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ABSTRACT

A linear-quadratic (LQ) control problem subject to a
standard continuous-time system is called reqular if
the input weiqhtinq matrix is invertible and sinqular
íf this is not the case. Consequently, optimal inputs
for reqular LQ problems are ordinary functions (state
feedbacks), whereas optimal controls for sinqular
problems are in qeneral distributions, e.q. impulses.
We will show that reqularity and singularity in LQ
problems subject to yen.~ra! (re,l~lf~.it) systems
depends not so much on the input weiqhtinq matrix, as
on the property that the inteqrand of the cost
criterion is a function only if inputs and state
trajectories are, as is the case for LQ problems
subject to standard systems. In particular, we will
provide a simple criterion for distinquishinq between
regularity and sinqularity in LQ problems subject to
~errera! systems. Our criterion is expressed in the
system coefficients only and reduces to the classical
one if the underlyinq systems are standard.

KEYilORDS

Linear-quadratic optimal control problems, implicit
systems, distributions, stronqly controllable
subspace, left invertibility.
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1. Introduction.

Consider the followinq standard Linear-Quadratic Control
Problem (see text-books like e.q. [i] - [4]).
(LQCP) ,:

For all xo, determine
J~(xo) :- inf(o~"[xZ t uzJdt~u E t:~loc(R'), lim x(t) - Ol,

t -.oo
subject to x(t) - u(t), t~ 0, x(O) - x,,

with tZ,loc(R~) denotinq the class of locally square-inteqrable

functions on rt' :- [0, ~) . The problem is r.egular in the sense

of ftilbert [5, p. 29] since the "weiqhtinq" scalar of the input

u in the cost criterion f[x' t u2]dt, 1, is invertible as a
0

result of which optimal controls are state feedbacks and hence
ordinary functions [1] -[4], [6, Corollary 3.4]. In particular,
we have here that u, the optimal input, can be written as

u--x,
with x denoting the optimal state trajectory e-tx,, t) 0.

Next, consider
(LQCP)2:

For all x „ determíne
JZ(x,) :- inf(o~x~dt~u E t:~lOC(R'), lim x(t) - 0!,

t~

subject to x(t) - u(t), t~ 0, x(O) - xo.

Since the weighting scalar of the control in the cost criterion
is obviously sinqular ( not invertible), this LQCP is called a
sinqular problem. A typical aspect of singular LQCPs is the fact
that optimal inputs as well as optimal state trajectories may
not exist xithin the class of ordinary (measurable) functions.
For instance, it is easily seen that for every ~. ~ 0 and every
x o the control u-- x, 2( 2e) ' `exp (- x,' (2E) - `t? x, yields x-
exp(- xo2(2e)'`t)x, and ~x'dt - e, but an optimal control

0
exists within tZ.loc(R~) only if x, - 0. In fact, if x, s 0,

then it is suqqested [7] that the ímpulsive control u s-
b(t)xo, with ó(t) denotinq Diracs delta function, is optimal for
the latter LQCP since this input yields x(t) - 0 for t~ 0.
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In [8] -[9] it is demonstrated that sinqular LQCPs can be
solved in full detail by allowinq certain qeneralized functions
(distributions (10]) as inputs and state trajectories. Nhat is
more, since any LQCP can be redefined in terms of distributions,
it is easily seen that reqularity of classical LQCP is
equivalent to the property that the inteqrand in the associated
cost criterion is a function oniy- if the involved inputs and
state trajectories are functions as well (see Section 2).
Indeed, in (LQCP) ,, a reqular problem, the inteqrand [xz t uz]
is a function only if u and x are, but in (LQCP)z, a singular
problem, the inteqrand x2 may be a function, whereas u is not
(see the above).

Now, let us observe an LQCP subject to an impii~-it system
in the formulation of [11] -[12] (for details, see Section 2):

For all (x"~, determine
lx o :

infl o f~[x,z t 2xzzJdt ~u E t:~loc(R~)' r~ [x2(t) ]- 01 ,

subject to

[0 0] [Xz, x[0 1, [xz] }[l,u, t 2 0, Ixá~O-~ J -~xO2 1 .

The inteqrand of the cost criterion does ll`not contain a control
term. Yet the LQCP is reqular in the sense that optimal controls
and state trajectories are ordinary functions (see [11] -[12]).
Indeed, since u-- xz, we have that the inteqrand of the cost
criterion equals [x,2 t xzz t uz] and hence this integrand is a
function only if u, xl and x2 are.

Also, consider the same implicit system with the criterion:

For all (x"l, determine
LxosJ

inf I o fuzdt ~u E t:~loc(~~)' ~~ [x,(t), - 0)'

The weiqhtinq scalar of the control is invertible. Yet the
problem is ainqular in the sense that optimal controls andlor
state trajectories need not be ordinary functions: It is stated
in [13], (11] that the solution of the qiven system with u- 0
is xz - 0, x, -- xOZa(t) and hence the optimal state trajectory
is impulsi~~e if xOZ s 0.
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These two examples of LQCPs subject to implicit systems
demonstrate that reqularity and sinqularity of LQCPs subject to
arbitra~y systems may not depend solely on the invertibility of
the control's xeiqhtinq matrix in the cost criterion. After the
preliminaries in Section 2, we will prove in Section 3 of the
present paper that reqularity of any LQCP is equiti~alent to the
system property that the associated cost criterion inteqrand is
a function (if and) only if ínputs and state trajectories are,
as is the case if the LQCP is classical, see Section 2. This
property will be expressed in the system coefficients only. In
particular, this condition reduces to the classical one
finvertibility of the control's weiqhtinq matrix in the cost
criterion) if the underlyinq system is standard, i.e., not
implicit.
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2. Preliminariea.

The first extensive treatment of sinqular LQCPs subject to
standard systems is given in [8J. The proposed class of allowed
distributions Cimp in [8] turns out to be larye enough to be

representative for the system's behaviour in LQCPs subject to
standard systems ([9], [14], [6], [15]). Since, moreover, ~imP
has many nice properties, we will adopt the class Cimp for

defininq LQCPs subject to arbitrary (possibly implicit) systems
- compare the choice of distributions in [11J.

The class cimp is investiqated in detail in [16), see also

[8], [15J; we will recall a few main points. A distribution u e
cimp is called impalsive-smooth and it can be decomposed

(uniquely!) in an impuisive part ul and a smootrr part u2. A
distribution is called impulsive if it is a linear combination
of the Dirac delta distribution S and its distributional
derivatives a(1), i~ 1(for details on distributions, see
Schwartz [10]). A smooth distribution is a function which is
smooth on R' :- [0, ~) [8, Definition 3.1] and zero elsewhere.
The class Cimp is a commutative algebra over R with convolution

~ of distributions as multiplication (unit element a) and hence
it is closed under differentiation (- convolution with a(1)) and
closed under integration (- convolution wíth H, the Heaviside
"unit step" distribution). It holds that a(1) - a(1-1) ~ 8(1) fi
~ 1) with a(0) - a. By defining a(-1) :- H, a(-~) - a(~-1) ~
a(-1) (j ~ 1), we establish that a(1}~) - a{1) ~ 8(~) (i, j e z)
and thus the inverse of a(1), (a(1))-`, equals a(-1) (i E z),
(a)'` - a, a(-~) is smooth and a(-~)(t) - t~-l~(j-1)! on R` and
0 elsewhere for j~ 1. If Cp-imp, Csm E Cimp denote the

subalgebras of purely impulsive and smooth distributions,
respectively, and u e Csm, then u(0`) :- lim u(t) and then the

t10
distributional derivative of u, a(I) x u, equals u t u(0`)a,
where u denotes the ordinary derivative of u on R'.
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Nox the nonneqative dNfinite LQCP (with stability [17])
subject to a St3rriar~t system can be stated as follows [8] -[9].

Given the systen E:
a(1) k x- Ax t Bu t xoa, (2.1a)

y - Cx } Du, (2.1b)

wlth A E Rn~, B E Rn~, C E Rr~, D E Rr~, Xo E Rn, u E
CimP

(the m-vector version of Cimp). It can be shown without

difficulty that (Zn6(1) - Aa) is invertible within Cimp with

inverse correspondinq to exp(At) on R' [8, p. 375] (for example,
the inverse of (a(1) - 2a) equals u- exp(2t) on R`, since
(a(1) - 2a) ~ u- u t au(0') - 2u - a). Hence for every x, E Rn
and every u E Cmmp the equation (2.1a) has exactly one solution

x-(Ina(1) - Aa) -' "(Bu t x,a) E Cimp. If u E Csm, then x E

csm and x- exp(At)x, f ojtexp(A(t-r))Bu(r)dr on R', i.e., x

equals the ordinary solution of x- Ax t Bu, x(0) - xo, on R',

and we establish that the distributional framework (2.1) covers

the usual (functional) one (e.g. [1] - [4] , (8] - (9] , [17] ) if

u E C~ is a function.imp
Now, determine for every xo,
J'(x,) :- infiofY'Ydtlu E esm, lim x(t) - 01. (2.2)

t.,~
The optimal cost is finite (i.e., vx E Rn: J'(x,) ~~) if and

0
only if (A, B) is stabilizable ( e.q. [9]). Assume this to be the
case. If

J~(x,) :- inf ( o~y'Ydt ~u E cimp, lim x(t) - 01 , (2.3)
t-oo

then

X E Rn: J`(x,) - Jd(x,)
0

(2.4)

(15, Proposition 2.24], and optimal controls (if any) are in
qeneral distributions E cmmp if ker(D) s 0, i.e., if the LQCP is

sinqular [8], [9), [15, Section 3.2]. If ker(D) - 0, however,
then optimal inputs turn out to be ordinary functions. Our first
result tells even more: If ker(D) - 0, then the output y cannot
be a function if tha input u is not.
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Proposition 2.1.

The LQCP (2.1) -(2.3) is reqular if and only if, for every x,,
y E Csm o U E Csm, x-(In6(1) - A6)-` "(BU t Xoa) E Csm.

Proof. ~ Assume that ker{D) - 0 and y- Cx f Du is smooth. If v
.- u f(D'D)-'D'Cx, then y- Cox t Dv, C, :- (I - D(D'D)"`D')C,
and hence D'y - D'Dv, smooth. Thus, v smooth and since 8{1) ~ x
- Aox t Bv t xoó, Ao :- A- B(D'D)''D'C, it follows that x and u
are smooth. ~ Assume that Dv - 0 for some v e otm. Then x- 0 is
the solution of (2.1a) with u:- v6 and xo :- - Bv, and the
output y equals 0. Hence u must be smooth, i.e., v- 0.

Proposition 2.1 shows that, within a distributional setup,
reqularity of (2.1) -(2.3) is equivalent to the property that
the output y is a function only if u and x are. In Section 3 we
shall see that this property is equivalent to reqularity of a
nonneqative definite LQCP subject to any (possibly implicit)
system. We will define such a problem (with stability) as
follows.

Definition 2.2.

Given the system E:
Ea(1) ~ x- Ax } Bu ~ Ex,a, (2.5a)
y - Cx f Du, (2.5b)

with E, A e~tl~, B e~tl~, C e~tr~, D e atr~, toqether with,
for every (x,, u) e Rnx cmmp, the solutivn set S(x,, u) :-

(x e cAmp~[Ea(1) - Aa] ~ x - Bu t Ex,al. (2.5c)
Then, determine, for every x,, J`lx,) :-

inflo~y'ydtl(X~ e Csmn, x e S(xa, u), lim x(t) - 0).
l t~" (2.6)
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Discussion.

No assumptions are made on the system coefficients E, A, B,
C and D. In particular, E and A are allowed to be nonsquare. If
E- I, then (2.5) -{2.6) reduces to (2.1) -(2.2), see the
above or [8, Section 3]. lSore qenerally, if E is singular, but
det(sE - A) s 0, then S{xo, u) contains exactly one element x-
x(x,, u) for every pair (xo, u) e Rn x Cmmp - yet, x may have an

impulsive part even if u is smooth: The distributional version
of the implicit system in Section 1 is

rOD 1Dla(1) ,~
fx~] - [0 1] [x2, } [11u t [0 0] [xo:]S

(see e.q.J[11]) anld u- 0 yields xZ - 0, x~ -- x02a, impulsive.
In [18, Proposition 3.5] it is shown why x is not automatically
smooth if u is, as is the case with E- I.

Proposition 2.3.

Assume that det(sE - A) s 0. Let xo e IRn, u e Csm. Then x(xo, u)

e S(xo, u) n Csm if and only if Elx(xo, u)(0')) - Exo.

In [11] -(12J it is assumed that det(sE - A) s 0. Since in
[11], C'C - In, D~D - Im and C~D - 0, it is clear that the LQCP

in (11] and Definition 2.1 are identical. Note that the cost
criterion's inteqrand in [11] is a function only if u and x are;
the problem is reqular in the sense that optimal controls and
optimal state trajectories are functions. If D is merely of full
column rank, then (2.5) -(2.6) reduces to the problem
formulation in [12], because of Propositíon 2.3. However, we
will show that there are problems of the form in [12] that are
singular~ in the sense that optimal inputs and state trajectories
can be distributions, whereas there are also problems (2.5) -
(2.6) with det(sE - A) ~ 0 and D nut injective - yet the optimal
inputs and associated state trajectories are ordinary functions.
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In [11] as well as in [12j it is noted that the optimal
state trajectories may be discontinuous in 0 in the sense that
x(0~) may be unequal to x,. In fact, not so much x as Ex plays
the role of "state" whose trajectory is optimized - and Ex(0') -
Ex, if input and state trajectory are functions, according to
Proposition 2.3. If det(sE - A) - 0, however, Ex(0`) may be
equal to Exo even if u andlor x e S(xo, u) are not smooth (see
[18, Example 2.7]).

our distributional formulation for implicit systems on ~t'
(2.7a) is in line not only with earlier papers on the subject
like (11], [19] -[20], but also with papers like [13] that are
based on the Laplace transformation approach of Doetsch [21, ~
22]. Moreover, xe can keep our treatment fully algebraic because
of our choice for Cimp as allowed class of distributions. Also,

it can be easily shown that if xo is consistent, i.e, if the
ordinary differential-alqebraic equation (DAE) Ex - Ax t Bu in
the sense of Gantmacher [22] has for a certain function u a
fuactional solution x with x(0`) - x,, then the distribution x E
S(x,, u). In other words, our approach covers the usual
interpretation of sinqular DAEs as well (for an extensive
investigation of (2.1a), see the recent [23], also [18]). Note,
that the set S(x,, u) in (2.5c) may be empty or even contain
infinitely many solutions for certain pairs (xo, u) E Rn x C~mP
since the pencil sE - A may even be nonsquare [22].

He close this Section with the concept of strongly.

contr~~llable subspace [24, Definition 3.2], [25, Definition
3.1].

Definition 2.4.

A point x, E Rn is called ~trongly controllable if there exists
an input u E Cp-imp and a state trajectory x E S{xo, u) n Cp-imp
such that y- 0. The space of these points is denoted by ~(E).

If E- I, then our w(E) and the one in [8] coincide.



3. Reqularity and sinqularity.

Backed by Proposition 2.1, Ke make the folloninq definition
for reqularity of the LQCP (2.5) -(2.6).

Definition 3.1.

The LQCP (2.5) -(2.6) is reqular if, for every x, E Rn,
y E Csm Cs u E Csm, X E S(Xo, u) fl Cgm (3.1)

and sinqular if this is not the case.

The first three examples in Section 1 are reqular (in
accordance with Proposition 2.1 and [11] -[12]), whereas the
fourth example is sinqular, althouqh the Keiqhtinq matrix of the
control in the associated cost criterion is invertible. In the
proof of our key result Theorem 3.2 rre will need the A:ain Lemma
from ( 23], see also [18], [24]. For the reader's benefit, the
simple proof of the Lemma is included.

Main Lemma.

Let xo E IRn, u- u 1 t u,, u 1 E Cp-imp, u, E Csm, and x E

S(xo, u), x- x, } x~, xl E Cp-imp, x2 E Csm. Then

Ea(i) x xl f E(x2(0'))a - Ax, t Bu, f Exoa, (3.2a)
Eó(i) ~ x, - Axz } Bu2 f E(x2(0'))a. (3.2b)

Proof. Since Eó(i) ~ x~ t E(x2(0`))a t(E[ó(i) ~ x2 - xZ(0')8]1
- Ax, } Bu, f Exaa t(Ax2 t Bu2) and a(i) ~ x, - x2(0`)a - x2,
the smooth derivative of x2 on at`, the claims are clear.

Theorem 3.2.

The LQCP (2.5) -(2.6) is reqular if and only if
ker( ~ D ~) n[A B]''im(E) - 0. (3.3)
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Proof. Let the LQCP be reqular. If x E Rn. u E Rm are such that
Ex - 0, Cx t Du - 0, Ax t Bu - Ew for a certain w E Rn, then x8
E S(xo, u) with x, :- - w, u:- ua, and the associated output y
equals Cx t Du - 0, reqular. Hence x- 0, u- 0. Conversely, let
(3.3) be valid. It is proven in [25, Theorem 3.9] that w(~)
(Definition 2.4) is the smallest subspace t for which

E'`[A B]i(t ~ R) n ker([C D])I c t. (3.4)
Hence ~(z) c ker(E), since ker(E) satisfies (3.4). On the other
hand, trivially, ker(E) c w(F), and thus t~(r) - ker(E). Now, let
x, E rtn, u E cmmp, x E S(xo, u) be such that y is smooth. If u-

U1 t UZ, X- X1 t X2, LLy E C , U2 E Cm , Xy E Cn , XZ Ep-imp sm p-imp
Csm, then we must show that x, - 0 and u, - 0. By (3.2a),

E6(1) k xi - Ax, t Bui t E(x, - xZ(0`))6,
Y, :- Cx, t Dui - 0,

and hence xo - x2(0`) E w(ï) (Definition 2.4). It follows that
(1)

E(xZ(0`)) - Exo and hence ~Aa CbEb Dbl ,, ru~l - 0. By [25,J L ,J
Proposition 2.3, Corollary 2.4] (see also Remark 3.4), we
establish that fu'1 - 0 if Rosenbrock's system matrix P~(s) :-

L ~J
A - sE B

C D[26] is left invertible as a rational matrix. iiithout

loss of generality, assume that the system r(2.5a) -(2.5b) is
in the form

I 0 (1) x A A x I 0 x
[0 0]g ~ [x2] - [A:, A::] [Xa] t C:]u t [D 0] [xo:J6~

y- [C1 C,] fX'1 t Du.
l :J

Then the condition ( 3.3) is equivalent to left-invertibility of

(~t2 D~l, as a result of which PLls) is indeed left invertible
L z J
by Schur's lemma, and the proof is complete.

Remark 3.3.

If E- I, then (3.3) reduces to: ker(D) - 0. Hence Theocem 3.2
covers the usual notion of reqularity in (2.1) -(2.2).
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Remark 3.4.

If cf e cimp denotes the subalgebra of t'ractiv~rul impu[5es:

cf :- lu e cimplu - u, ` u2-`, u,,2 e cp-imp, u2 x 0!

(u2-' denotinq the inverse (w.r.t. convolution) of u2), then Cf

is isomorphic to the commutative field of rational functions
R(s), since the rinq of polynomials with real coefficients At[sJ
is isomorphic to Cp-imp [25, Proposition 2.3]. For instance, the

polynomial pls) - 2- 3s } s2 corresponds to the pulse p(a(1)) -
2a - 36(1) f a(2) (recall that a(0) - a, a(2) - a(1) ~ a(1) ,
etc.). The rational function r(s) - s~(s - 2) corresponds to the
fractional pulse r(a(1)) - a(1) ~(a(1) - 2a)'' - a(1) ~ u- u t
u(0')a with u- exp(2t) on IR~. Consequently, if k1,2 are any two
nonnegative inteqers, Mk'xkZ(s), Mf'xk'(a(1)) denote the sets of

k,xkz matrices with entries in ~t(s), Cf, respectively, and T(s)

E Nkjxk,(s), T(a(1)) is the correspondinq element in
Mf~xk2(al1)), then T(s) is left (right) invertible as a rational

matrix if and only if T(a(1?) is left (riqht) invertible as a
matrix with entries in Cf [25, Corollary 2.4]. Also, note that

cimp is a commutative ring.

Remark 3.5.

Apart from the claim that NlE) is the smallest subspace t that
satisfies (3.4), it is proven ín [25] (Corollary 3.13) that N(E)
is the smallest subspace t for which there exists a G e R1~
such that

E"`I(A t GC)t t im(B t GD)) c t.
A tiolinari-type alqorithm for computinq tr(E), following directly
from [25, Theorem 3.9], is given in [25, Theorem 3.10]. Unlike
in [20], we allow E and A to be nonsquare. If D- 0, N(f) may be
called the infimal lC, A, E)-invariant subspace related to
im(B). If E- I, then [25, Theorem 3.9, Theorem 3.10, Corollary
3.13] reduce to [8, (3.14), (3.22), Theorem 3.15], respectively.
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Similar subspace condítions and algorithms for the discrete-time
case are presented in [27]. Note that the limitinq subspace of
the sequence (~1 in [27] equals our t~(i), as is to be expected

[8] .

Remark 3.6.

In [12, Section 3, Assumption 2] it is assumed that (in terms of
(3.5)) [CZ D) is left invertible. Hence the problems considered
there are indeed reqular in the sense of our Definition 3.1.
However, it is very well possible that the LQCP defined in [12,
Sections 1, 2j is reqular even if [C, D] is not of full column
rank. For instance, consider the system

~Dl ODIa(1) „
XZ] - [1 0, [XZ, } [O lu t [0 0] [xo:]a~

Y - (1 1] ~X' J
: .

Clearly, [C2 D] -[1 0) is not left invertible, but ~C'Z D~~ is.
z

Hence the LQCP associated with this system is reqular in the

sense of Definition 3.1. Indeed, the control u- x, yields a(1)

~ x, -- x, f x,ia and hence x, -(a(1) f a1'' ~ xa,a, i.e.,

x,(t) - exp(- t)xol on IR`, xz -- x, and y- 0. We establish

that in [12] only a special class of regular nonneqative
definite LQCPs subject to implicit systems has been solved; we

will solve the general case (i.e., without any unnecessary

assumptions such as [12, (56)], left-invertibility of (CZ D]) in

a future paper.

Remark 3.7.

In [25] several invertibility concepts for general implicit

systems have been defined and analyzed. There, a system r(2.5a)

-(2.5b) is called l.~ft lnvertihle in thP ~hv,~~q rcr.nsr if
xo - 0, y- 0~ Ex - 0, u- 0

{and left invertible in the weuk sense if xo - 0, y- 0~ u- 0)
[25, Section 9]. Assume that [E' A' C']' is of full column rank.
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Then the followinq statements are equivalent [25, Corollary
4.15].
i) E is left invertible in the strong sense.
ii) If x,-0, y-0, thenx-0, u-0.
iii) Px(s) is left invertible as a rational matrix.

In the proof of Theorem 3.2 we saw that the condition (3.3) is
sufficient for left-invertibility of P~(s) and hence we observe

that F is left invertible in the strong sense if (3.3) is
satisfied. It follows that a certain LQCP is regular only if the
underlying system is left invertible (in the strong sense), by
Theorem 3.2. The converse is not true, of course [8]. Note that
left-invertibility of PE(s) is equivalent to left-invertibility

of the Iransfer function T(s) :- D f C(sE - A)-`B if det(sE - A)
~ 0[24, Theorem 3.9], (8, Theorem 3.26].

Corollary 3.8.

0
Assume that ker( A B )- 0. Then

C D
tr(F) - ker(E) ra ker( ~ D l) n[A B]''im(E) - 0.

Proof. ~ Follows from (3.4). ~ If Ex - 0, Cx t Du - 0 and Ax f
Bu - Ew, then (- w) E p(Z) since x- xa E S(- N, ub). Hence Ax }
Bu-Oandx-0, u-0.

The assumption in Corollary 3.8 is not necessarily
satisfied if ker(E) - w(E) for an arbitrary system E. Take e.g.
E- I, B- 0, C- I and D- 0, then, obviously, 1~(E) - ker(E),
but fDl is not left invertible. However, without loss of

jE 0 ~j
generality, one can assume that ker(II`A BJ) - 0 in (2.5a) -

C D
(2.5b) and if this is the case, then an alternative
characterization of regularity might be: The LQCP (2.5) -(2.6)
is reqular if and only if w(E) - ker(E).
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Conclusions.

Our distributional framework covers all existinq interpretations
of continuous-time linear-quadratic control problems subject to
qeneral systems. We saw that within this distributional context
the concept of reqularity can be understood in a very natural
way as the property that the output is a function only if inputs
and state trajectories are, not only in the standard but also in
the nonstandard cases. He derived a condition that is equivalent
to this property and since this condition is expressed in the
(unrestricted) system coefficients only, it is easily checked.
Moreover, we related this condition to the stronqly controllable
subspace and established that, without loss of qenerality, LQCPs
are reqular if and only if this subspace is trivial. Finally, we
noted that in the existinq literature only special cases of
reqular LQCPs subject to implicit systems have been treated. The
author wants to discuss problems subject to arbitrary systems in
a future article.

Illustrative Examples.

Consider the system equation
[1 0]óll) „(x~l -(0 1] fx`~ t[1 0] rxo~ló,

`x~J Lxz lxo-J
wáth output yl -[0 1]fX'l f u. Then the condition (3.3) is not

` :1
satisfied; if e.g. u- b, x2 -- ó, then yl - 0, smooth. If y2 -

[~ ~] [X1J }[i]u, then (3.3) holds. Indeed, y, is a function
:

only if u and x2 are, as a result of which x, is a function as
well. If y, -( 0 1](X'1 (B and D are not appearinq), then (3.3)

t sJ
is valid and, aqain, y, is a function only if inputs and states
are.

~ This paper was written in September 1991, when the author was
with the Mathematical Institute of Wuerzburq Uaiversity, Am
Hubland, D-8700 Auerzburq, Germany, as an Alexander von
Humboldt-fellow.
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