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The purpose of this article is to examine the effects of a concave ad-

justment cost function on the optimal dynamic investment policy of a

firm. Such an assumption facilitates the explanation of stepwise ínvest-

ment expenditures in stead of continuous investments. Therefore, an op-

timal control model is formulated which allows discontinuities in the

level of capital good stock. Using the condítions of the optimal solu-

tion we will design a search procedure which enables us to develop the

optim~il investment pattern.

1. INTRODUCTION

In the literature, adjustment costs within dynamic investment models

nearly always are convex functions of investments. This implies rísing

marginal costs compared to the rate of investment. In that case adjust-

ment costs are minimized through spreading out investment expenditures

as much as possible over time. Investments are a smoothing problem.

In this contribution we will introduce a concave adjustment cost func-

tion. Such costs imply decreasing marginal costs of investments and

thereEore tt is optimal for the firm to invest either very much or

nothíng at all. Investments now become a scaling problem.

We wi11 formulate an optimal control model that allows discontinuities

in the development of capital good stock at those moments when the large

investment expenditures take place. To solve this model, we combine the

necessary conditions based on Pontryagin's maximumprinciple ( see e.g.

Kamien á Schwartz (1983)) with some additional "jump" conditions, which

have been designed by e.g. Seierstad á~ Sydsaeter (1986).

From the optimal solution we infer a search procedure that helps us to

fíx ttre optimal poínts of time to invest as well as the optimal scales

of the investment expenditures at the different points of time. The same



kind of search procednre was applied hy Luhmer (1986) in order to solve

an inventory probiem.

Section 2 contains a short description of the theory of adjustment costs

with the accent on the concave form and i ts implications. In section 3

our dynamic model with concave adjustment costs is presented, whereas

section 4 contains a description and further analysis of the optimal

solnticin, which i s maChematícally i nFerred in the appendix.



2. 'fHF. THEORY OF ADJUSTMENT COSTS.

In the ltterature a distinction is made between convex and concave ad-

justment cost functions.

adjustment ~
costs

convex

concave

j investment
expenditures

figure 2.1. a convex and a concave adjustment cost function

Convex adjustment costs apply to a monopsonistic market of capital

goods: if the firm wants to increase its rate of growth it will be coir

fronted with increasing prices on the market because of its increased

demand of capital goods. Because convex adjustment costs imply ristng

marginal costs, large investment expenditures are very expensive. There-

fore, the Eirm will tend to adjust its capital good stock slowly in

s[ead of instantaneously: Investments are a smoothín}; problem.

In the líterature most models have incorporated sucfi a convex adjustmen[

cost function. Some authors, however, like Nickell (1978) and Rothschild

(1971), have argued that there are important economic reasons which

plead Eor a concavely shaped adjustment cost function, such as indivisi-

bilities, use of information, fixed costs of ordering and quantity dis-

counts. In order to illustrate [he first two arguments we give two quo-

tations of Rothschild (1971):

"Training involves the use of information (once one has decided

how to train one worker, one has in effect decided how to train

any number of them), which is a classic cause of decreasing

costs. Fur[hermore, the process is subject [o some indivisibi-
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lities. It requires at least one teacher to train one worker.

Presimmably no more teachers are required to train two or three

workers."

"Similarly, reorganizing production lines involves both the use

of information as a factor of production - once one has decided

how to reorganize one production line, one has figured out how

to reorganize two, three or n- and indivisibilities - one may

not be able to reorganize only half or a tenth of a production

line."

If the adjustment cost function is concave, marginal costs are decrea-

síng with increasing investment expenditures. Therefore, the firm mini-

mizes its adjustment costs if its investment policy consists of an al-

ternation of very large investment expenditures and zero investment ex-

pendítures. In this way an impulse pattern arises which causes disconti-

nuities in the development of capital good stock. Accordingly, we incor-

porate concave adjustment costs in an optimal control model that allows

díscontinuities in the state variable.
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3. THE MODEL

We first assume that the firm behaves as if it maximizes its value for

the shareholders. This valuz is expressed as the value of the profits

over the planníng period plus the value of the firm at the planning

horizon. The profits are in thís model the difference between the pre-

sent value of the earnings stream and the sum of the present value of

investment expenditures and adjustment costs, the final value of the

firm eyuals the present value of the final capital good stock at the end

of the planning period. Further, we assume that the firm operates under

decreasing returns to scale and that the adjustment costs are a concave

function of investments.

The above results in the next goal function:

z
max J S(K) exp (-iT) dT - E(IjfU(Ij)) exp (-íTj)
I.,j - 1,2,...,n T-0 j
~ t K(z) exp (-iz) (1)

in which
Ij - j'th investment expenditure
T

z
K

~ time
~ planning horizon
- total amount of capital goods

~
S(K) - earníngs, S(K) ~ 0, áK ~ 0, d-2 ~ 0

dK
U(Ij) - adjustment costs of j'th investment,

2

Tj
1

U(Ij) ~ 0. dI. ~ 0, d2~0, U(0) - 0
~ dIj

~ point of time of j'th investment

~ discount rate

We also assume that the amount of capi[al goods will increase by invest-

ments and decrease through depreciations, which are proportional to the

value of the capital goods. So, we get the next state equation of capi-

tal good stock:

K x dT ~- aK if T~ Tj, j a 1,2,...,n. (2)
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ín which
a - depreciation rate

K}(T) - K(T) - Ij if T- Tj, j- 1,2,...,n. (3)

tn which

1C}(T) - amount of capital Roods just after the investment im-

pulse

K-(T) - amount of capital goods just before the investment im-

pulse.

Investments are irreversible, so:

Ij ~ 0 for j- 1,...,n (4)

Finally, we assinae a positive value oE the capital good stock at T- 0:

K(0) - K~ ~ 0 (5)

Now (1) through (5) form our dynamic investment model with concave ad-

justment costs. As discontinuity of the state variable K is allowed, it

is a non standard optimal control model. So, besides Pontryagin's maxi-

mumprinciple we have to apply additional optimality conditions which

have to be fulfilled at jump locations. These kind of necessary optima-

lity cundítions are described by e.g. Seierstad 5 Sydsaeter (1986). The

application to our problem can be found in the appendix.
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4. OYTIMAL SOLUTION

At the locatíon of an investment impulse, the following equation must

hold:

(6)

In the appendix, we obtain that also the following two expressions must
hold at the moment of an investment impulse:

~ 0 for T - 0
S(K}) - S(K )- a(lt áÍ)Ij - i(U(Ij)tíj) - 0 for T E(O,z) (7)

~ c 0 for T~ z

1~ áÍ - exp (-(ita)(z-T)) t J áK exp (-(ita)(t-T))dt (8)
j t-T

The left-hand side of expression (8) represents the costs of increasing

the investment expenditure by one unit; at the right-hand side we find

the marginal earnings of investments consisting of the present value of

the remaining new equipment at the end of the planning period (the value

of [he new equipment decreases with depreciation rate "a" during the

rest of the planning period) plus the present value of additional sales

over ttie whole period due to this new equipment (the production capacity

of this equipment decreases with a rate "a" during the remainder of the

planning period). Expression (8) thus means that at all locations of

investment impulses, marginal costs of investments must equal marginal

earnings. This is easy to understand, because on the optimal production

plan tlie cost of adjustment involved in installing one additional unit

of capi[al good stock must always balance the net gain of the adjust-

ment. For if it does not balance then either one unit increase or one

unit reduction of the investment at that moment will lead to an increase

in the present value of the firm.

Equations (6), (7) and (8) together may be exploited for a search proce-

dure in order to obtain the optimal investment pattern. This can be done

in a similar way Luhmer (1986) established the optimal ordering plan of

the ínventory problem under consideration. Contrary to Luhmer, our
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search procedure star[s at z and goes backwards in time, in stead of

starting at the initial time point and continuing in course of time un-

til the planning horizon is reached.

The search procedure, that is represented by figure 4.1., starts by

choosing an arbitrary value of K(z). Obviously, due to (8) no investment

impulse can occur at the planning horizon itself, so we can go immedia-

tely to period T- z-1. We obtain the magnitude of K(z-1) by substitu-

tinQ z-1 for T into the differen[ial equation according to which K be-

haves durin~; time intervals at which there is no investment imptilse.

Then we equalíze K(z-1) and K} and insert this value in (6) and (7) in

order to get the correspondíng values of I and K-. Next, we check

whether the obtained value of I fulfills the equality sign of expression

(8). In case of an inequality no investment impulse takes place at this

point of time; we now go to the previous period and continue the algo-

rithm. If equation (8) holds, however, the investment impulse is opti-

mal, K(z-1) becomes equal to K and we contínue in the same way as be-

fore. The algorithm stops as soon as the start of the planning period is

reached. From the initial state constraint (5) we can check if an in-

vestment ímpulse is necessary at time point zero. If it is not, the ob-

tained solution is feasible and if it is, the solution is only feasible

when the magnitude of the investment impulse satisfies the inequality

sign (!) of (7) and equation (8).

By applying this search procedure we can develop investment patterns for

every K(z). It depends on the corresponding value of the goal function

which of these patterns is the optimal one.
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~---F--

Ichoose K(Z)

T - z-11
---r- - -

r K ('I'~ - C exp(-aT)

ln which

C- K(z) exp(az) i f no investment impulse has been
found yet
K (t~) exp(at~)

in which
~t - point of tíme of the last found invest-

ment impulse -- - ---.--
-

- 7..
-- ------

-}
l-K K(T)

-~ ------- --
~substitute K} in (6) and (7)

--~--solve ( 6) and (7) to obtain1 K and I-- - --- --- ---

su~itute I i n (8) and check

lif ~8).holds ------..-----J

T - T-~
I

- . { ; - .- .-- - -.- - ,
-`CT - 0. ~check through (5) h'-

iif initial invest-j
jment impulse is
jnecessary ~

rheck if (7) ~solutionis~-~
nd (8) hold ~infeasible

a

~

solution is feasible

figure 4.1 the search procedure which enables us to develop the

optimal investment pattern.
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Appendix Derívation of the investment decision rule.

definitions:

~, - co-state variable

H - hamiltonian

g(K ,Ij,Tj) - K} - K

-h(K-,I~,Tj) - total cost of the investment expenditure

The additional necessary conditíons, developed by e.g. Seierstad S Syd-

saeter, are the following:

at thc~ 1 p points, i t must hold that:

t - ~h f 3~
~ - `~ - - áK - ~ 3K

3h t y,} ~ - 0
8Íj aIj

f - 2h f 8g
H - H - 8T - ~ 8T

~ 0 for T - 0
- 0 for T E (O,z)
t 0 for T- z

(9)

(]0)

for all T at which there is no jump, i t must hold that:

aI(K-,D,T) } ~ a~(K ~o,T) ~ n

From thP model of section 3, we get that the following must hold:

h(K-,Ij,Tj) - -(IjtU(Ij)) exp (-iT3)

g(K ,I~,Tj) - Ij

(l2)

(13)

(14)

Applying the maximumprinciple of Pontryagin to the model of section 3,

we obtain the following necessary conditions:

H - S(K) exp (-iT) - ~aK

- ~ - dK exp (-iT) - a~,

(15)

(16)
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y,(z) - exp (-iz) (transversality condition) (17)

After substituting (13) through (15) in (9) through (12) we get:

at the jiunp points, it must hold that:

y,}-~, -0

-(lt dÍ) exp (-iT) f ~ ~ 0
j

(18)

(19)

~ 0 for T~ 0
H} - H - i(U(Ij) f Ij) exp (-iT) - 0 for T E(O,z) (20)

C 0 for T- z

Eor all T at which there is no jump, it most hold that:

-(lt áÍ (I-0)) exp (-iT) f,~ c o (21)

From (l8) we can conclude that ~y is continuous at every jump point. Due

to the insertion of (15) in (20) we obtain that at a jump point it must

hold that:

(S(K )-S(K )) exp (-íT) - a~y(K}-K )

~OforT-O
-i(U(Ij) t Ij) exp (-iT) a 0 for TE ( O,z) (22)

t 0 for T 3 Z

AEter substituting (6) and (19) in (22) and devíding this equation by

exp (-iT) we get:

~ 0 for T ~ 0
S(K}) - S(K )- a(lt áÍ)Ij - i(U(Ij) f Ij) a 0 for T E(O,z)

~ t 0 for T~ z
(23)

If we substitute in the solution of the dífferential equation (16) the

transversality condition (17) we get:
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z
~,(T) 3 exp (aT) J áK exp (-(ifa)t)dt t exp ( aT) exp (-(ifa)z)

tsT
(24)

From (19) and (24) we finally derive that at a jump point it must hold

that:

1} ái. - J dK
exp (-(ifa)(t-T))dt f exp (-(ifa)(z-T))

~ t-T (25)
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