CBM

7626
7626 s.
$199266 / \mathrm{sin}$
556

REGULARITY AND SINGULARITY IN LINEARQUADRATIC CONTROL SUBJECT TO IMPLICIT CONTINUOUS-TIME SYSTEMS

Ton Geerts
FEW 556

Communicated by Prof.dr. J. Schumacher

REGULARITY AND SINGULARITY IN LINEAR-QUADRATIC CONTROL SUBJECT TO IMPLICIT CONTINUOUS-TIME SYSTEMS

Ton Geerts \#, Tilburg University, Dept. cf Econometrics, P.O. Box 90153, 5000 NL Tilburg, the Netherlands

ABSTRAC:

A linear-quadratic (LQ) control problem subject to a standard continuous-time system is called regular if the input weighting matrix is invertible and singular if this is not the case. Consequently, optimal inputs for regular LQ problems are ordinary functions (state feedbacks), whereas optimal controls for singular problems are in general distributions, e.g. impulses. We will show that regularity and singularity in LQ problems subject to general (implicit) systems depends not so much on the input weighting matrix, as on the property that the integrand of the cost criterion is a function only if inputs and state trajectories are, as is the case for LQ problems subject to standard systems. In particular, we will provide a simple criterion for distinguishing between regularity and singularity in $L Q$ problems subject to general systems. Our criterion is expressed in the system coefficients only and reduces to the classical one if the underlying systems are standard.

KEYWORDS
Linear-quadratic optimal control problems, implicit systems, distributions, strongly controllable subspace, left invertibility.

1. Introduction.

Consider the following standard Linear-Quadratic Control Problem (see text-books like e.g. [1] - [4]).
$(L Q C P)_{1}:$
For all x_{0}, determine
$\left.\mathrm{J}_{1}^{+}\left(\mathrm{x}_{0}\right):=\inf \left|\int_{0}^{\infty}\left[\mathrm{x}^{2}+u^{2}\right] d t\right| u \in \mathcal{L}_{2 \prime} \operatorname{loc}_{0}\left(\mathbb{R}^{+}\right), \lim _{t \rightarrow \infty} x(t)=0\right\}$,
subject to $\dot{x}(t)=u(t), t \geq 0, x(0)=x_{0}$,
with $\mathcal{L}_{2 \prime}$ loc $\left(\mathbb{R}^{+}\right)$denoting the class of locally square-integrable functions on $\mathbb{R}^{+}:=[0, \infty)$. The problem is regular in the sense of Hilbert [5, p. 29] since the "weighting" scalar of the input u in the cost criterion $\int_{0}^{\infty}\left[x^{2}+u^{2}\right] d t, 1$, is invertible as a result of which optimal controls are state feedbacks and hence ordinary functions [1] - [4], [6, Corollary 3.4]. In particular, we have here that \bar{u}, the optimal input, can be written as $\bar{u}=-\bar{x}$,
with \bar{x} denoting the optimal state trajectory $e^{-t} x_{0}, t \geq 0$.
Next, consider
$(\mathrm{LQCP})_{2}$:
For all x_{0}, determine
$\left.J_{2}^{+}\left(x_{0}\right):=\inf \int_{0}^{\infty} x^{2} d t \mid u \in \ell_{2} l_{0 c}\left(\mathbb{R}^{+}\right), \lim _{t \rightarrow \infty} x(t)=0\right\}$,
subject to $\dot{x}(t)=u(t), t \geq 0, x(0)=x_{0}$.
Since the weighting scalar of the control in the cost criterion is obviously singular (not invertible), this LQCP is called a singular problem. A typical aspect of singular LQCPs is the fact that optimal inputs as well as optimal state trajectories may not exist within the class of ordinary (measurable) functions. For instance, it is easily seen that for every $\epsilon>0$ and every x_{0} the control $u=-x_{0}{ }^{2}(2 \epsilon)^{-1} \exp \left(-x_{0}{ }^{2}(2 \epsilon)^{-1} t\right) x_{0}$ yields $x=$ $\exp \left(-x_{0}^{2}(2 \epsilon)^{-1} t\right) x_{0}$ and $\int_{0}^{\infty} x^{2} d t=\epsilon$, but an optimal control exists within $\mathcal{L}_{2 \prime}$ loc $\left(\mathbb{R}^{+}\right)$only if $x_{0}=0$. In fact, if $x_{0} \neq 0$, then it is suggested [7] that the impulsive control $u=-$ $\delta(t) x_{0}$, with $\delta(t)$ denoting Diracs delta function, is optimal for the latter LQCP since this input yields $x(t)=0$ for $t>0$.

In [8] - [9] it is demonstrated that singular LQCPs can be solved in full detail by allowing certain generalized functions (distributions [10]) as inputs and state trajectories. What is more, since any LQCP can be redefined in terms of distributions, it is easily seen that regularity of classical LQCP is equivalent to the property that the integrand in the associated cost criterion is a function only if the involved inputs and state trajectories are functions as well (see Section 2). Indeed, in (LQCP $)_{1}$, a regular problem, the integrand $\left[x^{2}+u^{2}\right]$ is a function only if u and x are, but in (LQCP) ${ }_{2}$, a singular problem, the integrand x^{2} may be a function, whereas u is not (see the above).

Now, let us observe an LQCP subject to an implicit system in the formulation of [11] - [12] (for details, see Section 2): For all $\left[\begin{array}{ll}x_{01} \\ x_{02}\end{array}\right]$, determine
inf $\left.\left|\int_{0}^{\infty}\left[x_{1}^{2}+2 x_{2}^{2}\right] d t\right| u \in \mathcal{L}_{2 \prime} l o c\left(\mathbb{R}^{+}\right), \lim _{t \rightarrow \infty}\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=0\right\}$,
subject to
$\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right] u, t \geq 0,\left[\begin{array}{l}x_{1}\left(0^{-}\right) \\ x_{2}\left(0^{-}\right)\end{array}\right]=\left[\begin{array}{l}x_{0_{1}} \\ x_{0_{2}}\end{array}\right]$.
The integrand of the cost criterion does not contain a control term. Yet the LQCP is regular in the sense that optimal controls and state trajectories are ordinary functions (see [11] - [12]). Indeed, since $u=-x_{2}$, we have that the integrand of the cost criterion equals $\left[x_{1}{ }^{2}+x_{2}{ }^{2}+u^{2}\right]$ and hence this integrand is a function only if u, x_{1} and x_{2} are.

Also, consider the same implicit system with the criterion:
For all $\left[\begin{array}{l}x_{01} \\ x_{02}\end{array}\right]$, determine
inf $\left.\int_{0}^{\infty} u^{2} d t \mid u \in \ell_{2}, 10 c\left(\mathbb{R}^{+}\right), \lim _{t \rightarrow \infty}\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=0\right\}$.
The weighting scalar of the control is invertible. Yet the problem is singular in the sense that optimal controls and/or state trajectories need not be ordinary functions: It is stated in [13], [11] that the solution of the given system with $u=0$ is $x_{2}=0, x_{1}=-x_{02} \delta(t)$ and hence the optimal state trajectory is impulsive if $\mathrm{x}_{02} \neq 0$.

These two examples of LQCPs subject to implicit systems demonstrate that regularity and singularity of LQCPs subject to arbitrary systems may not depend solely on the invertibility of the control's weighting matrix in the cost criterion. After the preliminaries in Section 2, we will prove in Section 3 of the present paper that regularity of any LQCP is equivalent to the system property that the associated cost criterion integrand is a function (if and) only if inputs and state trajectories are, as is the case if the LQCP is classical, see Section 2. This property will be expressed in the system coefficients only. In particular, this condition reduces to the classical one (invertibility of the control's weighting matrix in the cost criterion) if the underlying system is standard, i.e., not implicit.

2. Preliminaries.

The first extensive treatment of singular LQCPs subject to standard systems is given in [8]. The proposed class of allowed distributions $c_{i m p}$ in [8] turns out to be large enough to be representative for the system's behaviour in LQCPs subject to standard systems ([9], [14], [6], [15]). Since, moreover, $C_{i m p}$ has many nice properties, we will adopt the class $c_{i m p}$ for defining LQCPs subject to arbitrary (possibly implicit) systems - compare the choice of distributions in [11].

The class $C_{i m p}$ is investigated in detail in [16], see also [8], [15]; we will recall a few main points. A distribution $u \in$ $e_{i m p}$ is called impulsive-smooth and it can be decomposed (uniquely!) in an impulsive part u_{1} and a smooth part u_{2}. A distribution is called impulsive if it is a linear combination of the Dirac delta distribution δ and its distributional derivatives $\delta^{(i)}$, $i \geq 1$ (for details on distributions, see Schwartz [10]). A smooth distribution is a function which is smooth on $\mathbb{R}^{+}:=[0, \infty)[8$, Definition 3.1] and zero elsewhere. The class $e_{i m p}$ is a commutative algebra over \mathbb{R} with convolution * of distributions as multiplication (unit element δ) and hence it is closed under differentiation ($=$ convolution with $\delta^{(1)}$) and closed under integration (= convolution with H, the Heaviside "unit step" distribution). It holds that $\delta^{(i)}=5^{(i-1)} * \delta^{(1)}$ (i) ≥ 1) with $\delta^{(0)}=\delta$. By defining $\delta^{(-1)}:=H$, $\delta^{(-j)}=\delta^{-(j-1)}$ * $\delta^{(-1)}(j \geq 1)$, we establish that $\delta^{(i+j)}=\delta^{(i)} * \delta^{(j)}(i, j \in \mathbb{Z})$ and thus the inverse of $\delta^{(i)},\left(\delta^{(i)}\right)^{-1}$, equals $\delta^{(-i)}$ (i $\left.\in \mathbb{Z}\right)$, $(\delta)^{-1}=\delta, \delta^{(-j)}$ is smooth and $\delta^{(-j)}(t)=t^{j-1} /(j-1)!$ on \mathbb{R}^{+}and 0 elsewhere for $j \geq 1$. If $c_{p-i m p}, c_{s m} \in C_{i m p}$ denote the subalgebras of purely impulsive and smooth distributions, respectively, and $u \in \mathcal{C}_{s m^{\prime}}$ then $u\left(0^{+}\right):=\lim _{t \downarrow 0} u(t)$ and then the distributional derivative of $u, \delta^{(1)} \star u$, equals $\dot{u}+u\left(0^{+}\right) \delta$, where \dot{u} denotes the ordinary derivative of u on \mathbb{R}^{+}.

Now the nonnegative definite LQCP (with stability [17]) subject to a standard system can be stated as follows [8] - [9]. Given the systen Σ :

$$
\begin{align*}
& \delta^{(1)} \star x=A x+B u+x_{0} \delta, \tag{2.1a}\\
& y=C x+D u, \tag{2.1b}
\end{align*}
$$

with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{r \times n}, D \in \mathbb{R}^{r \times m}, x_{0} \in \mathbb{R}^{n}, u \in e_{i m p}^{m}$ (the m-vector version of $c_{i m p}$). It can be shown without difficulty that $\left(I_{n} \delta^{(1)}-A \delta\right)$ is invertible within $e_{i m p}^{n \times n}$ with inverse corresponding to $\exp (A t)$ on $\mathbb{R}^{+}[8, ~ p .375]$ (for example, the inverse of $\left(\delta^{(1)}-2 \delta\right)$ equals $u=\exp (2 t)$ on \mathbb{R}^{+}, since $\left.\left(\delta^{(1)}-2 \delta\right) * u=\dot{u}+\delta u\left(0^{+}\right)-2 u=\delta\right)$. Hence for every $x_{0} \in \mathbb{R}^{n}$ and every $u \in C_{i m p}^{m}$ the equation (2.1a) has exactly one solution $x=\left(I_{n} \delta^{(1)}-A \delta\right)^{-1} \star\left(B u+x_{0} \delta\right) \in C_{i m p}^{n}$. If $u \in e_{s m}^{m}$, then $x \in$ $e_{s m}^{n}$ and $x=\exp (A t) x_{0}+\int_{0}^{t} \exp (A(t-r)) B u(r) d r$ on \mathbb{R}^{+}, i.e., x equals the ordinary solution of $\dot{x}=A x+B u, x(0)=x_{0}$, on \mathbb{R}^{+}, and we establish that the distributional framework (2.1) covers the usual (functional) one (e.g. [1] - [4], [8] - [9], [17]) if $u \in C_{i m p}^{m}$ is a function.

Now, determine for every x_{0},

$$
\begin{equation*}
\mathrm{J}^{+}\left(\mathrm{x}_{0}\right):=\inf \left\{\int_{0}^{\infty} y^{\prime} y d t \mid u \in \mathbb{C}_{s_{m}}^{\mathrm{m}} \lim _{t \rightarrow \infty} x(t)=0\right\} \tag{2.2}
\end{equation*}
$$

The optimal cost is finite (i.e., $\forall_{x_{0}} \in \mathbb{R}^{\left.n: J^{+}\left(x_{0}\right)<\infty\right) \text { if and }}$ only if (A, B) is stabilizable (e.g. [9]). Assume this to be the case. If

$$
\begin{equation*}
\left.\mathrm{J}_{d}^{+}\left(\mathrm{x}_{0}\right):=\inf \left|\int_{0}^{\infty} Y^{\prime} y d t\right| u \in e_{i m p}^{m}, \lim _{t \rightarrow \infty} x(t)=0\right\} \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\forall_{x_{0}} \in \mathbb{R}^{n: J^{+}\left(x_{0}\right)=J_{d}^{+}\left(x_{0}\right)} \tag{2.4}
\end{equation*}
$$

[15, Proposition 2.24], and optimal controls (if any) are in general distributions $\in C_{\text {imp }}^{m}$ if $\operatorname{ker}(D) \neq 0$, i.e., if the LQCP is singular [8], [9], [15, Section 3.2]. If ker $(D)=0$, however, then optimal inputs turn out to be ordinary functions. Our first result tells even more: If $\operatorname{ker}(D)=0$, then the output y cannot be a function if the input u is not.

The LQCP (2.1) - (2.3) is regular if and only if, for every x_{0},

$$
y \in e_{s m}^{r} ص u \in e_{s m}^{m} x=\left(I_{n} \delta^{(1)}-A \delta\right)^{-1} \star\left(B u+x_{0} \delta\right) \in e_{s m}^{n}
$$

Proof. \Rightarrow Assume that $\operatorname{ker}(\mathrm{D})=0$ and $\mathrm{Y}=\mathrm{Cx}+\mathrm{Du}$ is smooth. If v $:=u+\left(D^{\prime} D\right)^{-1} D^{\prime} C x$, then $y=C_{0} x+D v, C_{0}:=\left(I-D\left(D^{\prime} D^{-1} D^{\prime}\right) C\right.$, and hence $D \cdot y=D \cdot D v$, smooth. Thus, v smooth and since $\delta^{(1)} * x$ $=A_{0} x+B V+X_{0} \delta, A_{0}:=A-B(D \cdot D)^{-1} D^{\prime} C$, it follows that x and u are smooth. \in Assume that $D v=0$ for some $v \in \mathbb{R}^{m}$. Then $x=0$ is the solution of (2.1a) with $u:=$ vo and $x_{0}:=-B v$, and the output y equals 0 . Hence u must be smooth, i.e., $v=0$.

Proposition 2.1 shows that, within a distributional setup, regularity of (2.1) - (2.3) is equivalent to the property that the output y is a function only if u and x are. In section 3 we shall see that this property is equivalent to regularity of a nonnegative definite LQCP subject to any (possibly implicit) system. We will define such a problem (with stability) as follows.

Definition 2.2.

Given the system Σ :

$$
\begin{equation*}
E \delta(1) * x=A \bar{x}+B u+E x_{0} \delta, \tag{2.5a}
\end{equation*}
$$

$$
\begin{equation*}
y=C x+D u \tag{2.5b}
\end{equation*}
$$

with $E, A \in \mathbb{R}^{l \times n}, B \in \mathbb{R}^{l \times m}, C \in \mathbb{R}^{r \times n}, D \in \mathbb{R}^{r \times m}$, together with, for every $\left(x_{0}, u\right) \in \mathbb{R}^{n} \times C_{i m p}^{m}$, the solution $\operatorname{set} S\left(x_{0}, u\right):=$

$$
\begin{equation*}
\left\{x \in C_{i m p}^{n} \mid\left[E \delta^{(1)}-A \delta\right] * x=B u+E x_{0} \delta\right\} \tag{2.5c}
\end{equation*}
$$

Then, determine, for every $\mathrm{x}_{0}, \mathrm{~J}^{+}\left(\mathrm{x}_{0}\right):=$

$$
\inf \left|\int_{0}^{\infty} y^{\prime} y^{d} t\right|\left[\begin{array}{l}
u \tag{2.6}\\
x
\end{array}\right] \in e_{s m}^{m+n}, x \in S\left(x_{0}, u\right), \lim _{t \rightarrow \infty} x(t)=01
$$

Discussion.

No assumptions are made on the system coefficients E, A, B, C and D. In particular, E and A are allowed to be nonsquare. If $\mathbf{E}=\mathrm{I}$, then $(2.5)-(2.6)$ reduces to (2.1) - (2.2), see the above or [8, Section 3]. More generally, if E is singular, but $\operatorname{det}(s E-A) \neq 0$, then $S\left(x_{0}, u\right)$ contains exactly one element $x=$ $x\left(x_{0}, u\right)$ for every pair $\left(x_{0}, u\right) \in \mathbb{R}^{n} \times c_{i m p}^{m}-$ yet, x may have an impulsive part even if u is smooth: The distributional version of the implicit system in Section 1 is

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \delta^{(1)} *\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u+\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{0}
\end{array}\right] \delta
$$

(see e.g. [11]) and $u=0$ yields $x_{2}=0, x_{1}=-x_{02} \delta$, impulsive. In [18, Proposition 3.5] it is shown why x is not automatically smooth if u is, as is the case with $E=I$.

Proposition 2.3.

Assume that $\operatorname{det}(s E-A) \neq 0$. Let $x_{0} \in \mathbb{R}^{n}, u \in c_{s m}^{m}$. Then $x\left(x_{0}, u\right)$ $\in S\left(x_{0}, u\right) \cap e_{s m}^{n}$ if and only if $E\left(x\left(x_{0}, u\right)\left(0^{+}\right)\right)=E x_{0}$.

In [11] - [12] it is assumed that $\operatorname{det}(s E-A) \neq 0$. Since in [11], $C^{\prime} C=I_{n} D^{\prime} D=I_{m}$ and $C^{\prime} D=0$, it is clear that the LQCP in [11] and Definition 2.1 are identical. Note that the cost criterion's integrand in [11] is a function only if u and x are; the problem is regular in the sense that optimal controls and optimal state trajectories are functions. If D is merely of full column rank, then (2.5) - (2.6) reduces to the problem formulation in [12], because of Proposition 2.3. However, we will show that there are problems of the form in [12] that are singular in the sense that optimal inputs and state trajectories can be distributions, whereas there are also problems (2.5) (2.6) with $\operatorname{det}(s E-A) \neq 0$ and D not injective - yet the optimal inputs and associated state trajectories are ordinary functions.

In [11] as well as in [12] it is noted that the optimal state trajectories may be discontinuous in 0 in the sense that $x\left(0^{+}\right)$may be unequal to x_{0}. In fact, not so much x as Ex plays the role of "state" whose trajectory is optimized - and Ex $\left(0^{+}\right)=$ $E x$ o if input and state trajectory are functions, according to Proposition 2.3. If $\operatorname{det}(S E-A)=0$, however, $\operatorname{Ex}\left(0^{+}\right)$may be equal to $E x_{0}$ even if u and/or $x \in S\left(x_{0}, u\right)$ are not smooth (see [18, Example 2.7]).

Our distributional formulation for implicit systems on \mathbb{R}^{+} (2.7a) is in line not only with earlier papers on the subject like [11], [19] - [20], but also with papers like [13] that are based on the Laplace transformation approach of Doetsch [21, 5 22]. Moreover, we can keep our treatment fully algebraic because of our choice for $c_{i m p}$ as allowed class of distributions. Also, it can be easily shown that if x_{0} is consistent, i.e, if the ordinary differential-algebraic equation (DAE) $E \dot{X}=A x+B u$ in the sense of Gantmacher [22] has for a certain function u a functional solution x with $x\left(0^{+}\right)=x_{0}$, then the distribution $x \in$ $S\left(x_{0}, u\right)$. In other words, our approach covers the usual interpretation of singular DAEs as well (for an extensive investigation of (2.1a), see the recent [23], also [18]). Note, that the set $S\left(x_{0}, u\right)$ in (2.5c) may be empty or even contain infinitely many solutions for certain pairs $\left(x_{0}, u\right) \in \mathbb{R}^{n} \times e_{i m p}^{m}$ since the pencil sE - A may even be nonsquare [22].

We close this Section with the concept of strongly controllable subspace [24, Definition 3.2], [25, Definition 3.1].

Definition 2.4.

A point $x_{0} \in \mathbb{R}^{n}$ is called strongly controllable if there exists an input $u \in C_{p-i m p}^{m}$ and a state trajectory $x \in S\left(x_{0}, u\right) \cap e_{p-i m p}^{n}$ such that $y=0$. The space of these points is denoted by $w(\Sigma)$.

If $E=I$, then our $\mathcal{W}(\Sigma)$ and the one in [8] coincide.

3. Regularity and singularity.

Backed by Proposition 2.1, we make the following definition for regularity of the LQCP (2.5) - (2.6).

Definition 3.1.

The LQCP (2.5) - (2.6) is regular if, for every $x_{0} \in \mathbb{R}^{n}$,

$$
\begin{equation*}
y \in e_{s m}^{r} \emptyset u \in e_{s m^{\prime}}^{m} x \in S\left(x_{0}, u\right) \cap c_{s m}^{n} \tag{3.1}
\end{equation*}
$$

and singular if this is not the case.

The first three examples in Section 1 are regular (in accordance with Proposition 2.1 and [11] - [12]), whereas the fourth example is singular, although the weighting matrix of the control in the associated cost criterion is invertible. In the proof of our key result Theorem 3.2 we will need the Main Lemma from [23], see also [18], [24]. For the reader's benefit, the simple proof of the Lemma is included.

Main Lemma.

Let $x_{0} \in \mathbb{R}^{n}, u=u_{1}+u_{2}, u_{1} \in e_{p-i m p}^{m}, u_{2} \in e_{s m^{\prime}}^{m}$ and $x \in$ $S\left(x_{0}, u\right), x=x_{1}+x_{2}, x_{1} \in c_{p-i m p}^{n} x_{2} \in e_{s m}^{n}$. Then

$$
\begin{align*}
& E \delta^{(1)} * x_{1}+E\left(x_{2}\left(0^{+}\right)\right) \delta=A x_{1}+B u_{1}+E x_{0} \delta, \tag{3.2a}\\
& E \delta^{(1)} * x_{2}=A x_{2}+B u_{2}+E\left(x_{2}\left(0^{+}\right)\right) \delta . \tag{3.2b}
\end{align*}
$$

Proof. Since E $\delta^{(1)} * x_{1}+E\left(x_{2}\left(0^{+}\right)\right) \delta+\left\{E\left[\delta^{(1)} * x_{2}-x_{2}\left(0^{+}\right) \delta\right]\right\}$ $=A x_{1}+B u_{1}+E x_{0} \delta+\left\{A X_{2}+B u_{2}\right\}$ and $\delta^{(1)} * X_{2}-X_{2}\left(0^{+}\right) \delta=\dot{x}_{2}$, the smooth derivative of x_{2} on \mathbb{R}^{+}, the claims are clear.

Theorem 3.2.

The LQCP (2.5) - (2.6) is regular if and only if $\operatorname{ker}\left(\left[\begin{array}{ll}E & 0 \\ C & D\end{array}\right]\right) \cap\left[\begin{array}{ll}A & B\end{array}\right]^{-1} \mathrm{im}(E)=0$.

Proof. Let the LQCP be regular. If $\overline{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}} . \overline{\mathrm{u}} \in \mathbb{R}^{m}$ are such that $E \bar{x}=0, C \bar{x}+D \bar{u}=0, A \bar{x}+B \bar{u}=E w$ for a certain $w \in \mathbb{R}^{n}$, then $\bar{x} \delta$ $\in S\left(x_{0}, u\right)$ with $x_{0}:=-w, u:=\bar{u} \bar{\delta}$, and the associated output y equals $C \bar{x}+D \bar{u}=0$, regular. Hence $\bar{x}=0, \bar{u}=0$. Conversely, let (3.3) be valid. It is proven in [25, Theorem 3.9] that $W(\Sigma)$ (Definition 2.4) is the smallest subspace $\&$ for which

$$
\begin{equation*}
E^{-1}[A B]\left\{\left(\mathcal{L} \oplus \mathbb{R}^{\mathbb{m}}\right) \cap \operatorname{ker}([C D])\right\} \subset \ell . \tag{3.4}
\end{equation*}
$$

Hence $W(\Sigma) \subset \operatorname{ker}(E)$, since $\operatorname{ker}(E)$ satisfies (3.4). On the other hand, trivially, $\operatorname{ker}(E) \subset w(\Sigma)$, and thus $w(\Sigma)=\operatorname{ker}(E)$. Now, let $x_{0} \in \mathbb{R}^{n}, u \in C_{i m p}^{m}, x \in S\left(x_{0}, u\right)$ be such that y is smooth. If $u=$ $u_{1}+u_{2}, x=x_{1}+x_{2}, u_{1} \in c_{p-i m p}^{m}, u_{2} \in c_{s m^{\prime}}^{m}, x_{1} \in c_{p-i m p^{\prime}}^{n} x_{2} \in$ $e_{s m^{\prime}}^{n}$ then we must show that $x_{1}=0$ and $u_{1}=0$. By (3.2a),

$$
\begin{aligned}
& E \delta^{(1)} * x_{1}=A x_{1}+B u_{1}+E\left(x_{0}-x_{2}\left(0^{+}\right)\right) \delta, \\
& y_{1}:=C x_{1}+D u_{1}=0,
\end{aligned}
$$

and hence $x_{0}-x_{2}\left(0^{+}\right) \in \mathbb{W}(\Sigma)$ (Definition 2.4). It follows that $E\left(X_{2}\left(0^{+}\right)\right)=E x_{0}$ and hence $\left[\begin{array}{cc}A \delta-E \delta^{(1)} & B \delta \\ C \delta & D \delta\end{array}\right] *\left[\begin{array}{l}x_{1} \\ u_{1}\end{array}\right]=0$. By [25, Proposition 2.3, Corollary 2.4] (see also Remark 3.4), we establish that $\left[\begin{array}{l}x_{1} \\ u_{1}\end{array}\right]=0$ if Rosenbrock's system matrix $P_{\Sigma}(s):=$ $\left[\begin{array}{ccc}A & -s E & B \\ C & D\end{array}\right][26]$ is left invertible as a rational matrix. Without loss of generality, assume that the system $\Sigma(2.5 a)-(2.5 b)$ is in the form

$$
\begin{aligned}
& {\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] \delta^{(1)} *\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u+\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{01} \\
\bar{x}_{02}
\end{array}\right] \delta_{1}} \\
& Y=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{1} \\
x_{2}
\end{array}\right]+D u .
\end{aligned}
$$

Then the condition (3.3) is equivalent to left-invertibility of $\left[\begin{array}{ll}A_{22} & B_{2} \\ C_{2} & D\end{array}\right]$, as a result of which $P_{\Sigma}(s)$ is indeed left invertible by Schur's lemma, and the proof is complete.

Remark 3.3.

If $E=I$, then (3.3) reduces to: $\operatorname{ker}(D)=0$. Hence Theorem 3.2 covers the usual notion of regularity in (2.1) - (2.2).

Remark 3.4.

If $\mathcal{C}_{f} \in \mathcal{C}_{\text {imp }}$ denotes the subalgebra of tractional impulses:

$$
c_{f}:=\left\{u \in c_{i m p} \mid u=u_{1} * u_{2}^{-1}, u_{1,2} \in c_{p-i m p}, u_{2} \neq 0\right\}
$$

(u_{2}^{-1} denoting the inverse (w.r.t. convolution) of u_{2}), then e_{f}
is isomorphic to the commutative field of rational functions $\mathbb{R}(s)$, since the ring of polynomials with real coefficients $\mathbb{R}[s]$ is isomorphic to $e_{p-i m p}[25$, Proposition 2.3]. For instance, the polynomial $\mathrm{p}(\mathrm{s})=2-3 \mathrm{~s}+\mathrm{s}^{2}$ corresponds to the pulse $\mathrm{p}\left(\delta^{(1)}\right)=$
 etc.). The rational function $r(s)=s /(s-2)$ corresponds to the fractional pulse $r\left(\delta^{(1)}\right)=\delta^{(1)} *\left(\delta^{(1)}-2 \delta^{-1}=\delta^{(1)} * u=\dot{u}+\right.$ $u\left(0^{+}\right) \delta$ with $u=\exp (2 t)$ on \mathbb{R}^{+}. Consequently, if $k_{1^{\prime}, 2}$ are any two nonnegative integers, $M^{k_{1} \times k_{2}}(s), M_{f}^{k_{1} \times k_{2}}\left(\delta^{(1)}\right)$ denote the sets of $\mathrm{k}_{1} \times \mathrm{k}_{2}$ matrices with entries in $\mathbb{R}(\mathrm{s}), \mathrm{c}_{\mathrm{f}}$, respectively, and $\mathrm{T}(\mathrm{s})$ $\in M^{k_{1} \times k_{2}}(s), T\left(\delta^{(1)}\right)$ is the corresponding element in $M_{f}^{k_{1} \times k_{2}}\left(\delta^{(1)}\right)$, then $T(s)$ is left (right) invertible as a rational matrix if and only if $\mathrm{T}\left(\mathrm{O}^{(1)}\right.$) is left (right) invertible as a matrix with entries in $c_{f}[25$, Corollary 2.4]. Also, note that $c_{i m p}$ is a commutative ring.

Remark 3.5.

Apart from the claim that $\mathcal{W}(\Sigma)$ is the smallest subspace \mathcal{L} that satisfies (3.4), it is proven in [25] (Corollary 3.13) that $W(\Sigma)$ is the smallest subspace \mathcal{L} for which there exists a $G \in \mathbb{R}^{l \times r}$ such that

$$
E^{-1}\{(A+G C) L+i m(B+G D)\} \subset \mathcal{L} .
$$

A Molinari-type algorithm for computing $w(\Sigma)$, following directly from [25, Theorem 3.9], is given in [25, Theorem 3.10]. Unlike in [20], we allow E and A to be nonsquare. If $D=0, W(\Sigma)$ may be called the infimal (C, A, E)-invariant subspace related to im (B). If $E=I$, then [25, Theorem 3.9, Theorem 3.10, Corollary 3.13] reduce to $[8,(3.14),(3.22)$, Theorem 3.15], respectively.

Similar subspace conditions and algorithms for the discrete-time case are presented in [27]. Note that the limiting subspace of the sequence $\left\{x_{k}\right\}$ in [27] equals our $W(\Sigma)$, as is to be expected [8].

Remark 3.6.

In [12, Section 3, Assumption 2] it is assumed that (in terms of (3.5)) [C_{2} D] is left invertible. Hence the problems considered there are indeed regular in the sense of our Definition 3.1. However, it is very well possible that the LQCP defined in [12, Sections 1, 2] is regular even if $\left[C_{2}\right.$ D] is not of full column rank. For instance, consider the system

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \delta(1) *\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u+\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
x_{01} \\
x_{02}
\end{array}\right] \delta,} \\
& Y=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
\end{aligned}
$$

Clearly, $\left[\begin{array}{ll}C_{2} & D\end{array}\right]=\left[\begin{array}{ll}1 & 0\end{array}\right]$ is not left invertible, but $\left[\begin{array}{ll}A_{22} & B_{2} \\ C_{2} & D\end{array}\right]$ is.
Hence the LQCP associated with this system is regular in the sense of Definition 3.1. Indeed, the control $u=x_{2}$ yields $\delta^{(1)}$ $* x_{1}=-x_{1}+x_{01} \delta$ and hence $x_{1}=\left(\delta^{(1)}+\delta\right)^{-1} * x_{01} \delta$, i.e., $x_{1}(t)=\exp (-t) x_{01}$ on $\mathbb{R}^{+}, x_{2}=-x_{1}$ and $y=0$. We establish that in [12] only a special class of regular nonnegative definite LQCPs subject to implicit systems has been solved; we will solve the general case (i.e., without any unnecessary assumptions such as [12, (56)], left-invertibility of [C_{2} D]) in a future paper.

Remark 3.7.

In [25] several invertibility concepts for general implicit systems have been defined and analyzed. There, a system Σ (2.5 a)

- (2.5b) is called left invertible in the strong sense if

$$
x_{0}=0, y=0 \Rightarrow E x=0, u=0
$$

(and left invertible in the weak sense if $x_{0}=0, y=0 \Rightarrow u=0$) [25, Section 4]. Assume that [E'A. C']' is of full column rank.

Then the following statements are equivalent [25, Corollary 4.15] .
i) Σ is left invertible in the strong sense.
ii) If $x_{0}=0, Y=0$, then $x=0, u=0$.
iii) $P_{\Sigma}(s)$ is left invertible as a rational matrix.

In the proof of Theorem 3.2 we saw that the condition (3.3) is sufficient for left-invertibility of $P_{\Sigma}(s)$ and hence we observe that Σ is left invertible in the strong sense if (3.3) is satisfied. It follows that a certain LQCP is regular only if the underlying system is left invertible (in the strong sense), by Theorem 3.2. The converse is not true, of course [8]. Note that left-invertibility of $\mathrm{P}_{\Sigma}(\mathrm{s})$ is equivalent to left-invertibility of the transfer function $T(s):=D+C(s E-A)^{-1} B$ if $\operatorname{det}(s E-A)$ $\neq 0$ [24, Theorem 3.9], [8, Theorem 3.26].

Corollary 3.8.

Assume that $\operatorname{ker}\left(\left[\begin{array}{ll}E & 0 \\ A & B \\ C & D\end{array}\right]\right)=0$. Then

$$
w(\Sigma)=\operatorname{ker}(E) \Leftrightarrow \operatorname{ker}\left(\left[\begin{array}{ll}
E & 0 \\
C & D
\end{array}\right]\right) \cap\left[\begin{array}{ll}
A & B
\end{array}\right]^{-1} \operatorname{im}(E)=0
$$

Proof. $=$ Follows from (3.4). \Rightarrow If $E \bar{x}=0, C \bar{x}+D \bar{u}=0$ and $A \bar{x}+$ $B \bar{u}=E w$, then $(-w) \in W(\Sigma)$ since $x=\bar{x} \delta \in S(-w, \bar{u} \bar{\delta})$. Hence $A \bar{x}+$ $B \bar{u}=0$ and $\bar{x}=0, \bar{u}=0$.

The assumption in Corollary 3.8 is not necessarily satisfied if $\operatorname{ker}(E)=W(\Sigma)$ for an arbitrary system Σ. Take e.g. $E=I, B=0, C=I$ and $D=0$, then, obviously, $w(\Sigma)=\operatorname{ker}(E)$, but $\left[\begin{array}{l}B \\ D\end{array}\right]$ is not left invertible. However, without loss of generality, one can assume that $\operatorname{ker}\left(\left[\begin{array}{ll}E & 0 \\ A & B \\ C & D\end{array}\right]\right)=0$ in (2.5a) (2.5b) and if this is the case, then an alternative characterization of regularity might be: The LQCP (2.5) - (2.6) is regular if and only if $w(\Sigma)=\operatorname{ker}(E)$.

Conclusions.

Our distributional framework covers all existing interpretations of continuous-time linear-quadratic control problems subject to general systems. We saw that within this distributional context the concept of regularity can be understood in a very natural way as the property that the output is a function only if inputs and state trajectories are, not only in the standard but also in the nonstandard cases. We derived a condition that is equivalent to this property and since this condition is expressed in the (unrestricted) system coefficients only, it is easily checked. Moreover, we related this condition to the strongly controllable subspace and established that, without loss of generality, LQCPs are regular if and only if this subspace is trivial. Finally, we noted that in the existing literature only special cases of regular LQCPs subject to implicit systems have been treated. The author wants to discuss problems subject to arbitrary systems in a future article.

Illustrative Examples.

Consider the system equation

$$
\left[\begin{array}{ll}
1 & 0
\end{array}\right] \delta^{(1)} *\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{01} \\
x_{02}
\end{array}\right] \delta,
$$

with output $y_{1}=\left[\begin{array}{ll}0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+u$. Then the condition (3.3) is not satisfied; if e.g. $u=\delta, x_{2}=-\delta$, then $Y_{1}=0$, smooth. If $Y_{2}=$ $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right] u$, then (3.3) holds. Indeed, Y_{2} is a function only if u and x_{2} are, as a result of which x_{1} is a function as well. If $Y_{3}=\left[\begin{array}{ll}0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ (B and D are not appearing), then (3.3) is valid and, again, Y_{3} is a function only if inputs and states are.

This paper was written in September 1991, when the author was with the Mathematical Institute of Wuerzburg University, Am Hubland, D-8700 Wuerzburg, Germany, as an Alexander von Humboldt-fellow.

References.

[1] R.W. Brockett, Finite Dimensional Linear Systems, Wiley, New York, 1970.
[2] B.D.O. Anderson \& J.B. Moore, Linear Optimal Control, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.
[3] H. Kwakernaak \& R. Sivan, Linear Optimal Control Systems, Wiley, New York, 1972.
[4] H. W. Knobloch \& H. Kwakernaak, Lineare Kontrolltheorie, Springer, Berlin, 1985.
[5] O. Bolza, Lectures on the Calculus of Variations, Dover Publications, New York, 1961.
[6] T. Geerts, "A priori results in linear-quadratic optimal control theory", kybernetika, vol. 27, pp. 446-457, 1991.
[7] R.E. O'Malley, Jr., \& A. Jameson, "Singular perturbations and singular arcs - part I, IEEE Trans. Aut. Ctr., vol. AC-20, pp. 218-226, 1975.
[8] M.L.J. Hautus \& L.M. Silverman, "System structure and singular control", Lin. Alg. 8. Appl., vol. 50, pp. 369-402, 1983.
[9] J.C. Willems, A. Kitapci \& L.M. Silverman, "Singular optimal control: A geometric approach", SIAM J. Ctr. \& opt., vol. 24, pp. 323-337, 1986.
[10] L. Schwartz, Theorie des Distributions, Hermann, Paris, 1978.
[11] D. Cobb, "Descriptor variable systems and optimal state regulation", IEEE Trans. Aut. Ctr., vol. AC-28, pp. 601-611, 1983.
[12] D.J. Bender \& A.J. Laub, "The linear-quadratic optimal regulator for descriptor systems", IEEE Trans. Aut. Ctr., vol. AC-32, pp. 672-688, 1987.
[13] G.C. Verghese, B.C. Levy \& T, Kailath, "A generalized state-space for singular systems", IEEE Trans. Aut. Ctr., vol. AC-26, pp. 811-831, 1981.
[14] A.H.W. Geerts \& M.L.J. Hautus, "Linear-quadratic problems and the Riccati equation", in Perspectives in Control Theory, Proceedings of the Sielpia Conference, Sielpia, Poland, 1988, pp. 39-55, Progress in Systems and Control Theory 2, Birkhaeuser, Boston, 1990.
[15] T. Geerts, Structure of Linear-Quadratic Control, Ph.D. Thesis, Eindhoven, 1989.
[16] M.L.J. Hautus, "The formal Laplace transform for smooth linear systems", Lecture Notes in Econ. \& Math. Syst., vol. 131, pp. 29-46, 1976.
[17] J.C. Willems, "Least squares stationary optimal control and the algebraic Riccati equation", IEEE Trans. Aut. Ctr., vol. AC-16, pp. 621-634, 1971.
[18] T. Geerts \& V. Mehrmann, "Lineaar differential equations with constant coefficients: A distributional approach", Preprint 90-073, SFB 343, Universitaet Bielefeld, Germany.
[19] Z. Zhou, M.A. Shayman \& T.-J. Tarn, "Singular systems: A new approach in the time domain", IEEE Trans. Aut. Ctr., vol. AC-32, pp. 42-50, 1987.
[20] M. Malabre, "Generalized linear systems: Geometric and structural approaches", Lin. Alg. \& Appl., vol. 122/123/124, pp. 591-621, 1989.
[21] G. Doetsch, Einfuehrung in Theorie und Anwendung der Laplace Transformation, Birkhaeuser, Stuttgart, 1970.
[22] F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.
[23] T. Geerts, "Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case", Lin. Alg. \& Appl., to appear.
[24] T. Geerts, "Invertibility properties for singular systems: A distributional approach", Proc. First European Control Conference (ECC '91, Grenoble, France, July 2-5), Hermes, Paris, vol. 1, pp. 71-74, 1991.
[25] T. Geerts, "Invariant subspaces and invertibility properties for singular systems: The general case", Lin. Alg. \& Appl., to appear.
[26] H.H. Rosenbrock, "Structural properties of linear dynamical systems", Int. J. Ctr., vol. 20, pp. 191-202, 1974.
[27] G. Beauchamp, A. Banaszuk, M. Kociecki \& F.L. Lewis, "Inner and outer geometry for singular systems with computation of subspaces", Int. J. Ctr., vol. 53, pp. 661-687, 19.

IN 1991 REEDS VERSCHENEN

466 Prof.Dr. Th.C.M.J. van de Klundert - Prof.Dr. A.B.T.M. van Schaik Economische groei in Nederland in een internationaal perspectief

467 Dr. Sylvester C.W. Eijffinger The convergence of monetary policy - Germany and France as an example

468 E. Nijssen
Strategisch gedrag, planning en prestatie. Een inductieve studie binnen de computerbranche

469 Anne van den Nouweland, Peter Borm, Guillermo Owen and Stef Tijs Cost allocation and communication

470 Drs. J. Grazell en Drs. C.H. Veld Motieven voor de uitgifte van converteerbare obligatieleningen en warrant-obligatieleningen: een agency-theoretische benadering

471 P.C. van Batenburg, J. Kriens, W.M. Lammerts van Bueren and R.H. Veenstra

Audit Assurance Model and Bayesian Discovery Sampling
472 Marcel Kerkhofs
Identification and Estimation of Household Production Models
473 Robert P. Gilles, Guillermo Owen, René van den Brink Games with Permission Structures: The Conjunctive Approach

474 Jack P.C. Kleijnen
Sensitivity Analysis of Simulation Experiments: Tutorial on Regression Analysis and Statistical Design

475 C.P.M. van Hoesel
An $O(n l o g n)$ algorithm for the two-machine flow shop problem with controllable machine speeds

476 Stephan G. Vanneste
A Markov Model for Opportunity Maintenance
477 F.A. van der Duyn Schouten, M.J.G. van Eijs, R.M.J. Heuts Coordinated replenishment systems with discount opportunities

478 A. van den Nouweland, J. Potters, S. Tijs and J. Zarzuelo Cores and related solution concepts for multi-choice games

479 Drs. C.H. Veld
Warrant pricing: a review of theoretical and empirical research
480 E. Nijssen
De Miles and Snow-typologie: Een exploratieve studie in de meubelbranche

481 Harry G. Barkema
Are managers indeed motivated by their bonuses?

482 Jacob C. Engwerda, André C.M. Ran, Arie L. Rijkeboer
Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation $X+A^{\top} X^{-1} A=I$

483 Peter M. Kort
A dynamic model of the firm with uncertain earnings and adjustment costs

484 Raymond H.J.M. Gradus, Peter M. Kort Optimal taxation on profit and pollution within a macroeconomic framework

485 René van den Brink, Robert P. Gilles Axiomatizations of the Conjunctive Permission Value for Games with Permission Structures

486 A.E. Brouwer \& W.H. Haemers
The Gewirtz graph - an exercise in the theory of graph spectra
487 Pim Adang, Bertrand Melenberg
Intratemporal uncertainty in the multi-good life cycle consumption model: motivation and application

488 J.H.J. Roemen
The long term elasticity of the milk supply with respect to the milk price in the Netherlands in the period 1969-1984

489 Herbert Hamers
The Shapley-Entrance Game
490 Rezaul Kabir and Theo Vermaelen Insider trading restrictions and the stock market

491 Piet A. Verheyen
The economic explanation of the jump of the co-state variable
492 Drs. F.L.J.W. Manders en Dr. J.A.C. de Haan
De organisatorische aspecten bij systeemontwikkeling
een beschouwing op besturing en verandering
493 Paul C. van Batenburg and J. Kriens
Applications of statistical methods and techniques to auditing and accounting

494 Ruud T. Frambach
The diffusion of innovations: the influence of supply-side factors
495 J.H.J. Roemen
A decision rule for the (des)investments in the dairy cow stock
496 Hans Kremers and Dolf Talman An SLSPP-algorithm to compute an equilibrium in an economy with linear production technologies

```
497 L.W.G. Strijbosch and R.M.J. Heuts
    Investigating several alternatives for estimating the compound lead
    time demand in an (s,Q) inventory model
4 9 8 \text { Bert Bettonvil and Jack P.C. Kleijnen}
    Identifying the important factors in simulation models with many
    factors
4 9 9 \text { Drs. H.C.A. Roest, Drs. F.L. Tijssen}
    Beheersing van het kwaliteitsperceptieproces bij diensten door middel
    van keurmerken
500 B.B. van der Genugten
    Density of the F-statistic in the linear model with arbitrarily
    normal distributed errors
501 Harry Barkema and Sytse Douma
    The direction, mode and location of corporate expansions
5 0 2 ~ G e r t ~ N i e u w e n h u i s
    Bridging the gap between a stationary point process and its Palm
    distribution
503 Chris Veld
    Motives for the use of equity-warrants by Dutch companies
504 Pieter K. Jagersma
    Een etiologie van horizontale internationale ondernemingsexpansie
505 B. Kaper
    On M-functions and their application to input-output models
506 A.B.T.M. van Schaik
    Produktiviteit en Arbeidsparticipatie
507 Peter Borm, Anne van den Nouweland and Stef Tijs
    Cooperation and communication restrictions: a survey
508 Willy Spanjers, Robert P. Gilles, Pieter H.M. Ruys
    Hierarchical trade and downstream information
509 Martijn P. Tummers
    The Effect of Systematic Misperception of Income on the Subjective
    Poverty Line
510 A.G. de Kok
    Basics of Inventory Management: Part 1
    Renewal theoretic background
5 1 1 ~ J . P . C . ~ B l a n c , ~ F . A . ~ v a n ~ d e r ~ D u y n ~ S c h o u t e n , ~ B . ~ P o u r b a b a i ~
    Optimizing flow rates in a queueing network with side constraints
    R. Peeters
    On Coloring j-Unit Sphere Graphs
```

```
5 1 3 \text { Drs. J. Dagevos, Drs. L. Oerlemans, Dr. F. Boekema}
    Regional economic policy, economic technological innovation and
    networks
514 Erwin van der Krabben
    Het functioneren van stedelijke onroerend-goed-markten in Nederland -
    een theoretisch kader
515 Drs. E. Schaling
    European central bank independence and inflation persistence
516 Peter M. Kort
    Optimal abatement policies within a stochastic dynamic model of the
    firm
517 Pim Adang
    Expenditure versus consumption in the multi-good life cycle consump-
    tion model
518 Pim Adang
        Large, infrequent consumption in the multi-good life cycle consump-
        tion model
519 Raymond Gradus, Sjak Smulders
    Pollution and Endogenous Growth
520 Raymond Gradus en Hugo Keuzenkamp
    Arbeidsongeschiktheid, subjectief ziektegevoel en collectief belang
521 A.G. de Kok
        Basics of inventory management: Part }
        The (R,S)-model
522 A.G. de Kok
        Basics of inventory management: Part 3
        The (b,Q)-model
523 A.G. de Kok
        Basics of inventory management: Part 4
        The (s,S)-model
524 A.G. de Kok
        Basics of inventory management: Part 5
        The (R,b,Q)-model
525 A.G. de Kok
        Basics of inventory management: Part 6
        The (R,s,S)-model
526 Rob de Groof and Martin van Tuijl Financial integration and fiscal policy in interdependent two-sector economies with real and nominal wage rigidity
```

527 A.G.M. van Eijs, M.J.G. van Eijs, R.M.J. Heuts Gecoördineerde bestelsystemen een management-georiënteerde benadering

528 M.J.G. van Eijs Multi-item inventory systems with joint ordering and transportation decisions

529 Stephan G. Vanneste Maintenance optimization of a production system with buffercapacity

530 Michel R.R. van Bremen, Jeroen C.G. Zijlstra Het stochastische variantie optiewaarderingsmodel

531 Willy Spanjers
Arbitrage and Walrasian Equilibrium in Economies with Limited Information

IN 1992 REEDS VERSCHENEN

```
532 F.G. van den Heuvel en M.R.M. Turlings
    Privatisering van arbeidsongeschiktheidsregelingen
    Refereed by Prof.Dr. H. Verbon
533 J.C. Engwerda, L.G. van Willigenburg
    LQ-control of sampled continuous-time systems
    Refereed by Prof.dr. J.M. Schumacher
534 J.C. Engwerda, A.C.M. Ran & A.L. Rijkeboer
    Necessary and sufficient conditions for the existence of a positive
    definite solution of the matrix equation }X+\mp@subsup{A}{}{*}\mp@subsup{X}{}{-1}A=Q
    Refereed by Prof.dr. J.M. Schumacher
535 Jacob C. Engwerda
    The indefinite LQ-problem: the finite planning horizon case
    Refereed by Prof.dr. J.M. Schumacher
536 Gert-Jan Otten, Peter Borm, Ton Storcken, Stef Tijs
    Effectivity functions and associated claim game correspondences
    Refereed by Prof.dr. P.H.M. Ruys
5 3 7 \text { Jack P.C. Kleijnen, Gustav A. Alink}
    Validation of simulation models: mine-hunting case-study
    Refereed by Prof.dr.ir. C.A.T. Takkenberg
538 V. Feltkamp and A. van den Nouweland
    Controlled Communication Networks
    Refereed by Prof.dr. S.H. Tijs
539 A. van Schaik
    Productivity, Labour Force Participation and the Solow Growth Model
    Refereed by Prof.dr. Th.C.M.J. van de Klundert
5 4 0 ~ J . J . G . ~ L e m m e n ~ a n d ~ S . C . W . ~ E i j f f i n g e r ~
    The Degree of Financial Integration in the European Community
    Refereed by Prof.dr. A.B.T.M. van Schaik
541 J. Bell, P.K. Jagersma
    Internationale Joint Ventures
    Refereed by Prof.dr. H.G. Barkema
542 Jack P.C. Kleijnen
Verification and validation of simulation models
Refereed by Prof.dr.ir. C.A.T. Takkenberg
543 Gert Nieuwenhuis Uniform Approximations of the Stationary and Palm Distributions of Marked Point Processes
Refereed by Prof.dr. B.B. van der Genugten
```

```
544 R. Heuts, P. Nederstigt, W. Roebroek, W. Selen
    Multi-Product Cycling with Packaging in the Process Industry
    Refereed by Prof.dr. F.A. van der Duyn Schouten
545 J.C. Engwerda
    Calculation of an approximate solution of the infinite time-varying
    LQ-problem
    Refereed by Prof.dr. J.M. Schumacher
546 Raymond H.J.M. Gradus and Peter M. Kort
    On time-inconsistency and pollution control: a macroeconomic approach
    Refereed by Prof.dr. A.J. de Zeeuw
5 4 7 \text { Drs. Dolph Cantrijn en Dr. Rezaul Kabir}
    De Invloed van de Invoering van Preferente Beschermingsaandelen op
    Aandelenkoersen van Nederlandse Beursgenoteerde Ondernemingen
    Refereed by Prof.dr. P.W. Moerland
548 Sylvester Eijffinger and Eric Schaling
    Central bank independence: criteria and indices
    Refereed by Prof.dr. J.J. Sijben
549 Drs. A. Schmeits
    Geïntegreerde investerings- en financieringsbeslissingen; Implicaties
    voor Capital Budgeting
    Refereed by Prof.dr. P.W. Moerland
550 Peter M. Kort
    Standards versus standards: the effects of different pollution
    restrictions on the firm's dynamic investment policy
    Refereed by Prof.dr. F.A. van der Duyn Schouten
551 Niels G. Noorderhaven, Bart Nooteboom and Johannes Berger
    Temporal, cognitive and behavioral dimensions of transaction costs;
    to an understanding of hybrid vertical inter-firm relations
    Refereed by Prof.dr. S.W. Douma
552 Ton Storcken and Harrie de Swart
    Towards an axiomatization of orderings
    Refereed by Prof.dr. P.H.M. Ruys
553 J.H.J. Roemen
    The derivation of a long term milk supply model from an optimization
    model
    Refereed by Prof.dr. F.A. van der Duyn Schouten
554 Geert J. Almekinders and Sylvester C.W. Eijffinger
    Daily Bundesbank and Federal Reserve Intervention and the Conditional
    Variance Tale in DM/$-Returns
    Refereed by Prof.dr. A.B.T.M. van Schaik
555 Dr. M. Hetebrij, Drs. B.F.L. Jonker, Prof.dr. W.H.J. de Freytas "Tussen achterstand en voorsprong" de scholings- en personeelsvoorzieningsproblematiek van bedrijven in de procesindustrie Refereed by Prof.dr. Th.M.M. Verhallen
```

