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ABSTRACT

We present several solvability concepts for linear
differential-alqebraic equations (DAEs) with constant
coefficients on the positive time-axis as xell as for
th2 associated sinqular systems, and investiqate
under which conditions these concepts are met. Next,
we derive necessary and sufficient conditions for
global consistency of initial conditions for the DAE
as W211 as for the system, and qeneralize these
conditions with respect to our concept of N~rok
consistency. Our distributional approach anables us
to generalize results in an earlier paper, where
sinqular systems ar2 assum2d to have a reqular pencil
in the sense of Gantmacher. In particular, we ~~ill
establish that qlobal weak consistency in the system
sense is equivalent to impulse controllability.

KEYUORDS

Linear differential-alqebraic equation, singular
system, impulsive-smooth distributions, solvability
in the distribution and in the function s~r.se,
consistency, weak consistency.
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1. Introduction.

In the present paper we consider Differential-Alqebraic
Equations (DAEs) on R` :- [0, ~) of the form

Ex(t) - Ax(t) } f(t) (l.la)
and the associated linear systems

Ex(t) - Ax(t) } Bu{t) {l.lb)
with E, A e etl~, B e Rl~, arbitrary, and x(t) e~tn, f(t) e~?l,

u(t) e~?m for all t~ 0.

If the forcing function f is given and E is invertible,
then e~.rry point x, e qtn is consistent [1] because

r.(t) - exp(E"'At)xo f ftexp(E"'A(t-r))E'`f(r)dr (1.2)
0

is tha solution of (l.la) with x(0') - xo (assuminq that f is at
least locally integrable). In case of a singular matrix E,
however, the set of consistent initial conditions may be unequal
to the entire state space Rn.

Example 1.1.

If f-~f`1 is continuously differentiable, then the solution of
zJ

the DAE
~0 OJLxzJ - LO ollxz, }

f is fX21 - I- f2 -~Z
[6l,

[17] and hence (xo'1 can be called consisLtelnt onlly if ~xo' - r-
lxo2J xoz L

f110`) - fz(0`)
f,(0') ,'

Example 1.2.

Consider the sinqular DAE

1000 x., 0100 x,
0010 zz - 0000 xz
0000 x, - 0010 x,
0000 x. ~0000 x,

with f sufficiently smooth. Then, apparently, this DAE has a
solution only if f. - 0[6j, [17]. Assume this to be the case.
Then x~ ;nay b: any function. Next, we qet x, -- f, and hence -
f, - f2 [6], [17]. Again, assume this to be the case. If xz is
any locally integrable function (e.q. take xz continuous), then

t
x, - x~, t I[xz(r) t fz(r)]dr, xa, arbitrary. Observe that x„

o"

is consistent only if x„ -- f,10').
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Loosely speakinq, a point xp is consistent if the DAE
(l.la) turns out to have a functional solution that starts in xo
- in this paper we will provide an unambiquous definition for
consistency in terms of generaliz-~J funetions [15]. The two
Examples show, that the set of consistent initial conditions for
a singular DAE does not follow from a priori but fror a
r:~strriort observations. Aqain, consider Example 1.1 with f- 0.
Only the origin is consistent. In other words, here a point xo
may be called inconsistent if xo ~ 0; the DAE (with f- 0) has
no functional solutions x that start in xo since x- 0 is the
only one.

In [16] a simple electrical network with unit capacitor
only is modeled Dy means of the system in Example 1.1 with f-
0, xZ denoting the potential and x, the current; the open switch
is closed at t- 0. If xO2 :- xo,(0') ~ 0(and xo, :- xo,(0-) -
0), then it is claimed in [16] that x, - 0, but X1 -- Xo,b(t)
on wt~ (with 8(t) denotíng the Dirac delta function), and thus it
is suqqested that one may hava an i~e~u~l.ivr solution x of the
DAE in Example 1.1 with f- 0 if an inconsistent initial
condition xo is identified with the state value xl0') of x
immediataly i.efore startinq the dynamical process. In this
sense, xo - x(0') may be called consistent if the DAE has a
functional solution x with x(0`) - xo - x(0').

This interpretation of "ínitial condition" xo as the state
value of x at t- 0' is used in e.q. [2J, [5, ~ 22], [14], [16],
[18J. Apparently (see the above), inconsistent initial
conèitions miyht qive rise to impulses as solutions oi the DAE
(l.la) even if the forcinq function is zero. Therefore, certain
authors on sinqular systems (e.q. [2]) allowed generalized
functions ídistributi~,n~ [15]) as possible forcinq functions and
solutions of (l.la), whereas others (e.q. [16]) based themselves
on the Laplace transformation approach of Doetsch [5].
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In [8] both viewpoints are joined by applying a special
distributional framework to DAEs (l.la) and systems (l.lb) on
R'. The allowed class of distributions clmp, proposed by Hautus

in [13] for regular systems in connection with linear-quadratic
control, turns out to be large enough to be representative for
the solution's behaviour of (1.1) on one hand, but on the other
Cimp is a commutative algebra over IR with convolution of

distributions as multiplication [12]. Sínce, moreover, Címp has

a lot of other nice propertíes (for details, see [12] -[13] ,
also Section 2), the distributional setup in [8] allows a fully
algebrai.ï treatment of DAEs (l.la) and systems (l.lb) on 9t`.

In addition, this framework turns out to cover Kronecker's
interpretation of singular DAEs (see our Examples, [6], [17]).
This was shown in [8, Theorem 2.13] if det(sE - A) s 0 (the
regular pencil sE - A in the sense of Gantmacher (6]) and will
be ill~istrated for qeneral singular DAEs in Sections 2 and 3.

Other results for the case det(sE - A) ~ 0 in [8], deríved
by means of the Cimp-approach, are on conditions for "global"

consistency and "global" weak consistency in the "DAE" and the
"system" sense. Loosely speaking (for details, see Section 4),
qiven the forcing function f, then a point xo is weakly

consistent (with f) if the distr~butional version of (l.la)
([8], Section 2)

b(1)'Ex - Ax f f t ExoB (1.3)
has a fvnïtional solution x that ne~-r1 not ~tart in xo, i.e.,
x(0`) may be unequal to xo (here, ~ denotes convolution and a(1)
denotes the distributional derivative of b). In the sequel we
shall see that it is very well possible for the DAE (1.3) with
forcinq function f to have a functioaal solution x that does not
start in xo.

In the present paper, we want to generalize all results in
[8] for DAEs and systems (1.1) with arbitrart~ coefficients E, A
and B. Indeed, most of the statements in [8J will turn out to be
special cases of related ones made here.
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After the preliminaries in Section 2, we discuss separate
solvability concepts for DAEs and systems (in the distribution
as aell as in the function sense) in Section 3. We will shox
that DAE-solvability of (1.3) in the distribution sens~ is
equivalent to DAE-solvability of (l.la) in the sense of our
Examples 1.1 and 1.2, whereas solvability of (l.lb) in the
function sense is clearly stroaqer than system solvability in
the distribution sense. In Section 4, then, after havinq
introduced separate concepts of consistency and weak consistency
for DAEs and systems, xe derive necessary and sufficient
conditions for "global" consistency as well as "global" weak
consistency for all concepts defined. In particular, we will
establish that glcbal weak consistency in the system sense is
equivalznt tn Cobb's impulse controllability (4].
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2. Preliminaries.

Let ,~- be thr. space of test functions with upper-bounded
support and let 1,' denote the dual space of real-valued
continuous linear functionals on ~-. Then the space .r, of test
functions with lower-bounded support can be considered as a
suhspace of z~,' and every u e z.,' has lower-bounded support
[12). With the "pointwise" addition and scalar multiplication,
and w;th convolution ' of distributions as multiplication, ;,'
is a coir.mutative algebra over ~ with unit element 5, the Dirac
delta distribution [12]. If u(1) denotes the distributional
derivati~-e of u e z,', then u(1) -(u ~ s} (1) - u~ 611). Any
2iuear combination of 6 and its distributional derivatives 5(1},
1- 1, is called im~ll~ivr. If u e ~,' can be identifizd with an
ordinary function (u, say) with support on R' and this function
u is smooth on [0, a), then u e~,' is called smooth.

Linear combinations of impulsive and smooth distributions
are called iurEw~I~i~.r-tiiwkrft~ and the set of these distributions
is danoted by Cimp [Z3, Def. 3.1]. This set Cimp is a subalgebra

and hence it is closad under differentiation (- convolution with
b(1)) and closed under inteqration (- convolution with the
inverse of b(1), the Heaviside distribution H) [12], [13,
Section 3]. Since u E Cimp is invertible within Cimp if and only

if u~,, [12, Theorem 3.11], it follows that every impulse is
invErtible. By defining [12, Def. 3.1] p;- 6(1) pk - pk-l~p

(k ~ 21, pa -- b, P-1 .- H, P-1 -- p-(1-1)xp-~ (1 : 2), we
establish that pktl - pk,~pl (k, 1 e z) and thus (pk) -' - p-k,
(po)-~ - po - g. we xill write po - 1 and aó - a(a t IR). Also,
convolution wi11 be denoted by juxtaposition. If u- u, t u2,
the (unique) deco:nposition of u e Cimp in its impulsi~e part u,

and its smooth part u2, then u(0') :- lim u2(t) - uZ(0'). If u e
t10

C. is smoot}; and u stands for the distribut~on that can beimp
identifizd with the crdinary derivative of u on R', then pu - u
} u(0`) (with u(0`) - u(0`)a). For more details on ci,~p, see

[12], [?3, Section 3], also [8] and [10]. For more details on
distributi.ons, see the work of Laurent Schwartz [15j.
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L~t c , c denotz the subalqebras of pure impulses andp-imp sm
smooth distributions, respectively, and let cf denote the

subalg2bra ef tr ri~: t i~~nel im~~rtl s.-~

Cf :- {U E Cimp~U - L1U~ ', Ut,~ e C p-imp~ UZ ~ 0~,

then Cf is isomorphic to the commutative field of rational

functions R(s) [10, Proposition 2.3J. Let }:,, k~ be any txo
nonnegative inteqers and let Mk,xk2(s), Mf'xkz(p) denote the
sets of }:,xk2 matriczs with elements in R(s), Cf, respectively.

Then w.- have the followinq basic result [10, Corollary 2.4].

Lemma 2.1.

Let T(s) e Mkl~kZ(s}, q(s) F MlYk'(SJ, w(s) E Mk2x1(s), and let
T(p), q(p), w(p) be the correspondinq distributional matrices in
11f,xk2(p) Mfxkl(p) Mf2x1(p), respectively. Then

r(s)T(s) - 0 ca r7(p)T(p) - 0; T(s)w(s) - 0 o T(p)x(p1 - 0.
In particular, T(s) is left (riqht) invertible as a matrix with
elements in R(s) if and only if T(p) is left (right) invertible
as a matrix xith e12,,.2nts in Cf.

t7ow we present our di~~tribt~tionel versions of (l.la) and
(l.lb) on ~' (compare (1.3)):

pEx - Ax t f t Exa, (2.1a)

pEx - Ax t Bu t Ex~. t.2.lb)

Here, xo E~tn (Ex~ stands for Ex~S) , f e Cimp (the 1-vector

version of cisp) and u e cimp. Toqether with ( 2.1), xe define
the .--~iut~~m s.~ts

S(xo, f) :- ix E Cimp~~pE - A]x - f t Exol, (2.2ai

SC (x;, u) :- {x ~ Cimp i[pE - A]x - Bu t Exof , (2.2b)

and we ha~e attached an index C to the solution set ot ~j~rN

t~a;.-~ ~~~r i~~s for the system ( 2.1b) to indicate its C(ontrol)

aspect; u e c" is oft2n called input or -:~.r~trul.l.n p
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Discussion.

First of ail, we observe that the form of (~.1) is in line
with earlier references on the use in singular systems of
áistributions (e.q. [2] -[3J) af,J on Laplac~ transtorms (a.q.
[5], [16J). Althouqh (2.1) might seem nothinq more than Laplace
transforrlation of (1.1) in tht sense of Doetsch [5], followed by
substit~.;tion of s by p, we ~:tress that (2.1a) may, in fact, b2
considered as an ~u,',~1 i~al~~t. problzm for a--inear DAE or: ~t'
with constant cozfficients ~n the ~I~~rr~t,,tt i~~n tir~~~.- [8J . Eere,
xo p:ays the role of initial value - in standard cases. For
instanc~, if E is in~;~rtible, then {2.1a) may be rewrittan as

py - E"`Aa } E-`f t xo (2.3)
and s~rr:, (sI - E-'Al is in~ertibl.. as a ratior.el ;natrix, we
find that for every pair (xo, f) e IR~lx cimp, (2.3) has exactly

une solution, namely
x - (pI - E-`AJ-'[E-'f t xoJ, (2.4)

by Lz:nma 2.1. Now (pI - E"`A)'' can be identifizd with th2
smooth function zxp(E-'At) on At' [13, p. 375J. Thus, if f e C1sm'
then it follows directly that x in (2.4) corresponds to the
fUnctron (1.2) on ~R', and x(0`) - xo.

?Je~t, let us consider our Examples 1.1 and 1.2 in the
distributional vzrsion (2.1a).

Exac,pl~ 1.1 continuEd.

~0 1 [x ~ 1 0 1 x fT),e D~E p 0 Ol lx, - [0 1 J[xz, } [f2J } LO 0] LxO2] has as

soluti,,ns x,~ -- f, - pf~ - xosl, If f, and f2 are s:nooth,x, - f Z j
then pf Z- f 2 t f Z(0') . Hence, if xo, -- f,(0') - f-(0') , xo; -

- f2(0'} (i.e., xo is consistent), then x'~ -[- f' - f: and[xZ~ ~- f Z J
x,(0'} - x~,, x2(0'i - xOZ, in accordance with Kronecker, see
Example 1.1. !~fore g~nerally, if xo2 -- f z(0') , xo, arbitrary,

theii, aqain, (x'] -( f' - f z~, but not necessarily x(0') - xo
Lx 2 J l- f~

- ir, fact, only E(x(0'} )- Exo. Moreover, if f, - f z - 0, then
x2 - 0, x, -- xo, (- - x02b), as was stated earlier [16J.
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Example 1.2 continued.

If f in the DAE
1 0 0 0 x 1 0 1 0 0 x 1 f 1 1 0 0 0 x o 1
0 0 1 0 xz - 0 0 0 0 x2 f 2 0 0 1 0 x

p 0 0 0 0 X3 - 0 0 1 0 X3 } f3 } 0 0 0 0 X03
0000 x~ 0000 x~ f~ 0000 xo~

is smooth, then we get

xl - P~'[xZ t fi t xoi].

- ~ , - f,(0') - f2 } ~03~ x3 - - f3,

0 - f 4

Hence, if f~- 0, f Z-- f, and X03 -- f 3(O`) (consistent) , x2,
x, e csm are taken arbitrarily (with initial values xO2 and xo „

respectivaly), then x3 corresponds to - f3 and xl to (xo, t
ft(x2(r) t f,(r))dr) on ~R`, in accordance with Example 1.2.0

Our Examples clearly suggest that S(xo, f) contains at
least one smooth solution x that actually starts in xo if xo is
chosen consistently. In the next straightforward result we will
prove that this is generally true.

Proposition 2.2.

Assume that, for a given smooth forcing function f, xo t~n is
such that (l.la) has a smooth solution x with x(0`) - xo. Then
(the distribution) x e S(xo, f}.

Proof. We have Ex - Ax t f and x(0`) - xo. Then Ex(0'} - Exo and
thus pEx - Ex t Exo - Ax f f t Exo, i.e., x e S(xo, f).

Thus, our framework does not only cover e.g. [2], [5], [13]
-[14], [16], [18], but also [6], [17]. Observ2, moreover, that
the special choice of smooth functions in Cimp obviates the

problem of choosing the riqht solution set for (l.la); without
any a~riori choice for the solution set in Example 1.2, x~
might have been any function and xZ miqht have been even
discontinuous. The same difficulty occurs w.r.t. the forcing
function f; if in Example 1.1 f~ is continuously differentiable
and f, continuous, then x is continuous, whereas in Example 1.2
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x is continuous if f, is merely locally inteqrable. Note, in
addítior., that the question of (in)consistency is decided in the
origin (our impulses have support in 0), and that smooth inputs
do not limit the control possibilities in (2.1b) e.q. [3], [7],
(9], ,`11], [13], (18]. On the other hand, a distributional setup
for DAEs and systems (2.2), incorporating a larqer class than
cimp, is certainly possible (see e.g. [4] and [8, Remark 2.5]},

but it is our belief that then much of the ~nethod's elegance
will be lost unnecessarily.

612 will close this Section rrith our Main Leinma, togethar
with Lemma 2.1 the buílding-stones in [10] and in this paper.

Main Lem:r.a 2.3.

L:~t x„ e!F~n, f- f~ } fZ, f, e cl , f. ~- Cl , x- xl } x2 ep--imp sm

S(x~, f', x, - ~-p-imp' '~Z e esm. Then

pExl t E(x,(0') )- Axl } f t f Exp, (2.5a)

pExz - Ax2 t f2 4 E(x2(0')). (2.5b)

Proof. Ne have pExl t E(xz(0`; i} E[px2 - xz(0'} j- Ax, t f t }
Exo } Ax, } fZ and pxZ - xZ(0`) -~2, smooth.

Corollary 2.4.

Assume that x e Slxo, f) n rsm, f e Csm. Then Exa - E(x(0')).

Proof. Since x, - 0, u, - 0, the claim follows from (2.5a).

RemarY. 2.5.

The conv~-rse of CornllarY 2.4 is not tru2; a counterexample is
qiven in [10, Remark i.7]. Corollary 2.4 expresses, that not so
much the property x(0') - x, as its qeneralization E(x(0`)) -
Exc is strongïy related to the questiou of smoothness for
solut-ons : of rhe DAE (2.1a) (see also Example 1.1 c~.arir,ued).
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3. Solvability.

Ge -onsid~r th~ DAE
pEx - Ax t f t Exo (3.1a)

and the associated system
pEx - Ax t Bu t Exo, (3.1b)

with xo E rt~n, f E c.imp, u E C~mp, and the corr2spondinq solution

sets S(xa, f), SC(xo, u) (("l.2)). In [8, Dafinitions 2.4, 4.1,

4.5; the following dzfinitions of solvability for tha DAE and
thc syste:~ are proposed.

Definition 3.1.

Let f ~~:imp be qiv2n. Then the DAE l3.la) is -:,-,It~at.l-- 1-~.~. t if

3x e~n: S(xo, f) s 2.
0

If f E Csm, then (3.1a) is solvable ior f i!r th~~ t rtn.. ! iv!! ~. r~st.

if 3.{ E~n: S(x~, f) n Csm s 0.
-o

The system (3.1b) is ~: -s~-~ItJt-1~ if

~x E IRn3U E Cm : SC ( Xo. U) ~~D.
~ lmp

Th~ system (3.1b) is C-solvable 11: tIlr fllA~-tl~~l) ';eusr if

vx ~~n3u E cm : SC(xa, u) n c.sm m m.
6 sm

It is clear that DAE-solcability and C-solvability are two
fully different concepts. uhereas, for a qiven f, the DAE is
soivabla if for at least one xo, the solution set S(x,, f) is
nonempty, C-solvability requires that for every xo there exists
an input u such that SC(x „ u) m Q. The latter definition finds

its r~~ots in the kncKledqe, that in many control problems xo,
int~rpreted as :t(0-~, may be arbitrary (unknown), as a result of
whic; one ma;~ want to design some control law that does not
depznd explicitly on the initial condition, but rather works for
all possible stat2 ~~alues "in the same way" (feedback laws in
cor,trol prcbl~:~.s, for instance [3], [13J, [18J).
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The 3~finitio:: cf DAE-solvability should be interpreted as a
ger,e,alization in trrms of distributions of earlier definitions
for JAE-solvability in the function sense [6), [17]: In Example
1.1 only one initial condition xo is consistent; in other words,
only for this xo the set S(xa, f) contains a smooth element ti~at
starts in xo. If x, is called rans~~tent in (3.1a) if S(xo, f)
(f smooth} contains a smooth x with x(0') - xo, then consistency
in the ordinary sense can be identified with consistency in
(3.1a) (see Proposition 2.2). Now, let us take a better look at
our concept of llAE-solvability.

Lemma 3..:.

N1Let f e sm be given and xo e mn b2 such that S(x~, f) contains

at least one smooth - lement x. Then there exists a consistant
initial condition xo. In fact, x e S(xo, f) and Exo - Exa.

Proof. Let x E S(xa, f) n csm. Then (Corollary 2.4) E(x(0')1 -
Exo and hence xo - xi0') satisfies the requirements by th2 Main
Lemma 2.3:

In particular, it follows fron Lemma 3.2 that there exists
a coiisistent initial condition for (3.1a) with qiven smooth f if
(3.1a) is solvable for f in the function sense. In Theorem 3.3
we show that the existence of a consistent initial condition is,
essentially, equivalent to DAE-solvability.

Theore~r. 3.3.

If f - f, t f z, f, e Cp-imp, f 2 e Csm and x t S(xo, f) for some

xo e~rn, then x(0') :s consistent for fz. In particular, if f e
es~,, then

(3.1a) is solvable for f o 3xQ E~n: xo consistent for f.

P:-oof. If x- xt t rZ, x, e Cp-imp, xZ E Csm, then, by ( 2.5b),
x~ E S(a(0`), f2) ar.d, obviously, xZ(0') - Y.(O').
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Theorere 3.3 states that the DAE ïl.la), with f smooth, is
solvablz in the sense of Kronecker [6], (17], i.e., there exists
a consistent point xo, if and only if our DAE (3.1a) is solvable
for f in the distribution sense. Thus, our approach covers the
usual conceptions of solvability in the function sense on one
hand, but on the other it allows much more inputs as well as
solutions for the DAE.

Example 1.2 continued.

Assum2 that fZ - fZl t fz2 and f, - f31 f f32, fZl, f31 e
k

Cp-i~p, f21 - i aipl (k ? 0, all ai real), and f3z, f32 e Csm.i-0
Then the DAE is solvable if f, - 0, - f32 - fz2, - Pf3, - f1, -
a,; xo, must equal - f72(0`) - ao. If f is smooth, then the DAE
(3.1a) is solvable if f, - 0, - f, - f, and xo, -- f,(0`). Thls
agrees wlth earlier findinqs in Sections 1 and 2.

Exar~ple 1.2 illustrates that for an arbitrary DAE, with f eiClmp qiven, it seems rery hard, if not impossible, to d~rive a

conditlon that is not only sufficient, but also necessary for
sol-rability, i.e., for the existence of a poiut x„ such tliat
S(xo, f) x~r. However, we can get very "close".

Lemma 3.4.

AssumE that (3.1a) is solvable for f e C1 . Then there exists ai[rp

1~[0, 11, a f ~ cimp and E, A e a?1~, [E, A] of full row rank,

such that, if
~E~ - Ax t f} Ex „ (3.2)

and S(x.o, f) :- Ix e Cimp~[pE - A]x - f t Exo) (3.3}

(x, - atll) then

x e S(x~, f) c}: E S(xo, f).
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P:oof. Without loss of generality, we :nay assume tiiat [E A] -

~Y1~ [E A] with E, A E Rl~m Y E R(1-1) xll [E A] of full row

rank, and let f-(gl b2 partitioned accordingly. Then, let xo E

Rn and x E C'~ be such thatimp
p(YIEx - fYlAx t fg l } ÍYIExo

(suct: xloland x LexJist! ),l Jthen l-JYf f q- 0, i.e. , g- Yf . Hence

pEx - Ax t f f Exo.

The converse is now clear.

Exae~pie 1.2 cor.tinued.

If th? DAE is solvable for f, then f~ - 0. Here, we have

E- [000a, N- ~OO~ó J , f - ~f~l.

Zt follows fro:r. Lem:~a 3.4 that, without loss of qeneral~ty,
xe may assume [E A] to be of full row rank if the DAE {3.1) is
solvable for given f e cimp. Since, by Lemma 2.1,

[E A] full row rank o
[A - sE, E] right invertible as a rational matrix,

it is easily seen that, if [E A] is of full row rank, then, for

~c~,ic~ f~ Cimp, [X ~:- ~R'~p1](- f) is such that pEx - Ax f f t

Exo with (R'(s)l a right inverse of [A - sE, E] (Le~nsa 2.1) -
l : 1

however, xo - RZ(p)(- f) need not be constant (- constant times
b). This observation shows, that the condition

[E A] full row rank
is indeed ~ery "close" to DAE-solvability - unfortunately, not
close enough. However, conditions for "global" consistency and
"globa.l" weak consistency in the DAE-sense will be derived in
Section 4.

As for C-solvability, we have the next result.
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Theore:r 3.5.

The system (3.1b) is r-solvable if and only if
vn(s) E Blxl ( s) . q(s) [A - sE, Bl - 0 o r~(s) [E A B] - 0.

Proof. without loss of generalíty, we may assume that [E A B] -
~Yl l[E A B] with [E A B] of full row rank. ~ The condition is

J ,
2quivalent to right-invertibilíty of [A - sE, B]. If (R'~s~l is

l 2 J
a right inverse, then, for 2very xo e~tn, lul .- fR'(p)1(- Exo)

is such that [A - pE, B] ~Uj -- Exo (Lemmal2J.1). I~ZAssume that

r~(s) [A - sE, B] - 0. Th2n q(p) [A - pE, B] - 0(Lemaa 2.1) and

hence, by definition of C-solvability, q(p)Ex,, - 0 for all xo,

i.2., q(p) [E A BJ - 0 and thus q(s) [E A B] - 0. This compl~tes

the proof.

Corollary 3.6.

If [E A B] is of full row rank, then (3.1b) is C-solvable if and
only if [A - sE, B] is right invertible as a rational matrix.

ln Theorel,. 3.3 ~re sa~: that DAE-solvability ~n the
distribution sense is equival2nt to DAE-solvability in the
functior. sens~. For C-solvability, things are less aasy.

Exa~ple 3.7.

The s;~stem p ~D 0~ ~x2~ - ~O 0~ ~x:J } [D,u } [0 D~ [xoz] is

C-solvable, but not C-solvable in the function sens2: For every~
~co -~xo' we have x, - 0, u-- xo,, i mpulsive.

xo:

Section 4 contains a condition that is necessary and
suffi~-ient for C-solvability in the function sense. Example 3.7
does not satisfy this condition, whereas [A - sE, B] is riqht
inJertible (Corollary 3.6).
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4. Consistency and weak consistency.

Zn S2ction 3 a point x, is called DAE-consistent for (3.1a)
with given smooth f if S(xo, f) contains a smooth x with x(0') -
xo. In Definition 4.1 we distinguish between consist2ncy and its
generalization, weak consistency [8, Definition 3.1].

Definitiun 4.1.

Consider ( 3.1a) with f e clsm'
A point xo e~n is called D.tE-corrs-sr,.rrt with f if

3x e S(xo, f) i~ Csm: x(0') - xo.

The sét of these poínts is denoted by IDAE(f)'
A point x, E atn is called weakls~ DAc-consi~trnr wrth t if

s(xo, f) n cn s a.sm
The set of th2se points is denoted by IDAE(f)'
Consider (3.1b).
A point x, E 9tn is called C-cor~s-istent if

3u E CSm3X E SC(Xp, ll) n Csm~
X(~~) - X~.

The set of these points is denoted by IC.
A point xo e~tn is called weakly' C-c~~ns:istent if

'u e c : SC lx,, u) ~1 ~m ~~
sm sn`

The set of these points is denoted by I~.

Proposition 9.2.

The DAE (3.1a) is solvable for f E csm " IDAE(f) ;t a. The

system (3.1b) is solvable in the function sense r.~ I~ - átn.
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Proof. IDAE(f) ~ m if and only if (3.1a) is solvable for f in

the function sense (Definition 3.10); if (3.1a) is solcable for
f E Csm, then IDAE(f) t m byi~ieol~.rn33 and IDAE(f) ~ IDAE(f)'
The second claim is trivial, by definition.

Once more, we establish that DAE- and C-solvability are
different concepts. This distinction is also apparent in the
next Theorems on "qlobal" consistency and "global" weak
consistency.

Theorem 4.3.

Assume that in (3.1a), rank [E A] - 1 and f e csm. Then

IDAE(f) - Atn o im(E) - ~Rl, (4.1a)

IDAE(f) - atn s~ imlE) f A(ker(E)) - IR1. (4.1b)

Proof. First statement. c Assume without loss of generality that

E-[I1 O], A-[A, AZ]. If x- IX'~ xo -~Xol~ are partitioned
l z oz

accordinqly, then (3.1a) is of the form px, - Ax, } Ax2 t f t
xo,. If we choose x2 - p-'xC2 (smooth, x2(0') - xO2), then x, -
(pIl - A,}-`IAx2 f f t xo,), smooth, and x,(0') - xo,. ~ Assume

that qE - 0. It follows that qAxo t qf - 0 for all x~ and hence
qf - 0, qA - 0. Thus, q- 0 since (E A] is of full row rank.
Second statem2nt. Assume that im(E) s rttl. Then, without loss of
qenerality, we may assume that (3.1a} is of the form

p [0 0] [xz j - [AZi AzaJ [xz, } [f z, } [0 0, fKo2,.
(4.2)

c It follows that AZZ is of full row rank; let AZ,' be any right
inverse. Let xo,, x0z be arbitrary. The solution of

px~ -[A~i - AizA::}Aa,]x~ f[fl - AtzAzz`fz] f xoi

is smooth with x,(0') - x,,, and x2 -- A22'[AZ,x, t f,] is
smooth as well. Ke hace shoxn that every point xo is weakly
DAE-consistent with f. a Xe must prove that AZ~ is of full row
rank. Thus, let pA2, - 0. It follows that qA21x „ f qf2 - 0 for
all xol, because of Corollary 2.4. 8ence qf2 - 0, r~A21 - 0.
Since [A21 AZZ; is assumed to be of full row rank, we get q- 0.
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Remark 4.4.

Observe that the conditions in (4.1) imply that [E A] is riqht
invertible and that without loss of generality xe may assume
[E A] to be riqht invertible if the DAE is solvable (Section 3).
If det(sE - A) s 0, then [E A] is automatically of full rox rank
and Theorem 4.3 reduces to [8, Theorem 3.7]. In Examples 1.1 and
1.2 we have IDAE(f) s~n

Theorem 4.5.

Assume that in (3.1b), [E A B] is of full row rank. Then
IC - IRn ey im(E) t im(B) - etl, (4.3a)

I~ - Rn o im(E) f im(B) t A(ker(E)) - IR1. (4.3b)

Proof. First statement. If im(E) -~1, we are done. Thus, let
im(E) ~ rtl. Then we may assume that the system {3.1b) is in the

form (4.2) with fi - Biu (i - 1, 2). ~ The condition is

equi~alent to riqht-invertibility of Bz; let B,' - B,'(BzB2')-`.
If xo, and x02 are arbitrary, then the control u- BZ'( - A21x,
- A,Zx2), with x2 - p''xO2 and x, the solution of

pv -(A~~ - B,Bz~Aza)v t(A,: - B,Bz`As2)xs } xo~~
M

is in
csm, [X']

e SCl ~Xo'~, u) n Csm and x,(0') - xo,, x2(0') -
z oz

x02. a Ye must show that B2 is of full row rank. Thus, let qBZ -

0. It follows that q[A21 A22]fxo'l - 0 since every xo is
lxoz1

C-consistent. 8ence q[A21 A22J - 0, which yields q- 0, because
[E A B] is of full row rank. Second statement. Aqain, assume
that im(E) s rttl, and let (3.1b) be in the form (4.2) with f. -i
Biu (i - 1, 2). c we have that [A,Z BZ] is of full row rank; set

R- A22A2~ } B,BZ' ~ 0. Let xol~ xoz be arbitrary. The input u-
B,'R''( - A21x,) with x, the solution of

,
pv -(A„ - [A~z B,l B2? R-'Az.)v f xo~~
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is smooth and if x2 - A„'R-'( - AZ,x~), then fX'1 e Csm n
l :J

S([xo`l, u) and xl(0') - x,,. Hence xe establish that every x,C x02J
is xeakly C-consistent. ~ We must prove that [A22 Bz] is riqht
invertible. If q[AZZ B2] - 0, then qA,lxot - 0 for all xa, and
hence q[A21 A2, B,] - 0, i.e., q- 0. This completes the proof.

Remark 4.6.

The conditions in (4.3) imply right-invertibility of [A - sE, B]
and hence also riqht-invertibility of [E A B]; note on the other
hand that, xithout loss of qenerality, [E A B] may be assumed of
full rox rank in (3.1b). If det(sE - A) ~ 0, then [A - sE, BJ is
right invertible, [E A B] is automatically of full rank and
Theorem 4.5 reduces to [8, Theorem 3.8]. Example 3.7 does not
satisfy (4.3b).

Example 4.7.

Consider the system

p [ó óJ [XzJ - [o a~ [X2] } [oJu } [o ó] [Xó2l.
Clearly, x~ - p'`xol, smooth, xl(0') - x,l, and u-- x,. Since
for every xO2 xe can choose any smooth function x2 xith x2(0') -
x0z, xe establish that every xo is C-consistent. Indeed, rank
[E, B] - 1.

Example 4.8.

The system p[C
CJ Ixz, -[1 Cl] [x,, }[CJu }[C OJ [xo2,

is such

that every xo is xeakly C-consistent, but not C-consistent; if u
- 0, then xl - p'`xo! and xZ -- x,. If xo, t xO2 ~ 0, then
there does not exist a smooth control u such that the unique
state trajectory x e SC(xo, u) is smooth and x(0') - xo.
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Remark 4.9.

ite have seen that the condition in (4.3b) is equivalent to the
existence of a smooth control u and a smooth state trajectory x
e SC(xa, u) for every initial condition xo. In this sense the

system ( 3.1b) may be called io~puts~. contrull.,ble if (4.3b) is
satisfied, since for every xo there exists a function u such
that tlie solution set SC(x „ u) has at least one element x that
has no impulsive part. Althouqh Cobb uses a different definition
for impulse controllability in [4], he interprets it in the same
way in [3] as we do here, and moreover, proves equivalence of
his impulse controllability and (4.3b) by means of state space
decomposition in [4, Theorem 4] for the case det (sE - A) t 0.
Our Theorem ( 9.5) shows the equivalence of (4.3b) and impulse
controllability for arbitrary systems ( 3.ib) with [E A B] of
full rox rank. Also, observe that (4.3b) is expressed in the
system coefficients only, without any extra parameter as in [18,
Theorem 2].
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Conclusions.

Our distributional framework for linear DAEs with constant
coefficients and for singular systems on ~t` covers well-known
earlier DAE- and sinqular system interpretations. It enabled us
to define satisfactory concepts for DAE- and system-solvability,
in the distribution as well as in the function sense. We saw
that DAE-solvability in the distríbution sense is, essentially,
equivalent to the usual concept of DAE-solvability, and derived
a condition for system solvability. Then, consistency for DAEs
and systems was redefined in terms of distributions and we
introduced its qeneralization, a.eak consistency. Whereas a point
is consistent if the corresponding solution s2t of the DAE
contains a function that starts in that point, we call a point
weakf~~ consistent if this solution set merely contains a
function. Finally, we presented conditions for global
consistency and qlobal weak consistency in the DAE and the
system sense and established that qlobal weak consisterrcy ín the
system sense is equivalent to impulse controllability, i.e., to
the possibility to find for every initial condition an ir~put
function that yields at least one functional state trajectory of
the system. Because of linearity and of our special class of
distributions, we could keep our treatment fully alqebraic, and
h2nca easily understandable.

This paper was written in Auqust 1991, when the author was with
the Mathematical Institute of Wuerzburq University, Am Hubland,
D-8700 Wuerz burq, as an Alexander von Humboldt-research fellow.
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