
CBM ~'~
R ~~~

- ~~` ~`~~ ~
7626 ~~,~ 0P~
1990 s3~~~ ee~

453

ti~~ J~~~~o~
o}~oF,~`~~~~~Qo~,~~000~~~~~. uii II I III II I II II II I IIII '~ IIIU I III I lul IIII

~' r r ~ r r r r ~ r r í ~ ~ ~ í ~ ~ ~~ ~



TWO NOTES ON THE JOINT REPLENISHMENT
PROBLEM UNDER CONSTANT DEMAND

M.J.G. van Eijs

FEw 453
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This note considers the joint replenishment inventory problem for N items under constant
demand. We investigate the frequently used cyclic strategy (T;k, ,..,kN ): a family
replenishment is made every T time units and ilem i is included in each ly'th replenishment.
It it known that the overall optimal stratcgy for the joint replenishmcnt problcm is no[
necessarily of this type. Goyal proposed a solution to fmd the global optimum within the
class of cyclic strategies. However, among other issues we will show that the algorithm of
Goyal does not always lead to the optimal cyclic strategy. A simple correction is suggested.

Key words: inventory, multi-item

INTRODUCTION

The joint replenishment problem is an extensively studied problem in inventory
theory. The problem is to construct a replenishment strategy for (a family of) N
items which interact because of a special set-up cost structure: a major set-up
cost is incurred for each joint replenishment, independent of which items are
involved. In addition, a minor set-up cost is incurred for each item included in
the replenishment. So, cost savings can be achieved by coordinating the
replenishments of several items. We refer to Aksoy and Erenguc' and Goyal and
SatirZ for a more detailed introduction to the problem. A commonly used
strategy is to place an order every T time units and to include the i'th item into
every k; th replenishment. This leads to a replenishment interval of Tk; time
units for the i'th item. Note that (actual) joint replenishments are equally spaced
under a cyclic strategy only if km;,,-1, where km;,,is the minimum value of k; over
all items i.

Fxample 1
Let N-2, kt-2, kZ-3, T-1. Then the orders (above the time-axis) on

subsequent time intervals are as follows:

(1,21 ( ) (1) {2) {1) ( ) (1,2)
I I ~ I I I ~ time
0 1 2 3 4 5 6

Note that no order is placed on t-1 and t-5. The actual joint replenishments
are not equally spaced.
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The cyclic strategies (T;k ~,..,k N) with km;,,-1 are called strict cyclic. We
assume that for a cyclic strategy with km;,, ~ 1 the major set-up cost is also
incurrc4l at multiples ~if T at which no actual replenishment is performed.
1)agpunar' refcinnulatc~i the ohjcctive fwictiun of the ('T;k i,..,kN ) strategies
under the assumption that no major set-up cost is charged if no order is placed.
However, as pointed out by Goyal,4 the minimalisation of the cost function
provided by Dagpunar, is considerably more complex than that of the orginal
problem.

Most solution procedures solve a subproblem in which the k;s are not
necessarily restricted to integer variables. Schweitzer and Silvers have shown for
this continuous variable case that the problem is ill-posed if the restriction k;~ 1
is deleted. We will show that under this restriction, km;~ 1 in the optimal
solution.

Andres and Emmonsb have shown by a counter example that the class of
cyclic strategies does not always contain an optimal strategy. Among others,
Chakravarty' considered a class of strategies under which the items of the family
are divided into a number of groups. The items of each group have the same
replenishment cycle, but the replenishment cycles of the groups are not an
integer multiple of the shortest (basic) cycle. These strategies are referred to as
"direct grouping strategies". Van Eijs, Heuts and Kleijnene compared the
performance of cyclic and direct grouping strategies with help of simulation.
They concluded that the non-cyclic class of strategies proposed by Chakravarty
outperforms the cyclic (T;k,,..,kN) strategies only in situations under which the
ratio of the major set-up cost and the average minor set-up cost is low (lower
than 0.50, depending on the number of items in the family)g However, this
result also points out that the class of cyclic strategies is not always optimal.
Another class of strategies which permit unequal time spacing between joint
replenishments is suggested by Goyal and Soni.9 They provide an extension of
the (T,k~,..,kN) strategies by permitting multiple basic cycles.

Goyal'o~" has proposed an algorithm to find the optimal solution within the
class of cyclic strategies. We will show that this solution is optimal within the
class of strict cyclic strategies, but is not necessarily optimal within the class of

cyclic strategies. We propose to adjust the algorithm of Goyal slightly to make it

possible to obtain cyclic strategies (T;k~,..,kN) with km;,,~l.

THE JOINT REPLENISHMENT PROBLEM

The joint replenishment problem can be described as follows: a(family of) N

items are purchased from the same supplier. When one of the items of the
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family is ordered a major set-up cost (A) is incurred, regardless of which item is
ordered. In addition, a minor set-up cost (a;) is charged for each particular item
which is included in the replenishment. Item i has constant demand D; per time
unit and holding cost h; per dollar per time unit. Stock-outs are forbidden and
the rate of replenishment is assumed to be infinite. The objective is to minimize
the total cost per time unit over an infinite horizon. For an arbitrary cyclic
strategy (T;k1,..,kN) the total average cost per time unit is given by (1):

1 a T
TRC(T;k1,..,kN) --( A t E i) t - E Dihiki

T i ki 2 i

For fixed (k1,..,kN) the optimal value T~(k,,..,kN) of the basic cycle equals:

r ti ;4

~
T (kl~--~l~ ) -

2 ( AtEai~ki )
i

E Dihiki
i

(1)

(2)

If T~(k~,..,kN) is substituted back in the orginal cost function (1) the following
cost function is obtained:

TRC(kl,..,l~) -~ 2( A t E 8i )~( E Dihiki )
i ki i 1' (3)

In this note we consider two cases: (i) the continuous case where both k; and
T are allowed to be continuous variables, and (ii) the mixed integer variable
case where k; is restricted to an integer value, while T is a contínious variable.

THE CONTINUOUS CASE

As mentioned before, most solution procedures try to find the minimum of
(3) by minimalisation over the positive orthant. So, (k l,..k N) is treated as a
continuous variable. In the appendix we show that TRC(k, ,..,kN ) is neither
convex, nor concave in (k~,..,kN). In fact, (3) is convex in one single k;.

Schweitzer and Silver5 have shown that the constraints k; ~ 1(i -1,..,N) are
needed to avoid an ill-posed statement of the problem. If these constraints are
deleted the resulting minimalisation problem has no optimal solution. If the
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objective function is minimized over the positive orthant under the restriction
that k;~ 1 for every item i, at least one of the items of the family has to be
replenished each T time periods. Hence, km;,,-1.

Result 1: k m;,,-1 in the optimu! solution of the continuous case.

Proof: Let solution 1 be of the form: k;~ 1 for all items i, and let T be the
corresponding basic cycle. The cost is denoted by C 1. Construct a new solution 2
k';-k;~km;,,, i-1,..,N, and T'-Tk,„;,,. Note that k'm;~ 1. CZ, the cost of solution 2,
is (see (1)):

~
~2- ( A t E ai )} T kmin ~ Dihi ki )

~
T min i min min

A 1 a T

T~kmin T i ki 2 i

C2~ C1, since 1~T'km;,,~ 1~T (note that km;,,~l).

THE MIXED INTEGER CASE

We have shown that km;,,- 1 in the continuous case, under the restriction that
k;~ 1 for each item i. However, the variables k; are not continuous but integer in
the orginal problem. The question is whether k,„;,, -1 also holds in the mixed
integer case.

Andres and Emmonsb have shown that the class of (strict) cyclic strategies is
not always optimal. Andres and Emmons illustrate their statement with a two
product example, for which the optimal solution is obtained by a special
algorithm.lZ Moreover, the problem setting of Andres and Emmons is different
from that of the joint replenishment problem in the following sense: a major set-
up cost has to be paid at every replenishment in which not all items are
involved. The only way to avoid the major set-up cost is to perform a joint
replenishment for all items simultaneously (the problem settings are only
equivalent if the number of items is two).

In literature regarding to the joint replenishment procedures for the cyclic
(T;k~,..,kN) strategies the algorithm of Goyal'ois used to find the optimal cyclic
strategy. However, the algorithm only guarantees an optimal strict cyclic strategy.
We note a shortcomming on this algorithm:

t- E i t-( E Dihiki )
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Result 2: The optimal solution within the class of cyclic strategies does not
necessarily belon,g to the class of strict cyclic strategies.

Counter examples are given in example 2 and 3. Note that if kn,;~~l and the
strategy is cyclic, then it seems profitable to order nothing on some specific
replenishment dates, whereas the major set-up cost has to be paid (see also
example 1).

Below, we shortly review the algorithm of Goyal.10 Then a simple extension is
proposed to the orginal algorithm. Goyal has derived that for a fixed value of T
the variable costs of item i are minimised by selecting the integer k; (T) which
satisfies:

ki(T)(ki(T)-1) G (2aJDiht)IT2) ~ ki(T)(ki(T)tl) í4)

Remark 1
Formula (4) provides lower and upper bounds for T for different values of k;.

For example, if k;-1 then T has to belong to the interval [(a; ~D; h; )~; ~~.

Starting with fixed (k l,..,kN), the optimal basic cycle T~(k l,..,k s, ) is given by
(2). Goyal's algorithm obtaines a minimum (Tm;,,) and a ma~cimum value (T,„~)
for T and then it determines all intervals of T within this range for which (k ~
,..,kN) is unchanged. It can be shown that only a finite number of intervals have
to be considered. Hence the global optimum can be obtained by taking the
minimum of all local minima after explicit enumeration of all the intervals. The
algorithm is outlined below.

Algorithm of Goyal io

Step 1
Determination of Tm;,, and Tmex:

(i) Set Tm„~:-T~(1,..,1) with (2).
(ii)Set Tm;,,:-min (a;~D;h;)~

(see remark 2) ~

Step 2
Initialisation:

(i) Set (k,~,..,k,~ ): -(k 1(T,„„~,..,k N(T~,~)) with (4) ((k 1~,..,k N) is a vector which
keeps up with the best relative replenishment frequencies, which are found
so far). Set TRC~:-TRC(kl',..,kN ) with (3) (TRC~ is de cost corresponding
to (k,',..,kN ) ).

(ii)Set T:-T,„~,and set (k~,..,kN):-(k~',..,kN ).
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(iii) Set T~h(i):- (2a;~(D;h;'k;(k; t 1)))~ for all items i(T~h(i) is the basic cycle
T at which the value of k;(T) of item i changes to k;(T)f 1).

Step 3
Set T: - max T~h(i). If Ts Tm;,,, then go to step 5. Otherwise go to step 4.

Step 4 '
Evaluation of the cost in the new interval:

(i) Set p:-{i~ max T~h(i)} (p denotes the item for which k;(T) changes at T
to k;(T)t 1);~ties aze broken arbitrary.
Set kP:-kPt 1, and set T~h(p):- (2ap~(DPhP'kP(kpf 1)))~

(ii) Calculate TRC(k1,..,kN) with (3). If TRC(k1,..,kN)~TRC" , then
(kl",..,kN ):-(k1,..,kN) and TRC":-TRC(k1,..,kN). Go back to step 3.

Step 5
Termination of the algorithm. The optimal strict cyclic strategy is (T",kl",..,kN )

with corresponding minimal cost TRC", where T":-T"(kl",..,kN )(with (2)).
(see remark 3).

Remark 2
Since T"(k1,..,kN) is monotone decreasing in (k1,..,kH) the maximum value of

T"(k1,..,kN) occurs in (k1,..,kN)-(1,..,1). Goyal'ostated that the minimum of T is
equal to the minimum of (2a;~D;h;)~ over all i. Andres and Emmonsb already
noted that Tm;,, has to be equal to the minimum of
(a;~D;h;)~ over all i(see also the remark below (4)). In a recent paper Goyal"
gives an example where the algorithm of 'o does not give the optimal solution.
He provides another algorithm which provides the optimal solution for the class
of strict cyclic strategies. However, if the correct Tm;,, is used the same solution
is found with 'o and 11

Remark 3
Goyal's algorithm determines k; (T") for each item with (4) after T" has been

obtained. This additional step is unnecessary if the correct Tm;,,is used.

Our criticism on the algorithm of Goyal is that the choice of Tm;,, is based on
the assumption that at least one of the k;s has an optimal value of one, and
therefure it excludes an cyclic stralegy (T;k~,..,kN) with k,„;,,~ 1. Such a strategy
is not strict cyclic. As mentioned befure, the optimum of the dass of cyclic
strategies does not necessarily belong to the class of strict cyclic strategies. As a
consequence, the strategy obtained from Goyal's algorithm may not be the
optimal cyclic strategy.
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The problem is to construct a new lower bound for T. Note that TRC~~A~T~,
where TRC ~ and T~ are respectively the cost and the basic cycle of the optimal
strategy, and A is the major set-up cost. Since T~ ~A~TRC~~ A~TRC, where
TRC is the cost of a feasible (T,k l,..,kN) strategy, a lower bound for T is
A~TRC. The lower this bound is the more intervals of T with an unchanged
solution (k~,..,kN) have to be distinguished. Hence, the lower Tm;,,, the more
computation time will be required to find the best cyclic strategy. The best
choice for Tm;,, is obtained when TRC is as low as possible. The minimum cost
TRC~ is unknown, but a good upper bound is given by the orginal algorithm of
Goyal. The following extended version of Goyal's algorithm will always find the
optimal cyclic strategy.

Adjusted ulgoritfim

Step 1
Use the orginal algorithm of Goyal lo with Tm;~: - min (a;~D; h;)~

The result is the optimal strict cyclic strategy (T~;k~1~,..,kN ) with corresponding
cost TRC, the current values of T(sTm;,,), and the vectors (k~,..,kH) and
(T~n(1),..T~n(N)).

Step 2
Set Tm;,,:-A~TRC~, and proceed with Goyal's algorithm at step 4.

We will give two examples for which the adjusted algorithm affects the orginal
solution.

Exumple 2(Andres und Emmons 6)
Let N-2, A-1, D~-400, D2-900, a~-50, a2-50, h~-1, h2-1

Goyal's algorithm yields k~~-2, k2 -1, and T~-0.30. The cost of the this strict
cyclic strategy is 508.33. The adjusted algorithm yields k~~ -3, kZ -2 and
T~-0.17. The corresponding cost is 505.96. This solution is the optimal cyclic (T~
;k ~~ ,..,kN ) strategy. The overall optimal strategy for the joint replenishment
problem is obtained by the algorithm of Andres and Emmons.12 The strategy is
to order item 1 every 1~2 time unit and item 2 every 1~3 time unit.b Note that
this solution corresponds with the cyclic strategy with T-1~6, k 1-3 and kZ -2.
The cost of this strategy, 504, is lower than the cost obtained by the adjusted
algorithm, because we assume that every T time units the major set-up cost is
charged regardless whether an actual order is placed. In the model of Andres
and Emmons the major set-up cost is only charged when any of the items of the
family is actually ordered.
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Example 3(an extension of the example of Andres and Emmons)
We add an extra item to the family with D3-850, h3-1 and a3-50.

The solution for the orginal algorithm of Goyal is k1~-2, k2-1, k3-1, T~-0.31.
The cost is 801.62. The adjusted algorithm yields k1~-3, k2-2, k3-2. The time
between two replenishments equals 0.17 time units and the corresponding cost is
797.54. We already mentioned that the computer time needed increases strongly.
To establish the optimal strict cyclic strategy three intervals have to be evaluated
However, 941 intervals have to be evaluated to find the optimal cyclic strategy.
Note that the adjusted value of Tm;,, in our algorithm depends heavily on the
data.

The optimal cyclic strategy does not belong to the class of strict cyclic
strategies if the major set-up cost is low relative to the average minor set-up
cost. Otherwise it will be too costly to order nothing on a particular multiple of
T. As mentioned before we prefer to use a class of non-cyclic strategies (with
unequal spaced family replenishments) if the ratio A~a~0.5 (depending on N)e
where a is the average minor set-up cost. In table 1 the solution of the cyclic
(T,k~,..,kN) strategy is compared with the solution of the direct grouping strategy
proposed by Chakravarty~ and the multi-cycle strategy proposed by Goyal and
Soni9 for example 2 and 3. Note that the cost obtained by 9 are lower than that
obtained by 6 This difference is caused by rounding off errors of 6

Table 1. Comparison of the numeric average cost jor different classes of strategies.

cyclic strategies non-cyclic strategies

example Goyal our algorithm Chakravarty Goyal and Soni

2 508.33 505.96 504.98 503.98
3 801.62 797.54 796.55 795.57

CONCLUSIONS AND DISCUSSION

In this note we considered the class of cyclic (T;k~,..,kN) strategies for the joint
replenishment problem. The smallest value k;value is denoted by km;~. The c1áSS
of cyclic strategies with km;~ 1 are called strict cyclic. Under a strict cyclic
strategy the actual family replenishments and the replenishments of the
individual items in the family are equally spaced (by respectively T and Tk; time
units). Under a cyclic strategy with km;~ 7 1 fake replenishments are made at
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some multiples of T. The major set-up cost is incurred at all multiples of T,
even if there is is no actual replenishment. In literature it is assumed that the
optimal cyclic strategy belongs to the class of strict cyclic strategies (so,
km;~ 1). We have shown that this is correct if the variables k; are treated as
continuous variables. However, if the variables k; are restricted to integer values,
we have illustrated that the optimal cyclic strategy is not necessarily strict cyclic.
Goyal's algorithm,'o which is commonly used to find the optimal cyclic strategy,
does not allow solutions with km;,, ~ 1. AS a consequence, this algorithm yields
the optimal strict cyclic strategy, but it does not always yield the best cyclic
strategy. We proposed a simple adjustment of Goyal's algorithm, which always
finds the optimal cyclic (T;k~,..,kN) strategy. A drawback of this algorithm is that
the computer time needed increases strongly. The reader should note that the
optimal cyclic strategy does not belong to the class of strict cyclic strategies only
in situations when the ratio of the major set-up cost and the average minor
set-up cost is very low. One can imagine that in such situations joint
replenishments of items do not make much sense. In this cases it may be better
to use classes of strategies with unequally spaced family replenishments.

Acknowledgmen( - The author would fike to thank Professor Frank van der Duyn Schouten for

several fruitful discussions and for his helpful comments.
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APPENDIX

Lemma.~ Objective function (3) is neither convex nor concave in (k~,..,kN)

Proof:It is sufficient to prove that the function

f(k1,..kN) -( A t E ai ) í E Dihiki)
i ki i

is not convex or concave. We will prove the lemma by showing that the Hessian
matrix of f(k1,..,kN) with respect to (k~,..,k~) is neither positive definite (in this
case f(k1,..,kN) is convex) nor negative definite (then f(k,,..,kN) is concave). In
the case N-2 the Hessian matrix is given by:

~2a1~2h2k2 a1D2h2 a2Dlh1

H2
3 2 2kl kl k2

a1D2h2 a2Dlh1 2a2Dlhlk1

L 2 2 3kl k2 k2

(a2)

(i): f(k~,..,kN) is not convex.
Since the Hessian matrix of f(k~,..,kN) is symmetric, f(k1i..,kN) will be positive
definite if all submatrices Hk (k-1,..,N) have an positive determinant. We will
show that the determinant of H2, denoted by DZ, is negative (b;:-D;h;, i-1,2):

D2 -
ala2blb2

4- k2 k2 -
1 2

-2.ala2blb2 t
k2k21 2

2.
ala2blb2 a2b1 2

k2k2 } C k2 J1 2 2

2 } 2k2 klCa2b1~2 Calb2~2

t
C alb2 ~ 2

k21

2
a2b1 alb2 G 0
k2 k22 1

(ii): f(k1,..,kN) is not concave.
The Hessian matrix HZ is negative definite if xTHZx~O for all nonzero vectors

xT-(xl,x2)T
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a D h k
xTH2x - 2 1 2 3 2.xi t 2. r-

kl L

a1D2h2 a2Dlh1
2 - 2 ~ ~XlX2}kl k2

82Dlhlkl 2. k3 .X2
2

Consider the vector (xt,xz)T-(1,0)T then we have xTHZx~O and hence HZ is not
concave.
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