s A T




ON THE DIFFEREQTIABILITY OF THE SET OF
EFFICIENT (u,c”) COMBINATIONS IN THE
MARKOVITZ PORTFOLIO SELECTION METHOD

J. Kriens

FEW 420



Errata FEW 420

yo I | This Memorandum earlier appeared as a chapter in "Twenty-five
years of operations research in the Netherlands": Papers Dedicated
to Gijs de Leve, C.W.I. Tract 70, edited by Jan Karel Lenstra,
Henk Tijms, Ton Volgenant, Centre for Mathematics and Computer
Science, Amsterdam (1989).

0*‘[y)1\

o‘ztﬁ?)

p. 4 1I0E L3 aoe we o this nature “:{—//

1dme Il sssvnss this nature



On_the differentiability of the set of efficient_gju.cz) combinations in

the Markowitz portfolio selection method

)
J. Kriens

Tilburg University, Department of Econometrics
PO Box 90153, 5000 LE Tilburg, The Netherlands

Contents

1. (} eneral

2 I) riving through the literature on differentiability propertics

2 IZ xplicit expressions for efficient portfolios

b, IJ ooking at an example of nondifferentiability

5 IE vident necessary and sufficient conditions for nondifferentiability
6. \/ erification of the conditions in some examples

Ts IE vidential matter

Abstract

In this paper differentiability properties of the set of efficient (u.dz)

combinations are discussed. After a review of statements made in the lite-
rature, two conditions for nondifferentiable points are derived and il-

lustrated with some numerical examples.

*) I'm grateful to H. Geerts and A. Volgenant for their cricital remarks
on an earlier version of this paper and to L.W.G. Strijbosch for his
assistance in making the computations.



1. General
Markowitz studied the following investment problem, cf. H.M. Markowitz

(1956), (1959). An investor wants to invest an amount b in the securities

1,...,n. If he invests an amount xj in security j, then

There may be more linear constraints; suppose
(1.2) A4Xx =8B

and

(1.3 %3 @

should be satisfied with & an (mxn)-matrix, B an m-vector and X' =

(XJ""'xn)'

The yearly revenue on one dollar invested in security j is a random va-
riable Ej with & Ej = uj; the covariance matrix of the Ej equals 8 . De-
note the yearly revenue of a portfolio X = (x .....xn)' by r(X), the ex-
pected value of r(X) by wm(X), its variance by 67 (X) and let M' = (ul,...
un). Then

(1.h) m(X) = M"X

and

(1.5)  &(X) = X' B X.

In order to find "good" solutions of the problem, a risk averse investor
may put a restriction on p(X) and then minimize UZ(X). or put a restric-

tion on GZ(X) and next maximize u(X). Markowitz studies the problem from a

more general point of view and introduces the notion of efficient portfo-

lio. A feasible portfolio X = X is efficient if:



a) no feasible portfolio has a revenue with larger or equal expected value

and smaller variance, and
b) no feasible portfolio has a revenue with smaller or equal variance and
larger expected value;
cf. H.M. Markowitz (1959), p. 310.
In the (u.dz)—plane this means that if a portfolio X = X is efficient,
there do not exist feasible portfolios with corresponding (M(X),GZ(X))

points in the closed rectangle < 62(2) and i u(i), e, fig. 1.1,

Fig. 1.1. No feasible portfolio with (u(X),GZ(X)) in the shaded area.

According to Markowitz all efficient portfolios can be derived by solving

(1.6) min{X' 8 X - AM'X| 4 X =B ~ X > 0}
X

for all X g 0, cf. H.M. Markowitz (1959), p. 315-316. A precise and more
general statement of the theorem underlying the algorithm is given by J.

Kriens en J.Th. Van Lieshout (1988). In our case their theorem reduces to:

Theorem

A feasible portfolio X = X is efficient if and only if

a) there exists a A > 0, such that

(1.7 min{x* Bx - Wx| AdXx=nB~x>0}) =X
X Z

GS
>
|
>
=
>



or b)

min{Y' € Y| dY =B ~Y) 0}]=ME,
Y

(1.8) max[M'X|X' 8 X
X

or c)

max{M'Y| 4 Y =B ~vY)0}]=X BX.
Y

n

(1.9)  min[X' 8 X|M'X
X

Note that strictly speaking condition c) can be omitted because M'X is a
linear function of X.

Usually one starts with setting A = 0 in (1.7), thus with determining the
minimum value possible of the variance. Next A is raised to get new effi-

cient portfolios. For specific values of A there is a change in the basis;

suppose these wvalues are Xl.....ik and that the corresponding efficient

solutions are il""'ik' We form the (sub) sequence ij ""'Rj (£ < k)
1 A B

from R]""'ik for which the (ﬁ,dz) combinations are different. This (sub)

sequence is the set of corner portfolios.

The set of all (u(i).ﬁz(i)) points in the (u.cz)-plane corresponding to

efficient portfolios X is the set of efficient (u,cz) combinations of the

problem. Between the (u.cz) points of two adjacent corner portfolios it is
part of a strictly convex parabola, cf. J. Kriens and J.Th. wvan Lieshout
(1988), p. 185.

The question discussed in this paper concerns the differentiability pro-
perties of this set in the (u,cz) points corresponding to corner portfo-
lios. Section 2 reviews some statements made in the literature, section 3
summarizes the expressions given by J. Kriens and J.Th. van Lieshout
(1988) for the values of the basic variables in a basic feasible solution
and section /I presents an example of nondifferentiability. Next necessary
and sufficient conditions are derived for get ting points of nondiftoeren-
tinbility, which conditions are verified for some numerical examples in

section 6.



2. Driving through the literature on differentiability properties

Markowitz himself is not very clear in his statements on differentiability

properties of the set of efficient (u,dz) combinations. In his book he

writes, cf. H.M. Markowitz (1959), p. 153:

"The set of points representing efficient portfolios turns a corner, forms
a sharp kink, as our passenger transfers from one critical line to ano-
ther. There is typically no such kink, however, in the curve describing
the relation between E and V for efficient portfolios. ..... The rela-
tionship between V and E transfers from one parabola to the other without
discontinuity or kink" (E is in our notation m and V is 62).

And then two paragraphs further down:

"It is, however, possible for the curve relating efficient V to efficient
E to have a kink. ..... Whenever a kink occurs, it must be of this nature
rather than of this nature ."

Markowitz does not give a numerical example with a point in which the set

of efficient (u,dz) points is not differentiable.

After the book by Markowitz many articles and books appeared with state-
ments on the differentiability properties of the set of efficient (u,62)
combinations. It is not planned to revue them all but Jjust to mention a
few of the "highlights" in the literature. Keep in mind: the function in
question 1is not necessarily differentiable everywhere, cf. the example in

section 4.

An amusing mixture of mathematical and economic arguments is given by E.F.
Fama and M.H. Miller (1972), p. 243. In a footnote theyv remark:

"We should note, for the mathematically more sophisticated, that the effi-
cient set curve need not be differentiable everywhere, so that, strictly
speaking, the representation of equilibrium in terms of a "tangency" could
be incorrect. It can be shown, however, that the maximum number of points
at which the efficient set curve is not differentiable cannot be greater
than the numer N of available assets. With infinitely divisible assets,
the number of efficient portfolios is infinite; that is, the efficient set

curve is continuous. Thus these nondifferentiable points do not greatly



detract from our conclusions; in mathematical terms, they constitute a set
of measure 0."

As stated at the end of section 1, between two corner portfolios the set
is part of a convex parabola (as already shown by Markowitz); from the
algorithm based on (1.6) it follows directly that the number of corner
portfolios is finite, so Fama and Miller's conclusion is trivial and not

very informative.

G.I. Szegd (1980) devotes chapter 12 to the investment problem with only
the constraints (1.1) and (1.3). He introduces the notion "region of ad-

missable portfolios £ in the (u,az) plane", defined parametrically by the

equations (1.4) and (1.5) subject to (1.1) and (1.3). The boundary 3 2 aF
this region is defined by the minimal values of (1.5) subject to (1.1),
(1,3) and (1.4) and therefore coincides with the set of efficient (A,GZ)

points. His conclusion about the differentiability of this set runs (ef. p

135): "In all circumstances, however, if follows that "The boundary B™ of
the region of admissable portfolios with nonnegativity constraints on the
allocation vector ..... is represented on the plane (v,m) by a continuous-
ly differentiable curve composed of a sequence of arcs of parabolas each
of which belongs to the boundary of the region of admissable portfolios of
a subsct of the set of n investments". (the plane (v»,m) is our (u,dz)

plane).
The "proof" is based on Szegd's analysis of the properties of 8 . He also

developes an algorithm to identify o=
The argument is rather lengthy and will not be repeated here. Moreover his
conclusion on p. 135 that "their common points ..... are true tangency

points" is not generally correct as is shown by the example in section 4. .

The last author to be quoted is J. Vérds. He states: "It can easily be
seen that parabolas describing efficient return-variance connection at
intervals [ci_l,ci] and [Ci' Ci+1] respectively have the same values at ¢
and do not intersect each other.

Otherwise the solution would not be optimal at interval [ci—l'ci]' Thus we



can state the following theorem. The function Z+(C) is continuously diffe-
rentiable and convex", cf. J. Vérés (1986), p. 298 (c is in our notation u
and Z*(c) is cz(u)).

To be sure he modifies this statement in a subsequent contribution, cf. J.
Vérés (1987), p. 305. The theorem now runs: "The efficient frontier Zf(c)
is continuously differentiable except in points where a, = aj for all 1,3
€ M" (ai is my in our notation, Zf(c) is again Gz(u) and M is the set of
xj—variables being in the basis). Because the condition a;, = a, for all
i,j € M only makes sense if M contains at least 2 elements, as Vords assu-
mes indeed, the restriction in the theorem relates to efficient (A,GZ)
points with 2 or more xj variables in the basis. The proof does not take
into account cases in which M contains only one element, and then the set
may be indifferentiable as the example in section 4 shows. So, this mere

point already implies that the formulation as well as the proof of the

theorem is not correct.

Voros develops the same algorithm for identifying the efficient (u,cz)
points as Szegd did, but both do not prove that all efficient points are
actually found in this way. Note that this algorithm is different from the
algorithm based on (1.6). As a matter of fact the solution presented for
the second problem in J. Vérds (1986) is incorrect; the efficient point
with minimum variance is the point (8.3*103; 10.53*106) and not the point
shown in Vérés' figure 2.



3. Explicit expressions for efficient portfolios

Starting from the Kuhn-Tucker conditions for the optimal solution of
(1.6), Kriens and Van Lieshout (1988) derive an expression for the values
of the basic variables which, if 8 is positive definite, holds for every

efficient portfolio. With constraints
(3.1) 4Ax<B

rather than (1,2), the Kuhn-Tucker conditions run
(3.2) -28X -A'U+V = -3M
(3.3) AX + Y s B
(3.4) V'X=0,0%=0, X,7,0.V> 0 ;

Y contains the values of the slack variables, U and V the values of the
vectors of Lagrange multipliers.

Omitting bars to get variables X, Y, U and V., the equations (3.2) and

(3.3) can be summarized as

(3:-5) -2 8 0 - A F -XM

1f

',Y' LU V')

(3.6) 2z = (X ¥ Up Vg

denotes the set of basic variables for a given efficient portfolio, (3.5)

can be partitioned into
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-2 8bl -2 8nb1 0 0 = ,dl')l ﬂ‘"z 0 ¥ -mel
-2 i‘?bz -2 8nb 0 0 = Ar'lbl ﬂr'lbz % 0 -mbz
Aol Anbl 0 F (04 0 o0 0 Bbl
x«lbz .dnbz ¥ 0 (04 (04 0 0 Bb2

The matrix -2 8 is partitioned into the square matrices -2 6 and -2 8

b1 nb2

corresponding to basic and non-basic variables xj and into -2 gb and
2
-2 gnbl with gbz = gnbl' x%l, Akbl and Bb1 respresent the active con-
straints, x% , A and B the non-active constraints. Therefore there
y BBy b
are identity matrices in the fourth place of the Yé column and in the

third place of the ng column. The matrix of coefficients of basic va-
riables is

-2 81 o - x«l')l (1]
-2 8b2 (i) - Ar'lbl ¥
(3.8) B =
0 0
ﬁbl ¥ 0
< ‘%2

To facilitate computations Kriens and Van Lieshout reshuffle (3.8) into

-2 sgbl - A;)l 0
Abl 0 0
(3.99 B, =
-2 €b2 =iy, ¥ 0
| .Abz 0 |




The values of the basic variables are

('71 M
1
B, 0
= 1 . < ifl
(3.10) va - jg o A v
M
(";2
B
bZJ
. . J
with 7' = (i',ﬁ',V',§'). Explicit expressions for the values of the basic
bv o X o T o R

. ar |
variables are found by computing JQ H

., 51
-2 fa’bl - Jslbl 0
0
Abl
(3.11) K-
i !
-2 ‘8b2 - Anbl -2 ‘6b1 - ﬂbl ¥ @
0 0 0 ¥
Abz ﬂbl J
with

(3.12)

1 1 . 1 4 -
4074, 6 204, 614

Substituting (3.12) into (3.11) and the result into (3.10), they find
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(3.13) X, = A + DX

with

(344 =L & gl 4 ) 1p
By Abl x4‘31 .| ﬂ"l By

1 1 1 = < =4
(3.15) D=3{ & -6~ & { 8 Loy 6 M.
2| b, b, ‘%l “%l b, *@l ‘kl b, b

The corresponding values u(ib) and Gz(ib) are

(3.16) u(Xb) = MglA + MngA

(3.17) cz(ib) = A" €b A+ 2A' €b DX + D' €b DRZ.

1 ot i}

For the proofs, see appendix A of their contribution.
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4. Looking at an example of nondifferentiability

The following example has a point of nondifferentiability; it originates

with Markowitz and was handed to me by Vérds. The data are

(1) -

i 3 I |
(4.1) M =1|3], 8= 3 11 23 |.d=(¢(1 1 1), B

5 =1 23 75
For this problem conditions (3.2),...,(3.4) reduce to
- 6x1 - 6x2 + 2x3 -y o+ vy =) &

(4.2) - 6x1 - 22x2 - 46x3 = Mg + Wy = -3\

2x1 = 146)(2 = 150)(3 = ul + v3 = =5\
(4.3) Xg v %y * X3 * ¥y =

3
(B.4) £ vx. =0, uy =0, X,Y,U,V>0;

the bars denoting optimal values are omitted.

In order to perform the portfolio solution analysis a user written subrou-
tine has been 1linked to the linear optimization package LINDO. In that
subrountine special features of LINDO like the parametric analysis option

have been used.

Table 4.1

Basic solutions of the example

A Xy x, x3 iy c°

0 . 950 0 0.050 1.20 2.80

3 0.875 6] 0,125 1..50 325
0.500 0.500 0 2.00 5.00
0 1.000 0 3.00 11.00

12 0 1.000 0 3.00 11.00

52 0 0 1.000 5.00 75.00
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With formulae (3.16) and (3.17) the relationships between u(X ), A and
Gz(ib), X can be derived. It is found that for the corner portfollo X' =
(0O 1 0) with (u.cz) = (3,11) the left hand side derivative of the effi-
cient (u,62) set equals 8 in (3,11) whereas the right hand side derivative
equals 12. So the set of efficient (u,dz) points is not differentiable in
the point (3,11). In the computations this property 1is revealed by the
production of 2 successive bases with different values of X but the same

optimal X-vector. The results are also in agreement with

2
do <
(4.5) [—] _ ., =4
o (A,GZ)

2
if the set is differentiable, lim 99— = 8 and lim 9°_ - 1»

afy A ul3

However, the algorithm does not show any computational problems, this as
opposed to a conjecture by Vérds concerning his own algorithm: "This coun-
terexample shows that the procedure suggested by Szegd and of the author
may not be valid so generally as it is stated..... ", cf. J. Vérés (1987),

ps 305.
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5. Evident necessary and sufficient conditions for nondifferentiability

Inspection of the example in section 4 makes clear that a point of nondif-
ferentiability in the set of efficient (u.oz) points comes into being if

for a range of X values the vector ib remains the same. From (3.13) it

follows that this is the case if and only if D equals (U . Define Bege §=
min My and umax = max By then for an efficient (u,cz) point with u €
i i

(umin'“max) a necessary and sufficient condition for nondifferentiability
runs D = 0. The next 2 theorems exploit this property for the problem

with only the restrictions (1.1) and (1.3).

Theorem 5.1

If in the investment problem subject to (1.1) and (1.3) 6 is positive

definite and a corner portfolio with w € (m “max) contains only one x-

in’
variable > 0, then the set of efficient (m,067) points is nondifferentiable

in that point.

Proof

b

Suppose X, > 0, then X; = b, 6 Y = (cii)' J%l = (1), Mb1 = (ui).

From (3.15) it follows

e 5l -1 =1
(5.1) D==8§ F-dA ( 8 . € M .
2% [T-4 (4 & 44 o, Mo,

b

Substitution of the values of x% en g_l shows
1 i1l

(5.2) F- A ( gl )yl el-o,
) J4bl 'Abl b1 Abl Al)l b1

soD = (0 and ib = A, cfs (3.13). q.e.d.

Now suppose a corner portfolio contains as basic variables X' = (%

b IRERRE
xk) (k > 1). Define
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3
5:3) M = @) = 6
k k
(5.4) f:= I I m,
i=1 j=1 *J
k k
(5.5) d:= L (L m,,
is] j=i %44

Theorem 5.2

If in the investment problem subject to (1.1) and (1.3) 8 is positive

definite and a corner portfolio with u € (m " ) contains k (> 1)

min’” max
variables > 0, then the set of efficient (m,0%) points is nondifferen-

tiable in that point if and only if all corresponding u-values are equal

oo &
Proof

x1 Si1 Cik . o]
et %, =1 - |8 = : A =M - '

X 1 ¢ c 1 1 :

Kk k1 kk Ky
then

5.6) (4, 6@1 At',lfl -

and D = 0 can be reduced to

My d 0
(5.7 £ |- =42,
“k d 0
or
_d
(5.8) v €{1. i My = F -
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So D = 0 if and only if (5.8) holds. q.e.d.

Remark, As a consequence of these theorems, D may be a zero vector and
therefore the statement by Kriens and Van Lieshout (1988) that Mg .D is
always # O (p. 187) cannot be generally correct. In their "prooi", see
appendix B of the article, the matrix &t not necessarily has an inverse as
is illustrated by the example in section 4: for the efficient portfolio
(0 1 0) their matrix ﬂt equals

-22 =1 0 0 3
| 0 0 0 0
(5.9) it =| -6 -1 1 0 1
-46 -1 0 1 5

L 3 0 0 0 0 |
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6. Verification of the conditions in some examples

In this section forementioned formulae and conditions are illustrated with

the help of some examples.
Example 6.1: data see section 4.

In the case of corner portfolio X' = (0 1 0) there is only one x-variable
> 0 and the set of efficient (u.cz) points is indeed nondifferentiable in
the corresponding point (5,82) = (3,11). Substitution of the data in
(3.15) leads to D = 0 .

The behaviour of the dual variables is also clear. If (3.12) is substitu-

ted in (3.11) and the result into (3.10), we get

» 1 4 -1 R 1 4 (-1 1
610 Ty =204, €1 )Te, R4 €44 gl .

For X = 0, Xy and x3 are basic variables and then
G, =204 €4t - 56
1 1 P By By o

if we look at the corner portfolio X' = (0O 1 0), then only X, is basic
variable and from (6.1) it follows

61 = -4y + 3X,

so if X rises from 8 to 12, the value of Gl rises from -20 to -8.
In the same way the values of Vb can be derived from the third '"row" in
(3.10). Therefore we need the elements in the third "row" of (3.11). The

first two elements in this "row" of ﬂgl are
(6.2) & €M B g (4 G144 €Y
2 1 1 il 1 1 1 1 1
-y (4, 67 A6
| I ™1 % i

and
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=1

1 4 1 g 1 ! i LN .
(6.3) 2 6’b2{ g*-’1 dbl( a‘lbl g;)l 1401) } o+ Anbl{-z( xflbl ‘6’;1 A )Y

)
1

the third element equals F and the fourth 0 . So
(6.4) U =28 (G A (4 LA vl (20l G4 )l
b b2 b1 ﬂbl ‘ﬂbl bl “Abl nbl 431 b1 4}1
By SN, GGl (4 BT €L -
1 2 1 1 1 il 1 1 1 1
. | gl ). €l +F .M 7.
nb1 1%1 b1 xkl 3%1 b1 b1 b2]

If conditions (1.2) only consist of

nmps
%

= 1, then, using (5.4) and
(5.6), (6.4) can be simplified to

= 2 1
(6.5) V. ==5(8 € AL -4 )
b f b, by Aol nb,

- 1 4 1, 14 -1
- ALl gb2 gbl{' ez Anl 4;1 ‘8;1} " F 'ﬂnbl ‘qbl gbl}'Mbl « ¥ sz]'

In the case of the efficient portfolio (0 1 0) in the example (6.5) redu-

ces to

v -16 + 2X
(6.6) V. =

v 24 - 2x

If X\ is raised, for A = 8, X, leaves the basis and v, comes in and for A\ =

12, v3 = 0, so for A > 12 v3 leaves the basis and x.s comes in; cf. also
table 4.1.

Example 6.2

Assume
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1 1 1.4 1.5 16
. 5 _ 1.4 4 0 32 = _
(6.7) M= 5.8 15 o 8 el+d=1( 1 1 1), B=(1).
10 16 32 6 400
Starting from the conditions (3.2),...,(3.4) the LINDO optimization routi-

ne generates the basic solutions presented in table 6.1.

Table 6.1

Basic solutions of example 6.2

A x 4 % X A 5°
1 2 3 4

0 1.00 0 0 0 1.00 1.00

0.200 1.00 0 0 0 1.00 1.00

0.227 0.98 0.02 0 0 1:.10 1.02

0.617 0 0.67 033 0 5.00 2.67

8.267 0 0.67 0.33 0 5.00 2.67
36.471 0 0 0.76 0.24 6.18 28.98
157.600 0 0 0 1.00 10.00 400.00

The set of efficient (u,cz) points is not differentiable 1in the point
(i,&z) = (5.00,2.67) corresponding to the efficient portfolio X' =
(0O 0.67 0.33 0). According to theorem 5.2 this behaviour was to be
expected. The set of corresponding A values equals [0.617 < A < 8.267].

Substitution of

sl i
(6.8) M = ’ = ’ =(1 1), M =
5 5" "1 o ﬂbl L T

1

The values of the dual variables can be derived by substituting (6.8) into

in (3.15) results in D

(6.1) and (6.5) respectively. In the latter case we find

v -2.467 + 4x

(e}
O
<
"
n

vy 41.333 - sX



so for X\ = 0.617 31 is > 0 and enters the basis, whereas for X = 8.267 v

becomes < O and leaves the basis.
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The last example is designed by H. Geerts; in this case the

theorems

4

of

section 5 do not apply because besides condition (1.1) there is one more

constraint.

Example 6.3

Let

(6.10) M

|

2

1

|-

[u 0
— 0 i

table 6.2 are found.

0

1.333
3.000
3:333
8.750

The set of efficient (u.cz) points is nondifferentiable in (5.82)

].A_

Using the conditions (3.2),...,(3.4)

14

the basic

Table 6.2

Basic solutions of example 6.3

15|

solutions

0

0.333
0.500
0.500
0.938

0

1.333
1.500
1.500
1.875

0

0.889
1:250
1.250
3.516

presented

in

(1.500,1.250),  the corresponding values of X are [3.000 < X < 3.333]. The

value of D equals (' because as all reciprocals exist

tween square brackets

i

n

(5.1)

variables vj whereas the expression for ﬁb follows from (6.1) and runs

(6.11) U, =

20 - 6

=21 + X

the expression be-

is the zero matrix. There are no basic
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