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Abstract

Relations on the set of economic agents are natural social constraints with
respect to individusl and social behaviour of those agents. Although the
society consists of a complex system of networks, such a relational struc-
ture is until now not used in general equilibrium theory. One of the main
reasons is that such (finite) networks are determinants of social behaviour
of the economic agents, which is not yet described very well in environ-
ments with infinitely many agents.

In this paper concepts are introduced that generate coalitions based
on the positions of agents with respect to a given family of (relevant)
networks. Our starting point therefore is a set of agents endowed with
relations as the social characteristics of those agents. This will be
called a relational structure. A coalitional structure can then be derived,
using the instruments based on the mathematical notion of semi-ring as
developed previously by Gilles (198~). The connection of a relational
structure with standard economic general equilibrium theory is thus estab-
lished.

Key Words : Relational structure, coalition formation, networks, coopera-
tive behaviour, general equilibrium, positive modelling.
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1. INTRODUCTION

One of the main problems of contemporary economic theory is to describe the
notion of competition between agents in an economy in a formal way. Until
recently perfectly competitive economies were solely described by models
consisting of an atomless measure space of agents. Although this measure
theoretic context is considered to be purely technical, i t describes an en-
vironment in which an individual agent has measure zero and therefore hss
no observable influence on the economic and social processes. Such a
definition excludes sll at most countable subsets of agents for having an
observable influence on the outcome of such economic or social processes.
This definition therefore contradicts the observation, that in daily life
situations many finite subsets of agents, such as managers or union
leaders, have a very noticeable influence on economic processes.

Recently the problem as described above has been tackled from several
points of view. The most direct approach has been developed by Kaneko and
Wooders (198~a and b) and Hammond, Kaneko and Wooders (1987). They intro-
duce the concept of the f-core to describe a situation in which only finite
coalitions in a continuum of agents are allowed to block a proposed
allocation. Thus, although these finite coalitions remain insignificant in
the continuum, they become significant in the economic process as described
by the f-core. However this concept does not recognize the socisl position
of an agent in the continuum, which is one of the main determinants of the
agents' power to influence the economic processes: in the f-core all agents
are treated equally. This contradicts our intuition that a union leader,
e.g., has more influence than a plain consumer.

In this paper we try to solve this "inequality between agents" problem
as mentioned above in an indirect way. Our main reference point will be the
theory as developed by Gilles (198~ and 1988). There it is observed that
the mathematical concept of o-algebra, which underlies until recently all
definitions of coalition forming behaviour, cannot be given a senseful
economic interpretation and moreover gives rise to certain inconsistencies
between cooperative and non-cooperative approaches to the phenomenon of
perfect competition. Gilles (198~) introduces the concept of semi-ring,

which is weaker than the notion of a-algebra. Based on this mathematical
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instrument one defines a coalitional structure as the economic primitive
concept of the model. A coalitional structure consists of a set of agents
endowed with a semi-ring of so-called primitive coalitions. These primitive
coalitions are the fundamental particles in the process of coalition
formation. It is assumed that a coalitional structure describes the social
environment of each agent in the economy: membership of a family, an en-
terprise, a club and a country is reflected in memberships of certain
primitive coalitions. Apart from these social characteristics, each agent
is also assumed to have individuel characteristics such as preferences,
capacities and wealth. In Gilles (1988) it is shown that under certain con-
ditions perfect individual competition coincides with complete socisl
pluriformity of such an economy.

In this model the main blocking coalitions are the so-called
realizable coalitions. These kind of coalitions are formed by cooperation
between a finite number of pairwise disjoint primitive coalitions. It is
therefore implicitly assumed that certain members of the participating
primitive coalitions are organizing such a realizable coalition. (Mostly
these members are the managers or leaders of these participating primitive
coalitions.)

In this paper we give a more bssic approach to this kind of coalition for-
mation by describing the social environment of an agent more fundamentally.
Therefore we also model explicitly the organizing capacities of certain
agents. Our theory eventually generates a coalitional structure as
developed by Gilles.

Our starting point is a relational sY.ructure in which Agents have
specific positions in possibly repeating patterns of relations. These rela-
tions are assumed to be observable through measurable characteristics of
the agents such as location, profession, income, etc.. This assumption is
called the axiom of positive m~odelling. It says that there exists an embed-
ding of the relational structure in some topological space based on
observable characteristics, such that properties of this relational struc-
ture can at least locally be inferred from observations.

In contrast to this axiom of positive modelling we can define an axiom
of normative modelling. In that case there exist patterns of interaction
between agents ("forces") such that properties of a relational structure
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can be inferred or rationalized from assumptions on pattern formation. We
shall explore the possibilities of this second axiom in another paper.

This paper is organised as follows.
The next section treats the embedding of a relational structure, given

by a pair (~~~ ), into a topological space T-(V,~[) by some surjective
(or one-to-one) mapping. We assume that this mapping locally gives a
description of relations between agents by means of observable features or

characteristics. The rest of the paper will be based upon the map (A,R) of
the relational structure, which will be called a relational model.

In section 3 we introduce the concept of communication between agents
in the context of a relational model. Next we introduce the important no-
tion of a connected relational model, taking into account that A may be
subdivided into a countable number of disjoint connected subsets of the
topological subspace (A,T~A) C T. It turns out that connectedness is equiv-
alent to the property that every two agents in the relational model are
able to communicate with each other. The important economic concept of a
network can then be defined. It is a set of communicating agents whose
relations cover the set of all agents A. It is established that the exist-
ence of such a network is equivalent to connectedness of the relational
model. Furthermore we will formulate conditions on (A,R) under which there
exist countable or even finite networks. A network will be called relevant
if it also has an economic interpretation.

The impact of relevant networks on coalition formation is discussed
and shown in subsection 4.1. Such a family of relevant networks ,u.generates
a class of certain coalitions S( .~,~.), called a service structure generated
by that family of networks. In those structures the positions of the agents
are essentisl, even if there are only finitely many agents in the gener-
ating networks. Thus the coalitions in the service structure S( ,U,) obey a
social constraint based upon the relational model or structure. Next we ap-
ply the machinery as developed by Gilles (198~) to arrive at a coalitional
structure. The semi-ring closure of S( .~,~.) and a measure V, on this semi-
ring just form a coalitional structure of agents (A,~r( ~1,),y,). Conditions
for its existence will be formulated. The coslitional structure is fully
based on positions of agents with respect to certain (relevant) networks.
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Although the members of these generating networks are individually negli-
gible, they play a very important role in the process of coalition
formation. In certain respect the primitive coalitions, which are the out-
come of this process, are organized by these agents. This type of coalition
formation coincides with the intuitive foundations of the model of Gilles
(1987 and 1988) and cannot be embedded in the traditional approach as
mainly described by Aumann (1964) and Hildenbrand (1974).

Future research has to focus on models in which the members of gener-
ating networks, who play such an important intermediary role in coalition
formation and blocking, are earning profits from their membership of such a
generating network. Here we may have a link with the work of Hammond
(1987).

In subsection 4.2 we focus on the special case of a relational model
consisting of a single compact and connected subset of a certain topologi-
cal space. In that subsection we will apply the main theorems as developed
in the previous sections. Finally in subsection 4.3 an example is given for
s simple health economy with a continuum of agents, but with finitely many
doctors. In this example we will describe a relational structure in which
these doctors play a fundamental role in the process of coalition
formation. Furthermore a first attempt is formulated in describing a new
cooperative equilibrium concept in the setting of an economy based on a
relational structure.



5

2. RELATIONAL STRUCTIJRES: THE MODEL

In this section we develop the primitive concepts of our model. The basic
economic notion of the model is the so-called relational structure. It
describes a set of agents, who have a specific pattern in their economic
relationships. These relationships are crucial in the formation of coali-
tions in this kind of economic environments. An economy which has a
relational structure as its primitive concept, is called a relational
economy.

In this paper we will not explicitly state the definition of a rela-
tional economy and its characteristic patterns, but we will mainly be
dealing with cooperative behaviour in relational structures. First we
define the economic notion of relational structure.

2.1 Definition
A relational structure i s a pair (.~Q,~ ) where

,r~ is a set of agents ;

`ÍZ C.r~ x.~ is a symmetric and reflexive relation on .r~ .

A relational structure is in fact a mathematical graph. However this graph
can be infinite, even uncountable. Especially in uncountable relational
structures we have to be able to modify the model. Therefore we embed the
relational structure in a topological space. This embedding also has some
nice economic interpretations with repect to the positive aspect of
economic theory.

2.2 Definition
Let (,~A,,R ) be a relational structure.
(,~,.~ ) can be embedded in a topological space if there exists a topologi-
cal space T.- (V,i), where V is a set and i is a topology on V, and a
surjective mapping g:.~ --~ V such that



for every a E A, there exists an open neighbourhood Ua E i such that
for every agent b E U n A: (s,b) E R,a

where

A:- g(.~ ) C V and
R:- {(a,b) E A x A ~(g-1(e),g-1(b)) E .̀R }.

As one can see, an embedded relational structure has as specific property,
that the topological structure is locally able to describe the relations
between agents in the relational structure. So we actually assume that in
uncountable relational structures, which can be embedded, there are some
features or characteristics from which partially~locally the relationships
between agents can be inferred.

We can however construct embedded relational structures which do not
fulfill the intuitive economic foundations of this property, i.e. the em-
dedding is economically trivial. Very simple examples are embeddings in
discrete topological spaces, i.e. topological spaces in which the sets {a},
a E V, are all open. However there also are less trivial topologies which
do not give additional relevant information on relations between agents if
a relational structure is embedded in such a space. For example take .~ :-
[0,1] - I and let ~ C I x I be a relation on .~ . Evidently (.~,~ ) is a
relational structure. Now for the topological space take V:- II and T is
the product topology on this set emerging from the Euclidean topology on I.
So T.- (V,T) is a compact topological space. Now we take g:~ -~ V
given by g(a) - fa, a E,~ , where fa : I -~ I is defined by fa(a) - 1 and
fa(b) - 0, b~ a. It is quite obvious that the relational structure (~,`~ )
can be embedded in T by the mapping g. However this embedding does not
satisfy the intuitive economic foundations of the property that it locally
explains relations between agents, because there exists a neighbourhood of
a E A, say U, for which (U`{a}) n A- p!.

From these examples we conclude that we need additional conditions on
an embedding. Before we modify the embedding property, we mention that all
structural properties of the original relational structure remain in the
embedding. We state this property in the next lemma.



2.3 Lemma
l.et (,r~,.x ) be n rel.atlonal. structure which can be embedded in some
topological space T-(V,T), and let (A,R) be the embedding of this rela-
tional structure in T. Then:

R C AxA is a reflexive and symmetric relation on A.

The previous remarks on the embedding property and its economic purpose,
which is to describe the relations between agents in a relational structure
locally by some features or characteristics, lead to the following
modification of the embedding property.

2.4 Definition
Let (~,~ ) be a relational structure.
The relational structure (~,~ ) can be embedded properlv if there exists a
topological space T-(V,T) and a surjective mapping g:.~~ V such that
(~, .̀R ) can be embedded in T by this mapping g and additionally for its em-
bedding (A,R) C(V,VxV) there exists an at most countable sequence
(Cn)n E ry of pairwise disjoint topologically connected subsets of T, such
that A - nu1Cn.

From mathematics we now know that (A,~C~A) consists of at most countable
components, i.e. maximal topologically connected sets. The (unique) se-
quence of components of (A,T~A), denoted by (A ) is called thennEI1' -
subdivision of A.

If a relational structure can be embedded properly, then either .~ is
at most countable or the pair (.~,~ ) can be described as the union of a
countable number of connected subsets in a topological space. This
topological space describes locally - as defined in definition 2.2 -
characteristics or features, which determine the relationship between
agents. In this respect the embedding-property is a notion of positive
modelling: at least locally, we can describe relations between agents in a
relational structure by some set of characteristics or features.

In a relational structure, which can be embedded properly, we there-
fore deal with relations which can be described (locally) by some features
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or characteristics. If the subdivision of the embedding consists of at
least two components, then we deal with at least one discrete characteris-
tic, embedded in the topological structure of the embedding of the
relational structure. Examples of discrete and continuous characteristics
are easily constructed. For example income, wealth and geographic residence
are continuous characteristícs, while nationality, profession and sex are
discrete characteristics. In cases with at least one discrete characteris-
tic, we deal with embeddings consisting of at least two disjoint
components, and thus we deal with a subdivided embedding in the sense that
the subdivision consists of several components.

In the sequel we will only deal with relational structures which can
be embedded properly in a topological space. We call this assumption the
axiom of positive modelling. Therefore we only have to deal with so-called
relational models.

2.5 Definition ( Axiam of positive modelling.)
Let T-(V,T) be a topological space.
The pair (A,R) C(V,VxV) is called a relational model if there exists a
relational structure (.~~`~ ) for which there exists a one-to-one mapping g
:.~ ~~ A which properly embeds the pair (~~~ ) into the pair (A,R).

In positive modelling we have given an economic relational structure, which
can be embedded in a structure having some nice properties, such as a
topological space. This relational model is observed in its characteristics
and, using the axiom of positive modelling, properties of the relational
structure are inferred from these observations. In normative modelling we
deal with given characteristics and its associated relational structure. In
such a context we try to explain the relational structure from axioms on
pattern formation. This procedure also leads to an axiom of modelling,
namely the axiom of normative modelling. This kind of modelling will be
discussed in a forthcoming paper.

Positive modelling has some nice applications in empirical economics,
because it can describe coalition formation based on relations between
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agents in the economy, and investigates these relations and coelition for-
mation empirically. Normative modelling tries to explain and understand why
these relationships exist.

All definitions which are formulated in terms of relational models,
without using explicitly its topological structure, can be transformed into
properties of the relational structure, i.e. the graph itself. Therefore in
the sequel we only deal with relational models, and abstract from its
economic foundations, the relational structure.

Within the setting of such a relational model we define and describe a very
natural form of communication between agents, which is completely based on
the existing relations between agents. In fact we assume a"shaking hands"
kind of communication. This kind of communication forms the foundation of
the coalition formation as described in the next sections.

2.6 Definition
Let (A,R) be a relational model.
Then the relation-mapping of (A,R) is the multifunction F: A -~ 2A given
by

F(a) :- { b E A ~(a,b) E R}, a E A.

We can now derive some trivial properties of the relation-mapping of a
relational model (A,R).

2.~ Proposition
Let (A,R) be a relational model. Then we have the following properties:

(i) For every agent a E A, a E int(F(a)), where int(S) is the relative
interior of a subset S C A, i.e. with respect to the subspace
(A,T~A) C T - (V,t).

(ii) For every pair of agents a,b E A:
a E F(b) if and only if b E F(a).

0
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Now we come to the definition of communication in a relational model. First
we define a technical tool to describe our notion of communication in a
proper fashion.

2.8 Definition
Let (A,R) be a relational model.

(e) Let E,F C A be two sets of agents and let n E Ii.
A finite sequence of subsets of A, denoted by C1,...,Cn C A is called
an irreducible chain between E and F if it satisfies the following
properties:
(i) E- C1 and F- Cn ;
(ii) Cj n Cj}1 ~~ for j- 1,...,n-1 ;
(iii) Ch n Cj - r~ for ~h - j~ ~ 1.

(b) Let a,b E A be two agents in the relational model.
The agents a and b are said to be able to communicate within the set-
ting of the relational model if there exists an integer n E n and a
finite sequence of agents al,...,an E A such that the sequence of sets
of relations F(al),...,F(an) E 2A is an irreducible chain between F(a)
and F(b).

It is quite obvious that the capability to communicate is a mathematical
equivalence relation on the set A. Our purpose is to state the conditions
under which all agents in the relational model are able to communicate to
each other. In such a case this mathematical equivalence relation generates
exactly one equivalence class, which of course is equal to the set of all
agents. This line of research will be pursuited in the next section of this
paper.

Note that finiteness of the communication line is essential in the
definition above. It is assumed that one agent can reach the other with
some information in a finite number of steps. The chain of agents as
defined in definition 2.8 (b) can also be called an n-intermediate chain
between the agents a and b. The number n denotes the length of the com-
munication chain between the two agents a and b.
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The reason why we can justify this definition of communication in a
relational model is given in the next proposition, which shows that the in-
tuitive concept of "shaking hands" communication is equivalent to the
definition of communication as given above.

2.9 Proposition
Let (A,R) be a relational model and let a,b E A be two agents in the rela-
tional model (A,R). Then the following assertions are equivalent:

(i) a and b are able to communicate in (A,R) ;

(ii) There exists a finite sequence of agents al,...,an E A such
that

al - e and an - b,

a~tl E F(a~) for j- 1,...,n-1 .

Proofs of these properties are omitted, because these can easily be derived
from the definitions of F and communication.
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3. NETWORKS IN RELATIONAL MODELS

We now have a full description of communication as defined in a relational
structure and in its embedding relational model, and therefore also for a
large class of relational structures. This communication is based on the
intuitive notion of "shaking hands" communication. As shown in the previous
section finiteness of the communication chains or lines is essential in
this description of communication.

We now come to the question under which conditions agents are able to
communicate in a relational model, especially under which conditions all
agents in such a model are able to communicate with each other. The condi-
tions are defined in the context of a relational model and turn out to be
quite global, as will be shown in the next theorems.

3.1 Definition
Let (A,R) be a relational model, and let (An)n E ry be the subdivision of
the set of agents A.

(a) The pair (A,R), where A C V and R C A x A, is called a condensation of
the relational model (A R) if there exists a mapping cond : A --~ A,
which is surjective and satisfies the following properties:

(i) For every integer n E fl and any pair of agents a,b E A:n
cond(a) - cond(b) ;

(ii) For any two integers n,m E ry, n~ m, and sll agents a E An and
b E Am it holds that

cond(a) ~e cond(b) ;

(iii) (a,b) E R if and only if there exist integers n,m E 11, n~ m,
and two agents c E An and d E Am such that:

cond(c) - a and cond(d) - b,
(c,d) E R .
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(b) The relational model (A,R) is said to be connected if there exists a
condensation (A,R) of (A,R) such that for any two points a,b E A,
there exists an integer n E I1 and a finite aequence of points
al,...,an in A such that

a s al and b z an
(a~,a~tl) E R for every j s 1,...,n-1.

Connectedness is quite a natural condition on relational models. It just
prescribes that there exist communication lines between ell groups of
agents in which the set of all agents in the model can be divided. Moreover
mathematically, connectedness of the relational model is equivalent to the
fact that the condensation of the relational model is a graph, which is
finitely connected.

It is obvious that for every relational model there exiats a"unique"
condensation, in which uniqueness is guaranteed up to a transformation in
the topological space T.

To underline the statement that connectedness is quite a natural condition
on a relational model, we give a real life example.

3.2 Example
We describe the concepts as developed in the previous section and above
with a historical example. Let ~ be the set of people living on the earth
in the year 1400 and let ~ be the set of people living in the year 1900.
F~rthermore let ~ represent the set of relations between agents in ~
(where i - 1,2). Assume that both relational structures (~~~ ) snd
(~,~ ) geographicly can be embedded in the two dimensional Euclidean
space R2:
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Let AA be the American continent, AEA the African-European-Asian continents
and AP the Australian-Pacific islands. Since historically the oceans
precluded communication in 1400, but not in 1900, we thus may conclude that
this relational model of (~,~ ) is not connected, while this relational
model of ( ,~ , ~ ) is .

We now come to the main theorems of this paper. In these theorems we dis-
cuss the nature of communication in a relational model, and therefore in a
relational structure. The first theorem deals with the question as formu-
lated previously: under which conditions are all agents in the relational
model able to communicate with each other. The answer to this question
turns out to be very elegant.

3.3 Theorem
A relational model (A,R) is connected if and only if any two agents in A
are able to communicate.
Proof
Let (An)n E 11 again denote the subdivision of the relational model (A,R).
Moreover let the pair (A,R) denote a condensation of (A,R) and let cond be
the mapping as defined in definition 3.1.
Now we can describe A as follows: A-{ an E V ~ an - cond(An), n E Ii }.

Only iP
Let (A,R) be connected. For the proof that all agents in (A,R) are able to
communicate we need the following claim:

CLAIM
For any integer m E I1: Every pair of agents a,b E Am are able to com-
municate. i.e. there exists a finite sequence of agents (al,...,an) in
Am such that a- al, b- an, (aj,aj;l) E R for j- 1,...,n-1, and
finally (aj,ah) i~ R if ~j - h~ ~ 1.

We proceed by proving the claim. Therefore we apply lemma (10.3.8) of
Csaszar (1978) for the sets A- F(a), B- F(b) and C- Am by taking as
open covering of Am the class ~:- { int(F(a)) I a E Am }. Now by the
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(topological) connectedness of Am this lemma esserts the existence of
an irreducible chain of elements of ~ between F(a) and F(b).
Let { F(aj) ~ j- 1,...,n } be the set or sequence, which can be
derived from this irreducible chain. Now the sequence ( sl,...,an) is
just the requested finite sequence as asserted in the claim. Hence the
claim has been proved.

To complete the proof of the only if-part of the theorem, we take two
agents a,b E A. We have to consider two cases.

I- There exists an integer n E li such that a E An as well as b E An.
In this case the claim asserts that a and b are able to communicate.

II - There exist two distinct integers k,.~ E fl such that a E Ak and b E A~.
By definition of connectedness of (A,R), there exists a finite sequence in
A, say (bl,...,bn) such that bl - ak , bn - s~ , (bj,bj}1) E R for
j- 1,...,n-1 , and (bh,bj) f~ R if ~j - h~ ) 1.
Now we are able to construct the following finite sequence:

i) cll - a
ii) cj2 E cond-i(bj) for j- 1,...,n-1

cji E cond-1(bj) for j- 2,...,n
such that (cj2,cjt1~1) E R for j- 1,...,n-1 (The existence of
such pairs is garanteed by the definition of a condensation and
connectedness.)

iii) cn2 - b.
For every j E{1,...,n} the claim asserts the existence of a finite se-
quence of intermediate agents between the pair cji,cj2 E cond-1(bj) - Aj
and thus, since (cj2,cj}1 1) E R, the union of all these finte sequences is
again a finite sequence, which is irreducible. Hence, a and b are able to
communicate as defined in 2.8.

If
Assume that any pair of agents a,b E A are able to communicate.
Then we only have to check the definitions of a condensation and connected-
ness to arrive at the conclusion that the relational structure has to be
connected. We leave this to the reader.
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The proof of the previous theorem leads to some additional insights into
the nature of relational models and the communication within the context of
such models. One such additional is formulated in the next corollary, which
states the nature of communication in a relational model. We also link this
corollary with example 3.2, which discusses a situation of non-
communication.

3.3' Corollary
Let (A,R) be a relational model.
The set of agents A can be divided into an at most countable number of
pairwise disjoint subsets (Bn)n E n such that for every n E I1, any two
agents a,b E Bn are able to communicate, and moreover there is no com-
munication between any two agents a E Bn and b E Bk when n~ k.
Proof
This follows immediately from the fact that communication is a mathematical
equivalence relation and the claim in the proof of theorem 3.3.

We will now define the notion which is the main tool in the derivation of a
coalitional structure from a relational model. In fact we define a form of
coalition formation, purely based on this tool. Within the setting of a
relational structure, the tool is called a"network".

3.4 Definition
Let (A,R) be a relational model.
A subset N C A of agents in the relational model is called a network if it
satisfies the following conditions:

(i) { F(a) ~ a E N} is a covering of A;

(ii) Every pair of agents in the subset N is able to communicate within
the network, i.e. for every two agents a,b E N there exists a
finite sequence of agents in N, say ( cl,...,cn) such that cl - a,
cn - b,(cj,cj}1) E R for j- 1,...,n-1, and finally ( cj,ch) ~ R
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if ~j - h~ ) 1(In other words: ( N,R n N x N) is a connected rela-
tional model.) ;

(iii) N is minimal in the sense that for every a E N, the subset N`{a}
does not satisfy as well (i ) as (ii).

Next we can construct from the previous definition the following collec-
tions of networks in the relational model (A,R):

JY .- { N C A ~ N is a network in (A,R) }
X :- { N E X ~ N is at most countable }
JYf :- { N E JÏ ~ N is finite }.

It is obvious that for any relational model (A,R) its collections of net-
works is ordered as follows: Jif C X C X.

It is clear that networks are something telling of the organisation of
the communication within a relational model, and therefore in a relational
structure. If there exists e network, then all communication can be done
through this network. So if agent a wants to communicate with agent b, he
can do this by passing on the message through members of the network only.

In fact we actually want to deal with s special subclass of networks,
namely the relevant networks in a relational structure. Relevant networks
do not only play a communicative role, but also have an economic purpose,
especially with respect to some service. Examples of such relevant networks
are bakers, hospitals, and plumbers. These kind of agents form networks
which are servicing all other agents in the relational structure, and also
can guarantee communication within the relational structure. It is quite
clear that these networks are only relevant if the relational structure can
be properly embedded in a topological space, which is describing the
relevant characteristics. A network of plumbers does not seem to be very
relevant if all agents in the relational structure are embedded in a
topological space which is describing agents only with respect to their
medical characteristics. For some further discussion of these kind of net-
works we refer to the example of health economies in the next section.

Since we are dealing with positive modelling, we cannot state anything
about the existence of such relevant networks. We can only provide a first
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step in the analysis of such relational structures by providing a full
description of the conditions under which the existence of certain kinds of
networks is guaranteed. The next theorems all deal with this problem. The
first existence result is especially nice since the existence of networks
turns out to be equivalent to the communication problem ss dealt with in
theorem 3.3.

~ ~ Theorem (General existence of networks.)
Let (A,R) be a relational model.

Ji ~ ps if and only if (A,R) is connected.

ProoP
If
Define ~:- { N C A ~ N satisfies both (i) and (ii) of definition 3.4 },
First we note that A E~, since by assumption (A,R) is connected and con-
nectedness is equivalent to communication between all agents, as is shown
in theorem 3.3. This last property shows that 3.4 (ii) is satisfied.

Next we take a collection ~ C~ such that for every pair N1,N2 E .̀,~ it holds
that either N1 C N2 or N2 C N1. Now we will prove that the intersection of
this subcollection also satisfies 3.4 (i) and (ii), i.e. n~ E~. Hence we
will check whether this intersection satisfies both properties.

(i) The covering property is naturally satisfied, since suppose there
exists an agent a E A which is not covered by { F(i) ~ i E n~}.
Then there exists a set N E~ such that s is not covered by the
collection { F(i) ~ i E N}, This is e violation of the definition
of~.

(ii) Suppose that there exist two agents a,b E n~ who are not able to
communicate within the set n~. Then, again by the totally order-
ing of the collection .~ , there exists a set N E .̀~ for which a and
b are neither able to communicate through N. Again this leads to a
contradiction, which asserts that the intersection also satisfies
property 3.4 (ii).
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So by the application of the lemma of Zorn ( see for example Quigley
(19~0) or Csaszar (19~8)), there exists a minimal element in ~ with respect
to inclusion. This is the desired network of (A,R). Hence we have proved
that the collection JY ~ ~.

Only if
Suppose that N E JY and let the pair (A,R) be a condensation of the rela-
tional model (A,R). We will prove that (A,R) is a finitely connected graph,
thus proving connectedness.

We define N:- cond(N) C A. Obviously N is at most countable and finitely
connected within (A,R), i.e. for every two agents a,b E N there exists a
finite sequence in N, say (cl,...,cn), such that cl - a, cn - b, and
(c~,c~}1) E R for j- 1,...,n-1.

Take a,b E A, then by definition of a network there exists c,d E N such
that (a,c) E R and (b,d) E R. Moreover by the statement above, there exists
a finite sequence between c and d within N, say (s2,...,sn-1). Now take sl
.- a and sn :- b, then by property of the sequence between c and d and the
relationship between a and c, and b and d, for every j- 1,...,n-1
(s~,s~}1) E R. So we have proved the finite connectedness of the condensa-
tion (A,R) and hence we have proved the theorem.

We now come to the question whether there exist countable or even finite
networks in relational models. It is obvious that we have to impose some
severe conditions and restrictions to achieve such existence results.

3.6 Theorem ( Existence of countable networks.)
Let (A,R) be a relational model such that A is a LindelSf subspace of the
topological space T - (V,T). Then:

X~e m if and only if (A,R) is connected.
(f'or a de('inltlon of l,indcltlf spaces we refor to the appendtx.)

Proof
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Only if
Since ~ C IY and we assume that X~ rd it easily follows from theorem 3.5
that (A,R) is connected.

If
Assume that (A,R) is connected. We define

~-{ N E~ ~ N is countable }
where ~ is as defined in the proof of theorem 3.5. First we show that the
collection ~ ~ re.

Let (An)n E ry be the subdivision of A.
Moreover let (A,R) be a condensation of the relational model (A,R).
By definition of a condensation, there exists a point-to-set mapping
denoted by P. R~ 2A with P((a,b)) :- {a,b} where a- cond(a), b-
cond(b) and (a,b) E R.

Since R is at most countable we know that P(R) C 2A is also at most
countable.

We define the collection ~:- { int(F(a)) ~ a E A}. Then ~ is an open
covering of A, since by definition of a relational model a E int(F(a)).
Since A is a LindeltSf subspace of the topological space T-(V,~), there ex-
ists a countable subcovering of ~, say ~0. We denote by NO the (at most
countable) set of agents such that .̀,~0 -{ int(F(a)) ~ a E NO }.
Next we define N2 :- NO u N1, where N1 is such that for every two agents
a,b E N0: if int(F(a)) n int(F(b)) ~ rá and a~ b, then there exists a
unique agent c E N1 such that c E int(F(a)) n int(F(b)).
It is obvious that such a set N1 exists and can be derived from the set N0.
It also is quite clear that N1 is at most countable, and thus N2 is also at
most countable.

Now define the set N:- N2 v P(R). Hence N C A, and moreover N satisfies
the covering property 3.4 (i) by the covering property of .̀,~0 and hence of
NO C N2. Furthermore it also satisfies condition 3.4 (ii) by definition of
P(R), the covering property of N0, i.e. for every agent a E P(R) there ex-
ists an agent b E NO such that a E F(b), and the definition of N2, which
guarantees communication within N2.
This shows that N E,~ .
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Moreover since N is the union of two at most countable sets we have shown
that N E ~ .

Next we apply a similar course of reasoning as is followed in the proof of
theorem 3.5. Thus it can easily be shown that the collection ~ satisfiesc
the conditions of the lemma of Zorn, and hence we have established the ex-
istence of a minimal element in ~. And therefore we have shown that there
exists at least one countable network in (A,R).

a

Finally we state our last existence theorem, which investigates the condi-
tions under which there exists a finite network in the relational model
(A,R). These conditions turn out to be quite strong.

3.~ Theorem ( Existence of finite networks.)
Let (A,R) be a relational model for which A is a compact set in the
topological space T. Then:

Xf ~~ if and only if (A,R) is connected.
(Relational models which are compact and connected are called continuum
relational models.)

Proof
The only if-part is quite trivial since JYf C JY . (Apply theorem 3.5.)
Therefore we only have to show that the if-part is true.
Let ~f :- { N E~ ~ N is finite }.

As in the proof in theorem 3.6 we show that this collection is non-empty,
and then apply Zorn's lemma on this collection to prove the existence of a
minimal element, which is a finite network.

Since A is a compact subset of a topological space, we know that there ex-
ists a finite subcovering of the open covering ~-{ int(F(a)) ~ a E A} of
A. We denote the set of the participating agents within this subcovering as
the set Np C A. Moreover, since A is compact, we know that the relational
model (A,R) has a finite subdivision. (Again by simply applying the exist-
ence of a finite subcovering of any open covering of A.) Therefore we know
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that (A,R) has a finite condensation (A,R). By the definitions and argu-
ments as given in the proof of theorem 3.6, there exists a similar set
P(R) C A. In this case we know that this set is finite, since R is finite.
So we may construct, as is done in the proof of theorem 3.6, a finite set
of agents N.- N~ u N1 u P(R), where Np and P(R) are as defined above,
while N1 is chosen such that for any two agents a,b E N~, a~ b, for which
int(F(a)) n int(F(b)) ~ rd, there is a unique agent c E N1 such that c E
int(F(a)) n int(F(b)).
Again it is simply shown that the set N satisfies as well condition 3.4 (i)
as 3.4 (ii). Hence by the finiteness of N and these properties we know that
N E ,if .

By applying Zorn's lemma on the collection ~f we establish the existence of
a finite network in (A,R).

0
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4. APPLICATIONS AND EXAMPLES

In this section we give some applications and examples of the model as
developed in the previous sections. The main application, which we present
in this section, is the formulation of a way starting from a relational
structure and ending in a coalitional structure, as developed by Gilles
(1987 and 1988). This application thus gives an explicit model of coalition
formation, based on relations between agents only. This application will be
discussed in subsection 4.1.

In subsections 4.2 and 4.3 we give some examples of the theory as
developed in the previous sections, and the application of the model on the
theory of coalition formation as developed in subsection 4.1. The first ex-
ample considers the special situation in which the subdivision of the
relational model (A,R) consists of one compact and connected subset of the
topological space T-(A,A~T), i. e. (A,R) is a continuum model consisting
of a continuum of agents and a relation on that continuum. The second ex-
ample considers a health economy and shows the relevancy of certain
networks in describing such kind of specialized economic environments. Both
examples shed some light on the new concepts as developed in the previous
sections.

4.1 Coalition formation
The starting point of this subsection on coalition formation is a rela-
tional structure (.r~,~ ), which can be embedded properly in a relational
model (A,R) in some topological space T-(V,T). (Hence it satisfies the
axiom of positive modelling.) Further we denote by JY , X and JYf the col-
lections of respectively all possible networks, all countable networks and
all finite networks of the relational model (A,R).

First we develop some technical tools to describe the environment in
which we state our theory on coalition formation starting from the rela-
tional structure as described above.

4.1.1 Definition
Let S be a set and let rd ~~ C 2S be a collection of subsets of S.
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(a) ~ is a y-algebra on S if it satisfies the following properties:
i - S E à ;

11 - For every sequence (En)n E N C~' n~l En E~ ;
iii - For every two elements E,F E~: E`F E~.

(b) ~ is a ring on S if for every pair E,F E~ it holds that
E`F , EuFE~ .

(c) ~ is a half-ring on S if for every pair E,F E~:
E`F , EnFE~ .

(d) ~ is a semi-rinQ on S if it satisfies the following properties:
i - rá E ~ ;

ii - For every pair E,F E~:
E`F , E n F E Q(~),

N
where S2(~) :- { nvl En ~ N E 11, En E~(n-1,...,N)

pairwise disjoint } .

(e) The collection v(~) [ c~(~), n(~), y(~) ] C 2S is the 6-algebra
[ ring, half-ring, semi-ring ] which is ~enerated by ~ if it is the
smallest cs-algebra [ ring, half-ring, semi-ring ] which contains ~
as a subcollection.

For a full exposition of some of these (mathematical) concepts we refer to
Janssen and van der Steen (1984). We mention however the following evident
properties of these kind of collections of subsets. Let ~ be a collection
of subsets of some set S, then:

(a) Any cs-algebra is a ring.
(b) Any ring is a half-ring.
(c) Any half-ring is a semi-ring.
(d) It holds that

~ C~r(~) C n(~) C w(~) C c(~) C 2S .
(e) If ~ is a semi-ring, then

52(~) - c~(~) .
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Examples show that semi-rings can be strictly smaller than half-rings, al-
though semi-rings are harder to grasp than half-rings, especially in
economic environments. We mention the example in which one takes the fol-
lowing set S.- [0,2] x[0,3] C R2, and the collection ~:- {[0,2] x
[0,2], [0,2] x[1,3], [0,1] x[0,3] } of subsets of S. We leave it to the
reader to find out that ~r(~) ~~(~). (This is true since the set [0,2] x
[1,2] is divisible in [0,1] x[1,2] and (1,2] x[1,2], but does not need to
belong to the semi-ring ~r(4). It however does belong to the half-ring
TlÍ~) . )

We now define the main concept as developed in Gilles (198~ and 1988),
namely the concept of coalitional structure. For a full description of the
properties of a coalitional structure in an economic environment we refer
to the papers as mentioned above.

4.1.2 Definition
Let A be a set of agents.
The triple (A,I',u) is called a coalitional structure (of agents) if

(a) C C 2A is a semi-ring on A;

(b) p: C~[0,1] is a normalised measure on (A,I'), i.e.
i - k(~) - 0 :

ii - sup { F K(En) ~ En E I" (n E n) pairwise disjoint }- 1 ,
iii - For every sequence (E ) C I' of pairwise disjoint ele-n n E fl

ments in I' it holds that
if nul En E i', then u(nul En) - n~l ~(En) '

The purpose of this subsection is to develop a method which derives s
coalitional structure from a relational model. Then we have also con-
structed a model of coalition formation in case of a relational structure.
We now come to the main tools in the development of this theory of coali-
tion formation in the special case of a relational structure or model.

4.1.3 Definition
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Let (A,R) be a relational model and let Ji be the collection of its
networks. Futhermore let rd ~.~Á, C JÏ be a nonempty family of networks of
(A,R).

(a) The class S( .U.) :s { F(a) ~ 3 N E~U,: a E N} C 2A is called the
service structure of, or generated by, .~1..

(b) The semi-ring ~r( .~,(. ):- y(S( ~. )) is the coalitional structure gen-
erated by ~. if there exists a normalised measure k : y( .~Á,) -~
[0,1] such that the triple ( A,y( ,U,),u) is a coalitional structure
as defined in 4.1.2.

From the definition we learn that usually we do not choose ~ family of
networks of the relational model, but we choose a particular family of
networks. Especially the case in which we choose some family of relevant
networks of (A,R) can be very interesting. These kinds of families of net-
works are determined by economic features such as economic activity or
positions of the agents in some structure which is based on certain charac-
teristics, for example medical ones. (This example will be extended in
subsection 4.3.) This also explains the name of the class S( .~,(,): it
describes the specific structure of how the agents are serviced by the
(relevant) networks in the family .U,. (All members of such a family have
the same economic purpose or service.)

As provided by the service structure we base coalition formation, as
described in definition 4.1.3 (b), on positions of aQents within the serv-
ice structure of the family .iA, of certain relevant networks. We take some
service structure as given and then the primitive coalitions, i.e. the mem-
bers of the semi-ring y( .~,{,), are taken as those groups of agents in the
relational model, who have the same position with respect to the service
structure and thus with respect to the chosen networks.

Especially if we take the half-ring generated by the service structure
S( .u.) instead of the semi-ring, we explicítly use all available informa-
tion of the relational model with respect to the position of the agents
with respect to that particular family of (relevant) networks with that
specific economic service purpose.
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Our final problem in this model of coalition formation based on a rela-
tional structure or model is to solve the question under which conditions
there exists e well defined measure on the generated semi-ring of some non-
empty family of networks ín the relational model. Therefore we need a
stronger version of the axiom of positive modelling.

4.1.4 Strong axiom of positive modelling
Let (.~~~ ) be a relational structure.
(.~ ~~ ) can be modelled properly if it can be embedded properly in some
relational model (A,R) in a topological space T-(V,T) such that the fol-
lowing properties are satisfied:

(i) (A,R) is a connected relational model ;

(ii) Let (An)n E ry be the aubdiviaion of A. Then the following
properties are satisfied.

w There exists a sequence (Sn)n E ry of real numbers such that án ~ 0
(n E ry), and F án - 1, which describes the fraction bn of the
agents in A who are member of component An.

~ Moreover, for every integer n E I1 the component An C A is a compact
subset in the topological space T.

a

Obviously if a relational structure can be modelled properly, then we not
only assume that there is enough information available to describe the
relations locally by some set of features or characteristics, but addition-
slly we asssume that there is information about the size of the groups of
agents who are "close" to each other with respect to those features or
characteristics. ("Closeness" is meant here as closeness in the decription
by the chosen characteristics as reflected in the topological space in
which the relational structure is embedded.) This additional information is
reflected in two forms, namely topologically and measure theoretically.

Topologically we reflect this additional information in the assumption
that the components in the subdivision of the model are topologically
compact. So we actually assume that in some way the class of agents in the
relational structure, who are "close" to each other, is not unbounded.
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(Especially in Hausdorff- or metric spaces this is the case, while in those
spaces compactness implies closedness. In metric spaces it even implies
boundedness.)

In measure theoretic terms we assume that the size of a component of
the subdivision of A can be expressed explicitly by some nonnegative number
or percentile. It expresses the size of the classes of "close" agents with
respect to the chosen set of features or characteristics.

We now come to the main conclusion of our modelling. Before we are able to
formulate this conclusion we have to define some additional tool.

4.1.5 Definition
The relational model ( A,R) in the topological space T-(V,T) is called
measurable if for every agent a E A:

F(a) E 6(TIA),
where T~A :- { E n A ~ E E T} is the topology restricted to the subspace A
of T.

O

Measurability can be interpreted as a"natural" condition on a relational
model. With this property we are able to formulate our main existence
theorem of coalitional structures based on relational structures.

4.1.6 Existence theorem
Let (.~~~ ) be a relational structure.
If (.~~~ ) can be modelled properly in some measurable relational model
(A,R). such that (A,T~A) is a locally connected and metrizable subspace of
some topological space T-(V,T), then for any non-empty family of networks
vJ ~~. C JY , there exists a non-trivial measure u:~r( .{Á. )--~ [0,1 ] such
that (A,~r( ~.),u) is a coalitional structure.
Proof
Let (A,R) be the relational model as described in the theorem and let the
sequence (An)n E ry be its subdivision.
For any integer n E fl, the set An is a connected, compact, locally con-
nected and metrizable subspace of the topological space (A,T~A). (Locally
connectedness of An follows from theorem (10.2.3) of Csazsar (1978) and
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definition 2.4 which garantees that An is as well closed as open in the
space (A,T~A).) By the Hahn-Mazurkiewicz theorem (see the appendix) there
exists a continuous function fn : I -~ An - where I-[0,1] - which is
surjective.

Now we define the following mapping:
u: a(T~A) ~[0,1] is a measure fully defined by

m
u(E) :- nil bn.~(fnl(E n An)).

where E E c(T~A) and ~ is the Lebesgue measure on (I, a( ~)). (~, is the
Euclidean topology on the unit-interval I and a( ~) the collection of
Borel-sets on the unit-interval.)
It is evident that this definition is in order and k indeed is a measure on
the 6-algebra cs(~[~A), since for every integer n E fl the mapping fn is con-
tinuous and thus for any set F E a(T~An), fnl(F) is a Borel-measurable set.

Now take ef ~ .u.C JY . (Such non-empty families exist, because all conditions
of theorem 3.5 are statisfied and hence JY ~~. ) Then ~r( .~. ) is a non-
trivial semi-ring. Next take for the measure K:~r( ~,) -~ [0,1] the
restriction of the measure u to the subclass ~r( .u.) C 6(T~A). This defini-
tion is proper, because the relational model (A,R) satisfies the
measurability property as defined in 4.1.5, i.e. for every agent a E A,
F(a) E a(Z~A) and hence S( .~,(,) C a(T~A). Therefore the semi-ring generated
by this class S( .1,~, ), the service structure of .1~. , consists only of
measurable sets.

From the proof and the statement of the theorem it is obvious that we also
may take the collections n( ~.), u( ,~.) or even o( .U,) instead of the semi-
ring y( .U,) in the formulation of the theorem. It is also quite obvious
that only the formulations with the semi-ring ~r( ~,) and the half-ring
~,( .~1.) are economically useful. This is the purpose of one of the next sub-
sections, which discusses a health economy based on a relational structure
and the concept of coalition formation as developed in the previous sec-
tions, this subsection, and especially the previous theorem.
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4.2 An application: simple structures
In this subsection we will consider as an example, a specific class of
relational models. On this class we will apply the main existence theorems
as developed in this paper.

One of the major observations which can be found by considering con-
temporary economic theory, is that in many models in general equilibrium
theory one assumes that the set of agents is a continuum. (Hence the set of
agents is assumed to be a compact and connected topological space, endowed
with an atomless measure on the a-algebra of Borel-sets generated by the
topology.) In most cases one takes the unit-interval as the set of agents
in the economy. In this subsection we consider precisely such a situation,
which we shall call "simple" or "Euclidean".

4.2.1 Definition
Let (.r~~ ~) be a relational structure which is embedded in a relational
model (A,R) in some topological space T-(V,~r). Now we define:

(a) (A,R) is simple if (A,T~A) C T is a topological continuum and (A,R)
is a measurable relational model.

(b) (A,R) is Euclidean if A is a continuum in a finite dimensional
Euclidean space and furthermore (A,R) is a measurable relational
model.

a

It is easily established that every Euclidean relational model is simple.
Therefore all properties derived on simple relational models can be applied
on Euclidean relational models.

4.2.2 Corollary
Let the relational model (.~, .̀R ) be embedded in a simple relational model
(A,R). Then the following properties are satisfied:

(a) (.~~ .̀R ) and (A,R) satisfy the strong axiom of positive modelling.
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(b) There exists a finite network in the relational model (A,R), i.e.
Xf ~ ~.

(c) Let 0 ~ a,(.C JY be a non-empty family of networks in (A,R). If
(A,T~A) C T-(V,r) is a locally connected and metrizable subspace
of the topological space T, then there exists a normalised measure
u: ~( aá. ) -~ [0,1] such that (A,~r( .~~. ),u) is a coalitional
structure.

Proof
By observing that any simple relational model is connected and checking the
necessary conditions, we conclude that any simple relational model
satisfies theorem 3.~ and definition 4.1.4. Therefore (a) and (b) are true.
satisfied. Next observe that a simple relational structure therefore also
satisfies the conditions of theorem 4.1.6 if (A,T~A) C T is a locally con-
nected and metrizable topological space. Hence, by application of that
theorem, we may conclude that assertion (c) is also satisfied.

For Euclidean relational models we can simplify the formulation of assser-
tion 4.2.2(c) considerably.

4.2.3 Corollary
Let (A,R) be an Euclidean relational model, and let ~~.~I.C JY be a non-
empty family of networks. Then there exists a measure u: ~r( ~Á.) ~(0,1]
such that (A,~r( .~(. ),u) is a coalitional structure.

4.3 An application: a health economy
In this example we consider a health economy, reflected in some relational
health structure (.~~~ ), which can be modelled properly in a relational
model (A,R), where A is a subset of some finite-dimensional Euclidean
space. ( Note that this model does not have to be Euclidean in the sense of
the previous subsection.)

There are .~ different illnesses or diagnoses, each having a set of
patients, denoted by Ai, i- 1,...,.~, which are called diagnostic related
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groups (DRG), and a set of specialised helpers, denoted by Ai, i~ 1,...,.~.
The helpers may be nurses, administrators, people working in hospitals
and~or other institutions. Sets of helpers are called diagnostic related
institutions (DRI). We complete our model by introducing a set of inedical
doctors, who determine a diagnosis. We assume that there are only a finite
number of inedical doctors, each related to some illness or diagnosis, and
we denote them by ai, i- 1,...,~.

~ So we may conclude that A z A- u(iul Ai) u{ al,...,a~}, where A- -
iul Ai is a connected and compact set consisting of patients. Moreover it
is clear that the set A-, the DRI's and the doctors form a subdivision of
A. (See figure below.)

~~~ a~ i a2 a3 ~~~
I 1 `
I 1 ~

1 '

With this in mind we can describe the relations between the agents in this
model. (For simplicity we define A} .- itil Ai as the set of agents working
in the medical institutions or DRI's.)

Each DRI Ai, i E{1,...,.~}, is related to some medical doctor a~, so
each institution has an alliance with some doctor. Furthermore all doctors
are related to each other and cover the set of patients A-.

Normalised weights { b~ ~ j a 1,...,2.~t1 } are given to the components
in the subdivision oF A as described above. It is also clear that this
model is connected and therefore the strong sxiom of positive modelling is
satisfied. Now let .u, be the class of health-relevant networks. Then it is
evident that such a network N E.~,~, always contains the finite set of inedi-
cal doctors. No coalition consisting of patients and institutions only is



feasible as a primitive coalition. The relational atructure then requires
thaY. a doctor is ulso a member. ( Nowever with the instruments as developed
in Gilles (1987), such coalitions may exist as realizable coelitions and
thus may play an important role in the blocking process as described by the
semi-core.) This means that an agent who possibly i s negligible, has a cru-
cial position in coalition formation on the lowest level. The next step in
our modelling should be to formulate equilibrium concepts in which the
agents can earn a profit from such crucial positions. ( See also Hammond
(1987).)

Although defining an equilibrium concept is not the purpose of this paper,
we think it is illustrative for the power of our approach to make a first
attempt. Consider therefore an economy in which the agents can find them-
selves in three positions: patient, nurse or doctor, resp. x, y and z.
There are ~ different illnesses, cured by ~ corresponding institutions. The
relations are described by the model above, where nurses are assumed to be
the only members of the medical institutions (DRI). Each patient is endowed
with an ordered vector of illnesses v E({0,1})~ and a wealth scalar w E
[0,1]. Each nurse in institution i can trade an illness treated in that
institution vi for money income w, but only if there is a doctor related to
that institution, who also earns money w.

Let the utility function of those groups be defined as follows.

Ux(v,w) ) Ux(v',w') iff v( v' and [w ~ w' if v~ v'], x E A- ;

Uy(v,w) ) Uy(v',w') iff v) v' and w ) w', y E A} ,

Uz(vi,w) ~ Uz(vi,w') iff w~ w', z E{al,...,a~} .

An allocation is a function f(x), g(y), h(z) assigning (v,w) to each agent
in the economy. Let f, g, h be the inltial endowment.

Next we define in the setting as described above an abaolutely minimal
requirement for equilibrium ellocations, namely allocations which cannot be
blocked by any primitive coalition. Let C E~r( .U,) be a primitive coalition
in the semi-ring generated by the medical relevant networks in the economy
as descríbed above. For simplicity assume that all doctors ai in the
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economy are not negligible, i.e. óz ~ 0. Now the primitive coalition C is
i

said to be able to block a given allocation (f,g,h) if there exists a re-
allocation ( f',g',h') such that the following properties are satisfied:

(i) f (f',g',h') dyt ~ f ( f,g,h) dx :
C - C

(ii) Ua(v'(a),w'(a)) ~ Ua(v(a),w(a)) for almost every agent
a E C .

Note that a primitive coalition is only able to block some allocation if it
has as well patients as nurses as its members. But the relational structure
then requires that at least one doctor also has to be a member of that
coalition. Hence again we see the intermediary and crucial role of doctors
in this model.

Note that in the specific case that all doctors are negligible, i.e.
bZ - 0, the blocking conditions reduce to:

(i) f(f',h') du C f(f,h) du
C - C

(ii) Ua(v'(a),w'(a)) ) Ua(v(a),w(a)) for almost every agent
aECnA-nA} .

However doctors remain as crucial in coalition formation as before, so they
have blocking power on their own and this leads to the following additional
property which has to be satisfied also:

(iii) UZ(v'(si),w'(ai)) ) UZ(v(ai),w(si)) for every doctor
ai E {al,...,a~} n C .

This additional property sketches the importance of the doctors in the
process of coalition formation, especially primitive coalitions, in this
economy. It also sheds some light on the problems which arise in defining a
proper cooperative equilibrium concept in an economy with a relational
structure. Although agents may be negligible, they can play a crucial role
in coalition formation, and therefore earn large profits.
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Finally we return to the positive modelling. The strong axiom of posi-
tive modelling requires that each fraction bn of agents in the economy, who
are member of component An, has a nonnegative value. We can observe these
fractions as the corresponding characteriatics or features are observable.
From the relations between characteristics we can infer (statistically)
relations between agents in the economy. The economy as described above is
a nice example of a situation in which such a statistical estimation can be
performed.
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APPENDIX : TOPOLOOICAL SPACES

All definitions and theorems as formulated in this appendix can be found in
Csazsar (1978). For elaborations and further properties we therefore refer
to this book on general topology.

Let (E,T) be a topological space, i.e. E is a set and i is a collection of
open sets, which contains the empty set t~ and is closed for taking ar-
bitrary unions and finite intersections.

A.1 Definition
(E,T) is separable if there exists a subset D C E, consiating of a count-
able number of elements, such that its closure is E itself, i.e. it holds
that D- E. (Hence D is a countable dense subset of E.)

A.2 Definition
(E,T) is a Linde125f space if from each open covering of E one can select a
countable subcovering.

A.3 Theorem
(a) Every separable metric space is a LindeltSf apace.

(b) (Original) LindeltSP theorem
Any Euclidean space is a LindelSf space.

A.4 Definition
(a) (E,t] is connected if there do not exist two open disjoint sets

A,BET, AnB-~, such thatE-AuB.

(b) (E,T) is a locally connected space if every point x E E has a neigh-
bourhood base consisting of connected sets only.

(c) (E,T) is a continuum if it is a compact and connected topological
space.
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A.5 Theorem
(a) A topological space is locally connected if and only if it has a

base consisting of connected sets only.

(b) Let (E1,T1) and (E2,~2) be two Hausdorff- or T2-spaces, and let f:
E1 -~ E2 be a continuous surjection. If (E1,T1) is a locally con-
nected continuum, then (E2,T2) has the same property.

(c) Hahn-Mazurkiewicz
Every locally connected metrizable continuum is a continuous image
of the Euclidean space (I, ~) with I-[0,1] the unit-interval,
and ~ the Euclidean topology on I.

O
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