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Abstract

In this paper dif'ferentiability properties of the set of efficient (u,~2)
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1. General

Markowitz studied the following investment problem, cf. H.M. Markowitz
(1~1-~~), (1y59). An investor wants to invest an amount b in the securities
1,...,n. If he invests an amount xj in security j, then

n
(1.1) ï x. - b.

j-1 ~

There may be more linear constraints; suppose

( 1 . 2 ) ,r~ X - B

and

(1.3) x ~ 0

should be satisfied with s~ an (mxn)-matrix, 1~ tin m-vecLer rin~1 X' -
(xl. . .xn).

The yearly revenue on one dollar invested in security j is a random va-
riable rj with ~ rj - uj; the covariance matrix of the r. equrils ~, nc-
note the -~,yearly revenue of a portfolio X-(xl,...,x~)' by r(X), the ex-
pected value of r(X) by N(X), its variance by aZ(X) and let M' -(ul,,,,
un). Then

(~.~~) N(X) M'X

and

z(1-`~~ 6 (x) - x' ~ x.

In order to find "good" solutions of the problem, a risk averse investor
may put a restriction on ~.(X) and then minimize o2(X), or put a restric-
tion on a2(X) and next maximize u(X). Markowitz studies the problem from a
more general point of view and introduces the notion of' efficient portfo-
lio. A feasible portfolio X- X is efficient if:
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a) no feasible portfolio has a re~~enue with larger or equal expected ~~alue
and smaller variarrce, and

b) no feasible portfolio has a revenue with smaller or equal variance and
larger expected value;

cf. H.M. Markowitz (1959), P. 310.
In the Z(u.6 )-plane this means that if a portfolio X- X is efficiernt,
there do not exist Feasible portfolios with corresponding (y,(X),o2(X))

~points in the closed rectangle ~ o`(X) and ) u(X), cf. fig. 1.1.

Fig. 1.1. No feasible portfolio with (u(X),62(X)) in the shaded area.

According to Markowitz all efficient portfolios can be derived by solving

(1.6) min{X' `~ X- XM'X) .~ X- R ~ X) ~}
X -

for ell X) G, cf. H.M. Markowitz (1959), P. 315-316. A precise and more
general statement of the theorem underlying the algorithm is given by J.
Kriens en J.Th. Van Lieshout (1988). In our case their theorem reduces to:

Theorem

A feasible portfolio X- X is efficient if and only if
a) tllere exists a á ) 0, such that.

( 1."i Í min{X' ~ X - XM'XI ,~ X- li ~ X)(Y }- X' ~ X - aM'X,
x -
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or bl

(1.8) max[M'X~X' ~ X- min{Y' ~ Y~ .r~ Y- B ~ Y~ 0}] - M'X,
X y -

or c)

(1.9) min[X' `~ X~M'X - max{M'YI s~ Y- B n Y~ 0}] - X' ~ X.
X Y -

Note that strictly speaking condition c) can be omitted because M'X is a
linear function of X.

Usually one starts with setting a- 0 in (1.~), thus with determining the
minimum value possible of the variance. Next a is raised to get new effi-
cient portfolios. For specific values of X there is a change in the basis;
suppose these values are a1,...,Xk and that the corresponding efficient
solutions are X1,...,Xk. We form the (sub) sequence X. ,..,X. (~i C k)

from X.f,...,Xk for which the (u.oZ) combinations are different. 'I'his (sub)
seyuonce is the set of corner ~ort.folios.

The set of all (u(X),~2(X)) points in the (u,a2)-plane corresponding to
efficient portfolios X is the set of efficient (u a2) combinations of the
roblem. Between the 2P (u,6 ) points of two adjacent corner portfolios it is

part of a strictly convex parabola, cf. J. Kriens and J.Th. van Lieshout
(1y88), p. 185.
'I'he question discussed in this pap~~r concerns the dil't'r~rentiability pro-
pertie.s of this set in the 2(u.o ) points correspondi~g to corner portfo-
lios. Section 2 reviews sume statements made in the literature, section 3
summarizes the expressions given by J. Kriens and J.Th. van Lieshout
(1988) for the values of the basic variables in a basic feasible solrrtion
and sect.ion h present5 an c~xamplr, of nondifferentiability. Next necessary
:uul ~ul'fit~ir~nt c~oncli 1 ir,n~; nrr~ dr~rivr.rl for ar~t t.in~; t,nintti of nuncii fP,,rv~n-
t i:rt~i I cl.y, whirh rr,ndit.iun.5 nrc, vc~rificd fur somc~ n~unerical exnmples in
section 6.
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2. Driving through the literature on differentiability properties

Markowitz himself is not very clear in his statements on differentiability
properties of the set of efficient (N,62) combinations. In his book he
writes, cf. H.M. Markowitz (1959). p. 153:
"The set of points representing efficient portfolios turns a corner, forms
a sharp kiiik, as our passenger transfers from one critical line to ano-
ther. There is typically no such kink, however, in the curve describing
the relation between E and V for efficient portfolios. ..... The rela-
tionship between V and E transfers from one parabola to the other without
discontinuity or kink" (E is in our notation u and V is a2).
And then two paragraphs further down:
"It is, however, possible for the curve relating eFficient V to efficient
E to have a kink. ..... Whenever a kink occurs, it must be of this nature
rather than of this nature .

Markowitz does not give a numerical example with a point in which the set
of effícient (u.62) points is not differentiable.

Aft:er the book by Markowitz many articles and books appeared with state-
ments on the differentiability properties of the set of efficient (u,cs2)
combinations. It is not planned to revue them all but just to mention a
few of the "highlights" in the literature. Keep in mind: the function in
question i~ not necessarily differentiabl.e everywhere, cf. the example in
section il.

An amusing mixture of mathematical and economic argumeixts is given by E.F.
Fam,r ~inJ M.H. Miller (1972), p. 243. In a footnote t.hev remark:
"We should n~t.e, 1'ur Lhe mathematically more sophisticated, that the effi-
cient set curve need not be differentiable everywhere, so that, strictly
speaking, the representation of equilibrium in terms of a"tangency" could
be incorcect. It can be shown, however, that the maximum number of points
at which the efficient set curve is not differentiable cannot be greater
than the numer N of available assets. With infinitely divisible assets,
the numtier of efficient portfolios is infinite; that is, the efficient set
curve is continuous. Thus these nondifferentiable points do not greatly
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detract from our conclusions; in mathematical terms, they constitute a set
of ineasure 0."
As stated at the end of section 1, between two cor~ner portfolios the set
is part of a convex parabola (as already shown by Markowitz); from the
algorithm based on (1.6) it follows directly that the number of corner
portfo.lios is finite, so Fama and Miller's conclusion is trivial and not
very informative.

G.I'. `~iegd (1980) devotes chapter l2 to t.he investment problem wiLh only
the constraints (1.1) and (1.3). He introduces the notion "region of ad-
missable portfolios .`~ in the (u,o2) plane", defined parametrically by the

equations (1.4) and (1.5) subject to (1.1) and (1.3). The boundary ,`~ n of
this region is defined by the minimal values of (1.5) subject to (1.1),
(1,3) and (1.4) and therefore coincides with the set of efficient (N,cs2)
points. His conclusion about the differentiability of this set runs (cf. p

135): "In all circumstances, however, if follows that "The boundary ,`,~ n of
the cegion of admissable portFolios with nonnegativity constraints on the
allocation vector ..... is represented on the plane (v,rt) by a continuous-
ly diFferentiable curve composed of a sequence oF ares of parabolas each
of wfrich belongs to the boundary of the region of admissable portf'olios of
a subsct: of the set of n investments". (the plane (v,n) is our (y„ 02)
plane) .

The ''proof" is based on Szegá's analysis of the properties of ..̀~ n. He also
developes an algorithm to identify .~ n.
The argument is rather lengthy and will not be repeated here. Moreover his
conclusion on p. 135 that "their common points ..... are true tangency
poinLs" is not generally correct as is shown by the exrrmple in section 4..

The last author to be quoted is J. VBrás. He states: "It can easily be
seen that parabolas describing efficient return-variance connection at
intervals [ci-l,ci] and [ci, ci}1] respectively have the same values at c.iand do not intersect each other.
OIhrrwisE~ t.hr~ srrlution would not bc optimxl at int~.rval [ci-l,r} ~. 'I'huti we
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can state the following theorem. The function Z}(C) is continuously diffe-
rentiable and convex", cf. J. Várbs (1986). P. 298 (c is in our notation ~
and Z}(c) is o2(u)).
To be sure he modifies this statement in a subsequent contribution, c('. J.
V~rds (1987), p. 305. The theorem now runs: "The efficient frontier Z;(c)
is continuously differentiable except in points where a. - a. for all i,ji ~
E M" (ai is ui in our notation, Z2(c) is again a2(~,) and M is the set of
xj-variables being in the basis). Because the condition a. - aj for alli
i,j E M only makes sense if M contains at least 2 elements, as Vdrás assu-
mes indeed, the restriction in the theorem relates to efficient (x,a2)
points with 2 or more xj variables in the basis. The proof does not take
into account cases in which M contains only one element, and then the set
may be indifferentiable as the example in section 4 shows. So, this mere
point already implies that the formulation as well as the proof of the
theorem is not correct.

Vbrds develops the same algorithm for identífyíng the efficient (u,a2)
points as Szeg~ did, but both do not prove that all efficient points are
actually found in this way. Note that this algorithm is different from the
algorithm based on (1.6). As a matter of fact the solution presented for
the second problem in J. Vdr~s (1986) is incorrect; the efficient point
with minimum variance is the point (8.3x103; 1o.53X106) and not the point
shown in Vdrás' figure 2.



3. Explicit expressions for efficient portfolios

Starting from Che Kuhn-Tucker conditions for the optimal solution of
(1.6), Kriens and Van Lieshout (1988) derive an expression for the values
of the basic variables which, if ~ is positive definite, holds for every
effirient portfnlin. With constraints

(3.i) .~ x ~ B

rather than (1,2), the Kuhn-Tucker conditions run

(3.2) -2 ~ X - ~'U t v - -~M

(3.3) ~9 x t y - g

(3.4) v'x - o, u'v - o, x,Y,u,v ~~;

Y contains the values of the slack variables, U and V the values of the
vectors of Lagrange multipliers.
Omitling bars to get variahles X, Y', U and V, Lhe e~~uaCions (3.~) r~nc3
(3.3) can be summarized as

x~ y~ U~ V~

(3.5) -2 `~ ~ - .~' .~ -aM
.~ g (i C~ B

If

(3.6) Zb - (Xb,Yb,Ub,Vb)

denotes the set of basic variables for a given efficient portfolio, (3.5)
can be partitioned into
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Xb Xnb 1b ~nb Bb Bnb Vb Vnb

Z c

-2 ~ -2 ~ d d - ~ ~ d g -~Mbb nb 1
-2 `~bl -2 ~nbl ~ 0 - ~b ~b ,~ ~ -aN1b-,

Z 2 1

2 2 b2
.~ ~b ,~ ~ ~ ~ (Í (~ B

~1 ~bl ~ .~ (~1 ~ ~ ~ Bb
1

The matrix -2 `~ is partitioned into the square matrices -2 `~b and -2 ~nb1 2
coc~responding to basic and non-basic variables x~ and into -2 ~b and

2-2 i~nb with ~b -~nb '~'~b ~d Bb respresent the active con-
1 2 1 1 1 1

straints, ,A~2, ~b2 and Bb2 the non-active constraints. Therefore there
are identity matrices in the fourth place of the Yb column and in the
third place of the Ynb column. The matrix of coefficients of basic va-
riables is

(3.8) .~ -

- d1~
1

-2 ~b ~ - qnb ,i
2 1

~1

~2

0 0 D

To facilitate computations Kriens and Van Lieshout resbuffle (3.8) intn

-2 ~b - ,~ ~ ~
1 1.~ o o a~

(3.91 .~ -~
-z ~b - .~',b g (7

z i
.~ (5 (~ .~

z
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'fhe values ~,f lhe b~si~, c~~ritibl~.s are

(3.10) zb~ - .~1

-2 i~b
1

Bb 1

0

Bb
2

wi Ch 'l.' -( X' , U' V' Y' ), f:xE~l i c i t ~xpress i ~ns }'o~~ 1 he vt~l ues ~~f t h~~ hri~; i rhv h b' h' ti ~
vi~ri~~blE~s iire found by compul,in~ :~~ :

v

(3.~~) a~-~ -~

W~r.n

(3.i2)

~1

~ .c~-1
~

Mb
1

(i

Mb
2

(i~

1

r-2 ~b
I i

-1

1 1 ~-1 ( ,~-1 ,~, ) -1 ,~-1
1}2 bl ~1 ~1 bl ~1 ~1 bl

-( ~ bl ~ )-1 ~ ~bl
1 1 1 1 1

-2( ,r~ ~bl d1~ )-1

1 l
ó

1

StihstituCing (3.12) into (3.11) and the result i~to (j.10), they find
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(3.13) Xb - A t Dá

witti

( 3 . 1 ~~ ) A - bl .~ ( ,~ ~bl .~~ ) -lgb
1 1 1 1~bl 1

and

( 3 .15 ) D - 2 ( b1 - b1 ,s~ ( .u~ ~b 1 ,~~ ) -1 ~ ~0-1 M
.

l 1 1 1 1 1 bl 1 bl) bl

The corresponding values u(Xb) and e2(Xb) are

(3.16) u(Xb) - Mb A t Mb Da
1 1

(3.17) cs2(Xb) - A' `~b A. 2A' ~b Da ~ D' ~b DX2.
1 1 1

For the proofs, see appendix A of their contribution.
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4. Lookin~ at an example of nondifferentiabilit

The following example has a point of nondifferentiability; it originat.es
with Markowitz and was handed to me by Vdrds. The data are

(4.i)
M- l 5 J ~- l-1 23 75 J ~- (1 1 1). B-(1).

For this problem conditions (3.2),...,(3.4) reduce to

- 6xi - 6x2 f 2x3
(4.2) - 6x1 - 22x2 - 46x3

2x1 - 46x2 - 15ox3

(~~.3) xl } x2 x3 ..

- ul t vl - - ~
- ul t v2 - -3a
- ui , ~3 - -5a

yl 1

3
(4.~~1 F v.x. - 0, u y - 0, X,Y,U,V ~ 0;

J-1 J J 1 1 -

the bars denoting optimal values are omitted.

In order to perform the portfolio solution analysis a user written subrou-
tine has been linked to the linear optimization package LINDO. In that
subrountine special features of LINDO like the parametric analysis option
have been usPd.

Table 4.1
F3asic solutions of the example

ii ci.~l~,~i ~~
3 u.875 0
4 0.500 0.500
8 0 1.000

12 0 l.ooo
52 0 0

xj u

0.O~,0 1. 20 ~. tiU
0.125 1.50 3.z5
0 2.00 5.00
0 3.0o ti.oo
0 3.00 11.00
1.000 5.00 75.00
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With formulae (3.16) and (3.17) the relationships between u(Xb), a and
62(Xb), X can be derived. It is found that for the corner portfolio X' -
(0 1 0) with (u,o2) -(3,11) the left hand side derivative of the effi-
cient (u,a2) set equals 8 in (3,11) whereas the right hand side derivative
equals 12. So the set of efficient 2(u,a ) poínts is not differentiable iii
the point (3,11). In the computations this property is revealed by the
production of 2 successive bases with different values of a but the same
optimal X-vector. The results are also in agreement with

2
(4.5) au , - -2 - à

(u,cs )

2 2
if the set is differentiable, lim á~ - 8 and lim áu - 12.

uT3 u~,3

However, the algorithm does not show any computational problems, this as
opposed to a conjecture by Várás concerning his own algorithm: "This coun-
terexample shows that the procedure suggested by Szegd and of the author
may not be valid so generally as it is stated.....", cf. J. Vdr~s (1987),
p. 305.
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5. Evident necessary and sufficient conditions for nondifferentiability

Inspection of the example in section 4 makes clear that a point of nondif-
ferentiability in the set of efficient ( u,a2) points comes into being if
for a rar,ge of a values the vector Xb remains the same. From (3.13) it
follows that this is the case if and only if D equals ~. Define u. .-minmin Ni and uman :- max ui; then for an efficient (u,62) point with N Ei i
(umin,Nma~c) a necessary and sufficient condition for nondifferentiability
runs D-~. The next 2 theorems exploit this property for the problem
with only the restrictions (1.1) and (1.3).

Theorem 5.1

lf in the investment problem subject to (1.1) and (1.3) ~ is positive
defiriite and a corner portfolio with y~ E(u ,u ) contains ottly one x-~in max
variable ) 0, then the set of efficient (u,a ) points is nondifferentiable
in that point.

Proof

Suppose xi ~ 0, then xi - b, ~b - (cii), ,~ - (1), Mb - (Ni).
1From (3.15) it follows

( 5 . 1) D - 2 `~b 1 [ .~ - .~ ( ,~ ~b 1 .r~ ) -1 ~ ~-1 ]M .
1 1 1 1 1 1 bl bl

Substitution uf the values of ,~ en i~-1 shows
1 bl

(~;.z~ 9 - .~ (
1

~~- l - ~~~1 bl
~bl

1

so D-(~ and Xb - A, cf. (3.13). q.e.d.

Now suppose a corner portfolio contains as basic variables Xb -(xl,.. ,
xk) (k ) 1). Define
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(5.3) ~ - (mij) :- b1
1

k k
(5.4) f :- F F m..

i-1 j-1 1~

k k
(5.5) d :- F ( F m..u.).

i-1 j-1 1~ ~

Theorem 5.2

If in the investment problem subject to (1.1) and (1.3) ~ is positive
definite and a corner portfolio with N E (u u ) contains k(~ 1)min' max
variables ) 0, then the set of efficient (u,62) points is nondifferen-
tiable in that point if and only if all corresponding }~-values are equaldto f.

Proof

Let Xb -

then

xk

xl

' ~b -
1

ckl ckk ~

cll ... clk

(5.6) ( ,~ bl ~
)-1 -

f1 1 1

and D-~ can be reduced to

ul

(5.7) f

c"~

uk d

0

0

~1 -

1

1

Mb
1

ul

d
(5~8) ~iE{1,...,k} ui - f '
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So D-~ if and only if (5.8) holds. q.e.d.

Remark, As a consequence of these theorems, D may be a zero vector and
therefore the statement by Kriens and Van Lieshout (1988) that Mb .D is

1
always ~ 0(p. 187) cannot be generally correct. In their "proof", see
appendix B of the article, the matrix ~ not necessarily has an inverse as
is illustrated by the example in section 4: for the efficient portfolio
(0 1 0) their matrix ~ equals

(5.9) ~` -v

-22 -1 0 0
1 0 0 0

- 6 -1 1 0
-46 -1 0 1

3 0 0 0 0
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6. Verification of the conditions in some examales

In this section forementioned formulae and condítions are illustrated with
the help of some examples.

Example 6.1: data see section 4.

In the case of corner portfolio X' -(0 1 0) there is only one x-variable
) 0 and the set of efficient (u,a2) points is indeed nondifferentiable in
the corres ondin -2p g point (u,6 )- (3,11). Substitution of the data in
(3.15) leads to D - ~ .
The behaviour of the dual varíables is also clear. If (3.12) is substitu-
ted in (3.11) and the result into (3.10), we get

(6.1) Ub - -2( ~ bl ~
)-1 Bb } ~( ~ ~bl ,~, )-1 ~ bl Mb .

1 1 1 1 1 1~1 1 1 1

For ~- 0, xl and x~ are basic variables and then

U1 - 2( ~ b1 ,~, )-1 Bb - -5.6;
1 1 ~1 1

if we look at the corner portfolio X' -(0 1 0), then only x2 is basic
variable and from (6.1) it follows

ul - -44 ; 3X,

so if a rises from 8 to 12, the value of ul rises from -20 to -8.
In the same way the values of Vb can be derived from the third "row" in
(3.10). Therefore we need the elements in the third "row" of (3.11). The
first, t.wo elements in this "row" of .,̀Í~1 arev

(6.2) ~b {- bl t bl ~ ( "~b bl ~
)-1 ~ bl}

2 1 1 1 1 1 1 1 1

- ~b ( ~ bl ,~, )-1 ~ bl

1 1 1~bl 1 1

and



(6.3) 2 `~b { bl ,~ ( ~ ~bl ~ )-1} . ~b {-2( ~ bl .r~ )-1};
2 1 1 1 1 1 1 1 1 1

the third element equals .~ and the fourth ~. So

(6.4) v - C2 ~ { `~-1 ,~ ( ,,~ ~1 ,~' )-1} { ~, {-2( ~ ~-1.b b2 bl 1 1 b l bi nbl 1 bl

.Bb - a[{ ~b {- bl { bl ~ ( ~ bl .~b )-1 ~ bl} -1 2 1 1 1 1 1 1 1 1

s~' ( ~ ~ 1 .~ ) . .~ `~ 1 } M t .~ . M ] .nbl 1 b l 1 1 bl bl b2

n
If conditions (1.2) only consist of F xj - 1, then, using (5.4) and

j-1
(5.6), (6.4) can be simplified to

(6.5) Vb - f ( ~b bl ~ - ~b )2 1 1 1

- ~[ { i~ `~ { - .~ 4 1 ,~' ~ `~ 1 } - 1 .t~~ ~4 ~-1 } . M t .~ M ] .62 bl f bl 1 bl f nbl ~bl bl bl
62

In the case of the efficíent portfolio (0 1 0) in the example (6.5) redu-
ces to

(6.6) vb -
-16 . 2avl

24 - 2áv3

If a is raised, for a - 8, xl leaves the basis and vl comes in and for ~-
12, v3 - 0, so for a~ 12, v3 leaves the basis and x.j comes in; cf. also
table 4.1.

Example 6.2

Assume
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1 1 1.4 1.5 16

(b.7) M- 5,~- 1.5 0 8 36 .~-(1 1 1 1), B-(1).
l0 16 32 6 400

Starting from the conditions (3.2),...,(3.4) the LINDO optimization routi-
ne generates the basic solutions presented in table 6.1.

Table 6.1
Basic solutions of example 6.2

á
X1 X2 X3 7{4 N 02

0 1.00 0 0 0 1.00 1.00
0.200 1.00 0 0 0 1.00 1.00
0.227 0.98 0.02 0 0 1.10 1.02
0.617 0 0.67 0.33 0 5.00 2.67
8.267 0 0.67 0.33 0 5.00 2.67

36.471 0 0 0.76 0.24 6.18 28.98
157.600 0 0 0 1.00 10.00 400.00

The set of efficient (yt,62) points is not differentiable in the point-2(u.~ )- (5.00,2.67) corresponding to the efficient portfolío X' -
(0 0.67 0.33 0). According to theorem 5.2 this behaviour was to be
expected. The set of corresponding a values equals [0.617 ~ a( 8.267].
SubStiLution of - -

5 4 0 5
(6.8) Mb - . `~b - ( 1 1), M - l

1 5 1- 0 8) ~1 bl 5~J

in ( 3.15 ) resul ts in D-(Í .
The values of the dual variables can be derived by substituting (6.8) into
(6.1) and (6.5) respectively. In the latter case we find

(6.9) ~b -
~1 -2.467 4 4i~

-4 4i 333 5á
- i:
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so for a- 0.617 vl is ~ 0 and enters the basis, whereas for á- 8.267 `''4
becomes ~ 0 and leaves the basis.

The last example is designed by H. Geerts; in this case the theorems of
section ~ do not apply because besides condition ( 1.1) there is one more
const,raint.

Exam lp e 6.3

Let

(6.10) M - ~ll. `~ -
l0 OJ

Using the conditions (3.2),...,(3.~{) the basic solutions presented in
table 6.2 are found.

Table 6.2
Basic solutions of example 6 3

0 0 0
1.333 0.333 0.667
3.000 0.500 0.500
3.333 0.500 0.500
8.750 0.938 0

~ Q

1.333 0.889
1.500 1.250
1.500 1.250
1.875 3.516

The set of efficient 2(k,o ) points is nondifferentiable in
(1.500,1.250), the corresponding values
value of D equals a because as all
tween square brackets in (5.1)
variables v. whereas the expressionJ

(6.11) Ub -
20 - 6i,1
-21 t 7~

(x.a2) -
of á are [3.000 (~( 3.333]. The

reciprocals exist the expression be-
is the zero matrix. There are no basic
for Ub follows from ( 6.1) and runs
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