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ABSTRACT

We consider consistent estimation of regression models in which the exogenous

variables are lncompletely observed assuming that the response mechanism is

ignorable. Consistent estimates can be obtained from complete observations only.

If the unobserved variables are related to observed variables through an auxi-

liary regression model, more efficient estimators of the parameters of interest

can be obtained by using all avallable sample lnformation. In the titerature

on imputed data and on proxy varlables estimators several estimators have been

proposed which are based on approximations for the missing data. We

discuss conditions under which these proxy variables estimators are asymp-

toticallv more efficient than the estimator based nn complete observations only

and show how an optimal proxy variables estimator for which these conditions are

always satisfied can be obtained. Moreover for a simple case, we derive the

relative efficiency of several proxy variables estlmators compared with the

Gaussian maximum likelihood (ML) estimator. Finally extensions of the general

results to cases where only aggregates of the exogenous variables are observed

and to dynamic models are considered. Aga1n relative efficiencies compared to ML

are presented for simple examples. The findings indicate that by using the
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lnfurrnatlon provlded by the aux111ary model for the regressors, it is possible
to design proxy variables estimators that are almost as efficient as the ML
F;t.irr~ator which 1n the presence of missing observattons 1s often computationally
unattractive. When the normality assumption does not hold, the pseudolikelihood
estimator can even become less efficient than some proxy vartables estimators.

1. INTRODUCTION

In applied research, it is common practice to impute the missing values of
variables which are incompletely observed. Imputation is applied to cross sec-
tion data which suffer from partial non-response (for a survey of the literature
on the analysis of models in the context of non-response in sample surveys, see
e.g. Little (1982)) and to time series which are avaitabte on a high temporal
aggregation level only. In a common imputatlon procedure, the observations on
the incompletely observed varlable are regressed on auxiliary variables. The
missing values are then approximated by the predictlons from this auxiliary
regression equation. Neverth,:less little attention seems to rave been paid to
the implications of using proxies in a subsequent statistlcal anatysis. In this
paper, we are concerned with the efficiency of consistent estimators based on an
imputed data set and on the set of complete observations respectively. It is
shown that a regression using imputed observations does not necessarily yield
more efficient parameter estlmates than a regression based on data points for
which a11 variables are observed (in the sequel called complete observations).
We discuss condltions under which an estimator based on approximations for unob-
served variables is asymptotically more etftcient than an estimator based on
complete observations only and we show how an optimal proxy variables estimator
can be obtained. We also consider the estimation of standard errors of proxy
variables estimators. For a simple case, we derive the retatlve efficiency of
several proxy variables esttmators compared wlth the maximum likelihood estima-
tor under the normality assumption. Finally extensions of the results to cases
where only aggregates ot the exogenous variables are observed and to dynamic
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rt~od?is ere considered.

The first model we consider is

K
yi ~ ~k~l ~kxik} E1'

i ~ I,...,N, (I)

L
xik ~ ~1-lalkzil} vik'

i ~ 1,...,N,
k z 1,...,K,

(Z)

r
where the regression disturbances Ei and vik are i.i.d. with mean zero and

variances a2 and okk respectively, have finite fourth moments, are lndependent

of the corresponding regressors and satisfy

EEjVik s 0,

Evikvil - alk~ for i S 1,...,N, and l,k s 1,...,K, 1~ k.

Assume moreover that plim Z'ZIN is finite and non-singular where the matrix Z

has typical element zil. We consider the case where yi and iil, (1 ~ 1,...,L),

are observed for i a 1,...,N, whereas xik i s observed i f and only if the random

variable bik takes the value I. The random variables bik are assumed to be

independent of E~, z~l and v~l. Note that we do not exclude that some of the

regressors in (1) are completely observed and are used as regressors in (2).

If one assumes that a fraction of the observations i s complete in large samples,

a first consistent estimator of B' :[91,...,BK7 can be obtained from the

regression ( 1) using complete observations only. Evidently 1f only a few of the

rlght hand side variables i n (1) are complete and these variables can be closely

approximated using equation ( 2) an estlmator based on complete observations only

will not be very efficient. Alternatively the missing values can be approximated

by
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L
x~k L ~lzlzilalk~

where álk is an estimate of alk. If one defines

xik z xik if bik t 1,

an estimate of 8 can subsequently be obtained by regressing yi on zik,
k ~ 1,...,K. This procedure is known as the first order method of Afifi and
Elashoff (1966). Nijman and Palm (1986) refer to it as a proxy variables esti-
mator. Special cases have been considered by e.g. Gouriéroux and Monfort (1981)
who derived the large sample distribution of several proxy variables estimators
and by Conniffe (1983a) who considered small sample properties.

The plan of this paper is as follows. In sectlon 2 we analyze the model in (1)
and (2) assuming that K- L ~ 1, and that xi1 is observed if i 5 Nl2 only. This
special case illustrates very well the main issues related to proxy variable
estimators. Numerical results on the relative efficiency of these estimators
compared to the Gaussian ML estimator are presented for thls model. In section
3 we consider the general case and show how the use of proxies can lead to an
efficiency gain over the estimator based on complete observation on1y. In sec-
tion 4 the analysis of proxy variables estimators 1s extended to observations of
temporal aggregates of the exogenous variables and to dynamic models. Again
numerical results on the relative efficiency of a number of estimators are pre-
sented for a simple model. Finally some concluding remarks are given in section
5. Threeappendices contain the technical details.

: 2. AN EXAMPLE

In this section we analyze the model in (1) and (2) assuming that K s L- 1 and
that the exogenous variable 1n (1) is observed if i 5 Nl2 only. Deleting redun-
dant subscrtpts, the model can be written as
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Yi ` SXi ' E1
Xi s azi f Vi.

2
The variance of vi will be denoted by ov. It is useful to notice that the model

(3)-(4) 1s a restricted version of a model analyzed by Gourléroux and Monfort

(1981) who assume that zi is also included in the regresston equation for y,

~~i -~lxi t 62zi t ei. (3')

If normality of ei and vi is assumed, asymptotically efficlent ML estimators of

the parameter i n (3) and (4) can be obtained by maximizing the 1lkelihood func-

tion

N
L(a,B,o2,a~) - ~i-1 Li(a,B,a2~a~)

wlll~

2 2 ~, -1 2 Z
Li(a,B,o ,ov) s C.(ov o o) e,cp{-biíyi-Bxi) l20

2 2 2 2
-bi(xi-azi) l2ov - (1-6i)(yi-aBzi) 120~},

2 2 Z 2
where ó~ o f6 ov, ó i ~ 1 if xi 1s observed (i 5 Nl2) and bi : 0 otherwise
and C is a constant independent of the unknown parameters. Note that a com-

putationally convenient reparametrization proposed by Gouriéroux and Monfort

(1981) for the model (3') -(4), no longer applies when S2 is known to be zero.

Following an approach similar to that of Anderson ( 1957), Gouriéroux and Monfort

reparametrize the joint distribution for yi and xi given zi as a product of the

marginal distrlbution of yi given zi and the conditional distributlon ot xi

given yi and zi and they show that his reparametrizatlon provides an immediate

solution for the ML estimator. When 62 - 0, the computational advantage of this

approach is lost. If the normallty assumption is satisfied, the ML estimator

will be asymptotically efficient but in general ML estimatlon will be compu-

ta~ i~~i~a i ~v ~ uu~~~~ snmF t~~i iithe~ than alui~la mn~lal~, lf thp n8ri~~l i1;)r ~ine~ not

hold, the Gaussian ML estimator is till consistent but no
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longer efftclent, a polnt to which we w111 return below.

Alternatively, the parameter s can be consistently estimated by OLS using the
complete observations only
n 2
Bc ~ Ecxiyi~Ecxi. (5)

where Ec denotes surtmation over complete observations (i 5 Nl2). In the sequel
we wi11 also use the notation EI and EA to denote summation over incompiete and
all, complete and incomplete, observations respectively. Intuitively there

seems to be a case for using imputed data and considering the following proxy
variables estimator

n 2
Bp : EAXiYi~EAXi~ (6)

where zi - xi if 1 5 Nl2 and zi is some approximation for xi if i) N12. As
mentioned in the introduction, a natural choice for the approximation is

~ ,~ 2zi s azi if i 2 N12, where a Z Eczixil~cxi.
The condition for consistency of the resulting estimator gp is that

2
plim EAziwilEAxi . 0 with wi : yi-xi6 s eit6(xi-zi).

In applied work it is not only important to have a consistent estimator, but
also to be able to esi:imate its large sample variance consistently.
Substituting (7) into (6), we have for the first order method

,~ -12 2 2 2n n n n9p-B -(Ecxi t EIa zi) {Ecxiei t a Elziei t ~á Elzivi t Ba Elzi(a-a)).
~The large sample variance (avar) of rN Bp can be derived via substitution of (7)

into (6) and the use of the appropriate limtting theory
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avar(~N Bp) a(oX o` ; a~6`oZ~)oX~ (8)

2 2 2 2
with o„ z a oZ t ~i ov. Three remarks have to be made.

x
First, although the distinctlon between the case where a is known and that when

a is estimated could be neglected 1n proving consistency, 1t is essential for
~

the computation of the large sample variance of Bp. When a is known, the

asymptotic variance of Bp (~ denotes that the true value of a is used) is given

by

ti 2 2 2 2 2 2 -4
Avar(~N Bp) ~(oX o t~4 a B oZOV)ok .

(9)

This point is often missed in the literature, but has recently been stressed in

the context of using approximations for unobserved expectations by Pagan (1984)

and by Murphy and Topel (1985). Second, as is obvious from a comparison of their

asymptotic variances in appendix A, Bp can be more efficient as well as less

efficient than Bc, a finding which also holds for the unrestricted model con-

sidered by Gouriéroux and Monfort (1981). (In remark 2 on p. 583 they

incorrectly state that Bp is more efficient than Sc as noted by Griliches

(1986)). Third, the formula for the standard errors i n a least squares

regression does not yield a consistent estimator of the asymptotic standard
n ~

errors for Bp and Bc as

p11m EA(Y1
Bpzi)2(~Ax~)-1

-(02 t 1í62o~ ) oX2 . (10)

A standard least squares regression of yi on zi produces a consistent estimate

of B. The resultin9 standard errors, however, will be incorrect. It is obvious

from ( 8) and (10) that the order of magnitude and the sign of the bias depend

on the vatue of a2oZ. Some information on the order of magnitude of the bias

wilt be provided in table 1.
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When ustng n proxy vartable frt tor the missing values of xi, the disturbance
wi - ei f B(xi - Ri) is no longer homoscedastic. It is natural therefore to con-
sider generalized least squares (GLS) estlmation, as Gouriéroux and Monfort
(1961) did for an exactly identified model, whlch can be denoted as

,~ -1 -1 -1
B~ : (R~v R) R'v y, (11)
where y s íYl~y2~-..~yN)'~ X ~ (X1~z2,...,kN)' and V is a weighting matrix.
Dagenais (1973) proposed to take V diagonal with vii s ó2 for i 5 Nl~ and

~2 n2n2

vii s a t g ov, i~ NIZ, and "-" lndicating a consistent estimate of the
ncr,rr~~pnnding pnrarn~t~r. Thig é~tim~tor will ba r~f~riad t0o A~ ~~ . nitno~~g~~

every element of the matrix V proposed by Dagenals converges in probability to
the corresponding element of the covariance matrix of vii, f2, the matrix
N-iR'V-iR does not converge to the same limit as N-iR'f2-iR.

That the choice of the weights by Dagenais (1973) is not optimal has been
pointed out by Conniffe ( 1983b) who proposed another weighting matrix with
constant elements. That these weights are not optimal either can be seen by
comparing them with the elements of n. Assuming for the ease of simpllcity that
zi is nonstochastic and writing
wi - ei t S(xi-azi) t szi(aá) if i) Nl2

` Ei
we have

it 1 S N12. (12)

2 22 2 2-12
wi, s o t B ov t S ziz~(Eczi) ov 1 a j i~ Nl2

2 2 -1 2
~ B zizj(Eczi) ov i~ j i,j ~ Nl2

2
~ a 1~ j 1 5 Nl2

~ 0 otherwise. (13)
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A feasible GLS estimator Bg ts obtatned is we substitute consistent estimatesfor
A

the unknown parameters in (3) and ( 4) and use s~ instead of V in ( 12).Theinverslon
n

of f2 does not seem to be very attractive at first sight as it contains non-zero

off-diagonal elements. However, we can avold direct lnverston ot such a matrix

by using the binominal inversion theorem that wili be needed tn more complex

cases as well. First we wrlte

S2 ~ G f ZHZ' , (14)

where G is a diagonal with ó2 and a2 t 62a~ in position i of the main diago-
nal for i s N~2 and i~ N~2 respectively, H- o~s2(ECZ?)-i is a scalar, Z is
a Nxt vector with i-th element being equal to zero and zi, for i s N~2 and
i~ N~2 respectively. The inverse of n can be obtained straightforwardly
as (G t ZHZ')-1 - G-1 - G-1Z(H-1 } Z~G-1Z)-1Z,G-1. (15)

The asymptotic variance of Bg can be consistently estimated by

(X'f2-1X)-1. The estimator sg is more efficient than the first order method in

(6), the Dagenais (1973) estlmator and the Conniffe (1983b) estlmator.

The asymptotic variance of the estimators considered i n this section will be

given i n appendix A. In table 1 we report the ratio of the variance of alter-

native consistent estimators compared with the variance of the ML estimator

assuming normality of ei and vi. From the results in appendix A, it follows

that the relative efficiency only depends on RX - a2oZOX2 and
Ry z 62oX(62oXfo2)-1, where oX ~ aZoZ f o~. From the results in table 1~
it appears that the OLS estimator using the complete observations only, Bc,

n n
is roughly as efficient as the proxy variables estimators Bd and Bg. when

n
R2 is small. When R2 is large, Bc is inferior to all proxy varlables estimators
x x

considered. This finding is plausible. When a large fraction of the variance of

xi is explained by zi, azi is a fairly accurate approximation of xi and it
2 2 '

pays to use this information. However, when RX is low compared to Ry' Bp
n

can well be less efficient than Bc.
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lable 1: aeletive efttciency of the ML estimator compared wtth alternative
consistent estimators for s.

RX

(1)

Ry

(2)

Alternative estimators

Bp ad B9 Bo

(6) (11) (11) (5)
V:Da enais V:o timal

-

a W

var(BP)E xt

0.20 0.20 1.1306 1.1161 1.1129 1.2719 1.0312
0.20 0.40 1.3068 1.2251 1:2140 1.3315 1.0755
0.20 0.60 1.5430 1.2675 1.2491 1.3226 1.1429
0.20 0.80 2.0741 1.1894 1.1726 1.2043 1.2581
0.20 0.95 5.3364 1.0546 1.0489 1.0556 1.4176
0.40 0.20 1.0737 1.0617 1.0587 1.3845 0.9901
0.40 0.40 1.2076 1.1382 1.1259 1.3761 0.9767
0.40 0.60 1.4517 1.2000 1.1744 1.3421 0.9575
0.40 0.80 2.0770 1.1786 1.1471 1.2262 0.9277
0.40 0.95 5.7154 1.0612 1.0473 1.0649 0.8916
0.60 0.20 1.0320 1.0258 1.0240 1.5360 0.9767
0.60 0.40 1.1033 1.0658 1.0573 1.4710 0.9444
0.60 0.60 1.2644 1.1184 1.0962 1.3952 0.8966
0.60 0.80 1.7420 1.1481 1.1085 1.2669 0.8182
0.60 0.95 4.5344 1.0706 1.0442 1.0828 0.7164
0.80 0.20 1.0078 1.0060 1.0055 ;.7368 0.9814
0.80 0.40 1.0283 1.0172 1.0142 1.6547 0.9536
0.80 0.60 1.0859 1.0393 1.0288 1.5432 0.9079
0.80 0.80 1.3055 1.0807 1.0501 1.3733 0.8182
0.80 0.95 2.7544 1.0805 1.0361 1.1325 0.6624
0.95 0.20 1.0005 1.0004 1.0003 1.9274 0.9941
0.95 0.40 1.0019 1.0011 1.0009 1.8922 0.9847
0.95 0.60 1.0068 1.0030 1.0019 1.8296 0.9668
0.95 0.80 1.0335 1.0107 1.0048 1.6866 0.9206
0.95 0.95 1.3274 1.0481 1.0125 1.3442 0.7660



In column I the ratios of the variances computed using the OLS formula for stan-
n

dard errors (10) and the correct asymptotlc variance for BP in (8) 15 presented.

In a few occasions the asymptotic bias for the standard errors involved in using

the OLS formula appears to be qulte important.

In order to explain the results on the relative efficiency ot the four estima-

tors considered in columns 3 to 6 of table 1 we express the proxy variables

estimators as a linear combination of Bc and a consistent estimator of B, Bmj,

based on incomplete observations only (except for the esttmate á),

Bj s 1`jBc t(1-aj)Bmj with j ~{P~d~9}.

The expressions for Bmi and Í~j are given below
n

P

~~ Bmj

2 -1
(EIXi) EIXiYi

d

9

2 -I
(~IXi) ~IXiyi

~, -1 ~
(~Iwii,xixi,) ~Iwii,~iYi,

n

2 2 -I 2
(~cxi}~Ixi) ~cxi

-2 L n-2 L -I~-2 2

(è Ecxit o Elïci) ~~~ Ecxi

-2 2 ~ 'I -2 2
~ó EcxitElwii,xixi,) o Ecxi

where w~i, denotes the (i,i')-th element of f2 -1. The large sample variance
n

of Bj is

2 2
Avar(~N Bj) z l~jvc f(1-Aj) vmj (I6)

n
with l~j s plim l~j, vc s Avar(l~N Bc) and vmj ~ Avar(1~N Bmj).

n n

It is straightforward to verify that Bj 1s asymptotically more efficient than Bc

if
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vm~ - vc
~),j(1

vmj f vc
(17)

and that the choice of l~j which minimizes the asymptotic variance of ~N Bj is
I~;pt ! vmj(vc t vmj)-1 which satisfies (17).
As l~g . A9Pt , gg is efficien ~relatiie to Bc. As I~p ~ I~pPt and
nnd l~d ~~opdt~ the estlmators Bp and Bd are more efticient than
Bc only 1f inequallty (17) is satisfted. This w111 not be the case if B(or Ry)
is sufficiently large, as the lower bound in (17) tends to 1 if B increases,
while ap and I~d are not affected by a change of B. In this case, due to subop-
timal weighting, the additional lnformation on B contained i n gmj leads to an

n I~efficiency loss of Bj compared wlth Bc. It on the contrary RX is larae so
that azt tends to be a better proxy, vmj gets close to vc and the proxy

n n nvariables estimators Bp and Bd become more etficient than Bc in large samples.

The efficiency of the ML estimator i n table 1 arises from the assumption that
the distributions of ei and vi are known to be normal. If normality is assumed
but does not ho1d, the Gaussian ML estimator which maxlmizes L(a,B,o2,o~) above
will stt11 be consistent ( see e.g. Amemiya ( 1985), theorem 4.1.1) and the asymp-
totic distribution can be determined (see e.g. Amemiya ( 1985), theorem 4.1.3 and
appendix A). This estimator 1s however not necessarily more efficient than the
proxy variables estimators if ei and vi are not normal. In table 2 we present
the relative efficiency of the Gausstan ML estimator compared with the optimal

nproxy variables estimator Bg. The relative efficiency with respect to other
proxy variables estimators can easily be derived from the results in tables 1 and
2. In table 2 we restrict ourselves to cases where
RX ~ Ry and (EF~)I(Ec~)? ~ (Ev~)I(Fv~)2.

Evldently the normality assumption does not have a very large effect on the
relative efficiency unless only small fractions of the variances of yi and xi
are explained by (3) and (4) and the true distributions ot ei and vi have very
fat ta11s. For the dertvation of the results tn table 2 we refer to appendix A.
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Table 2 : Relative efficiency of the Gaussian ML estimator compared with the
noptimal proxy variables estimator Bg.

Rx'Ry
0.2
0.4
0.6
0.8
0.95

3. THE GENERAL MODEL

2 2
Yalues of EEiI(Ee~) ~ (Evi)I(Evi)
2 3 4 6

1.1623 1.1129 1.0675 0.9869
1.1748 1.1259 1.0809 1.0011
i.1305 1.0962 1.0636 1.0045
1.0672 1.0501 1.0336 1.0019
1.0167 1.0125 1.0083 1.0001

10
0.8575
0.8721
0.9036
0.9441
0.9841

In this section we consider the general modei lntroduced in equations (1) and

(2). As in the simple case considered in the prevlous section a consistent

estimate of B can be computed from complete observations only. Define yc, Xc

and Zc as the vector and matrices obtained after deletion of rows of y, X and Z

respectively for w~~ich some variable is missing. The regression estimator based

on complete observations only can be written as

~ -1
Bc a (XéXc) X~yc. (18)

In the model ( 1) and ( 2) several proxies can be throught of. A first possibility

is to obtain estimates of the alk from regressions using complete observations

only

~ -1
a ` (Zc~Zc) Zcxc

and subsequently to approximate missing exogenous varlables in (1) by

~.(1) L n
xik z ElzlZil olk 1f bik s 0.

If xik) - xik if bik - 1 1s defined for notational conventence, B can sub-

(19)

sequently be estimated from the regression model
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yc

YI

or

Xc
B t

E~

y ~ X(1)g t w(1), (21)

where the subscript I 1n (20) refers to incomplete observations. From the
example in the previous section we know that the ordinary least squares estima-
tor

I~ n(1)'n(1) -1 ~.(1)~
Bp -{x~'x~ t xI xI }{x~~y~ f xI yI} (Z2)

nis not necessarily more efficient than gc. As in section 2 we have to analyze
the structure of the covariance matrlx of the disturbances in order to derive a
generalized least squares esttmator. Because

K (1) K
yi- ~k~izik 9k ` Eit ~kslbikB~CVik}

L K ~
Z1-1~k-lbikSkzil(alk- alk)

(20)

(23)

and álk - alk is linear in the vik we have w(1) - E t AV for a suitable chosen
(NxN) matrix A and the GLS estimator B~1) can stralghtforwardly be computed
using ( 15). Moreover i t is evident that S9 1) will be more efficlent than gc

nbecause 6c coincides with the IV estlmator of g from ( 2Q), with (Z~,O) being
the matrix of instruments.

nA natural question to ask next is how the efficiency of gg is affected i f rele-
vant regressors are excluded from the auxiliary regressions. Partition Z as
Z-(Z1,Z2) where Z1 and Z2 are (NxLl) and (Nx(L-L1)) matrices respectively and
assume that the regression model

L 1 ,~

xik ~ ~1~1 nikZil } vik (24)



15

still satisfies tr~e assumptions that were made with respect to (2). This model

suggests the use of the proxies

2 L() ~E 1~ z ifb s0
xik 1z1 lk il 1k

~ xik if bik ~ 1

where rnjlk is the regression estimate from (24). Substitution of this proxy

yields the model

y ~ X(2)B t w(2), (25)

from which B can again be estimated e.g. by generalized least squares yielding

692). The following theorem will be useful 1n determining the effect of the
choice of a proxy variable on the assoclated estimators B~1)and 6~2).

Theorem
n ti

Assume that y z XB t e holds with plim N'iZ'E ~ 0 and let X and X be two proxies

for X. Consider the estimators

N n-1~ -ln n-1 N N -1
~GLS s(x'E x) x'E y and BIy s(z'x) z'y.

Assume that
~ d ~ n ~ -1

(i) ~N(BGLS-B)- N(D'y-1)~ where V-1 ~ plim N(X'E-1X)

is finite and positive definite;

(ii) plim N-1Z'X ~ Q is finite and positive definite;

1
~ N(O,D) where D ~ plim N-1

rN I Z'(w-w~ 0 Z'SZ

for somLe S and "w and "ware the dlsturbances assoclated

with X and X respectively.

Z'W
n

Z'EZ ~

N

Then BGLS is asymptotically at least as efficient as BI~.

Proof : see appendix B.
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The third requirement is most crucial. If two proxies X and X are available, an
IY estlmator based on X cannot be more efftclent than a GLS estimator based on X
if Z'w and Z'(w-w) are asymptotically orthogonal provided the regularity con-
ditions of the theorem are met.

Returning to the analysis of the relative efficlency of
1B9 ) and 692 let us flrst consider the case where the parameters alk and r11k

are known a priorl. Then 1t is very simple to use the theorem to show that con-
ditioning on the larger lnformatton set w111 y1e1d more efficlent estimates.

n n ~r n ~
Define X- X(1) and X ~ X(2). The disturbances in theorem are w s e t(X - X)B
and ẁ s e t(X - X)B respectively. As R~k) s E[xik~ I1] and "x~k) ~ E[xik~ I2]
with I2 ~ I1, w- w-(X - X)B will be orthogonal to w by the properties of con-
ditional expectations and the theorem inmediately implies efficiency of the
proxy variables estimator based on the larger conditioning set. Unfortunately
this result does not hold true in general if alk and ~lk have to be estimated.
A counter-example in a slightly different model is presented in the next sec-
tton. In appendix C we show that the resu~t does hold for p91) and B9z) if
bik does not depend on k that 1s if all exogenous variables tn (1) are missing
when one of them is. We conjecture that more general results can be proved along
the same lines. The relative efficiency of B(1) with respect to B(2) implies

9 9among other things that if a constant is included in (2), use of that auxillary
regression model will yield more efficient estimates of B than simple imputation
of inean values for missing observations (which is equivalent to regression on a
constant only) as is often done in practice.

The theorem above can also be used to demonstrate the effect of more effictent
estimation of the alk in (2). If prior restrlctions on these parameters are
available or if observations for which some but not all exogenous variables 1n
(1) are observed are also used to estimate these parameters, Zellner's (1962)
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SUR estimator wi11 be more efftcicnt than a regression on the set of camplete
~ ~

observations only. If the SUR estimates are denoted by alk and x~k) is defined
as

n(3) L n
x1k " ~l~lalkZil

' xik

we obtaln

if bik ~ i

1f bik ~ 0,

K (1) (3) L K n n
~kLl(xik - xik )Bk ` ~1-I~k"laikskZil(alk - alk). (26)

(I) n (3) n
Using ( 23) with zik and alk replaced by zik and alk

n
respectively, the we11-known fact that 1~N(álk - alk) and

~(al'k' - al'k') (1,1'' 1,...,L; k,k'" 1,...,K) are asymptotically orthogonal
because álk is efficlent ( see Hausman ( 1978)) implies that the requirements of

the lemma are satisfied. Therefore the GLS proxy vz~iables cf B w111 in general
be more efficient 1f the auxitiary regression coeftlcients are estimated by SUR

rather than OLS.

4. EXTENSIONS

In this section we will indicate extensions of the results in sections 2 and 3

to cases in which aggregates of xi in (I) are observed and to a dynamic auxi-

liary model. For simplicity we constder two examples. First assume that xt is

a flow variable which is observed every second perlod only, that is observations

are available on zt ~ xt t xt-1 1t t ~ T2 -{2,4,6,...,T}. Throughout this sec-

tion, "-" will denote slmilar temporal aggregates. Because aggregates are

observed more frequently tor time serles than tor cross-sectlons, we change the

notation for the subscripts.
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Assume that the analogues of (3) and (4) hold.

yt ~ Bxt t Et

xt . azt t vt.

(27)

(28)

Ordinary least squares applled to the aggregate data ( "a" denotes that aggrega-
tes are observed) ylelds

n 2 -1
(29)sa~ - (~2Xt) ~2xtyt

which ts consl5tent. Using the proxy fct ~ ázt t Ye(xt- ázt) for t E T2 and
xt - atzt t}(xt{i - azt{1) for t E T2, where

n 2-1 --
a - (ET2zt) F~2ztxt ,

we have

yt z Xt~ t wt
with

wt z Et t B(vt - Vivt) f 6(zt - Y4it)ía á) if t ~ T2

(30)

(31)

wt s Et t~(Vt - itVttl) f S (Zt - itzttl)(aa) if t~ T2. (32)

OLS applied to (31), GLS applled to ( 31) with V being the covariance matrix of
wt assuming á ~ a, and GLS with optimal weights, i.e. V being the covariance
matrix of wt in (32), yield the conslstent estimators Bap, gad and Bag respec-
tively. Expressions for the asymptotic variance of the estimators sac and Bad
and the ML estimator have been given by Palm and Nljman ( 1982) where Bad is
called the GLS estimator. For the sake of completeness the fortnulae are given in
appendix A.
A simple transformation of equation ( 31) yields
yt t yt-1 ` ( xt t xt-1)B t Et f Et-1 t` T2
yt - yt-1 '(Xt - kt-1)9 f wt - wt-1 t~ T2 í33)



]9

From the theorem in the previous section it tollows that because of the lnclu-
n

sion of ( zt - zt-I)B in the regressor, Bag is asymptotically more efficient than
~
~ac.

In tabte 3 some numerical results on the ratio of the asymptotic variance of

alternative consistent estimators compared with the large sample varianc~ of the

ML estimator are reported. For simplicity we only consider the case where the

disturbances et and vt are normally distributed. In that case the relative

efficiency depends on RX, Ry and p ~ oZ2 EztZt-1' For cross-sections
p ~ 0. Column 8 of table 3 contatns the relative efficiency of the ML estimator

for a complete sample with respect to that for the tncomplete sample. In column
n n n

9 we compare the standard errors for sap computed by means of ów(X'X)-I with
n

the correct formula for the variance of Bap.
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Tet~ló 3: Rclattve efftctency ot the ML esttmator compared wtth alternative

consistent estimators for 6.

2 2
P

Alternative estimators

- - - - -
SB S S s

2a
W

x y ap ad ag ac 1~II. -

~1~ ~2~ complete ar(B )ïxt
sampling aP

0.40 0.40 -0.95 5.8050 4.3690 1.2310 1.3221 0.4099 0.12100.40 0.40 -0.80 2.1353 1.7254 1.1867 1.4380 0.4889 0.39250.40 0.40 -0.40 1.3514 1.2090 1.1425 1.4689 0.6169 0.78260.40 0.40 0.00 1.2076 1.1382 1.1259 1.3761 0.6880 0.97670.40 0.40 0.40 1.1502 1.1189 1.1172 1.2643 0.7333 1.09290.40 0.40 0.80 1.1200 1.1119 1.1119 1.1585 0.7646 1.17030.40 0.40 0.95 1.1122 1.1103 1.1103 1.1218 0.7740 1.19300.40 0.90 -0.95 61.9462 6.1713 1.1461 1.1528 0.3574 0.03050.40 0.90 -0.80 16.1162 2.0562 1.1315 1.1532 0.3921 0.12860.40 0.90 -0.40 5.6263 1.2280 1.1048 1.1436 0.4803 0.45120.40 0.90 0.00 3.2832 1.1114 1.0881 1.1250 0.5625 0.90560.40 0.90 0.40 2.1212 1.0799 1.0767 1.1023 0.6393 1.59310.40 0.90 0.80 1.3645 1.0685 1.0684 1.0777 0.7113 2.75530.40 0.90 0.95 1.1363 1.0659 1.0659 1.0682 0.7371 3.42870.90 0.40 -0.95 1.1481 1.1399 1.0100 4.3439 0.3149 0.29840.90 0.40 -0.80 1.0386 1.0317 1.0050 4.4937 0.6291 0.65880.90 0.40 -0.40 1.0128 1.0080 1.0037 2.6205 0.8386 0.90060.90 0.40 0.00 1.0074 1.0044 1.0035 1.8003 0.9002 0.97190.90 0.40 0.40 1.0050 1.0035 1.0034 1.3671 0.9296 1.00610.90 0.40 0.80 1.0037 1.0033 1.0033 1.1011 0.9469 1.02610.90 0.40 0.95 1.0034 1.0033 1.0033 1.0261 0.9517 1.03170.90 0.90 -0.95 4.0678 3.5825 1.1726 1.5562 0.1128 0.04230.90 0.90 -0.80 2.1694 1.7660 1.0751 1.6972 0.2376 0.16720.90 0.90 -0.40 1.5549 1.1848 1.0348 1.5441 0.4941 0.48500.90 0.90 0.00 1.3209 1.0592 1.0251 1.3546 0.6773 0.78270.90 0.90 0.40 1.1710 1.0258 1.0208 1.1981 0.8147 1.06190.90 0.90 0.80 1.0620 1.0185 1.0183 1.0716 0.9216 1.32450.90 0.90 0.95 1.0281 1.0171 1.0177 1.0305 0.9558) 1.4190
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n
From table 3 we can conclude that Bag is fairly accurate 1n most instances. The
estimator 9ac seems to have a reasonable precision too. However, gap becomes

n
very í naccurate when the autocorrelation of zt is negative. The estimator sad is

sometlmes less accurate than Bac. In these cases using addittonal informatton
n

in a suboptimal way leads to a toss of efficlency. The estimator sag is of
course more efficient than Bac. Flnally the bias due to using áw(X'X)-1 to
estimate the asymptotic variance of Bap can be qulte important.

In the second extension, we consider a dynamic equation for the exogenous

variables xt. In dynamic models, the predtction of the missing observations will

usually depend on auxiliary variabtes and on the observed values of the variable

itself. Simple examples have been consldered e.g. by Chow and Lin (1971, 1976),

and by Litterman (1983). In more complex models the classtcal Wlener-Kolmogorov
filtering theory or the Kalman filter can be used to derive the best approxima-
tions for missing observations, see e.g. Nijman and Palm ( 1986).

Here we restriet ourselves in a dlscus~ion of the reletlve efflclency of proxy

variables estimators for the model

yt ` Sxt t Et (34)

xt - Yxt-1 t azt t vt ~Y~ C 1, (35)

where the assumptions on et and vt are as above. Assume that xt is observed

if t~ T2 only, e.g. because the model is semi-annual but only annual data on xt

are available.

As a proxy for xt if 1t i s unobserved we can use
~t . (lfyz)-l~yxt-1 { vxtfl t ázt - ~Yzttl~. (36)

which is the expectation of xt given past, present and future into rtnation on xt

and zt where consistent estimates have been substltuted tor a and Y. OLS

applied to (34) after substitutlon of thls proxy for xt is consistent for B

because (36) is an estimate of the conditional expectatton which implies that
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(7) is satisfied. Note that a regression on ad hoc interpolated values, e.g.
using the method proposed by Boot, Feibes and Lisman (1967) can yield estimates
which are strongly biased asymptotically as 1s shown by Palm and Nijman ( 1984).

Estimates of a and Y cannot be obtained by direct regression because xt and xt-1
are not observed slmultaneously. Me consider the following three consistent
estimators of a and Y:
First by ML applied to equation ( 35) after elimination of the unobserved values
of xt which can be written as

xt : YZxt-2 f azt t aYzt-1 t(vt } Vvt-1)~ t` T2

with one nonlinear restriction on the parameters (M1).
Second by OLS applied to the unrestricted version of (37),

(37)

xt `~lxt-2 f~2zt t~3zt-lt (vt t Vvt-1). (38)
n n n n n n n-1and Y s t~i , a~ WZ (M2). The sign of y is determined by ~3~2 .

Third, again using (38), as V
i~3~2 1 and á ~~2 (M3).

If zt is a white noise independent of xt-1, the expectation of xt conditional on
all observatíons on xt is given by ML from (37) with a a 0 assuming the sign of
Y to be known a priori, and this proxy can be substituted into(34) (M4).

As argued above, OLS applied to (34) after substitution of one of these four
proxies zt will yield a consistent estimator of B. This estimator will be

ndenoted Bp. The error term wt : et f B(xt -~t) is heteroscedastic and serially
correlated, so that one is again naturally led to consider GLS-estimators, such
as proposed by Dagenais ( 1973), Gouriéroux and Monfort ( 1981) and Conniffe
(1983b) for static regression models. The estimator using the weights suggested

~by Dagenais ( 1973) w111 be denoted as Bd. The estimator using the optimal
weights given by the i nverse of the covariance matrix of wt will be denoted by
n
Bg. Finally, B in(34) can be consistently estlmated from the complete obser-



n
vations only by 6~.

Numerical results on the relative asymptotlc efficiency ot the consistent esti-

mators of B discussed above are given in table 4. In the last column of table 4,
n

we compare the SE's of Bp, with a and Y estlmated by ML ( see M1) wlth the

correct asymptotic standard errors. The parameter Y, the tirst order autocorre-

lation of zt, p, and the variance ratlo's RX and Ry determine the relative

efficiency of the different estimators with respect to the ML-estimator.

Computational details are given in appendix A.
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Table 4: Relative efficiency of the ML estimator compared

wlth alternative consistent estimators for g in
(34), when xt 1s gtnerated by (35) and the ratio of
cortmonly used and true asymptotic standard errors.

y G RZx R2y M1- - -
Bp Qd B9

M2- -
Bp ~9

M3- -
~P g9

M4- -
gP gg

M5B SE

-0.90 -0.90 D.lO 0.~0 1.29 1.26 1.20 ' 6.D6 1.75 t35.13 1~.e9 ' ' 1.90 2.19
- 0.10 -0.l0 D.90 D.90 2.3e 1.73 1.23 7t.i3 1.15 25.51 1.10 1.51 O.eO
D.00 -0.lD 0.l0 0.90 1.32 l.et 1.03 INF INF 1.l6 1.12 1.]S 0.97
0.10 -0.90 0.l0 0.l0 l.ti 1.2t 1.02 ll.t1 1.11 2.20 1.07 ' 1.26 0.21
0.l0 -0.70 D.lO 0.10 1.21 1.10 1.00 1.15 1.01 1.2] 1.01 i.i1 0.01-0.l0 0.00 0.lD D.lO 1.IS 1.11 1.12 3.62 1.57 t.31 1.60 6.K 1.31 1.90 0.17-0.10 0.00 0.90 0.l0 1.21 1.07 1.01 S.tS 1.30 1.30 1.05 1.SD 1.12 1.17 0.77
0.00 0.00 D.lO D.lO 1.32 1.Oi l.o] [NF INF 1.32 l.e] 1.]S 1.35 1.]S 0.l70.~0 0.00 0.l0 0.90 1.23 1.07 1.03 l.ie 1.05 1.20 1.01 2.e1 1.~2 1.17 0.~~e.90 0.00 0.l0 0.l0 1.00 1.00 1.e0 1.01 1.01 1.03 1.02 1.13 1.30 1.le O.SS

-0.l0 0.90 0.l0 0.l0 1.22 1.1! 1.OS 1.5T 1.17 1.21 1.Oe 1.i1 0.01-0.10 0.l0 0.l0 0.10 1.71 1.]1 1.02 32.26 1.10 2.20 1.07 1.2t 0.230.00 0.l0 0.10 0.70 1.]2 I.Oi 1.03 I1F INF 1.90 1.12 1.35 0.l7
0.10 0.l0 0.l0 7.l0 1.30 1.13 1.0e 1.57 1.17 1.1! 1.10 1.51 1.170.90 0.l0 0.l0 D.90 1.eD 1.e9 1.00 1.D1 1.01 1.11 1.15 1.l0 2.e2-0.90 -0.90 0.10 0.~0 2.23 1.11 3.33 20.3L I.S6 7326.75 1.61 1.62 0.17-0.10 -0.10 0.10 0.10 s.1e l.tl 1.11 170.52 I.17 2t3.1t 1.16 1.19 0.310.00 -0.70 0.10 0.90 3.2e 1.11 1.0! INF 1MF 3.76 1.09 1.1] 1.100.10 -0.90 0.10 0.90 1.7t 1.21 1.D9 13.07 1.10 t.S7 1.10 1.11 0.320.l0 -0.70 D.10 0.l0 l.ei 1.16 1.01 2.06 I.Oi 1.11 1.01 1.50 O.Oe-0.70 0.00 0.10 0.90 1.lt 1.33 1.2e 15.71 1.31 71.!! 1.75 S.t3 1.28 1.61 0.31-0.10 0.00 0.10 0.l0 1.]e 1.2i 1.11 il.i] 1.13 e.01 1.33 3.S! 1.1! 1.17 O.S20.00 0.00 0.10 0.f0 3.20 1.11 1.0! INF INF 3.2e 1.09 1.13 1.13 1.1] 1.100.10 0.00 0.10 0.70 2.37 1.10 1.0e 2.15 1.D! 2.11 1.Oe 2.2t 1.`~ 1.17 0.lSe.l0 0.00 0.10 0.l0 1.0T 1.01 1.01 1.Oe 1.42 1.13 1.02 1.23 l.li l.tl 0.62-0.l0 0.'!O 0.10 0.~0 2.31 1.77 1.23 10.20 1.11 1.1e 1.36 1.50 O.Ot-0.10 D.lO 0.10 0.l0 S.ee 1.36 1.11 11.01 1.12 10.t! 1.I2 1.11 0.26e.00 0.l0 0.10 D.lO 3.20 1.11 1.0! I~i INF S.7t 1.09 i.13 1.10e.10 0.70 0.10 0.70 2.02 I.Oe 1.00 ~.09 1.1~ 2.27 1.0e 1.19 1.110.l0 0.l0 0.10 0.l0 I.Oi 1.01 1.01 1.01 1.02 1.70 1.06 1.62 e.le-0.90 -0.90 0.l0 0.10 1.02 1.02 1.02 1.]7 1.28 1f.l7 1.95 1.9e 2.LS-0.10 -0.l0 0.l0 0.10 1.12 1.11 1.09 7.e2 1.i2 ].21 1.10 l.ee I.320.00 -0.90 0.l0 0.10 1.01 1.00 1.00 Ili iNF 1.07 1.75 1.e0 0.lSe.10 -0.l0 0.l0 0.10 I.01 1.01 1.e0 2.t7 1.36 1.07 1.01 1.73 0.)So.so -o.lo o.lo 0.10 l.oo l.oo l.eo 1.e2 1.02 l.eo l.oe 1.s3 e.ot-e.lo o.oo 0.90 o.1e l.el l.el l.el 1.2e I.It 1.11 1.2t 1.1! l.it 1.9e e.sx-0.1o e.oo o.lo 0.10 l.ol l.el l.el 1.12 l.os l.ol l.ol 1. n i.s7 l.et e.7t0.00 0.00 D.lO 0.1e 1.01 I.00 1.00 l1F INF 1.01 1.00 1.e0 1.00 I.eO 0.lSe.10 0.00 0.l0 0.10 l.el 1.01 1.01 1.05 1.03 1.01 l.el i.tt I.S7 1.eL 0.7t0.l0 0.00 0.l0 0.10 1.00 L.00 I.eO 1.00 1.e0 1.00 i.e0 1.Oe 1.0! 1.le O.SS-0.l0 0.l0 0.l0 0.10 1.00 l.00 1.00 1.03 1.03 1.01 1.00 1.1] e.0i-e.10 0.l0 0.l0 0.10 1.e2 1.02 1.01 ~.17 1.20 1.Oe 1.01 1.75 0.330.00 0.l0 0.l0 0.10 1.01 1.00 1.00 IIF INF 1.07 1.OS I.eO 0.930.10 0.90 0.l0 0.10 1.e2 1.e2 1.02 1.01 1.01 1.01 1.03 l.ee 1.13e.l0 0.l0 0.l0 0.10 1.00 1.00 1.e0 1.00 1.00 1.0] 1.e3 1.~~ 2.11-o.lo -o.so 0.10 o.1e i.lo l.lo l.e! t.te l.ss t3l.1s l.s! i.so e..1-e.1o -o.lo o.1e o.10 l.ts 1.1! 1.:1 it.BS 1.3! ts.se l.a. i.so e.s7e.e0 -0~90 0.10 0.10 1.21 1.11 1.13 leF Ii1F 1.23 1.11 1.3e e.BOe.1o -e.lD o.1e o.1e 1.:1 1.11 1.e7 1.le 1.11 1.10 1.11 i.]i e.3!e.so -s.ls o.so e.1o 1.e1 1.e3 l.eo l.os l.el 1.01 t.eo 1.82 all-e so o.eo 0.1o e.1o 1.eB l.se 1.e7 t.3e l.so s.l: 1.70 1.12 1.1I l.le s.1e-e.10 e.e0 0.1D 0.10 1.2! 1.2e 1.13 i.il 1.22 1.71 1.1L 1.11 1.2t 1.10 O.See.ee e.ee o.1e e.1e 1.~1 1.I1 1.17 Ir Ii 1.:1 l.i! I.Za 1.3~ 1.3e e.eo~.1e e.0e 0.10 0.10 l.te 1.07 l.et 1.11 1:e7 1.10 1.Ot 1.2! 1.lS 1.1e e.tee.70 e.e0 0.1e 0.1e l.ee 1.00 I.eO l.ee 1.e0 1.01 l.el 1.N 1.e3 1.l0 e.S2-e.le e.le 0.~0 0.10 I.eO 1.e0 I.OS 1.70 1.3e 1.l1 i.lt 1.82 e.le-e.1e 0.le 0.1e 0.18 1.31 1.22 1.11 1.7! l.le 1.7t 1.17 1.]1 e.3i~.ee e.l0 0.10 0.1e 1.21 1.I1 1.1] Ir Ii 1.23 1.71 1.3~ e.Be~.10 e.le O.~e 0.1e 1.e0 1.K l.et 1.35 1.18 1.10 l.~t 1.le e.e!e.l0 e.l0 e.10 0.1e 1.e0 1.e0 l.~e l.ee l.ee l.ei 1.03 1.le O.el
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from the results tn tabte 4, tt ts qutte obvious that all proxy varlables esti-

mators are fatrly efficient when Y and a are estimated by ML. Also, OLS applled

to complete data only 1s reasonabiy efficient 1n most instances. The
. n

estimator ~p can be more efficlent as well as less efficient than Bc. Notice

that the asymptotic variance of Bc is twice that of the ML or GLS estimate for

the case where all values of xt are observed. Nhen a moment esttmator (M2 or

M3) is used for y and a, the relative efficiency 1s very sensitive to the para-

meter values. In particular, a negative value for Y combined with negative

first order autocorrelation of zt often leads to a large relative efficiency of

ML compared with the proxy variables estimators based on M2 or M3. The Jacobian

of the transformation of the moments to Y~ V~ equats .5Y-1, so that when

Y- 0(which is ignored i n the estlmation), the targe sample variance of these

estimators cannot be evaluated. This is indicated by INF.

Evidently, more efficient estimatlon of a and Y yields more efficient proxy

variables estlmators of 6, in accordance wlth our theorem. The inclusion of the

observatiuns in zt in the conditlonal expectation of xt appears to improve the

efficiency of B if (34) is estimated by GLS and (37) is efficiently estimated,

wr~~ti~ I~ n~,~ b~u~~~ l~iny yivpn ihe F~sult5 1n t~e prwi~u~ ~e~llE~n~ Nut~ ~h~~ it

can be more efficient to use the smaller information set tf moment estimators of

a and Y are used instead of efficlent estimators. Finally the last column of

table 4 indicates that the commonly used formula for standard errors can be

severely biased when proxies are used. Sign and magnitude ot the btas depend on

the true parameter values.

5. CONCLUDING REMARKS

To summarize we consldered several consistent estimators tor regression models

with missing exogenous variables. It 1s not difticult to obtain proxles for the
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misstng observations such that the resulting proxy variables estimators will be
consistent. To assure consistency one should preferably use conditional expec-
tations to construct the proxies. We have shown how to obtain proxy variables

estimators that are more efficient than estimators based on complete obser-
vations only. The use of more lnformation when constructing a proxy and esti-
mating the parameters of the auxiliary equation, will usually yield more effi-
cient estimators. The asymptotic efficiency of some proxy variables estimators

is much lower than that of the Gaussian ML estimator. However, the optimal
proxy variables estimator, which can be obtained by GLS, appears to be almost as
efficient as the ML estimator which is computationally unattractive in larger
models and i t can be more efficient than ML estimation i f normality does not
ho1d. This finding should be very useful for empirical work on data sets which
are not complete. Although the computational complexlty of ML estimation and
the possible deviation of the data from normality are strong arguments in favor
of using imputed data, one should be aware of the fact that consistent estima-
tion of }he large sample variance of the estimators discussed can sometimes be
tricky.



APPENDI~( A

In this appendix we shall give the large sample variance for

several estimators presented in the paper. Consider first the

model presented in (3) and (4). The asymptotic distribution of

the óaussian ML estlmator of 6 a (a,a2,o~,8) is given by (see
e.g. Amemiya (1985), theorem 4.1.3)

,M(e - e)
where

d -1 -1
N(O,A BA )

1 a2 L
A- limE-

N a9a9'
and

1 aLi aLi
B z lim E- - -, where Li has been defined 1n section 2.N a6 ae'

4 2 2 4 2 2
Defining (Eet)I(Eet) ~ ~E, (Evt)~(Evt) ~ ~v

4 2 2
and E(et t svt) I(E(et f Bvt) ) ~ ~ it 1s straightforward to
verify that
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with o ~ a f B av , oZ s Ezt and ox z Ext. The matrix

A has the same structure and is obtained if one puts

~E . ~v . ~. 3 tn (A.1). If normaltty holds B colnttdes wlth A
~

and the large sample variance of rN BML is slmply the (4,4) ele-
ment of A-1 which can be shown to be

az aZQ? gZQ2x z ~A
Vdr(rN BML) ~ 2aZ } 2ó 2 (1 - 2 2 )2}B a t áv

6202

A1ong the lines followed by Palm and Nijman (1982) for aggregate
observations, one can obtaln the asymptotic variance of consistent
estimators of B for skipped observations..

~For the proxy variables estimator Bp in (6), we have :

2 22-2 22 -222 2222
Var(rN Bp) . 2(ox f a oZ) (o ox t o a oZ t a B ovaZ). (A.3)

~Simllarly for Bd 1n (il), where the matrix of welghts proposed by
Dagenais is used, one gets :

(A.4)
Yar(rN Bd) . P t p262a2oZo~ I 2ó4.

with p being the large sample variance of the GLS estimator
of B when a 1s known

2 2 2 -1
p í~ }ao~) .~ 20 ~u

B4a~ t o4
(1 - (A.2)~ t o4 t 640

(A.5)

When the optimal weights in (14)are used, we get :
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a2 azaZ 62a2a2a2
Yar(~N gg) .( x{ z- v z)-1 . (A.6)

2a2 2ó 2(ó4to~623 )

Finally, when we apply OLS to the complete data, the variance is
the double of the varlance of OLS in the case that no data are
missing

-2
Var(rN Bc) . 202 ox . (A.7)

For the statlc model with observed aggregates of the exogenous
variable xt, the large sample variances of the ML estimator and of

nthe estimator rN Bad are derived in Palm and Nijman ( 1982). For
the sake of completeness, we give a11 formulae for the asymptotic
variances.

nFor the proxy variabtes estimator Bap, we have

22 2-2 222 2 2
Var(~T BaP) . 4(a ZtEx )(ó a óZta Ex f 62a2ovi(Ez 2)-1). (A.8)

When a temporal aggregate of xt is available, the variance of the
Dagenais estimator in (11) is

2 -1
Var(1~T Bad) ~ p f p2a262óZayó-4(Ez ) . (A.9)

2 2 2
Ex a óZ -1 ,~where p-{ - t ) is the variance of Bad given402 ~2

2
that a is known and óZ - E(zt - zt-1)2. The asymptotic variance
of the GLS estimator with optimal weights, ~ag, 1s

22 2 2224„ a óZ Ex a B ovó -1.Var( Bag) { 4~ } 4a~ - 4a Ez t 46 ava a2) '(A.10)
The variance of the OLS estimator applied to the periods for which
all variables are observed, Bac, is
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Var(~i Bac) ~ 407 I E,c~. (A.il)

It differs from the variance of the OLS estimator ot S when no

data are missing

Var(rT BOLS) ` a2 ~ ox '

2 2 2 2
With Ox s a OZ t 0~.

n
The asymptotic variance of the ML estimator BaML' is

Var(~ saML)

(A.12)

2 2 2 2 2 2
Ez a óZ ~1- B oZOV ~

s{4 }-~ ( B áZay t Ez á)
24 4 44

} g ov ~1 - ( o t B ov ) ~}-1. (A.13)
~ (o t B ov tó4)

Finally, we lndicate briefly how table 4 was derived. If At

defined in (36) is substituted in (34) the resulting error term

has matrix variance covariance matrix

S2 ~ S21 t W S12 W' , (A.14)

n n
where S22 1s the covariance matrix of the estimates Y and a, W is a

(Tx2) matrix which contains 6 times the derivatives of Sct with

respect to a and Y in the first and second column respectively

and f21 i s a diagonal matrix with diagonal element o2 in case of

an observed xt and o2t ~2a2(itY2)-1 if xt is not observed. Again
v

equation ( 15) can be used to get the inverse of S2.

In order to derive the varlance of the ML estimator tor the dyna-

mic regresston model 1n (34) and (35) we write the model in recur-

slve form as

2
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Yt ` Bxt ; ~t
Yt-1 ` 9(1tY2)-líyxt f yxt-2 - aYzt f azt-1) f Et-1

- B(1fY2)-1(yvt - vt-1) (A.15)
xt ` y2xt-Z t azt t aYZt-1 } vt } Yvt-1

for t ~ TZ. Notice that the disturbances 1n (A.15) are lndepen-
dent and orthogonat to the explanatory variables in the
corresponding equation. The log-likelihood function L can there-
fore be obtained 1n a straightforward manner, as well as the asso-
ciated information matrix.
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APPENIX B PROOF OF THE THEOREM

Using assumptions ( ii) and (11i) one veriftes that

~N (BIy - 6) á N(O.Q-1(D11 t D22)Q'-1)~ where D11 and D22

are the upper-left and the lower-right blocks ot D respectlvely.

Furthermore, the asymptotic orthogonallty of Z and e and assump-

tion (iii) imply that

I~ N

plim N-1Z'(w - w) ~ plim N-1Z'(X- X)6 s 0,

for all B, so that plim N-1Z'X - plim N-1Z'X ~ Q. Using this

result, one obtains that

Q-1íD11fD22)Q'-1 . plim N-1(Q-1Z~- y-1X~g-1)E-1(ZQ'-1-

-E-1XV-1) f plim N-1Q-1Z~Xy-1 t

plim T-ly-1X~ZQ~-1 - y-1 t Q-1D22Q~-1 2 y-1

which proves the result.
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APPENDIX C

PROOF OF TNE RELATIVE EFFICIENCY OF THE PROXY VARIABLES
ESTIMATOR BASED ON THE LARGER INFORMATION SET FOR A SPECIAL
CASE.

Assume that (4) and (24) Doth hold, which read 1n matrlx notatton as

x. Ziai t Z2a2 t v (C.1)

and
x~Zi~tv`

respectively. Evidently

v~ ` Z1(al-~) f Z2a2 t v

and
~ z ai t plim(Z1~Z1)-iZ1~Z2a2
because E[x~Zl] s Zi~. Using (C.3) and (C.4) we find

(C.2)

(C.3)

(C.4)

N-~(Zl~v~-Zl~v) ~ N-~(Z1~Z1(al-B)fZ1~Z2a2tZ1'v-Z1'v) -~i 0
(C.5)

It is not difficult to check using the theorem in section 3
. .(i) - -(2) n ~(1) ~ ~(2)

that if X~ X , X~ X . BGLS ` 6g and BiV ~ Bg , a
sufficient condition for relative efficiency of ~91) is that
N-~Z'(w - w) ~ 0 which is satisfied when

~ ~
N-~iZ1I~(VI-VI)B t ZI(Zc'Zc)-1Zc'Vc6 - Z1I(Z1c~Zlc)-iZicVcB}

P
~ 0. (C.6)

where the subscripts c and I refer to complete and incomplete
observations as before. Condition (C.6) is satisfied because
of (C.5).



35

REFERENCES

Afift, A.A., and R.W. Elashoff, 1966, Missing observations
1n multivariate statistics, I. Review of the litera-
ture. Journal of the American Statistlcal Assoctation,
61, pp. 595-604.

Anderson, T.W., 1957, Maximum 11ke1ihood estimates for a
multivariate normal dlstrlbution when some observatlons
are missing. Journal of the Amerlcan Statistical Asso-
ciation, 67, pp. 628-632.

Amemiya, T., 1985, Advanced Econometrics. Harvard University
Press, Cambridge.

Boot, J.C.G., Feibes, W. and J.H.C. Lisman, 1967, Further me-
thods of derivation of quarterly tigures from annual
data. Applied Statistics, 16, pp. 65-75.

Chow, G.C., and A. Lin, 1971, Best 1lnear unbiased interpo-
latlon and extrapolation of time series by related se-
ries. The Review of Economlcs and Statistics, 53, pp.
372-375.

Chow, G.C., and A. Lin, 1976, Best linear unblased estima-
tion of missing observations i n an economic time sertes.
Journal of the American Statistical Association, 71, pp.
719-721

Conniffe, D., 1983a, Small-sample properties of estlmators
of regression c~efficients given a conmon pattern of
missing data. Review of Economic Studies, 50, pp. 111-
120.

Conniffe, D., 1983b, Comments on the weighted regresslon
approach to missing values. The Economlc and Social
Review, 14, pp. 259-272.

Dagenais, M.G., 1973, The use of incomplete observations
in multiple regression analysis, a generalized least
squares approach. Journal of Econometrics, 1, pp. 317-
~i : ti .

Gourléroux, C., and A. Monfort, 1981, On the problem of mis-
sing data in linear models. Review of Economic Studies,
48, pp. 579-586.

Griliches, Z., 1986, Economic data issues, 1n Z. Gr111ches
and M.D. Intriligator, eds., Handbook of Econometrics,
North-Holland Pub1.Co, Amsterdam, pp. 1466-1514.

Hausman, J., 1978, Speclficatlon tests in econometrics.
Econometrica, 46, pp. 1251-1272.

Litterman, R.B., 1983, A random walk, Markov model for the
distributton of tlme series. Journal of Business and
Economic Statlstics, 1, pp. 169-173.



36

Little, R.J.A., 1982, Models tor non-reponse 1n snmple surveys.
Journal of the Amertcan Statlstical Association, 77,
pp. 237-250.

Murphy, K.M. and R.H. Topel, 1985, Estlmatlon and lnference
1n two-step econometrlc models. Journal of Bustness
and Economlc Statistlcs, 3, pp. 370-379.

Nijman, T.E., and F.C. Palm, 1986, The constructlon and use
of approximations for missing quarterly observations :
a model-based approach. Journal of Business and Econo-
mic Statlsttcs, 4, pp. 47-58.

Pagan, A., 1984, Econometric lssues in the analysis of re-
gresstons wlth generated regressors. Internatlonal
Economic Review, 25, pp. 221-248.

Palm, F.C., and T.E. Ni~man, 1982, Linear regression using
both temporally aggregated and temporally disaggregated
data. Journal of Econometrtcs, 19, pp. 333-343.

Palm, F.C., and T.E. Nijman, 1984, Mlssing observations in
the dynamic regression model. Econometrica, 52, pp.
1415-1435.

Zellner, A., 1962, An efficient method of estimating seeming-
ly unrelated regressions and tests for aggregatlon bias,
Journal of the American Statistical Assoctation, 57,
pp. 348-368.



1

IN 1986 REEDS VERSCHENEN

202 J.H.F. Schilderinck
Interregional Structure of the European Community. Part III

203 Antoon van den Elzen and Dolf Talman
!1 i,~w el ~ al ~~; b~1 ~uolmtlil ~11',~~~oCA t`~,i ,iqqp111 jl,~,- q Nqd~l C iJlll ~ IÍ~I'lllm lI,

a IlUI1CUUpet'9t~Ve mqre-per8on game

204 Jan Vingerhoets
Fabrication of copper and copper semis in developing countries. A
review of evidence and opportunities

205 R. Heuts, J. van Lieshout, K. Baken
An inventory model: what is the influence of the shape of the lead
time demand distribution?

206 A. van Soest, P. Kooreman
A Microeconometric Analysis of Vacation Behavior

20~ F. Boekema, A. Nagelkerke
Labour Relations, Networks, Job-creation and Regional Development. A
view to the consequences of technological change

208 R. Alessie, A. Kapteyn
Habit Formation and Interdependent Preferences in the Almost Ideal
Demand System

209 T. Wansbeek, A. Kapteyn
h:.,i imal i,u, „t Il,r. r.i'rur ,:c,mpnnents mrniel wirh incnmplete panels

210 A.L. Hempenius
The relation between dividends and profits

211 J. Kriens, J.Th. van Lieshout
A generalisation and some properties of Markowitz' portfolio selecti-
on method

212 Jack P.C. Kleijnen and Charles R. Standridge
Experimental design and regression analysis in simulation: an FMS
case study

213 T.M. Doup, A.H, van den Elzen and A.J.J. Talman
Simplicial algorithms for solving the non-linear complementarity
problem on the simplotope

214 A.J.W. van de Gevel
The theory of wage differentials: a correction

215 J.P.C. Kleijnen, W. van Groenendaal
Regression analysis of factorial designs with sequentiel replication

216 T.E. Nijman and F.C. Palm
Consistent estimation of rational expectations models



ii

21~ P.M. Kort
The firm's investment policy under a concave adjustment cost function

218 J.P.C. Kleijnen
Decision Support Systems ( DSS), en de kleren van de keizer .

219 T.M. Doup and A.J.J. Talman
A continuous deformation algorithm on the product space of unit
simplices

220 T.M. Doup and A.J.J. Talman
The 2-ray algorithm For solving equilibrium problems on the unit
simplex

221 Th. van de Klundert, P. Peters
Price Inertia in a Macroeconomic Model of Monopolistic Competition

222 Christtan Mulder
Testing Korteweg's rational expectations model for a small open
economy

223 A.C. Meijdam, J.E.J. Plasmans
Maximum Likelihood Estimation of Econometric Models with RationalExpectations of Current Endogenous Variables

224 Arie Kapteyn, Peter Kooreman, Arthur van Soest
Non-convex budget sets, institutional constraints and imposition of
concavity in a flexible household labor supply model

225 R.J. de Groof
Internationale cotirdinatie van economische politiek in een twee-
regio-twee-sectoren model

226 Arthur van Soest, Peter Kooreman
Comment on 'Microeconometric Demand Systems with Binding Non-Ne-
gativity Constraints: The Dual Approach'

22~ A.J.J. Talman and Y. Yamamoto
A globally convergent simplicial algorithm for stationary point
problems on polytopes

228 Jack P.C. Kleijnen, Peter C.A. Karremans, Wim K. Oortwijn, Willem
J.H. van Groenendaal
Jackknifing estimated weighted least squares

229 A.H. van den Elzen and G. van der Laan
A price adjustment for an economy with a block-diagonal pattern

230 M.H.C. Paardekooper
Jacobi-type algorithms for eigenvalues on vector- and parallel compu-
ter

231 J.P.C. Kleijnen
Analyzing simulation experiments with common random numbers



iri

A.I1.'I'.M. vnn .`;~.lirrik, R.J. Muldor
Un Superimposed Recurrent Cycles

233 M.H.C. Paardekooper
Sameh's parallel eigenvalue algorithm revisited

234 Pieter H.M. Ruys and Ton J.A. Storcken
Preferences revealed by the choice of friends

235 C.J.J. Huys en E.N. Kertzman
Effectieve belastingtarieven en kapitaalkosten

236 A.M.H. Gerards
An extension of KSnig's theorem to graphs with no odd-K4

23~ A.M.H. Gerards and A. Schrijver
Signed Graphs - Regular Matroids - Grafts

238 Rob J.M. Alessie and Arie Kapteyn
Consumption, Savings and Demography

239 A.J. van Reeken
Begrippen rondom "kwaliteit"

240 Th.E. Nijman and F.C. Palmer
Efficiency gains due to using missing data. Procedures in regression
models

241 S.C.W. Eijffinger
The determinants of the currencies within the European Monetary
System



iv

]N 1987 REEDS VERSCHENEN

242 Gerard van den Berg
Nonstationarity in job search theory

243 Annie Cuyt, Brigitte Verdonk
Block-tridiagonal linear systems and branched continued fractions

244 J.C. de Vos, W. Vervaat
Local Times of Bernoulli Walk

245 Arie Kapteyn, Peter Kooreman, Rob Wíllemse
Some methodological issues in the implementation
of subjective poverty definitions

246 J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur, J.H.F. Pardoel
Sampling for Quality Inspection and Correction: AOQL Performance
Criteria

247 D.B.J. Schouten
Algemene theorie van de internstionale conjuncturele en strukturele
afhankelijkheden

248 F.C. Bussemaker, W.H. Haemers, J.J. Seidel, E. Spence
On (v,k,~) graphs and designs with trivial automorphism group

249 Peter M. Kort
The Influence of a Stochastic Environment on the Firm's Optimal Dyna-mic Investment Policy

250 R.H.J.M. Gradus
Preliminary version
The reaction of the firm on governmental policy: a game-theoretical
approach

251 J.G. de Gooijer, R.M.J. Heuts
Higher order moments of bilinear time series processes with symmetri-
cally distributed errors

252 P.H. Stevers, P.A.M. Versteijne
Evaluatie van marketing-activiteiten

253 H.P.A. Mulders, A.J. van Reeken
DATAAL - een hulpmiddel voor onderhoud van gegevensverzamelingen

254 P. Kooreman, A. Kapteyn
On the identifiability of household production functions with joint
products: A comment

255 B. van Riel
Was er een profit-squeeze in de Nederlandse industrie?

256 R.P. Gilles
Economies with coalitional structures and core-like equilibrium con-
cepts



v

1~;~ f'.fi.M. Ruyx, C. van der Laan
Computation of an industrial equilibrium

258 W.H. Haemers, A.E. Brouwer
Association schemes

259 G.J.M. van den Boom
Some modifications and applications of Rubinstein's perfect equili-
brium model of bargaining

260 A.W.A. Boot, A.V. Thakor, G.F. Udell
Competítion, Risk Neutrality and Loan Commitments

261 A.W.A. Boot, A.V. Thakor, G.F. Udell
Collateral and Borrower Risk

262 A. Kapteyn, I. Woittiez
Preference Interdependence and Habit Formation in Family Labor Supply

263 B. Bettonvil
A formal description of discrete event dynamic systems including
perturbation analysis

264 Dr. Sylvester C.W. Eijffinger
A monthly model for the monetary policy in the Netherlands

265 F. van der Ploeg, A.J. de Zeeuw
Conflict over arms accumulation in market and command economies

266 F. van der Ploeg, A.J. de Zeeuw
Perfect equilibrium in a model of competitive arms accumulation

26~ Aart de Zeeuw
Inflation and reputation: comment

268 A.J. de Zeeuw, F. van der Ploeg
Difference games and policy evaluation: a conceptual framework

269 Frederick van der Ploeg
Rationing in open economy and dynamic macroeconomics: a survey

2~0 G. van der Laan and A.J.J. Talman
Computing economic equilibrie by variable dimension algorithms: state
of the art

2~1 C.A.J.M. Dirven and A.J.J. Talman
A simplicial algorithm for finding equilibria in economies with
linear production technologies



N I~ IN ~N WNN~ ~I ~ N~ aW~ I!~ u~Jll


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45

