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ABSTRACT

We present several solvability concepts for linear
differential-algebraic equations (DAEs) with constant
coefficients on the positive time-axis as well as for
the associated singular systems, and investigate
under which conditions these concepts are met. Next,
we derive necessary and sufficient conditions for
global consistency of initial conditions for the DAE
as well as for the system, and generalize these
conditions with respect to our concept of weak
consistency. Our distributional approach enables us
to generalize results in an earlier paper, where
singular systems are assumed to have a regular pencil
in the sense of Gantmacher. In particular, we will
establish that global weak consistency in the system
sense is equivalent to impulse controllability.
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1: Introduction.

In the present paper we consider Differential-Algebraic
Equations (DAEs) on R* := [0, =) of the form

Ex(t) = Ax(t) + f(t) (1.1a)
and the associated linear systems

Ex(t) = Ax(t) + Bu(t) (1.1b)
with E, A € Rlxn, B e Rlxm' arbitrary, and x(t) e R, £(t) e Rl,

u(t) « " for all t » 0.

If the forcing function f is given and E is invertible,
then every point x, € ®" is consistent [1] because

x(t) = exp(E~'At)x, + ojtexp(E"A(t-r))E"f(r)dr (1.2)

is the solution of (1.la) with x(0*) = x, (assuming that f is at
least locally integrable). In case of a singular matrix E,
however, the set of consistent initial conditions may be unequal
to the entire state space R

Example 1.1.
If £ = E‘] is continuously differentiable, then the solution of
2
0 1], 1 0][x, .. el o & = £,
the DAE {o 0][}(2] [0 1”xz] + f is [xz = [- £ (61,
[17] and hence [§°‘] can be called consistent only if [§°‘ = [:
02

o2
£,00%) = £.00%
£,(0%) 4

Example 1.2.

Consider the singular DAE

1000 0100 f i
0010, _ [0000]|x, + £
0000]]x, 0010]]|x, £51
0000]|x, 0000((x, £ a

with £ sufficiently smooth. Then, apparently, this DAE has a

solution only if f, = 0 [6], [17]. Assume this to be the case.

Then x, may be any function. Next, we get x, = - £, and hence -

f, = £, [6], [17). Again, assume this to be the case. If x, is

any locally integrable function (e.g. take x, continuous), then

X = Rgp F Jt[x,(r) + £,(r)]dr, x,, arbitrary. Observe that x,,
o

is consistent only if x,, = - £,(0*).



Loosely speaking, a point x, is consistent if the DAE
(1.1a) turns out to have a functional solution that starts in x,
- in this paper we will provide an unambiguous definition for
consistency in terms of generalized functions [15]. The two
Examples show, that the set of consistent initial conditions for
a singular DAE does not follow from & priori but from a
posteriori observations. Again, consider Example 1.1 with £ = 0.
Only the origin is consistent. In other words, here a point x,
may be called inconsistent if x, # O; the DAE (with f = 0) has
no functional solutions x that start in x, since x = 0 is the
only one.

In [16] a simple electrical network with unit capacitor
only is modeled by means of the system in Example 1.1 with f =
0, x, denoting the potential and x, the current; the open switch
is closed at t = 0. If X,, := Xg,(07) # 0 (and x,, := %4,(07) =
0), then it is claimed in [16] that x, = 0, but x, = - x,,56(t)
on R* (with &6(t) denoting the Dirac delta function), and thus it
is suggested that one may have an impulsive solution x of the
DAE in Example 1.1 with £ = 0 if an inconsistent initial
condition x, is identified with the state value x(0~) of x
immediately #hefore starting the dynamical process. In this
sense, X, = x(0°) may be called consistent if the DAE has a
functional solution x with x(0*) = x, = x(07).

This interpretation of "initial condition" x, as the state
value of x at t = 0~ is used in e.g. [2], [5, © 22], [14], [16],
[18). Apparently (see the above), inconsistent initial
conditions might give rise to impulses as solutions of the DAE
(1.1a) even if the forcing function is zero. Therefore, certain
authors on singular systems (e.g. [2]) allowed generalized
functions (distributions [15]) as possible forcing functions and
solutions of (1.la), whereas others (e.g. [16]) based themselves
on the Laplace transformation approach of Doetsch [5].



In [8] both viewpoints are joined by applying a special
distributional framework to DAEs (l1.la) and systems (1.1b) on
R*. The allowed class of distributions cimp’ proposed by Hautus

in [13] for regular systems in connection with linear-quadratic
control, turns out to be large enough to be representative for
the solution's behaviour of (1.1) on one hand, but on the other

cimp is a commutative algebra over R with convolution of

distributions as multiplication [12]. Since, moreover, cimp has

a lot of other nice properties (for details, see [12] - [13],
also Section 2), the distributional setup in [8] allows a fully
algebraic treatment of DAEs (l.la) and systems (1.1b) on R*.

In addition, this framework turns out to cover Kronecker's
interpretation of singular DAEs (see our Examples, [6], [17]).
This was shown in [8, Theorem 2.13] if det(sE - A) # 0 (the
regular pencil sE - A in the sense of Gantmacher [6]) and will
be illustrated for general singular DAEs in Sections 2 and 3.

Other results for the case det(sE - A) # 0 in [8], derived

by means of the cimp—approach, are on conditions for "global"

consistency and "global" weak consistency in the "DAE" and the
"system" sense. Loosely speaking (for details, see Section 4),
given the forcing function £, then a point x, is weakly
consistent (with f) if the distributional version of (1.la)
([8), Section 2)

6(1)*Ex = Ax + £ + Ex,6 (1.3)
has a functional solution x that need not start in x,, i.e.,
x(0*) may be unequal to x, (here, * denotes convolution and 6(1)
denotes the distributional derivative of &). In the sequel we
shall see that it is very well possible for the DAE (1.3) with
forcing function f to have a functional solution x that does not
start in x,.

In the present paper, we want to generalize all results in
[8] for DAEs and systems (1.1) with arbitrary coefficients E, A
and B. Indeed, most of the statements in [8] will turn out to be

special cases of related ones made here.



After the preliminaries in Section 2, we discuss separate
solvability concepts for DAEs and systems (in the distribution
as well as in the function sense) in Section 3. We will show
that DAE-solvability of (1.3) in the distribution sense is
equivalent to DAE-solvability of (l1.la) in the sense of our
Examples 1.1 and 1.2, whereas solvability of (1.1b) in the
function sense is clearly stronger than system solvability in
the distribution sense. In Section 4, then, after having
introduced separate concepts of consistency and weak consistency
for DAEs and systems, we derive necessary and sufficient
conditions for "global" consistency as well as "global" weak
consistency for all concepts defined. In particular, we will
establish that glcbal weak consistency in the system sense 1is

equivalent to Cobb's impulse controllability [4].



25 Preliminaries.

Let J_ be the space of test functions with upper-bounded
support and let z,' denote the dual space of real-valued
continuous linear functionals on 7_. Then the space 2z, of test
functions with lower-bounded support can be considered as a
subspace of z,*' and every u € 1,' has lower-bounded support
[12]. With the "pointwise" addition and scalar multiplication,
and with convolution * of distributions as multiplication, 7 '
is a commutative algebra over R with unit element S, the Dirac

delta distribution [12]. If u(l)
(1)

denotes the distributional

(1) (1)

derivative of u € z,', then u = (u * &) =4 * 5 Any

linear combination of & and its distributional derivatives 5(1),
1 > 1, is called impulsive. If u € 2,' can be identified with an
ordinary function (u, say) with support on R* and this function
u is smooth on [0, «), then u € 2,* is called smooth.

Linear combinations of impulsive and smooth distributions
are called Jjmpuilsive-smooth and the set of these distributions

is denoted by ¢, [13, Def. 3.1]. This set ¢, is a subalgebra
imp imp

and hence it is closed under differentiation (= convolution with

5(1)) and closed under integration (= convolution with the

inverse of 6(1), the Heaviside distribution H) [12], [13,

Section 3). Since u € ¢, is invertible within ¢, if and only
im imp

P
if u ¢ 7, [12, Theorem 3.11], it follows that every impulse is
invertible. By defining [12, Def. 3.1] p := s, pk = pk-l*p
tk > 2): p° == & p~* o= H, p—l 2= p-(l-l)*p" (1 3 2), wve
establish that pk+1 = pk*pl (k, 1 € 2) and thus (pk)" = p—k,

(p° "% = p° = 5; we will write p°® =1 and a6 = « (= € R). Also,

convolution will be denoted by juxtaposition. If u = u, + u,,

the (unique) decomposition of u € cimp in its impulsive part u,

and its smooth part u,, then u(0*) := lim u,(t) = u,(0%. If u €
t 40

cimp is smooth and u stands for the distribution that can be

identified with the ordinary derivative of u on R*, then pu = u

+ u(0*) (with u(0*) = u(0*)8). For more details on cimp’ see

il

[12], [13, Section 3], also [8)] and [10]). For more details on

distributions, see the work of Laurent Schwartz [15].



¢ denote the subalgebras of pure impulses and

Let € . 2
p-imp’ Tsm

smooth distributions, respectively, and let cf denote the

subalgebra cf rractional impulses

c fu e cimplu = Wil Wisa € C vy #10},

i
then ¢

p-imp’
£ is 1isomorphic to the commutative field of rational
functions R(s) [10, Proposition 2.3]. Let k,, k, be any two

nonnegative integers and let Mk‘XKz(s), Hg‘sz(p) denote the

sets of k,xk, matrices with elements in R(s), cf, respectively.

Then we have the following basic result [10, Corollary 2.4].

Lemma 2.1.
Let T(s) e ¥ 1"¥2(5), n(s) e M ¥1(s), w(s) en
T(p), p(p), w(p) be the corresponding distributional matrices in

k,xk, 1xk, k,x1
Mg (p), Mg (p), Mg

n(s)T(s) = 0 = g(p)T(p) = 0; T(s)w(s) = 0 = T(p)w(p) = O.

In particular, T(s) is left (right) invertible as a matrix with

kzXl(s), and let

(p), respectively. Then

elements in R(s) if and only if T(p) is left (right) invertible

as a matrix with elements in cf.

Nov we present our dJdistributicnal versions of (1.la) and
(1.1b) on R* (compare (1.3)):
pEx = Ax + f + Ex,, (2.1a)

PEx = Ax + Bu + Ex,. (2.1b)
Here, x, € R" (Ex, stands for Ex,6), f e Cimp (the 1l-vector

version of ¢, ) and u e - Together with (2.1), we define
imp imp

the scvlution sets

n
S{xye £) 2= Ix ® Cimp|[pE = Alx = £ # Ex,l. (2.2a)
n
( = {x e & =
Scixs u) := {z € Cimpl[pE Alx = Bu + Ex,l, (2.2b)

and we have attached an index C to the solution set of state
traje tories for the system (2.1b) to indicate its C(ontrol)

aspect; u € cm is often called input or control.

imp



Discussion.

First of all, we observe that the form of (2.1) is in line
wvith earlier references on the use in singular systems of
distributions (e.g. [2] - ([3]) am/ on Laplace transforms (e.g.
(5], [16]). Although (2.1) might seem nothing more than Laplace
transfornmation of (1.1) in the sense of Doetsch [5], followed by
substitution of s by p, we stress that (2.la) may, in fact, be
considered as an in:iial value problem for a linear DAE on R*
with constant coefficients in the distribution sens- [8]. Here,
X, plays the role of initial value - in standard cases. For

instance, if E is invertible, then (2.1a) may be rewritten as

px = E"*AX + E~Uf + x, (2..3)
and since (sI - E~'A) is invertibl: as a rational matrix, we
find that for every pair (x,, f) e R x cimp' (2.3) has exactly

one solution, namely
X = (pI — E™A) *EAE # X,], (2.4)
by Lemma 2.1. Now (pI - E~-'A)~!' can be identified with the

smooth function exp(E~*At) on R* [13, p. 375]. Thus, if f < Cim’

then it follows directly that x in (2.4) corresponds to the
function (1.2) on R*, and x(0*) = x,.
Next, let us consider our Examples 1.1 and 1.2 in the

distributional version (2.l1a).

Example 1.1 continued.

. RE 0 11fx;1 . [ o]k, £, Lo S ) P
The DAE p 0 0}&2 = [0 lJ&z + £, + 0 0 hoz has as
solutions x,] % |” fi " B2~ Bpa . If f, and f, are smooth,
X2 =i 5 i
then pf, = £, + £,(0*). Hence, if x,, = - £ (0% = 50005 %,, =
- £,(0%) (i.e., %, is consistent), then [%‘] « - B~ f’} and
X2 iy f,
x,(0%) = x,,, %x,(0") = X,,, in accordance with Kronecker, see
Example 1.1. MYore generally, if x,, = - £,(0*), x,, arbitrary,

then, again, [;‘] = [: g‘ B fz], but not necessarily x(0*) = x,
2 2

- in fact, only E(x(0*')) = Ex,. Moreover, if f, = £, = 0, then

X, =0, X, = - X4, (= - X,,6), as vwas stated earlier [16].



Example 1.2 continued.

If £ in the DAE
100 0]fx, 010 0][x, £ 100 0][x,,
0010x,| _f0000||x, |, [E.], [0010]lx,,
Ploooollx, 001 0(|x, £ 000 0]|x,,
000 0]||x, 0000]||x, £, 0000]||x,,
is smooth, then we get
X, =ptlx, + £, + x5,],
el = 1000 = £, & x,,. %, 5~ £,
0=f,.
Hence, if £,=10, f, = - £, and x,, = - £,(0*) (consistent), x,,

X, € ¢ are taken arbitrarily (with initial values x,, and x,,,

respectively), then x, corresponds to - f, and x, to (x,, +
jt[xz(r) + £,(7r)]1d7) on R*, in accordance with Example 1.2.
o

Our Examples clearly suggest that S(x,, f) contains at
least one smooth solution x that actually starts in x, if x, is
chosen consistently. In the next straightforward result we will

prove that this is generally true.
Proposition 2.2.

Assume that, for a given smooth forcing function f, x, € R is
such that (1.1a) has a smooth solution x with x(0*) = x,. Then
(the distribution) x € S(x,, f).

Proof. We have Ex = Ax + f and x(0*) = x,. Then Ex(0*) = Ex, and
thus pEx = Ex + Ex, = Ax + f + Ex,, i.e., x € S(x,, f).

Thus, our framework does not only cover e.g. [2], [5], [13]
- [14], [16], [18], but also [6], [17]. Observe, moreover, that

the special choice of smooth functions in cimp obviates the

problem of choosing the right solution set for (1.la); without
any a priori choice for the solution set in Example 1.2, x,
might have been any function and x, might have been even
discontinuous. The same difficulty occurs w.r.t. the forcing
function £; if in Example 1.1 f, is continuously differentiable
and f, continuous, then x is continuous, whereas in Example 1.2
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% 1s continuous if f, is merely locally integrable. Note, in
addition, that the question of (in)consistency is decided in the
origin (our impulses have support in 0), and that smooth inputs
do not limit the control possibilities in (2.1b) e.g. [31, [7],
[9), [11]1, [13], [18]. On the other hand, a distributional setup
for DAEs and systems (2.2), incorporating a larger class than

Cimp’ is certainly possible (see e.g. [4] and [8, Remark 2.5]),

but it is our belief that then much of the method's elegance

will be lost unnecessarily.

We will close this Section with our Main Lemma, together

with Lemma 2.1 the building-stones in [10] and in this paper.

Main Lemma 2.3.

1 1

n
Let %5 € B 2 L =15 % £;5: £, € cp"imp' £, € Csm' X E By + X, €
n n
) s @ X 3
S{xgs £ =y & s-impt X4 )= Then
PEx, + E(x,(0%)) = Ax, + £, + Ex,, (2.5a)
PEx, = Ax, ¥+ £, + E(x,(0%)). (2.5b)

Proof. We have pEx, + E(x_,(0*') + El[px, - x,(0*)] = Ax, + £, +
1 2 2 2 1 1

Ex, + Ax, + f, and px, - x,(0%) = z,, smooth.

Corollary 2.4.

n

Assume that x € S(x,, f) n ¢
sm

1
, £ e Con® Then Ex, = E(x(0*)).

Proof. Since x, = 0, u, = 0, the claim follows from (2.5a).
Remark 2.5.

The converse of Corollary 2.4 is not true; a counterexanmple is
given in [10, Remark 2.7]. Corollary 2.4 expresses, that not so
much the property x(0*') = x, as its generalization E(x(0*%)) =
Ex, 1s strongly related to the question of smoothness for

solutions x of the DAE (2.la) (see also Example 1.1 continued).
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3. Solvability.

We consider the DAE

pEx = Ax + f + Ex, (3.1a)
and the associated system

PEX = Ax + Bu + Ex,, {3:1b)
with x, Rn, f e Cimp' u € c?mp' and the corresponding solution

sets S(x,., £}, SC(xo, u) ((2.2)). In [8, Definitions 2.4, 4.1,

4.5] the following definitions of solvability for the DAE and

the system are proposed.

Definition 3.1.

Let £ = cimp be given. Then the DAE (3.la) is solvabl~ for t if
axo . S(x,, f) = o.
If f e Cim' then (3.la) is solvable for f in the (unction srnse
N n
1f 3KD PR E S(x,, £) N Cop * @

The system (3.1b) is " -soliabie if

38 7 £ 0.
on e’ o C(x0 u) @
imp

The system (3.1b) is C-solvable in the function sense 1if

. n
vxo ey & c:m. Sc(xo, u) n € * P

It is clear that DAE-solvability and C-solvability are two
fully different concepts. Whereas, for a given f, the DAE is
solvable if for at least one x,, the solution set S(x,, f) is
nonenpty, C-solvability requires that for every x, there exists

an input u such that SC(xo, u) # @. The latter definition finds

its roots in the kncwledge, that in many control problems x,,
interpreted as x(0°), may be arbitrary (unknown), as a result of
which one may want to design some control law that does not
depend explicitly on the initial condition, but rather works for
all possible state values "in the same way" (feedback laws in

control preblems, for instance [3], [13], [18]).
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The definitior cf DAE-solvability should be interpreted as a
generalization in terms of distributions of earlier definitions
for DAE-solvability in the function sense [6], [17]: In Example
1.1 only one initial condition X, is consistent; in other words,
only for this x, the set S(x,, f) contains a smooth element that
starts in x,. If X, 1s called conmsistent in (3.la) if S(x,, f)
(f smooth) contains a smooth x with x(0*) = x,, then consistency
in the ordinary sense can be identified with consistency in
(3.1a) (see Proposition 2.2). Now, let us take a better look at

our concept of DAE-solvability.

Lemma 3...

Let f € c;m be given and x, € ®" be such that S(x,, f) contains

at least one smooth zlement x. Then there exists a consistent

initial condition io. In fact, x S(Qo, f) and Ex, = Eio.

Proof. Let x € S(x,, f) N C:m' Then (Corollary 2.4) E(x(0*%)) =

Ex, and hence io = x(0*) satisfies the requirements by the Main

Lemma 2.3!

In particular, it follows from Lemma 3.2 that there exists
a consistent initial condition for (3.1a) with given smooth f if
(3.1a) is solvable for f in the function sense. In Theorem 3.3
we show that the existence of a consistent initial condition is,

essentially, equivalent to DAE-solvability.

Theorem 3.3.

ik

1
IEL =%, +E,, £, € cp—imp’ f, € Coni and x € S(x,, f) for some

Xy € K", then x(0*) is consistent for f.. In particular, if f e

cl , then
sm

(3.1a) 1s solvable for f e 3 X, consistent for f.

X € RO

Proof. If z =%; & Xz, %X, € X, € c:m, then, by (2.5b),

[ Tt e—
P-imp
X, € S(x(0%), £,) and, obviously, x,(0*) = x(0*).

2
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Theoren 3.3 states that the DAE (l1.la), with f smooth, 1is
solvable in the sense of Kronecker [6], [17], i.e., there exists
a consistent point xX,, if and only if our DAE (3.la) is solvable
for £ in the distribution sense. Thus, our approach covers the
usual conceptions of solvability in the function sense on one
hand, but on the other it allows much more inputs as well as
solutions for the DAE.

Example 1.2 continued.

Assume that £, = £, * £5, and £, = L., * £,., Eouw £,, €
k

B 'zoaipl (k > 0, all a;, real), and f,,, f,, €¢C
1=

Then the DAE is solvable if f,=0, - £,, = f,,, - pf,, = f,, -

Cp-imp' 22 =’

Ao; Koy Must equal - f,,(0%) - a,. If f is smooth, then the DAE
(3.1a) 1s solvable if f, =0, - f, = f, and x,, = - £,(0*). This

agrees with earlier findings in Sections 1 and 2.

Example 1.2 illustrates that for an arbitrary DAE, with f €

cimp given, it seems very hard, if not impossible, to derive a

condition that is not only sufficient, but also necessary for
solvability, i.e., for the existence of a point x, such that

S(x,, f) # @. However, we can get very "close".

Lemma 3.4.
Assume that (3.la) is solvable for f € cimp’ Then there exists a
- s . § = 5a & &
1 ef0, 11, a £ € cimp and E, A € R ., [E, A] of full row rank,
such that, if

pEx = Ax + f + Ex,, (3.2)

= = n T = _
and S(x,, f) := Ix € “impltpE Alx = £ + Ex,l (3.3)

(2o = ®"), then

% & 5lxe 1) =% € 8lxy: fh.
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Proof. Without loss of generality, we may assume that [E A] =

(] &1 wen B 5 e & v e &7 E R o full row

rank, and let f = [;] be partitioned accordingly. Then, let x, €
Rn and x € cg be such that
imp
Il=. _ [1]: f 1]
e[ = [elie e o]+ s
(such x, and x exist!), then - Yf + g
pEx = Ax + f + Ex,.

The converse is now clear.

0, i.e., g = Yf. Hence

Example 1.2 continued.

If the DAE is solvable for f, then f, = 0. Here, we have
B 10600 _ 01 00] £,
BE= |oolol &= 10000} £= {£.1.

0000 0010 £,

It follows from Lemma 3.4 that, without loss of generality,
we may assume [E A] to be of full row rank if the DAE (3.1) is
1.

solvable for given f e cimp' Since, by Lemma 2.1,

[E A] full row rank e

A - sE, E] right invertible as a rational matrix,
it is easily seen that, if [E A] is of full row rank, then, for
every f e c1 [xo] 1= E‘(p)](- f) is such that pEx = Ax + f +

imp’ |[x 2(p)
Ex, with K‘i:;] a right inverse of [A - sE, E] (Lemrma 2.1) -
2

however, x, = R,(p) (- f) need not be constant (= constant times
8). This observation shows, that the condition

[E A] full row rank
is indeed very '"close'" to DAE-solvability - unfortunately, not
close enough. However, conditions for '"global" consistency and
"global" weak consistency in the DAE-sense will be derived in

Section 4.

As for C-solvability, we have the next result.
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Theorem 3.5.

The system (3.1b) 1s C-solvable if and only if

vq(s) & Mlxl(s): n(s)[A - sE, B] = 0 &= n(s)[E A B] = 0.

Proof. Without loss of generality, we may assume that [E A B] =
Ei][f A B] with [E A B] of full row rank. < The condition is

equivalent to right-invertibility of [A - sE, B]. If F‘(s)] is

R,(s)
a right inverse, then, for every x, € Rn, .= R.(p) (- ixo)
u R,(p)
is such that [A - pE, B][ﬁ} = - Ex, (Lemma 2.1). o Assume that

n(s)[a - sE, B] = 0. Then p(p)[A - pE, B] = 0 {(Lemma 2.1) and
hence, by definition of C-solvability, n(p)Ex, = 0 for all x,,
i.e., g(p)[E A B] = 0 and thus n(s)[E A B] = 0. This completes
the proof.

Corollary 3.6.

If [E A B] is of full row rank, then (3.1b) is C-solvable if and

only if [A - sE, B] is right invertible as a rational matrix.

In Theorem 3.3 we saw that DAE-solvability in the
distribution sense is equivalent to DAE-solvability in the

function sense. For C-solvability, things are less easy.

Example 3.7.

] 1 01[x,1 _ [0 o0][x, 1 1 0][%e,]
me e ofs QB - P EJE] < B ¢ B o]
C-solvable, but not C-solvable in the function sense: For every

Ko = ';°‘] we have x, = 0, v = - x,,, impulsive.
o2

Section 4 contains a condition that is necessary and
sufficient for C-solvability in the function sense. Example 3.7
does not satisfy this condition, whereas [A - sE, B] is right

invertible (Corollary 3.6).
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4. Consistency and weak consistency.

In Section J a point x, is called DAE-consistent for (3.la)
with given smooth f if S(x,, f) contains a smooth x with x(0*) =
Xo. In Definition 4.1 we distinguish between consistency and its

generalization, weak consistency [8, Definition 3.1].
Definition 4.1.

Consider (3.la) with f € cl s
sm

A point x, € R is called DAE-consistent with £ if

. .
- T S(x,, £) 0 h x {0 *) Ko
sm

The set of these points is denoted by I (L) s

DAE
A point x, € R is called weakly DAE-consistent with t if
n
S(xg £) 0 Com * ©-

W
pag‘f) -

The set of these points is denoted by I
Consider (3.1b).
A point x, € R" is called C-consistent if

3 m 3
uec, xe Sc(xo, u) N

P x(0*) = x,.
sm
The set of these points is denoted by IC'
A point x, € R is called weakly C-consistent if

m
3 e P Sc(xo, u) I\ Csm #‘ ﬂ

sm
The set of these points is denoted by Iz.

Proposition 4.2.

; X w
The DAE (3.la) is solvable for f e Csm = IDAE(f) # @. The
n

system (3.1b) is solvable in the function sense IZ =R .
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Proof. I;AE(f) # ® if and only if (3.1la) is solvable for f in

the function sense (Definition 3.10); if (3.la) is solvable for

1 W
f ec, . then I, (f) # o by Vheouw 33 and Tapll) = T,

The second claim is trivial, by definition.

Once more, we establish that DAE- and C-solvability are
different concepts. This distinction is also apparent in the
next Theorems on "global" consistency and '"global" weak
consistency.

Theorem 4.3.

Assume that in (3.1a), rank [E A] =1 and f € cim. Then

I,p(f) = K o in(B) = R, (4.1a)
1760 = & o in(E) + Alker(E)) = rL. (4.1b)

Proof. First statement. & Assume without loss of generality that
E = [Il 0], A=[A, A,]. If x = [x,]' Xy = [§°‘] are partitioned

X2 02
accordingly, then (3.l1a) is of the form px, = Ax, + Ax, + f +
Xo3+ If we choose X, = p~'%4; (smooth, x,(0%) = x,,)}), then x, =

(le - A,)""Ax, + £ + x,,), smooth, and x,(0*) = X,,. = Assunme

that nE = 0. It follows that pAx, + gf = 0 for all x, and hence
nf = 0, pA = 0. Thus, n = 0 since [E A] is of full row rank.
Second statement. Assume that im(E) # Rl. Then, without loss of
generality, we may assume that (3.la) is of the form

oo of ) = Rt ]l + ]+ ool fea] e
« It follows that A,, is of full row rank; let A,,* be any right
inverse. Let io,, io, be arbitrary. The solution of

pi, = [A,;, - AIZAZZ‘AZX]iI + [f, - R A, ) + iu;
is smooth with x,(0*) = x,,, and x, = - A,,*[A,,x, + £,] is
smooth as well. We have shown that every point x, is weakly
DAE-consistent with f. o We must prove that A,, is of full row
rank. Thus, let pA,, = 0. It follows that qA,lEO, + pf, = 0 for
all x,,, because of Corollary 2.4. Hence pf, = 0, nA,, = O.

Since [A,, A,,] is assumed to be of full row rank, we get = 0.
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Remark 4.4.

Observe that the conditions in (4.1) imply that [E A] is right
invertible and that without loss of generality we may assume
[E A] to be right invertible if the DAE is solvable (Section 3).
If det(sE - A) # 0, then [E A] is automatically of full row rank
and Theorem 4.3 reduces to [8, Theorem 3.7]. In Examples 1.1 and
1.2 we have I;AE(f) * R,

Theorem 4.5.

Assume that in (3.1b), [E A B] is of full row rank. Then

I, = & o in(E) + in(®) = R, (4.3a)
1% = " = in(E) + in(B) + A(ker(E)) = R. (4.3b)
Proof. First statement. If im(E) = Rl, we are done. Thus, let

im(E) # Rl. Then we may assume that the system (3.1b) is in the

form (4.2) with fi = Biu (i = 1, 2). & The condition is

equivalent to right-invertibility of B,; let B,* = B,'(B,B,') .
If x,, and X,, are arbitrary, then the control u = B,*( - A,,X,
- R,,X,), with X, = p~*x,, and x, the solution of

PV = (A, - BB *A,,)v+ (A,, - Bsz.Azz);{z ¥ ;‘ow

e i n X, gox n = B e = ) =

is in ¢ . [xz] € SC([x“]' u) N O and x,(0*%) Xoiw Xzh0")

Xy,. » We must show that B, is of full row rank. Thus, let B, =

0. It follows that p[A,, A.,] [:—:“] = 0 since every X, is
o2

C-consistent. Hence p[A,, A,,] = 0, which yields n = 0, because
[E A B] is of full row rank. Second statement. Again, assume
that im(E) =# Rl, and let (3.1b) be in the form (4.2) with fi =

B.u (i =1, 2). «We have that [A,, B,] is of full row rank; set
R=2,,A,, + B,B,' > 0. Let i,,, ioz be arbitrary. The input u =

B,'R-*( - A,,x,) with x, the solution of

pv = (A, - [A,, B,] Q:f ]R-lhzl)v + ionl
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is smooth and if x, = A,,'R"*( - A,,x,), then [’5‘] ec n
Xix sm

S ([x ], u) and x,(0*%) = Xo,- Hence we establish that every Xq
o2

is weakly C-consistent. » We must prove that [A,, B,] is right
invertible. If p[A,, B,] = 0, then qA,,io, = 0 for all iox and
hence pg(A,, A,, B,] = 0, i.e., p = 0. This completes the proof.

Remark 4.6.

The conditions in (4.3) imply right-invertibility of [A - sE, B]
and hence also right-invertibility of [E A B]; note on the other
hand that, without loss of generality, [E A B] may be assumed of
full row rank in (3.1b). If det(sE - A) # 0, then [A - sE, B] is
right invertible, [E A B] is automatically of full rank and
Theorem 4.5 reduces to [8, Theorem 3.8]. Example 3.7 does not
satisfy (4.3b).

Example 4.7.

Consider the system

10 .. [0 0] [x; 0

o o] ] = i o]fee] + B+ o ol et
Clearly, x, = p~*x,,, smooth, x,(0*) = x,,, and u = - x,. Since
for every x,, we can choose any smooth function x, with x,(0%) =
Xo2, We establish that every x, is C-consistent. Indeed, rank
[E, B] =

Example 4.8.

o e o 2] < S]]+ B S]] e o

that every x, is weakly C-consistent, but not C-consistent; if u
= 0, then x, = p~'x,, and x, = - x,. If x,, + Xy, # 0, then
there does not exist a smooth control u such that the unique

state trajectory x € S.(xX,, u) is smooth and x(0*) = x,.
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Remark 4.9.

We have seen that the condition in (4.3b) is equivalent to the
existence of a smooth control u and a smooth state trajectory x

e Sc(xo, u) for every initial condition X,. In this sense the

systen (3.1b) may be called impulse controllable if (4.3b) 1is
satisfied, since for every x, there exists a function u such

that the solution set Sc(xo, u) has at least one element x that

has no impulsive part. Although Cobb uses a different definition
for impulse controllability in [4], he interprets it in the same
way in [3] as we do here, and moreover, proves equivalence of
his impulse controllability and (4.3b) by means of state space
decomposition in [4, Theorem 4] for the case det(sE - A) # O.
Our Theorem (4.5) shows the equivalence of (4.3b) and impulse
controllability for arbitrary systems (3.1b) with [E A B] of
full row rank. Also, observe that (4.3b) is expressed in the
system coefficients only, without any extra parameter as in [18,

Theorem 2].
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Conclusions.

Our distributional framework for linear DAEs with constant
coefficients and for singular systems on R' covers well-known
earlier DAE- and singular system interpretations. It enabled us
to define satisfactory concepts for DAE- and system-solvability,
in the distribution as well as in the function sense. We saw
that DAE-solvability in the distribution sense is, essentially,
equivalent to the usual concept of DAE-solvability, and derived
a condition for system solvability. Then, consistency for DAEs
and systems was redefined in terms of distributions and we
introduced its generalization, weak consistency. Whereas a point
is consistent if the corresponding solution set of the DAE
contains a function that starts in that point, we call a point
weakly consistent 1if this sclution set merely contains a
function. Finally, we presented conditions for global
consistency and global weak consistency in the DAE and the
system sense and established that global weak consistency in the
system sense is equivalent to impulse controllability, i.e., to
the possibility to find for every initial condition an input
function that yields at least one functional state trajectory of
the system. Because of linearity and of our special class of
distributions, we could keep our treatment fully algebraic, and

hence easily understandable.

This paper was written in August 1991, when the author was with
the Mathematical Institute of Wuerzburg University, Am Hubland,

D-8700 Wuerz burg, as an Alexander von Humboldt-research fellow.
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