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Abstract

In t}iis papec~ we investigate (n,N)-strategies for the maintenance of a two
component series system. Vergin and Scriabin C9] provided some numerical
evidence on the near-optimality of this type of policies. In a recent
paper ~zekici [6] gave a characterization of the structure of the optimal
policy and its possible deviations from the (n,N)-structure for the dis-
counted cost criterion. The same kind of structure is shown to hold for
the average cost criterion. In view of the complicated form of the optimal
policy and the near-optimality of the (n,N)-policies we present a fast
computational method to compute the average costs under a given (n,N)-
policy. This method is based on a well-know embedding technique. Moreover,
a heuristic based on this computational method, is presented by which the
optimal values of n and N can be determined.

Key words snd phrases: Multicomponent reliability system; preventive and
opportunistic replacement; Markov decision processes; control limit rules~
computational aspects.
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1. Introduction

In this paper we investigate the two component maintenance scheduling
problem introduced by Vergin and Scriabin C9]. This problem concerns the
maintenance of a series system, consisting of two (identical) components,
which are subject to stochastic failures. The components are functioning
independent of each other. When one of the components breaks down the
system fails which involves break-down costs. To avoid a frequent occuren-
ce of this cost preventive replacement is allowed. Additionally we have
the option of opportunistic replacement, which refers to the possibility
to replace both components, when only one of them has failed or reached
its preventive age. This makes sense not only because it usually is chea-
per to replace two components simultaneously rather than separately but
also due to the series structure of the system. Replacements can only take
place at inspection epochs, which are assumed to be equidistant discrete
time epochs.

To find an optimal maintenance schedule one might use standard policy-
improvement or value iteration techniques from Markov decision theory.
However, there are two drawbacks. First of all due to the two dimensional
state space (denoting the ages of both components) these standard techni-
ques are in general very time-consuming and even prohibitive for moderate
size problems. In the second place the actual optimal policy, found by one
of these procedures, may have a rather irregular structure, which makes it
necessary to explicitly specify the optimal decision for all possible age-
combinations. From a practical point of view one might be interested in
policies which are easy to characterize and, on the other hand, close to
optimality. Moreover, it is important that for the proposed policy the
actual average expected costs per unit time can be computed rather easily.
A class of policies satisfying these conditions are the so-called (n,N)-
policies. An (n,N)-policy prescribes to replace a component when it has
failed or when its age has reached the value N and, if one of the compo-
nents is replaced, to replace the other simultaneously when its age is
greater than or equsl to n(s N). In this sence an (n,N)-policy seems to
be the natural two-dimensional generalization of the well-known one-
dimensional control-limit rules.
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Vergin and Scriabin [9] have shown by numerical comparisons that (n,N)-
policies are close to optimality for a wide range of cost parameters.
(Szekici [6] provided some additional support for this conclusion based on
the analysis of the optimal policy. These results are mentioned in more
detail in section 3. The main result of this paper is dealt with in sec-
tion 4. There we present an exact computational method for the average
costs under a given (n,N)-policy. This method is based on a well-known
embedding technique (see e.g. Tijms and Van der Duyn Schouten [8]). Final-
ly we use this computational method in section 5 as a building block in a
heuristic to determine the best policy within the class of (n,N)-policies.

Recently various authors studied models which are closely related to ours.
Epstein and Wilamowsky [2] investigate a system consisting of two compo-
nents one of which has an exponential lifetime, while the other has a
fixed finite lifelength with failure rate equsl to zero. A characteriza-
tion of the optimal replacement policy is given. Opportunistic maintenance
is also the subject of a paper by Bgckert and Rippin [1]. They consider a
three component system. At failure epochs of one of these components op-
portunistic replacement of the other components is considered. The perfor-
mance of three different solution techniques, among which the Markov
decision approach, are compared. Finally we mention a paper by Haurie and
1'Ecuyer [3]. They analyse the optimal preventive replacement rule over a
finite horizon of a parallel system comprised of m identical independent
components. There are fixed as well as linear replacement costs but no
break-down costs. It is shown that the optimal policy may have some coun-
terintuitive properties with respect to monotonicity in its state vector.

2. Mathematical model and its solution techniques

Consider a series system with two identical and independently operating
components 1 and 2. Both components are subject to stochastic failures.
The times until failure are stochastic variables with known probability
distribution functíon. The system is inspected only at discrete equidi-
stant time epochs. When upon inspection a component turns out to have
failed during the last period it has to be replaced immediately and a
breakdown cost is incurred. The time needed for replacement is negligible.
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On the other hand when at an inspection epoch both components are still

working there are four possible decisions to make: replace none component,

replace only component 1, replace only component 2 or replace both com-

ponents. A replacement in this situation is called a preventive replace-

ment or an opportunistic replacement. The former refers to the opportunity

to prevent breakdown cost by timely replacement, the latter refers to the

opportunity to prevent cumulation of replacement costs by joint replace-

ment instead of separate replacements. After replacement of a component a

new identical component starts with age equal to zero. The lifetime dis-

tributions are supposed to have finite support i.e. when a component has

reached its maximal lifelenght it certainly will fail during the next

period.
The following non-negative costs are incurred:

b .- system breakdown cost.
rl .- replacement cost for a single component (either 1 or 2).
r12 :- cost of joint replacement of both components 1 and 2.

Note that due to the series structure the same breakdown cost b is incur-
red when either one or both components fail.

Assumption 1. rl S r12 S 2r1

Next we consider the aging process of the system. As stated before we
assume that both components are independent. For a relaxation of this
assumption we refer to the recent paper of (Szekici [6]. (see also section
3).
Define

Li :- the lifetime of component i expressed in inspection peri-
ods,i-1,2.

Let

u :- E (Li), i-1,2 and
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q .- P (L.-nIL.2n), n-0,.. ,m , i-1,2n i i

where

m:- min {n: P(Li2n41) s 0)

and

p .- 1 - q , n-0,.. ,m.n n

Note that qn denotes to probability that a component will fail during the
next period given that its age equals n at the beginning of this period.
We say that a component at an inspection epoch is found in state n when it
has not failed and its age equals n. When the component has failed we say
that it is in state mtl.

To model this system as a Markov decision process we introduce as a state
space

S - {1, 2,...,mt1}2

where for (i,j) E S we denote by i(j) the state of the first (second)
component.
The set of possible actions A consists of:

i.- replace only component i, i-1,2
12 :- replace both components
0 .- replace no component

The set of feasible actions in state s E S is denoted by A(s).
The one-step cost function c(s,a), s E S, a E A is easily composed from
the given cost parameters b, rl and ri2. For example

c((mtl,j),12) - b t r12 , 1 S j 5 mtl

c((i,j),12) - r12 , 1 5 i,j s m
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c((i,j),1) - rl , 1 S i,j 5 m

Finally the one-step transition probabilities pst(a), s,t E S, a E A are
completely determined by the survival probabilities pn. For example

p(i,j),(itl,j'1)(~) - PiPj ' 1 S i,j 5 m- 1

p(i,j),(mtl,jtl)(~) - qiPj , 1 s i s m, 1 s j s m- 1

p(i.j),(1,1)(12) - P~2 , 1 s i,j s m t 1.

Assumption 2. 0- Pm ~ pm-1 5"' S pl 5 p0 ~ 1' o

As far as the lifetime distribution of the components is concerned
knowled e of the sequence mg (pk)k-0 suffices. It is irrelevant whether the

lifetimes themselves have a discrete or continuous probability

distribution. o

Denote by X(t) -(X1(t),X2(t)) the states of both components at the t-th
inspection epoch. For every stationary policy R the process {X(t),
t- 0,1,2,..} constitutes a discrete-time Markov chain on S. It is easy to
see that (mil,mtl) is a positive recurrent state under every stationary
policy R. Due to assumption 2 it follows that (mtl,mfl) can be reached
from every starting state (i,j). This implies that there exists only one
recurrent class under every policy R. Let C(R) denote this recurrent class
and let D(R) be the set of transient states under policy R. Note that
state (i,j) E D(R) iff it cannot be reached from (m41,m}1). Finally we
note that X(t) is aperiodic on C(R) for every policy R since we can return
to (mtl,m;l) in one step. We are now interested in that stationary policy
R that minimizes

g(R) :- lim ER nti E c(X(t), R(X(t))
n~ t-0

The standard tools to solve this Markov decision problem numerically are
the policy-iteration and the value-iteration algorithm ( see e.g. Tijms
[~]). From a numerical point of view the value-iteration algorithm is



preferred in particular for big state spaces. This algorithm recursively
solves the finite horizon Bellman optimality equation

(2.1) v(s) - min {c(s,a) t F p(a) v (t)} , s E S, n z ~.
n aEA(s) tES st n-1

On the other hand we know from Markov decision theory (see e.g. Howard [4]
or Tijms [~]) that for any stationary policy R the average costs g(R) and
the so-called relative values vR(s), s E S are the unique solution to the
set of linear equations

vR(s) - c(s.R(s)) - 8(R) t E pst (R(s)) vR(t) , s E S
tES

(2.2)

A step in the general policy improvement algorithm proceeds as follows.
First we define for a given policy R the policy improvement quantity

(2~3) TR(s'a) '- c(s'a) - g(R) }~ pst (a) vRÍt)
tES

For any stationary policy R we have ( see Tijms [7])

g(R) 5 g(R)

whenever

TR (s,R(s) s vR(s) for all s E S.

In section 5 we use this result to derive a policy improvement procedure
within the class of (n,N)-policies.

~R (mtl.m'1) - 0.

To conclude this section we note that the average optimal policy R' can be
found as the minímizing action in the average optimality equation (see
e.g. Tijms [~]
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v(s) - min {c(s,a) - g t ï pst(a) v(t)}
aEA(s) tES

(2.4)
v(mtl,mtl) - 0

3. The structure of the optimal policy

Up to now the most complete characterization of the structure of the opti-
mal policy has been given by ~zekici [6]. (Szekici's model is more general
than ours in the followings aspects. The system considered by dzekici
consists of n different components whose ages develop over time as an
increasing Hunt process, which implies amongst others that the ages of the
components are not necessarily independent and may increase at different
rates as well as by jumps. Our cost structure is also a special case of
the cost structure assumed by bzekici: a general maintenance~replacement
cost function depending on the components to be replaced (but not on their
ages) and an operating cost function of the age-vector. Under fairly gene-
ral assumptions on both cost functions and aging process ~zekici shows
that for the optimal replacement policy the four regions of the state
space where the four different actions 0, 1, 2 and 12 are optimal are
connected subsets of the state space with certain regularity conditions
for the boundaries. A typical example of the optimal policy for two compo-
nents in ~zekici's model is shown in figure 1

Figure 1 The general form of [he optimal policy in Ozekici's model.
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Let us denote the region where the optimal policy prescribes action a by
Ra, a E A.
The special characterics of the optimal policy are:

(i) the boundaries between R1 and R12 and between R2 and R12 are
straight lines.

(ii) the other boundaries do not necessarily have a convex or concave
shape

(iii) for fixed age i of one component the replacement of the other compo-
nent is controlled by a control limit rule i.e.

(i,j) E R2 u R12 implies (i,j.k) E R2 u R12 for k 2 0.

(iv) If (i,j) E R2 than (i,k) E R2 for mtl Z k 2 j

(v) If (i,j)ER12 than (k,,i)ER12 for all mtl z k 2 i and all mtl 2~ 2 j

(vi) it may occur that (i,j) E R2 and (i.k,j) E R~ for some k Z 0 (simi-
larly for R1 and R~)

(vii) it may occur that (i,j) E R~ and (i,jtk) E R1 for some k z 0 (simi-
larly for R~ and R2)

The characteristics (i) up to (v) are proven by bzekici for the discounted
cost criterion and below we will show that they hold for the average cost
criterion. From extensive numerical experiments we have found situations
where (ii) and (vi) occur for the average cost criterion ( see figure 2).
The situation mentioned under (vii) did not occur. We conjecture that it
cannot occur, although we were not able to prove it.
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Figure 2 Some specific forms of the optimal maintenance policy.
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Next we derive the properties mentioned above of the average optimal poli-
cy. Let us specify the Bellman optimality equation (2.1) for our model.
Define for 0 5 i,j s m

(3.1) WntlÍi,j) :- PiPj Vn(i}l,jtl) t(1-pi)pj Vn(m~l,jtl) .

t pi(1-pj) Vn(itl.m,l) ~ (1-Pi) (1-P~) Vn(mtl,mtl)

Now relation (2.1) can be rewritten as follows

(3.2) Vn~l(i,j) - min {Wntl(i,j). rl } Wntl(O,j), rl ~ Wntl(i.0).

r12 } Wnt1(0,0)}

(3.3) Vntl(i,mfl) - min {b t rl } Wntl (1'0)' b t r12 } Wntl(0'0)}

(3.4) Vntl(mtl,j) - min {b t rl t Wn}1(O.j), b} r12 } Wn41(0,0)}

(3.5) ~ntl(m}l~m}1) - b } r12 } Wn.l(a~o)'

Similarly the average optimality equation (2.4) can be rewritten into

(3.6) ~(i,j) - min {- g. w(i,j), rl - g t w(o.~), rl - s t w(i,o).

r12 - g t w(0,0)}

(3.7) v(i,mtl) - min {b t rl - g~ w(i,0), b t r12 - g t w(0,0)}

(3.8) ~(mtl.j) - min {b t rl - g} w(O,j), b t r12 - g' w(0,0)}

(3.9) v(mtl,mtl) - b` r12 - B` w(0,0)

where for 0 5 i,j 5 m
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(3.10) w(i.j) - P1Pj ~(itl,jtl) t(1-pi) pj v(mtl,j~l) 4

t pi(1-pj) v(itl,mtl) t(1-pi)(1-pj) v(m;l,m}1)

Theorem 1 The average optimal policy RN is symmetric.

Proof From ( 3.2) unto ( 3.5) it easily follows by induction on n that
Vn(.,.) is symmetric starting with VO(.,.) ~ 0. Since the solution v(.,.)
of the average optimality equations ( 3.6) unto ( 3.9) satisfy ( see Tijms
[7])

v(i,j) - v(k,~) - lim {Vn(i,j) - Vn(k,~)}
n~

it follows that v(.,.) is symmetric, which in turn implies that the mini-

mizing action in the right hand side of (3.6) unto (3.9) is symmetric. The

observation that the minimizing action in the right hand side of the ave-

rage optimality equation consitutes an average optimal policy (see Tijms

[~]) completes the proof. o

Theorem 2 Any solution of the equations (3.6) unto (3.9) satisfy

(3.11) v(i,j) S v(i,jtl) , 1 5 i 5 mtl , 1 5 j 5 m

and

(3.12) v(i,j) s v(i;l,j) , 1 s i s m, 1 s j s m41

Proof By theorem 1 it is sufficient to show that (3.11) holds. From (3.6)
unto (3.9) it follows that for 1 5 i,j S mtl

(3.13) ~(i.j) 5 b 4 r12 - g t w(0,0) - v(mtl,mtl)

Rewrite (3.10) into
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(3.14) w(i,j) - v(mtl,mtl) - pipj (v(mtl,mtl)-v(i;l,j.l)) -

- (1-Pi)Pj (v(mtl,mfl)-v(mtl,jtl)) - pi(1-pj) (v(m.l,m~l) -

- v(itl,mtl))

From (3.6) unto (3.9) it follows that (3.11) trivially holds for j-m and
all 1 5 i S mtl. Now suppose that (3.11) holds for all k t 1 5 j s m and
all 1 5 i S mtl.
To show that (3.11) also holds for j-k and all 1 5 i s m t 1 it suffices
to prove that for all 0 5 i 5 m

(3.15) w(i.k) 5 w(i,ktl)

From (3.14) it follows that

w(i,k) - w(i,k}i) -- ei - ~2 r~3

where

e1:- pipk (v(mtl,mtl) - v{i.l,ktl)) - pipkti (v(mtl,mtl) -

- v(i41.kt2))

02:- (i-pi)pk (v(m.l'mtl) - v(mtl,k`1)) - (1-Pi)Pktl (v(m~l,mfl) -

- v(m41,kt2))

e3'- pi{pk-pktl) (v(m~i,mtl) - v(iti,m~i))

From assumption 2 and the induction hypothesis it follows that oi 2 0 and
n2 2 0. Next n3 2 0 follows from assumption 2 and relation (3.13). Finally
we note that by the induction hypothesis
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~1 Z pipk ( v(mtl,mtl) - v(itl,kt2)) - pipktl (v(m;l,mtl) -

- v(itl.kt2)) - pi(pk-pk~l) (~(mtl.mtl) - vÍitl.kt2))

- p

2 pi(pk-pktl) (v(mtl,mtl) - v(itl,m;l))

3

which yields (3.~5) o

Corollary 1 The average optimal policy R" with regions Rá, a E A has the
following properties:

(i) If j~ i than the optimal policy can be chosen such that Rw(i,j) ~ 1

(ii) If (i,j) E R2 than (i,jtl) E R2

(iii) If (i,j) E R12 than (k,~) E R12 for all k Z i and all ~ z j.

Proof

(i) For j~ i we have

w(i,~) - w(O.i) 5 w(~.j)-

Hence

rl - B t w(i.~) 5 rl - g' w(~.j)

which implies that action 2 is always as good as action 1 in the optimiza-
tion of the right hand side of (3.6)
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(ii) For (i,j) E R2 it follows that

ri t w(i.0) 5 min {w(i.j). ri t w(O.j). r12 ~ w(0~0)}

S min { w(i,jtl), ri t w(O,jtl), r12 i w(0,0)}

Hence (i,jfl) E R2.

(iii) The proof of (iii) proceeds similarly as (ii). o

Note that corollary 1 implies that the boundary between R2 and Ri2 is a
straight line.
Besides the theoretical results containted in corollary 1 additional in-
sight can be obtained by numerical experiments. By the value iteration
algorithm we generated optimal policies under a wide variety of cost para-
meters and lifetime distributions. This general purpose algorithm works
satisfactorily on a personal computer for a state space upto m- 15. The
number of iterations required varied between 20 and 100.
In the appendix we present the numerical results. Apart from the optimal
value of the average costs gM we also give the average costs g~n~N) of the
best policy of (n,N)-type. A policy R is called of (n,N)-type if there
exist natural numbers n s N such that R(i,j) - 0 if 0 s i,j 5 N,
R(i,j) - 1 if i Z N, j( n; R(i,j) - 2 if j 2 N, i~ n and R(i,j) - 12
otherwise (see figure 2d).

A summary of the numerical results is presented in table 1 below where the
frequency of occurrence of different values of g~ - g' as a percentage(n,N)
of g~ is tabulated.

z
a

0 o-o.i 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 ~0.6

30 6 5 2 0 1 1 0

Table 1 Frequency of relative differences between g~ and g~`.(n,N)
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In those cases where the difference between g~n~N) and g` was equal to
zero, the optimal policy was not necessarily of (n,N)-type. It sometimes
occurs that the optimal policy itself (as it is generated by the value
iteration algorithm) is not of (n,N)-type, but can be put into this form
by modification of the actions on the set of transient states. It is not
hard to see that such a modification only affects the value of the relati-
ve values on the transient states but not of the average costs itself.
Moreover such a modification does not change the set of recurrent states.
We conclude this section with a remark concerning another experimental
finding. We generated a number of surival distributions by a discretiza-
tion of a given Weibull distribution. We investigated the effect of a
decreasing grid size (increasing number of possible states) on the form of
the optimal policy. It turned out that the value of g~ approached the(n,N)
value of gM, although we could not conclude that the form of the optimal
policy converged to a (n,N)-form.

Both the theoretical and numerical results reported in this section justi-
fy a special attention to policies of (n,N)-type, in particular because
these kind of policies are easy to handle in practice. Therefore we pre-
sent in the next section an embedding technique by which the average costs
under a given (n,N)-policy can be efficiently computed. This technique is
used as a building block in a heuristical algorithm to compute the best
(n,N)-policy. This algorithm will be presented in section 5.

4. Analysis of a(n,N)-policy via embedding

In this section we present an efficient numerical method to compute the
average costs g(n,N) under a fixed policy of (n,N)-type. This method turns
out to be faster than the application of the value iteration method for a
fixed policy. Vergin and Scriabin [9] suggest simulation as an effective
method to compute g(n,N).
In this section we consider a fixed (n,N)-policy with average costs
g(n,N).
Let X(t) -(X1(t),X2(t)) denote the Markov chain on S describing the
states of both components under the given (n,N)-policy and suppose that
X(0) ~(mtl,mtl). Denote by Tn, n~ 1 the epoch of the n-th replacement



(either a single replacement of one of both types or a joint replacement)
and define

Z~ :- X(0)

and

Zn :- X(Tn). n z 1

Then (Zn)n-0 constitutes a Markov chain on state space

S:- {(i,N) : 15i5N} u{(N,j) : 15j5N} u{(i,mtl) : 15i5N} v

v {(mtl,j) : 15j5N} u {(mtl,mtl)}

Note that state (i,N) with i C N-ntl can only be entered by (Zn)n-0 from
(N,N-i) or (mt1,N-i). However, since N-i ) n-1 the policy prescribes ac-
tion 12 in (N,N-i) and (mt1,N-i). Hence (i,N) is not accessible under the
given policy, so that the state space can be reduced to

E:- {(i,N) : N-nfl 5 i 5 N} u{(N,j) : N-ntl 5 j S N} u

u{(i,m}1) : 1 s i 5 N} u{(mtl,j) : 1 s j 5 N} u{(mtl,mtl)}.

Note that this state space is of dimension 2(ntN) 5 4m, while S is of
dimension m2.

m
(Zn)n-0 is an irreducible, aperiodic, positive recurrent Markov chain on
E. Let p(.,.) denote the one-step transition probabilities of (Z )~ andn n-0
rt(.) its stationary distribution.
For s E E we define

T(s) :- the time untíl next replacement, given that the present
replacement is carried out in state s

~(s) :- E T(s)
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c(s) :- the expected costs incurred until next replacement, given
that the present replacement is carried out in state s.

Then we have by the theory of regenerative processes ( see e.g. Tijms et
al. [8])

E c(s)n(s)
(4.1) g(n,N) - sEE

E T(S)R(S)
sEE

Before we derive explicit expressions for c(s) and 2(s) we note that be-
cause of symmetry it suffices to compute both functions in the states
(i,N) for i s N and (i,mtl) of E.
For the function c(s) we have

c(i,N) - rl , c(i,mtl) - b~ rl for iCn

c(i,N) - r12 , c(i,mtl) - b t r12 for iZn

For iCn we have

m N-i
(4.2) ~(i,N) - T(i,mtl) - i P(T(i,m31)2k) - 1 t ï r(k-l,i) r(k-1,0)

k-1 k-2

where

k-1
r(k'1) '- ~ pi;~~-0

Note that r(k,i) equals P(LZitk~L2i), where L denotes the lifetime of a
single component.
Similarly we find for iZn

N
(4.3) T(i,N) - T(i,mtl) - T(m.l,mtl) - 1 t E r2(k-1,0).

k-2
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Finally the stationary distribution can be obtained by solution of the set
of stationary equations n-nP together with the normalizing equation
ï n(s) - 1

sEE
This set of equations can be solved by standard procedures (see Tijms [~])
once the one step transition probabilities p(s,t) are known.
In figure 3 below the possible transitions from (i,N) are shown.

i(n: (mtl,k) (15ksN-i) iZn: (m41,k) ( 15ksN)
T T

(m~l,mtl) ~ ( i,N) -~ (N,N-i) (mtl,mtl) ~ (i,N) ~ (N,N)
~ 1

(itk,mtl) ( 15kSN-i) ( k,mfl) ( 15kSN)

Fi re The possible one-step transitions from (i,N)

For iCn the transition probabilities ar~'given by

p((i,N), ( N,N-i)) - r(N-i,i) r(N-i,0)

p((i,N, ( itk,mtl)) - r(k,i) r(k-1,0) ( 1-pk-1) ( 1sksN-i)

p((i,N), ( mtl,k)) - r(k-l,i) (1-pitk-1) r(k,0) (15kSN-i)

p((i.N), ( mtl,m41)) - 1 - E p((i.N)~s)
s~(mtl,mtl)

For p((i,N),s) with i2n we get the same expressions with i-0 substituted
in the right hand sides. Finally we note that

(4.4) p((i,mtl,s) - p((i,N),s) for all i.

Instead of the solution of the stationary equations n-nP by a standard
numerical procedure, like Gauss-Seidel, we may follow another approach to
find the value of g(n,N), namely the solution of the optimality equation
corresponding with the semi-Markov decision process in which decisions can
be taken at epochs of entrance into the states N and mtl and where the
decisions are prescribed by the given (n,N)-rule.
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This yields an "optimality" equation

v(s) - c(s) - g T(s) t ï p(s,t) v(t) , sEE.
tEE

(4.5)

This system can be solved by the value-iteration method for semi-Markov
decision processes (see Tijms [7]). Agaín we emphasize that the solution
of (20) and (21) is much easier than solution of (3) because of the reduc-
tion of the state space. In section 5 we will show that (4.5) can even be
reduced to a system of only n equations.
The choice between both methods is rather arbitrary and may depend on the
preference of the user. The solution of the steady state equations yields
the stationary distribution, while solution of (4.5) by the value itera-
tion method yields bounds on the value of g(n,N) during the computational
procedure. In our calculations we used the value iteration method.

5. A Heuristic for the optimal (n,N)-policy

In this section we describe a heuristic to compute the optimal replacement
policy within the class of (n,N)-policies. In this algorithm the method to
compute g(n,N) for fixed (n,N)-policy as described in the previous section
is used as a building block. The main idea of the algorithm is contained
in the following three steps.

Step 1. Choose good starting values for n and N. Go to 2.

Step 2. Compute g(n,N) and the relative values v (s), sES and go to 3.(n,N)

Ste . Use e special form of the policy improvement procedure to esta-
blish whether improved values of n and N exist. If so go to 2 else stop.

Below we will elaborate on these steps in more detsil.

v(mtl,mtl) - 0.

Step 1. In step 1 we use as an initial choice of n and N the optimal con-
trol limit T~ for the one component replacement model with breakdown costs
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b and replacement costs rl. By standard arguments from renewal theory it
can be shown that T~ is the minimizing argument of

T
rl t b E ak

g (T) :- n-0
T m
F i a~

k-0 ~-k

where

ak :- P(Li-k), k-0,1,2,...; i-1,2.

Using assumption 2 it is easily verified that T' is the smallest natural
number k satisfying

k-1 m k-1
(5.1) qk L E a~ - i ai 2 rl~b

i-0 .~-i i-0

A natural number k satisfying (5.1) exists if

(5.2) u - 1 z rl~b

If (5.2) is not satisfied we have TN - m41.

Step 2. In step 2 the g(n,N) as well as the relative values v(n~N)(s), sES
are computed for a given (n,N)-policy. First we note that apart from the
set of equations (2.2) the g(n,N) and v(n N)(s), sEE are also the unique
solution to the embedded set (4.5). For a proof of this result we refer to
Tijms LÏ~ (PP. 229-230).
So we first solve (4.5). At this point it is worthwhile to note that (4.5)
becomes e rather small set of only n equations with n unknowns due the
special structure of our problem. To prove this we note that

v(i,mtl) - b t r2 - g T(i,mtl) t ï p((i,mtl),t) v(t), 1 5 i( n
tEE

and



22

v(i,N) - r2 - g T(i,N) t E p((i,N),t) v(t), 1 s i C n
tEE

while

(5-3) v(i,mtl) - b t r12 - g i(i,mtl) r E p((i,mtl),t) v(t), n s i 5 N
tEE

and

v(i,N) - r12 - g Y(i,N) t E p((i,N),t) v(t), n 5 i s N.
tEE

From (4.2), (4.3) and (4.4) we conclude that

v(i,mtl) - b; v(i,N) for all 1 5 i s N

Moreover we see from (4.3), (4.4) and the fact that p((i,N), s) for i2n is
independent of i that the right hand side of (5.3) is also independent of
i.
This, together with the symmetry of v(.,.) ( see proof of theorem 1) redu-
ces (4.5) to a set of n equations.
Next the values of v(n N)(s) for sEEccan be computed by single pass calcu-
lations from g(n,N) and {v(n~N)(s) : sEE} as follows. Deleting in the
notation the dependency on the (n,N)-policy we have

v(i,mtl) - b t rl - g t w(i,0) - b f v(i,j) , 1 5 i ~ n; N s j 5 m

and

v(i,m;l) - b t r12- g t w(0,0) - b; v(i, j) , n 5 i s N; N 5 j 5 m

Hence we conclude that

v(i,j) - v(i,mtl) - b for all 1 5 i s N; N s j 5 m.
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Similarly

v(i,j) - v(mtl,j) - b for N s i s m; 1 5 j s N.

Next we note that

v(i,j) - v(mtl,mtl) - b for N~ i S m; N C j 5 m

Finally for 1 s i,j ~ N the values v(i,j) can be recursively computed
starting at the boundaries {(N,j) : 1 s j s N} and {(i,N) : 1 5 i s N} and
proceeding downwards along diagonals (see figure 4).

mtl

m

N

n

I

itl,mtl)

~ r

r

i

r

~

~ ~
~ r

I ,

,I r

I ~~

(i )~'-

1t1,~t1)

- - - -~j

n N

Figure 4 The computation of v(i,j).

0

(mt~,jt~)

m mtl

Ste . With g(n,N) and v(n N)(s), sES obtained in step 2 we apply the
policy improvement procedure described at the end of section 2 in the
following way. Since we want to stick to (n,N)-policies we modify the
general improvement procedure in such a way that only (n,N)-policies will
be encountered. First we investigate whether an improvement is obtained by
decreasing n to n-1. This implies that we change the action in the states
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{(n-l,j), N s j s mtl} from 2 into 12 and in the states {(i,n-1), N s i s
mtl} from 1 into 12. In all other states no change of action occurs. Hence
we compute the test value T(n~N)(s,12) (see (2.3)) for

s E{(n-l,j), N S j 5 mtl} u{(i,n-1), N 5 i 5 mtl}

which yields:

T(n~N)((n-l,j).12) - r12 - g 4 w(0'0)

while

v(n N)(n-l,j) - r2 - g t w(n-1,0)

(w(.,.) is defined by (3.10))
Since neither T(nrN)((n-l,j),12) nor v(n~N)(n-l,j) depends on j we con-

clude that either

(5.4) T(n~N)((n-l,j),12) ~ v(n N)(n-l,j) for all N 5 j 5 mtl

or

(5-5) T(n N)((n-l,j),12) Z v(n N)(n-l,j) for all N s j s mtl.

If (5.4) holds (n-1,N) yields an improvement over the policy (n,N). If, on
the contrary (5.5) is satisfied we conclude that the policy (n,N) is not
improved by (n-1,N). So we can compare the policies (n,N) and (n-1,N)
without computation of g(n-1,N). If (n-1,N) yields an improvement over
(n,N) we continue by comparing the policy (n,N) with (n-2,N) and continue
is this way until no improvement is obtained any more. On the other hand
if (5.5) holds we compare (n,N) with (nt1,N) in a similar way.
Next we consider possible ímprovements of the value of N, with n fixed.
This turns out to be more delicate than changing n. A modification of
(n,N) into (n,Ntl) yields a change of action on the set {(i,N) .
1 s i 5 N} u{(N, j) : 1 S j S N} .
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For 1 s i s N we have

(5.6) T(n N)((i,N).0) -- 8 t w(i.N)

while

- Irl - g t w(i,0) for i( n

(5.7) ~(n~N)(i.N) 11

r12 - g t w(0,0) for i Z n

From (5.6) and (5.~) we conclude that in general no comparison between
T(n N)((i,N),0) and v(n N)(i,N) is possible uniformly in 1 5 i s N. Hence
no unambigions comparison between the policies (n,N) and (n,Ntl) can be
made based on this policy improvement step. Indeed this ambiguity did
occur in our numerical examples. Therefore in our algorithm we compare
(n,N) and (n,Ntl) directly on base of g(n,N) and g(n,Ntl).

The complete algorithm now reads as follows.

Algorithm

Step 0. Determine T~ and choose n- N- T~. Go to step 1.

Step 1. Compute g(n,N) and v(n~N)(s), sEE and go to step 2.

Step 2. Compute v(n N)(s), sES and go to step 3.

Ste . Apply the improvement procedure to compare (n,N) and (n-1,N). If
improvement is established compare (n,N) with (n-2,N) and continue in this
way until no further improvement is obtained. Set n equal to the last
value for which improvement was established and go to step 1. If (n-1,N)
is not better than (n,N) apply the policy improvement procedure to compare
(n,N) and (nt1,N) and proceed analogously.
If neither (n-1,N) nor (nt1,N) is better than (n,N) than go to step 4.
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Step 4. Compute g(n,Ntl). If g(n,Ntl) C g(n,N) then put N:- Ntl and go to
step 1 else compute g(n,N-1). If g(n,N-1) C g(n,N) and n C N then put N:-
N-1 and go to step 1. If g(n,N-1) C g(n,N) and n-N then put N:- N-1 and
n:- n-1 and go to step 1 else go to step 5.

Ste . Perform an overall policy improvement step using (2.2) and (2.3)
and stop.

The algorithm works quite satisfactorily. In table 2 below the computation
times for several numerical examples are compared with those for the
value-iteration algorithm. The numerical data used in this table are
(5,4,5) and (5,7,10) for (b,rl,r12) while the lifetime distributions are
given by p(1), i-1,...,5 as given in the appendix. We have made the com-
parison with the value-iteration algorithm because this algorithm usually
works better on large state spaces than the policy iteration method.

(5,4.5)

p(1)
p(2)
P(3)
p(4)
p(5)

4:18 (18:34)
4:18 (47:45)
4:88 (39:28)

20:10 (14:01)
8:09 (3:07:62)

(5.7.10)

7:03 (17:41)
6:10 (36:45)
7:14 (41:25)

31:40 (24:01)
8:62 (1:22:56)

Table 2 Computation times of the algorithm in hundreds of seconds. In
brackets are given the computation times according to the value
iteration algorithm, yielding the overall optimal policy.

Although our algorithm theoretically can stick to a local minimum this did
not occur in our numerical examples.
Note that our algorithm is a hybrid method containing elements from the
value iteration method (steps 1 and 2), from the policy iteration method
(step 3) as well as brute comparisons (step 4).
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Step 1 is in general the most time consuming step, in particular when m is
large. Therefore we emphasize that this step has to be carried out only
once each passage through step 3.
Step 5 can be carried out as a final step in the algorithm in order to
check the final (n,N)-policy upon overall optimality. In most of our nume-
rical experiments we only needed just one step in the overall policy im-
provement procedure starting at the optimal (n,N)-policy to get the over-
all optimal policy.
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APPENDIX Numerical results

In the tables below we present numerical results for a number of costs
parameters (b,rl,r12) and probability vectors p(1).
In the first column we see whether the optimal strategy has the (n,N)-form
or not (y~n) or ( n,N) on the recurrent class (y'). From the 4th and 5th
column we can make a comparison between the optimal strategy and the stra-
tegy (n,N)", where the 5th column gives the percentage increases of
g(n,N)~ over g~. In addition we mention in the last column the number of
times the average cost of a policy is calculated by the heuristic.

p(1) -(0.80, 0.80, 0.75. 0.66, 0.55. 0.25, 0.15, o.lo, 0.05, 0.01) (m-1o)

b rl r12 ( n,N)~ TM g" x ~

5 1 1.6 n (2,3) 3 2.613 0.19 (4)
5 2 3 n (2,4) 4 3.212 0.03 (4)
5 2 4 n (4,4) 4 3.436 0.00 (3)
5 4 5 y' (2.5) 5 4.078 0.00 (4)
5 4 7.5 n (4,5) 5 4.645 0.06 (4)
5 7 8 y (2,11) 5 5.347 0.00 (7)
5 7 lo y' (3,11) 5 5.887 0.00 (6)
5 7 13 y' (5,11) 5 6.399 0.00 (6)
5 12 18 y' (4,11) 5 8.703 0.00 (4)
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P(2) -(0.96, 0.92, 0.87. 0.77, 0.60, 0.40, 0.31, 0.15, 0.05. 0.05) (m-1o)

b ri r12 ( n,N)~ T' gM z N

5 1 1.6 y (2,3) 3 1.348 0.00 (5)
5 2 3 n (2.3) 3 1.863 0.21 (5)
5 2 4 n (3,4) 3 2.160 0.18 (3)
5 4 5 y' (1,4) 4 2.506 0.00 (4)
5 4 7.5 n (3.5) 4 3.189 0.00 (4)
5 7 8 y' (1.5) 5 3.396 0.00 (5)
5 7 10 n (2,5) 5 3.919 0.02 (5)
5 7 13 n (4.7) 5 4.587 0.13 (7)
5 12 18 y' (3,11) 7 5.981 0.00 (5)

P(3) -(0.90, 0.90, 0.88, 0.85. 0.65, 0.45. 0.25, 0.12, 0.10, 0.10) (m-10)

b ri r12 ( n,N)~ T~ g" x N

5 1 1.6 y (2,4) 4 1.583 0.00 (4)
5 2 3 y (2.4) 4 2.045 0.00 (5)
5 2 4 y (4,4) 4 2.254 0.00 (3)
5 4 5 n (2,4) 4 2.724 0.51 (5)
5 4 7.5 n (4,5) 4 3.300 0.27 (3)
5 7 8 n (2,5) 5 3.655 0.03 (5)
5 7 1o y' (3,6) 5 4.140 0.00 (5)
5 7 13 n (4.8) 5 4.713 0.13 (6)
5 12 18 y' (3,11) 6 6.234 0.00 (6)



31

p(4) -(0.806, 0.703. 0.648, 0.609, 0.578, 0.552. 0.530, 0.510, 0.493,
0.477, 0.463, 0.450, 0.438, 0.427) (m-14)

b ri r12 ( n,N)M T" g" x N

5 1 1.6 y' (1,3) 2 3.003 0.00 (4)
5 2 3 y' (2,7) 5 3.631 0.00 (5)
5 2 4 n (6,11) 5 3.837 0.00 (9)
5 4 5 y (2,14) 12 4.573 0.00 (5)
5 4 7.5 n (11,14) 12 5.029 0.00 (6)
5 7 8 y (1,15) 14 5.957 0.00 (4)
5 7 l0 y (5,15) 14 6.521 0.00 (5)
5 7 13 n (14,14) 14 6.833 0.00 (3)
5 12 18 y (9,15) 15 9.441 0.00 (3)

p(5) -(0.995, 0.968, 0.916, 0.843, 0.754, 0.656, 0.555. 0.457, 0.366,
0.285, 0.216, 0.159, 0.114, 0.079) (m-14)

b ri r12 (n,N)~ T~ g~ x ~

5 1 1.6 y (2,3) 3 0.928 0.00 (5)
5 2 3 n (2,3) 4 1.407 0.07 (6)
5 2 4 n (3,4) 4 1.678 0.48 (4)
5 4 5 y' (1,4) 5 1.957 0.00 (5)
5 4 7.5 n (3,5) 5 2.555 0.12 (4)
5 7 8 y' (1,5) 6 2.689 0.00 (5)
5 7 l0 y' (2,6) 6 3.136 0.00 (5)
5 7 13 n (4,8) 6 3.728 0.03 (5)
5 12 18 n (3,10) 8 4.823 0.00 (5)

p(4j and p(5) are obtained from a discretization of the Weibull (a,l)
distribution for a-1.4 and a-3 respectively.
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