonnegative integers, Hk‘Xk‘(s), H:‘XR’(G(I)) denote the sets of

k,xk, matrices with entries in R(s), e+ respectively, and T(s)

e wikag) sl

Mt*Xk’(o(l)),

is the corresponding element in
then T(s) is left (right) invertible as a rational

matrix if and only if T(G(l)) is left (right) invertible as a
matrix with entries in cf [25, Corollary 2.4]. Also, note that

() is a commutative ring.
imp

Remark 3.5.

Apart from the claim that w(X) is the smallest subspace £ that
satisfies (3.4), it is proven in [25] (Corollary 3.13) that w(Z)
is the smallest subspace £ for which there exists a G e Rlxr
such that
E"'{(A+GC)2 + im(B + GD)} < .

A Molinari-type algorithm for computing #(Z), following directly
from [25, Theorem 3.9], is given in [25, Theorem 3.10]. Unlike
in [20], we allow E and A to be nonsquare. If D = 0, w(Z) may be
called the infimal (C, A, E)-invariant subspace related to
im(B). If E = I, then [25, Theorem 3.9, Theorem 3.10, Corollary

3.13] reduce to [8, (3.14), (3.22), Theorem 3.15], respectively.
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Similar subspace conditions and algorithms for the discrete-time
case are presented in [27]. Note that the limiting subspace of

the sequence Iakl in [27] equals our w(Z), as is to be expected

[8].
Remark 3.6.

In [12, Section 3, Assumption 2] it is assumed that (in terms of
(3.5)) [C, D] is left invertible. Hence the problems considered
there are indeed regular in the sense of our Definition 3.1.
However, it is very well possible that the LQCP defined in [12,
Sections 1, 2] is regular even if [C, D] is not of full column
rank. For instance, consider the system

ool * el = Rolfl + e+ loo ezl

y=10[11] [x‘ L

Clearly, ([C, D]

[1 0] is not left invertible, but I?*z g‘] is.

2

Hence the LQCP associated with this system is regular in the

sense of Definition 3.1. Indeed, the control u = x, yields 6(1)

* X, = - X, + X,,6 and hence x, = (6(1)

+ B) "t ® X8 deess
x,(t) = exp(- t)x,, on R*, x, = - x, and y = 0. We establish
that in [12] only a special class of regular nonnegative
definite LQCPs subject to implicit systems has been solved; we
will solve the general case (i.e., without any unnecessary
assumptions such as [12, (56)], left-invertibility of [C, D]) in

a future paper.
Remark 3.7.

In [25] several invertibility concepts for general implicit
systems have been defined and analyzed. There, a system Z (2.5a)
- (2.5b) is called /eft invertible in the strong sense if

Xo =0, y=03Ex=0, u=20
(and left invertible in the weak sense if x, = 0, y = 0 3 u = 0)
[25, Section 4]. Assume that [E' A* C']' is of full column rank.
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Then the following statements are equivalent [25, Corollary
4.15].

0y Z is left invertible in the strong sense.

ii) If X4 =0, y =0, then x =0, u = 0.

iii) Pz(s) is left invertible as a rational matrix.

In the proof of Theorem 3.2 we saw that the condition (3.3) is

sufficient for left-invertibility of Pz(s) and hence we observe

that r is left invertible in the strong sense if (3.3) 1is
satisfied. It follows that a certain LQCP is regular only if the
underlying system is left invertible (in the strong sense), by
Theorem 3.2. The converse is not true, of course [8]. Note that

left-invertibility of Px(S) is equivalent to left-invertibility

of the transfer function T(s) := D + C(sE - A) "'B if det(sE - RA)
# 0 [24, Theorem 3.9], [8, Theorem 3.26].

Corollary 3.8.

0
Assume that ker([lz\ Bl) = 0. Then
CD

Ww(Z) = ker(E) = ker([g g]) n [A B] "'im(E) = 0.

Proof. « Follows from (3.4). » If Ex = 0, Cx + Du = 0 and Ax +
Bu = Ew, then (- w) e W(Z) since x = x6 € S(- w, us). Hence Ax +

Bu=0and x =0, u = 0.

The assumption in Corollary 3.8 1is not necessarily
satisfied if ker(E) = w(Z) for an arbitrary system Z. Take e.g.
E=1,B=0,C=1Iand D = 0, then, obviously, %(Z) = ker(E),

but [

D] is not left invertible. However, without 1loss of

cCD

(2.5b) and if this 1is the <case, then an alternative

0
generality, one can assume that ker(F B]) = 0 in (2.5a) -

characterization of regularity might be: The LQCP (2.5) - (2.6)
is regular if and only if w(z) = ker(E).
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Conclusions.

Our distributional framework covers all existing interpretations
of continuous-time linear-quadratic control problems subject to
general systems. We saw that within this distributional context
the concept of regularity can be understood in a very natural
way as the property that the output is a function only if inputs
and state trajectories are, not only in the standard but also in
the nonstandard cases. We derived a condition that is equivalent
to this property and since this condition is expressed in the
(unrestricted) system coefficients only, it is easily checked.
Moreover, we related this condition to the strongly controllable
subspace and established that, without loss of generality, LQCPs
are regular if and only if this subspace is trivial. Finally, we
noted that in the existing literature only special cases of
regular LQCPs subject to implicit systems have been treated. The
author wants to discuss problems subject to arbitrary systems in

a future article.
Illustrative Examples.

Consider the system equation
(1) ol X
tos™ « [] - 0 11}

2

] + 11 0] "“]a,

Xo2
with output y, = [0 1] 1| 4+ u. Then the condition (3.3) is not
1 xz

satisfied; if e.g. u =65, x, = - &, then y, = 0, smooth. If y, =
0 11fx,] 4 []y, then (3.3) holds. Indeed, y, is a function
0 0f|x, 1}

only if u and x, are, as a result of which x, is a function as
well. If y, = [0 III;‘] (B and D are not appearing), then (3.3)
2

is valid and, again, y, is a function only if inputs and states

are.

This paper was written in September 1991, when the author was
with the Mathematical Institute of Wuerzburg University, Am
Hubland, D-8700 Wuerzburg, Germany, as an Alexander von
Humboldt-fellow.
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