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Abstract

We exploit the theory of regular matroids to study nice classes of
signed graphs (i.e. undirected graphs with odd and even edges) and of
grafts (i.e undirected graphs with odd and even nodes, associated with
T-joins). These classes are: signed graphs with no odd—l(4 and no odd-
K%, and grafts with no KA-partition and no K3’2—partition (odd—KA and

odd—K2 are special types of signed graphs, Ka—partition and Kg— parti-

>
tion 3re special types of grafts). We give a constructive characteriza-
tion of these classes, using Seymour's decompositien theorem for regular
matroids. Moreover we derive characterizations from the orientability of
a regular matroid. The latter characterizations we use to formuléte se—
veral optimization problems related to odd cycles in signed graphs with
no odd-K, and no odd—K% and to T-joins in grafts with no K,-partition
and no K3’2-partition as min-cost-circulation problems. As a consequence
we prove some well-known min-max relations due to Seymour for these op-

timization problems. We also show how some graph theoretic results fol-

low.
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1. Introduction

A signed graph is a pair (G,EO), where G = (V(G),E(G)) 1is an undirected
graph and E; is a subset of the edge set E(G) of G. We allow multiple
edges and loops in G. The edges in EO are called odd, the other edges
even. A cycle C in G is called odd (even) if Eon E(C) 18 odd (even,
respectively). A signed graph is bipartite if it contains no odd cycles.
In this paper a central role is played by the signed graphs indicated in
figure 1. Wriggled and dotted lines stand for (pairwise openly disjoint)
paths, dotted lines may have length zero, and odd indicates that the
corresponding faces are odd cycles. Each signed graph of the first type

is called an odd-K

40 each signed graph of the second type an odd—K%.

odd-Ka odd-K
figure 1

In this paper we 1list a number of characterizations of those signed
graphs which do not contain an odd—KA or an odd—Kg as a subgraph. Main-
ly, these characterizations follow from the theory of regular matroids:

in section 2 we define for each signed graph (G,EO) an associated binary
matroid, ﬂl(G,EO). It turns out that (G,Eo) does contain no odd-K, and
no odd—K§ if and only if M(G,EO) is regular. In the subsequent sections
we exploit results on regular matroids obtained by Tutte and Seymour
(section 3, 4 and 5). In section 6 we give a characterization of signed
graphs not containing an 0dd-K,, The final section, section 7, we dis-

cuss a different object. Seymour [1980] introduces in his paper on the



decomposition of regular matroids the concept of grafts, i.e pairs [G,T]
where G is an undirected graph and T is a subset of V(G). In parallel
with the sections 2, 3, 4 and 5 we give characterizations of those

grafts for which a certain assoclated binary matroid is regular.



2. Preliminaries; Binary Matroids Associated with Signed Graphs

Let G be an undirected graph, and let MG be its node-edge incidence ma-
trix, i.e. Mg is an V(G) x E(G) matrix with entries 0 and l. An entry of
Mg 1s 1 1f and only 1f its row index v € V(G) is an endpoint of its co-
lumn 1index e € E(G). Moreover for EO C E(G), let Xg e mwE(G) denote
the characteristic vector of EO as a subset of E(G). 9
The matroid Ad(G,EO) associated to the signed graph (G,EO) is the binary

matroid represented over GF(2) by the columns of the matrix:

(2.1)

()
|
R
!
|
!
|
!
|
]

The element of M(G,EO) not in E(G) (corresponding to the first column
of (2.1)), will be denoted by p. The reader will easily deduce the cir-
cuits, bases and rank-function of Ad(G,EO). With some exceptions
throughout the text we use notation and terminology of matroid theory as
glven in the book of Welsh [1976]. For convenience we use the term cir—
cuit for a minimal dependent set in a matroid, and cycle for the fami-
liar subject in a graph. (So a cycle in G is a circuit in M(G), the
cycle matroid of G.) Obviously M(G,Eo) = M(G,EOAB) for any minimal cut
(co-cycle) B of G. (A denotes symmetric difference). We call the opera—
tion: EO - EOAB, resigning. We say that (G,EO) reduces to (G',Eé) 5 s &

(c", Eé) can be obtained from (G,EO) by a series of the following opera-

tions:

- deleting an edge from G (and from EO):

— contracting an even edge of G:

- resigning.

The relation of reduction with matroid minors is obvious:
("/" means "deletion", "\" means ""contraction")

- ﬁl(G,EO)\ e =M (G\ e, EO\ {eD 1if e € E(G);

- ﬁf(G,EO)/e = M (G/e, EOAB) in case e € E(G) and e is no loep, where
B=¢g if e & EO, and B is any cut of G containing e in case e € E

0;
If e is an even loop: M (G,EO)/e =M (G\e, EO).



If e is an odd loop then M(G,EO)/e -~ M(G,EO)/p.
(since then e is parallel with p).

To be complete:

- M(G,EO) \p is the binary matroid with as circuits the even cycles in
(G,EO) and the sets of the form E(Cl) U E(CZ) where Cy and C, are odd
cycles and ‘V(Cl) N V(C2)|< s
M(G,EO)/p = M (G), i.e. the cycle matroid of the undirected graph G.

Regular Matroids

For the definition of a regular matroid we refer to Tutte [1971] or
Welsh [1976, p. 173]. Tutte [1958] proved that a binary matroid is regu-

*
lar if and only if it does not contain F7 or F7 as a minor. (The binary

K
representation of F7 and of F7 are in figure 2; Welsh [1976] uses the

notation M(Fano), M*(Fano) respectively.)

1001101 1000110
P (0102011 F;:0100101
0010111 0010011

0001 1Ll
figure 2

The signed graph in figure 3a will be denoted by Kg (bold edges odd).
The signed graph (G,EO) with G equal to the 4-clique and all edges odd,
will be denoted by K4.

(a) (b)

figure 3

The following propositions are easy to proof:



Proposition 2.2.
Let (G,EO) be
(1) M(G,E)

signed graph. Then:

F7 if and only 1f (G,EO) K2:

3 b,
KA (possibly after resig-

Hy ®
LI

LR

*
F7 if and only 1if (G,EO)

LR

(i1) M(G,EO)
ning).

Proposition 2.3.

Let (G,EO) be a signed graph.
(1) The following are equivalent:

- M(G,EO) has an F, minor using p:

! 2
- (G,Eo) reduces to K3.
(ii) The following are equivalent:
*
- M(G,EO) has an F7
- (G,EO) reduces to K

minor using p:

6;

- (G,Eo) contains an odd-Ka.

Note that the assertions in (i) are not equivalent to "(G,EO) contains
an odd-Ki". Since the signed graph in figure 3b reduces to Kg, but does

not contain an odd—Kg. However the following does hold:

Proposition 2.4.

Let (G,EO) be a signed graph. Then (G,E ) does contaln an odd-K, or an

4

odd—K§ if and only if (G,EO) can be reduced to K4 or to Kg @

The following lemma brings the signed graphs with no odd—l(4 and no odd-
K§ within the theory of regular matroids.

Lemma 2.5.

Let (G,EO) be a signed graph. Then (G,EO) contains no odd-K, and no odd-
K§ if and only 1if M(G,EO) is a regular matroid.

To prove the equivalence we may assume G to be 2-connected. Moreover we
may assume that (G,EO) is not bipartite, and has no even loops. Hence
M(G,EO) is a connected matroid. However for connected matroids Seymour

[1977a] extended Tutte's result to: Let x be an element in a connected



matroid M. Then ! is regular if and only if ¥ has no F, minor and no

7

F; minor using x. Together with Propositions 2.3 and 2.4 this proves the

lemma (take x = p). O

In section 6 we discuss signed graphs with no odd—K4. The following re-
sult due to Lovdsz and Schrijver [1985] makes it possible to use results
on signed graphs with no odd—Ka and no odd—K% to signed graphs with no
odd—Kh.

Theorem 2.6. (Lovasz, Schrijver [1985])

Let (G,EO) be a signed graph, satisfying the following property:

1f {u,v} C V(G) separates G, then one side of this two node cutset
(*) consists of two parallel edges, e. and e, say, with e € E_,

1 2 1 0
e2 ¢ E_, or one side of this two node cutset is bipartite.

0

Then the following holds:

Let (G,EO) contain no odd—K4. Then (G,EO) ot Kg or (G,EO) contains no
odd-K:,ZS »
Proof

Let (G,EO) be a signed graph satisfying (*). Suppose (G,Eo) contains no
odd—Ka, but does contain an odd-Kg . Let (6,Eb) be an odd—Kg
contained in (G,EO) such that [E(Pl)l + |E(P2)| + IE(P3)| is minimal.

(Pl' P2 and P3 are the paths indicated in figure 4.)

P3 5 ;—/\NVV\/\/\’\’\/*\O/
N
XA C3
~

figure 4



The odd cycles Cl’ C., and C3, as well as the nodes v

2 1* ¥gi Vgi Vye g
and ug are as indicated in figure 4. (Note that vy may be equal to
ut(1=1,2,3).)

De fine: Vizz V(Pl)kJV(Ci) (1=1,2,3). If S C V(G), then a path P from u

to v is called an S—path 1f V(P) N § = {u,v}.

Claim: If P is a V(G)-path, then P is a Vi-path, for 1=1,2 or 3.

Proof of claim.

Let P be a V(G)-path. Let u and v be the endpoints of P. Assume P is no
Vij-path (i=1,2,3). Hence we may assume vé{vl,vz,v3}. Moreover we may
assume v ¢ V,. Soxag{vz,v3}. Finally we may assume u € V;+ (Indeed, if
u ¢ Vis then u # vl. Interchanging u and v, and renumbering indices

yields u € Vl’ v iE Vz.) We consider three cases.

Case I: v € V(Cz)\{uz}. Then G and P together contain an odd-K,. This
ylelds a contradiction.

Case II: u € V(Pl); v € V(P,). Then G and P together contain an odd—K§
with smaller |E(Pl)| + IE(P2)|+ IE(P3)|. Again we have a contradiction.
Case III: u € V(Cl)\{ul}’ v E V(PZ)' Now there are two possibilities. If
the cycle C (see figure 5) is odd then G and P together contain an odd-

2

K,- If C is even we find an odd—l(3 with smaller |E(Pl)| + |E(P2)| +

|E(P3)f. So both possibilities yield a contradiction.

end of proof of claim




Since G satisfies (*), the claim yields for i = 1, 2, 3: E(Pi) = @, and
Ci consists of two parallel edges, one odd and one even. So

@, By = k3. 1f V(@) = V(@) then by (%) (G,Ep) = (&, £

theorem is proved. So let us suppose: V(G) # V(G). Let

1]

K% and the

v € V(G)\V(G). By (*) there are three internally node disjoint paths

QI’ Q2 and Q3 each going from v to a different node on G. But this is
impossible since then 5, Ql’ Q2 and Q3 together contain an odd—K4. O
Remark:

The following result is in a sense dual to Theorem 6.2:

Let (G,EO) be a signed graph, which does not reduce to Ki. If G
is 3-connected then (G,EO) = KA (possibly after resigning) or

(G,Eo) contains no odd—Ka.

The proof essentially relies on the following statements:

- If G is 3-connected then so is M(G,Eo).

—*A 3-connected binary matroid with no F7-minor is regular or equal to
F7 (Seymour [1980]).

- If an element x of a binary matroid M is not contained in an F7—m1n0t

of M, and M/x has no F,-minor, then M has no F,-minor at all.
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3. Min-Max Relations

If S is a finite set, S a collection of subsets of S, and w an integer
valued valued function on S, then a w-packing with elements of S is a
family S 5 S_; ess;S

1 2 k
each s € S we have that |[{i=1,...,k|s € Si}l < w(s). The number k is

of members of S (repetition allowed) such that for

called the cardinality of the packing.
Seymour [1977b] proved the following result:

Theorem 3.1.

Let M be a binary matroid, and let x be an element of M . Then the fol-
lowing are equivalent:

(1) M does not contain an F7-m1nor using x.

(ii) For each weight function w on the elements of M with non-negative
integer values, the minimum weight of any set C \ {x}, where C is a cir-
cuit of M containing x, 1is equal to the maximum cardinality of a w-
packing with sets of the form C*‘\{x}, where C* is a cocircuit of ¥ con
taining x. ]

Together with Proposition 2.3, Seymour's result implies:

Corollary 3.2.

Let (G,EO) be a signed graph.
(1) The following are equivalent:
- (G,EO) does not contain an odd—Ka.
- For each weight function w: E(G)—vZ_P we have:
The maximum cardinality of a w-packing with odd cycles is equal to the
minimum weight of a subset of E(G) meeting each odd cycle.
(ii) The following are equivalent:
- (G,EO) does not reduce to Kg.
- For each weight function w: E(G) ~+7Z,, we have:
The minimum length of an odd cycle is equal to the maximum cardinality

of a w-packing with subsets of E(G), each meeting each odd cycle, ]

So we have a first characterization for signed graphs with no odd—KA and

2
no odd-
%3



1.1

Corollary 3.3.

Let (G,EO) be a signed graph. Then (G,E,) does not contain an odd—K,[4 or

an odd—K% if and only if for each weight function w: E(G) —Z _ both

minmmax relations in Corollary 3.2 hold. 0

Remark
Corollary 3.3 can also be derived from the fact that each regular ma-
troid has a totally unimodular (standard) representation matrix (over ZZ)

(Tutte [1958].)
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4. Decomposition

In this section we elaborate that every signed graph with no odd—KA and
no odd—K% can be decomposed into smaller such signed graphs, or in one
of three simple types. Here we use the famous result of Seymour on the
decomposition of regular matroids (Seymour [1980]), for the case of
signed graphs yielding a decomposition in signed graphs with no odd—KA
and no odd—Kg.
Theorem 4.1. (Seymour [1980])
Let M be a regular ﬁatroid, then at least one of the following holds
(1) There exist subsets Xl, X2 partitioning thé element set X of M such
that rM(Xl) - rM(Xz) = rM(X) + k-1
where k =1, 2 and |x1|, Ix2| > k
or k = 3 and |x1|, |X2| > 6.
(2) M is graphic, or is cographic, or is equal to the matroid, called
RlO’ represented over GF(2) by the columns of the matrix:
1000011100 |
01LO000L X L0
0010000111
00@1T01L0011
0ooo111001 J. o

Remark: Seymour [1980] states his result slightly different: In (1) he
only requires: |x1| 5 |X2| > 4 1f k = 3. However using the statements
(7.4), (9.2), and (14.2) of his paper one can sharpen this to:

|X1|, |x2| > 6 if k = 3. We use this in proving Theorem 4.3.

Important in the decomposition for signed graphs with no odd—K4

2
and no odd—K3 is the notion of so-called splits.

Assume El’ E2 are nonempty subsets of E(G) partitioning E(G). Denote the
set of nodes fn V(G) spanned by E; and E, respectively, by V; and v,
respectively. Gi is defined by V(Gi):- Vi, E(Gi) = E1 (i=1,2).



1-split: Let |V1rw V2| < 1. Then (Gl’ ElrﬂEo) and (Gz, E2r1E0) are
said to form a 1l-split of (G,EO).

1L v, = {u,v} say.

2-split: Let [v1 n vzl = L
25 be connected and not a signed subgraph of

\'
Moreover, let for 1 =1, 6
the signed graph in figure 6.

odd

even

figure 6

Define (G E ) as follows: If (Gz,Ezf‘E ) is not bipartite add to
(G

E f\E ) the two edges in figure 6. If (G E.NE ) is bipartite, add
a single edge e from u to v. Take e € Eqp if and only if there

L=, 2
exists an odd uv-path in G, (a path is odd if it contains an odd number
of odd edges). (GZ’EOZ) is defined analogously. Now (GI’EOI) and
(GZ'EOZ) are sald to form a 2-split of (G,EO). (In figure 7 we give an
example of a 2-split in case (Gi,EiF\EO) is not bipartite for i=1,2. The
bold edges are odd, the thin edges even.)

2-split

«l

©,-E

)

)
01 (G2’E02

figure 7

3-split: Let |[V. NV = i) =
_,_SR——— e I 1 Zl 3’ Vl( v2 {ul'uz

Moreover, let 52 be bipartite and connected. Finally, let
E_| > 4.
E, |

,u3} say.
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G, 1s defined as follows: V(Gl):= VILJ{V} (where V is a new node), and

E(Gl):= E, U {ulv,~u2v, u3v}. E 1s the subset of {uzv, u3v}

defined by: ui3 € E 1f and only if there exists an odd path from
G @) = = N U N.

u, to uy in (GZ’ E2 EO) (1=2,3). We define EO1 (El Eo) E

Now (Gl’EOI) is said to form a 3-split of (G,EO).

If none of the above assumptions hold we say that no split exists. Note
that a 3-split consists of only one signed graph. Moreover note that {Ff
no g-split exists for 2 < k (k=1,2,3) then each member of a k-split is a
reduction of (G,EO). The following lemma is easy to prove.

Lemma 4.2.

Let (G,EO) be a signed graph with a k-split (k £ 3) and with no g-split
for any 2 < k. Then (G,EO) has no odd—K4 and no odd—K§ if each part of
the k-split has no odd—K4 and no odd—Kg . o

Next we arive at the main result of this section.’

Theorem 4.3.

Let (G,Eo) be a signed graph, with no odd—K4 and no odd—Kg . Then at

least one of the following holds:

(1) (G,EO) has a 1-, 2-, or 3-split.

(i11) There exists a node N € V(G) such that all odd cycles in
(G,EO) contain vge

(1i1) G is planar with at most two odd faces.

(iv) (G,EO) 1s the signed graph in the figure below (possibly after
resigning). (Thin edges are even, bold edges are odd.)

figure 8
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Proof:

Let (G,EO) be a signed graph with no odd-K, and no odd—Kg . Suppose

4
(G,EO) has no 1-, 2-, or 3-split. Since M(G,EO) is regular (Lemma 2.5)

we can apply Seymour's theorem (Theorem 4.1). We shall devide the proof
into two parts: In part (1) we consider case (1) of Theorem 4.1, and in

part (2) we consider case (2).

Part (1): Suppose there exist subsets El’ Ez partitioning the edge set

of G such that

(*) rM(G,E())(El) + TG, E (Hz ulph = rM(C,EO)(E(C) U {ph + k-1

0)

with k=1,2 and ]Ell
1 > 6. For each E'

k, |E,l +1 5>k, or k=3 and |E | 2 6, [E,| +

2
C E(G) we have

rhKG,EO)(E') if E' is not bipartite

IM(G)(E') + 1 = rM(G,EO)(E'U {P}) = rMG’EO)(E') +11if E' is bipartite

Let ¢ := 0 of E1 is bipartite, and ¢ := 1 1if El is not bipartite. Then
(*) is equivalent to:
(**%) rﬂKG)(El) + rWKG)(EZ) = rﬁKG)(E(G)) + (k-ge) -1
TE ]E2| = 0, then k < IEZI + 1 = 1. Moreover by (**): € = 0. Hence
(G,EO) is bipartite, so (iii) holds. So we may assume |E2| 5 L

| s 1 t
Let Ej,eeesB 5 EppeeeyEy
fine the undirected graph H as follows. V(H) =

be the components of E ., E, respectively. De-

1% =2

{ul""’us’ vl,...,vt}; for each v € V(G) spanned by E} and Eg there is
an edge from u1 to vj inH (i=1,...,8; j=l,e..,t). So H may have paral-

lel edges.

Claim 1: |[E(H)| =s+t+k-e-2= |[VH)|+k - €e- 2.

Proof of claim 1: Let V1 be the set of nodes spanned by E; (i=1,2).

Then r,, . (E) = v, I =, Tuee) B Ivzl - t and Ty oy B =
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IV(G) |- 1 (G is connected since G has no 1-split). Since
| v, n Vzl = IE(H)land |V1 U V2| = |V(G)| , (**) yields the claim.

end of proof of claim 1.

Claim 2: H is a bipartite, connected graph, without isthmuses.
Proof of claim 2: By definition H is bipartite. If H is disconnected, or

has an i{sthmus, then (G,EO) has a l-split.

end of proof of claim 2.

Claim 3: H has no two adjacent nodes of degree 2.

Proof of claim 3:

Let uss vj be adjacent nodes of H, both of degree 2. If between uy

and vj there are parallel edges, then by claim 2: V(H) = {ui,vj}. So
i=j=s=t=1. By claim 1: k - € = 2. Now, since (G,Eo) has no 2-split,

E. or E2 is contained in the signed graph of figure 6. But since

1
E1 and E2 both are connected this means rM(G)(El) + rM(G)(EZ) =
rM(G)(E(G)). So by (**): k — ¢ = 1, a contradiction. Therefore between
u, and vj there is only one edge in H. Now EI:= E} U Eg and

E2:= E(G) \ El define a 2-split of G, contradicting our assumption that
no 2-split exists.

end of proof of claim 3.

Claim 4: k = 3, ¢ = 0 and H is the graph in figure 9(c) below.

)
(a) (b) Y3
(e)

figure 9

Proof of claim 4:

By claims 2 and 3: IE(H), > IV(H)I + 1. Hence by claim 1 k — ¢ - 2 > 1.
So k = 3 and € = 0, and'E(H)]slV(H)|+ l. Using the previous claims, it
is easy to see that (a), (b), and (c) (figure 9) are the only possibili-
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ties left. It remains to show that H cannot be equal to the graph in
figure 9(a) and (b). Since k = 3 we have |E1| > 6, |E2| > 5.

If H is equal to the graph in figure 9(a) then eigther x or y corres-
ponds to an Ei or Ei

1 2
split, a contradiction. If H is equal to the graph in figure 9(b) we

with at least three edges. So we would have a 2-

have a 3-split (e = 0, so E, 1s bipartite), again a contradiction.

end of proof of claim 4.

We investigate the case that H equals the graph in figure 9(c). If
i, Ei and E? respectively, then we have a
2-split. Indeed, at least one of the E1 has cardinality at least 2

(as |E1|> 6), and hence it is not contained in the signed graph of fi-

1’ E2
3 1 2 T8
and E2 respectively, and x and z correspond to El and El. Since

Efl are at most 3. But

E. | > 6, and hence g E2 = 3. Moreover both E], and E2 are
1' = 1 1 1 1

triangles, since otherwise (G,EO) would have a 2-split. For the same

! Eg, and E3

Yi» Yo and Vg correspond to E

gure 6 (as El is bipartite). So yl, y2 and y3 correspond to E

(G,EO) has no 3-split, both |E}| and

reason each of E is contained in the graph of figure 6.

>
Conclusion: (G,E0§ is containzd in the signed graph of figure 7. If

(G,EO) is properly contained in it then possibility (iii) of the
theorem holds, and if not then (iv) holds. Summarizing, we have seen
that 1if (G,Eo) has no 1-, 2-, or 3- split, then (G,EO) satisfies (iii)

of (1v).

Part (2) Let M(G,EO) satisfy case (2) of theorem 4.1. The following will

be useful in the sequel.

Claim 5. Let G' be an undirected graph, without isolated nodes, such
that M(G') is isomorphic to M(G). Then G' is isomorphic to G.

Proof of claim 5:

G is 2-connected (since (G,EO) has no l-split), so M(G) 1is a connected
matroid. Since M(G) is isomorphic to M(G'), G' is 2-connected. Moreover
1 f {u,v} is a two node cutset of G, then one side of that cutset con-

sists of two parallel edges only (since there is no 2-split). Now a re-
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sult of Whitney's [1933] (cf. Welsh [1976, p. 86]) yields that G is iso-
morphic to G'.

end of proof of claim 5.

We now consider the three subcases in (2) in Theorem 4.1.

Case I: M(G,E ) is graphic.

Hence there exists an undirected graph G, such that M(G) = M(G,E ).
Denote the edge in E(G) corresponding to p by epe Then M(G) =

M(G,E )/P = M(G)/e = M(G/e ). By claim 5 we may assume now: G =

G/e 5 Taking Vo equal to the node in which ep is contracted we obtain
that (G, EO) satisfies (1i1).

Case II: AI(G,EO) i1s cographic. Hence there exists an undirected graph

G such that M*(E) = M(G,E ). Again, let e be the edge in E(G)
corresponding to p. Then M(G) = M(G,E )/P = M (G)/e =

M (G \e ). Hence G is planar, and by claim 5 we may assume that

¢ \ep is its planar dual. The only odd faces of G are the two faces cor—
responding to the endpoints of ep 15 Gs

Case III: M (G, E ) = RIO'
For any element x of R;o we have that RIO/x is isomorphic to
M (K ). This contradicts the fact that M(G,EO)/p = M(G) is

graphic. So case III cannot occur. a

Remark:
Theorem 4.3 together with Lemma 4.2 yields a polynomial-time algorithm
which determines whether or not a given signed graph contains an odd—K4

or an odd—Kg.
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5. Orientations and Homomorphisms to odd cycles

An orientation of a signed graph is a replacement of the odd edges by
directed edges. If in such an orientation for each cycle the number of
forwardly directed edges minus the number of backwardly directed edges

is at most k in absolute value, we say that the orientation has discre—

pancy k.

Theorem 5,1

Let (U,I".U) be a slgned graph. ((;:":()

odd—Kg if and only 1f (G,EO) has an orientation with discrepancy 1.

) does not contaln an odd-K, or an

The result follows from the following lemma:

Lemma:

Let M be a {O,l}- matrix. The matroid M represented over GF(2) by M is
regular if and only if there exists a {0, o 1}-matr1x N =M (mod 2)
which represents M over Z.

Proof of the lemma: First we prove the if part.

F7 and F; are not representable over Z. So by Tutte's characterization
of regular matrolds (Tutte [1958]) any matroid representable over GF(2)
and over Z is regular.

Next we prove the only if part. (This follows also from the orientabili-
ty of regular matroids, cf. Welsh [1976, p. 175]. We shall not use this
in the proof below.) Let M be partitioned as below, such that My, is a
non-singular r x r matrix (over GF(2)), where r is the rank of M over

GF(2).

|
MipMio
;A G e

Ma1 My

Let M;i be the matrix inverse of M;, over GF(2). Then M is represented

over GF(2) by

*) [1: M v )
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(where I denotes the r x r identity matrix). Since ¥ is regular, and (*)

is a standard matrix representation of M (cf. Welsh [1976, p. 137]),

there exists a {-1,0,1}matrix R = MI} M ,» such that R 1is totally uni-

modular, i.e. all subdeterminants of R are 0 or + 1 (Tutte [1958]).

Moreover [I}R] represents M over Z. Using Ghoulla-Houri's characteri-

zation of totally unimodular matrices (Ghouila-Houri [1962]), one can
1 = M“ (mod 2), N21 EMZI

(mod 2) such that both N R and N, R are {-1,0,1} matrices. Ny, 1s non-

prove that there exist {-1,0,1} matrices N

singular over Q, since det Nll = det Mll = 1 (mod 2), and
-1
= = = = = d
N“R = M“R_I M12 (mod 2), and NZIR E M21R = M21M11M12 E M22 (mod 2)
(M22 - MZIMIIMIZ’ since Mll is of full rank in M). So the desired matrix
N equals:
|}
Njpo NpgR
~—dee
[
No1y WNpiR

end of proof of lemma.

To prove the theorem, we only consider the only Lf part. (The Lf part is

trivial.) So, assume (G,EO) does not contain an odd-K, or an odd—KZ. Let

3
M be the representation matrix of M(G,Eo) defined in (2.1).
Since M(G,EO) is regular, the matrix N, as meant in the lemma, exists.

We may assume:

1
i XEQ i
N == =j= = =" where N EMG (mod 2)
'
1]

Nl

(as we may multiply columns by -1). Now N1 represents the cycle matroid
of G over Z.

Claim: We may assume that each column of Nl has one 1 and one -1.

Proof of the claim: Indeed, take any spanning forest F in G. By multi-

plying some of the rows of Nl

by -1, we can achieve that each column of
N corresponding to the edges in F contains one 1 and one -1. Now the
sum of the components of each of these columns is zero. Since F is a
basis in M(G), each column of Nl is a linear combination of the columns

corresponding to the edges in F. So each column of Nl ig a linear combi-
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nation of the columns corresponding to the edges in F. Hence in each
column of N! the sum of the components is zero.

Since each column has exactly two nonzero entries, both from {1,-1},
this proves our claim.

end of proof of claim.

Next we define the orientation: Edge uv € EO is direeted from u to v if

the component of column corresponding with edge uv, indexed by u, v res-
pectively, is -1, 1 respectively. To show that this orientation has dis-
crepancy 1, take any cycle C in (G,E ). Since (G,E ) is regular there

exists a vector x = (xp, xl) (S {0,1,—1} {p}kJE(G) such that
(1) xé =+ 1 if and only if e € C,
(11) xp =4+ 1 if and only if C is odd,
(1i) Ny

0.

From Xp + Xg xl = 0 one now easily derives that the orientation defined

above has digcrepancy ) g 0

Remark:
Theorem 5.1 can also be proved using Theorem 4.3. We leave this to the

reader as an exercise.

The orientation Theorem 5.1 for signed graphs which do not contain an

odd-l(4 or an odd—Kg has some interesting applications. These applica-

tions will be the content of the remainder of this section. In these
applications the following will play a central role: Let (G,E.) be a

signed graph with no odd—K4 and no odd—Kg . Take any orientation of

(G,EO) with discrepancy 1. Orient the edges not in EO arbitrary. The set
of arcs obtained in this way will be denote by X. Let A= {-\;\T | we K}.

First we shall see that the min-max relations in Corollary 3.2 are quite

2

easily proved for signed graphs with no odd-K, and no odd—K3

4

Shortest odd cycle

Let w: E(G) — Z,. The shortest odd cycle problem is:
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(5.2) Find an odd cycle C in (G,E.), which minimizes g} w(e)
0 e
€E(c)
If V C V(G), we define [V] to be the set of even edges in E(G) leaving V
together with the odd edges in E(G) contained in V or in V(G) \ V. The
collection {[V] |V c V(G)} 1s contained in the collection of subsets of
E(G) meeting each odd cycle in (G,EO). Moreover the edge minimal members
of {[V]|VCV(G)} are exactly the edge minimal subsets of E(G) meeting

each odd cycle. Therefore Corollary 3.2 states that 1if (G,EO) has no
odd—KA and no odd—xg, then the minimum value in (5.2) equals the maximum

value of the following packing problem:

(5.3) Find a maximum cardinality w-packing of E(G) by sets of the form
[Vl (v € v(G)).

In order to prove this minmax relation, we consider the following op-

timization problem (with X and K as above)

(5.4) maximize o

s.t.: There are m, € Q for ve V(G), o€ Q,

such that for each uv € A:

|1rV of A o| < w(uv) if uv € Eq
|1rv - nul < w(uv) if uv ¢ EO

For each o0 » 0 we define the following weight function, wo. on A UA:
ifac & and a comes from e & Ep: then wo(a):=- w(e) - o,
if a € A and a comes from e € Ej, then wo(a):= w(e) + o,
if a comes from an edge e ¢ EO’ then wo(a):= w(e).

It is not hard to see that (5.4) is equivalent to

(5.5) maximize o
s.t.: There exists no directed cycle in (y,AUZ) such that its

weight with respect to wo is negative.
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From the fact that the orientation of (G,EO), has discrepancy 1 one
easily derives that the maximum value, c* say, of (5.5) is equal to the
minimum value of (5.2). Hence o* is integral (since w is an integer
weight function). For each u € V(G), w: is defined as the minimal
weight, with respect to wo*’ of any directed path in (V,AUX) with end-
point u. So "Z is an integer for each u € V(G). Moreever, c* and w:

(u € V(G)) satisfy the constraints in (5.4). Define, for each

*
i=1;sss50 ©Ethe sets
* *
2= {z €7 |z = 141, 142, ..., 140 (mod 20},
and the sets

Vv, = {uEV(G) | 1r:€ Zi}'

Then {[Vl]’ [VZ]""’[VU*]} is a w-packing of E(G). Indeed, this follows
easily from the following three

* * *
(1) uv€E[Vy] N Ep if and only if |{1ru, n,+o }n z1| = 1,
* *
(11) uv €[V{]\Ey if and only {f |{1ru, n} 0 zil =1,
111y for 2y, 24 € %
1+ &3 N

*

{f=1seses0 ”{zl,zz} ) 21|= 1} & min{lzl—zz|, o }.

Conclusion:

*
If ¢ 1is the minimum weight of an odd cycle in (G,EO) then there exists
s

a w-packing of the edges in G by ¢ sets of the form [V] with V C V(G).
So the minmax relation in Corollary 3.2 (i1) holds for signed graphs

with no odd—KA and no odd-Ki.

Remarkw
(1) There exist polynomial algorithms which solve (5.2) (in any signed
graph) (Grotschel, Pulleyblank [1981]: Gerards, Schrijver [1985]). For

graphs with no odd—K4 and no odd—K§

the discussion above yields an easy
polynomial time algorithm for solving problem (5.3), at least as soon as
the orientation with discrepancy | is known. Indeed, first find the mi-

%
nimal length, ¢ say, of an odd cycle in (G’EO)' Define the weight func-
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tion wa* on the arcs as above. By calculating distances in this weighted
directed graph one finds the values n: (u € V(G)). To find the w-pac-
king, some care 1is needed as o* need not be polynomial in the input
size. By reducing the values n: (u € V(G)) modulo 20*, we can determine

(in polynomial time): D:= {d |0 <d < 20* -1, there exist a u € V(G):
*
w: = d (mod 20*)}. For each i=0,..., ¢ -1 define D, =

*
{d €D | 1i¢<d<ci+to —1}. Now note that in general several of these
Dy 's are equal. Instead of determinating all Dy, we determine all sets
D, for which there exists an i with Dy = D, , and the number A, of indi-

k k

ces i such that Bk = Di' It is not hard to see that this can be done in

polynomial time (there are at most |V(G)| of these sets 5#). Now the
elements of the w-packing will be the sets [Vk] taken with multplicit-
ly A , where

k

Vk = {ue V| there exists a d € 5k such that w: = d (mod 20)}.

(1i) The dual of the linear program (5.4) is:

(5.6) Minimize = w(a) f(a)
aE V)
8.t f 18 a2 nonnegative clirculation in (V,KLJX) such that
DI f(a) — I, f(a) = 1.
aEAﬂEO aeArw%

It can be shown that (5.6) has an integral optimal solution, and that
(5.6) is a reformulation of (5.2). (a € £n EO (K N EO) means

ae re (K respectively), and a comes from an odd edge.)

Packing with odd cycles

Let w: E(G) — Z,. The w-packing problem for odd cycles is:
(5.7) Find a maximum cardinality w-packing of E(G) by odd cycles.

Corollary 3.2 states that, 1if (G,EO) has no odd-—K4 and no odd—Kg’ then

the maximum value in (5.7) equals the minimum value in:



(5.8) Find a set V ¢ V(G) that minimizes z w(e).
e €[V]
([V] is defined in the subsection 'shortest odd cycle" of this section).

Using the orientation Theorem 4.1 we now shall prove this minrmax re-

lation for signed graphs with no odd-K, and no odd—KZ. Consider the

4 3
following circulation problem:
(5.9) maximize T f(a) - % f(a)
aekng, aeKnEO

s.t. f is a nonnegative circulation (V,KLJK), such that:

for each al € K, a2

e € E(G): f(al) + f(az) < w(e).

e X coming from the same edge

Formulated this way, (5.9) is not a proper circulation problem. However
it can be transformed into a circulation problem, as follows: replace

each palr a, € K, a, € X coming from an edge e € E(G) by the configura-

1 2
tion in figure 10. To arc e we assign capacity w(e), all other new capa-

cities are o,

%
_ e .
e
%3

figure 10
So we see that the maximum in (5.9) is achieved by an integral f.

Lemma 5.10: (5.7) and (5.9) are equivalent.

Proof:

For each cycle C in (G,EO) we define the circulation fo as follows. In
AU K there are two directed cycles which correspond in a natural way
with C. In case C is odd select from those two cycles that one which
uses more edges form 2 then from A. In case C is even select an arbi-
trary one of these two directed cycles. Call the directed cycle chosen
Dg. Now let fC(a) = | 4f a € DC’ fC(a) = 0 else. Since orientation X has

discrepancy 1 we have: [ fc(a) - fC(a) is equal to 1
ack NE, ae k NE,
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if C is odd, and is equal to O if C is even. Now, let cl""’Ct be a w-

packing by odd cycles. Then fC + ses + fC is a feasible solution of
1 t

(5.9), with objective value t. Conversely, let f be an integral feasible

solution of (5.9). Then f is the sum of characteristic vectors of direc-

ted cycles in D(G,EO). The number of odd cycles used in this sum is at

least the objective value of f. By the feasibility of f, these odd cy-

cles form a w-packing of E(G). a
The dual linear program of (5.9) is:

(5.11) minimize: )2 w(e)é&(e)
e € E(G)

s.t. 6(uv) € Q+ for uv € E(G), such that
there are nue Q for u € V(G) satisfying:
for each uv €A:
1-8(uv) < LIl N §(uv) 1f uv € E
-8(uv) < L §(uv) if uv € Eg»

0,

Above we have seen that the dual linear program of (5.11), i.e. (5.9),
has an integral optimal value for each w: E(G) —Z ++ Hence, so has
(5.11). From this it follows that (5.11) has an integral optimal solu-
tion. This is a consequence of Lemma 5.12 below. As we shall see, Lemma
(5.12) is a corollary of a well known result of Edmonds and Giles [1977]
(cf. Schrijver, Corollory 22.1a [1986]).

Lemma 5.12: Let M€ Z*X*™ N e z*X" .14 be z¥, such that for each

e e Ek, for which

(=) max {ch |Mx + Ny < b}

exists, the optimal value of (*) is an integer. Then the optimal value
of (*) is attained by an (x,y) € Zz @ x Q" for each c. If moreover, N is
totally unimodular, then (*) is attained by an (x,9)€ Z™ xZ ™ for each

c for which (*) exists.
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Proof:

Let P:= {x € ang m[Mx+Ny < b]}. Then, under the assumptions of the
y €Q

lemma, max {ch |x€P} is an integer for each ¢ € Z® (if the maximum
exists). From the above mentioned result of Edmonds and Giles [1977], it

then follows that P = convex hull (PNZ™). This settles the lemma. )

For each §: E(G) — Q+ we define the weight function §: Au i — Q by
§(e) + 1 if a € K, and a comes from e € E(
3(a) ={6(e) - 1 1f a € K, and a comes from e € E,
§(e) 1fae ku K, and a comes from e € Eq.

Obviously (5.11) is equivalent to:

(5.13) minimize % w(e)s(e)
e € E(G)
s.t.8(e) € Q+ for each e € E(G), such that
there exists no directed cycle 1in LUk with negative

weight with respect to 3.

Lemma: (5.13), and hence (5.11), has a {0,1}-valued optimal solution
S.

Proof: Orientation X has discrepancy 1. Hence for each directed cycle
E in K 0] K (corresponding to cycle C in G) we have that

r  $ay~ ¥ 6(e) = 0,1 or -1. Together with Lemma 5.12 this
aed e € E(C) O
proves the lemma.

Now, let 6*, n* be an integral optimal solution of (5.11) with

5" {0,1}- valued. Define V:= {u € V(G) | n: is even }. It is straightfor-
ward to check that &(uv) = 1 if and only if uv € [V]. So the optimal
solution of (5.11) corresponds with the optimal solution of (5.8).
Conclusion:

1f (G,Ey) has no odd-K, and no odd-Kg, then the maximum of (5.7) equals
the mimimum of (5.8). So the min-max relation in Corollary 3.2 (i) holds

for signed graphs with no odd-K, and no odd-Kg.

Next we give another application of the orientation theorem 5.1.
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Homomorphisms to odd cycles

Let G; and Gy be undirected graphs. We call a map ¢: V(Gl) — V(GZ) a
homomorphism from Gy to GZ’ if ¢(u)¢(v) € E(GZ) for each uv € E(Gl).

A parity preserving subdivision of a signed graph (G,EO) is an undirec-
ted graph, obtained from G by replacing odd (even) edges by paths of odd
(even) length. The following result is another characterization of
signed graphs with no odd-K, and no odd—Kg.
Theorem 5.14

Let (G,EO) be a signed graph. Then (G,EO) has no odd—KA and no odd—Kg £
and only if for each parity preserving subdivision G1 of (G,E,) with
shortest odd cycle Cl, there exists a homomorphism ¢ from ¢l to C?.
We leave the if part to the reader. E.g. for the graphs in figure 11a, b
there exists no homomorphism to their shortest odd cycle. (However, for
the graph in figure llc such homomorphism exists.) For the only if part
we may assume: EO = E(G), G1 = G. Let the length of the shortest odd
cycle in G be 2k + 1. We define the following weight function

w: Bulk sz

k+11f a € &
w(a):=

-k 1ifaek

Using the fact that orientation A has discrepancy 1, it is not hard to
see that K U Z has no directed cycle with negative weight (with respect
to w). Hence there exists a "potential" ¢: V(G) — Z satisfying:
¢u = ¢v <wuv) 1fuv el U X. seo ¢ satisfies:

k < - <k + 1
1f uv e k. H:ﬁce tZr each uv € E(G): 2¢ - 2¢ =+ 1 (mod 2k + 1). So
u — 2¢(u) (mod 2k + 1) maps G to an cycléjof 1;:gh£-2k + 15 O
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figure 11

Remarks:
(1) The proof above relies on Theorem 5.1, and hence on Tutte's deep
result that a matroid is regular if and only if it has no

*
F, and no F_ minor. A direct elementary, though more complicated, proof

o; (5.14) c;n be found in Gerards [1985].

(ii) Theorem (5.14) can be used to prove the mimmax relation (ii) of
lemma 3.1 for signed graphs with no odd-K, and no odd—K§ and weight
functions w which satisfy: w(e) is odd if and only if e € Ey.

(iii) From theorem 5.2 we immediately get: Let G be an undirected graph,
with no odd-K, and no odd—Kg (E0=E(G)). Then G is 3-colorable. This is a
special case of a result of Catlin [1979] (Theorem 6.3 of this paper).
Using a similar technique as in the proof of (5.14) one can prove the
following result of Minty [1962]: A graph G has an orientation such that
for each cycle C the number of forward edges with respect to each of
both orientations, of C is at least i |[ECC) 1f and only if G is
k-colorable.

Indeed, "only if" is trivial: "if" follows similarly to the proof of
Theorem (5.14) by defining:

k=1 4fa€d
w(a):=

-1 ifael

(iv) Theorem 5.14 extends a result of Albertson, Catlin, and Gibbons
[1984] stating that an undirected graph G can be mapped homomorphi-
cally onto an odd cycle of lenght M if no subgraph of G can be fold to a
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homeomorf of KA in which all faces are cycles of lenght M (folding

means iteratively identifying nodes at distance two).

Stable sets
A stable set in an undirected graph G is a subset S of V(G), such that

uv ¢ E(G) for each u, v € S.

The stable set polyhedron, Pq(G), of G is the convex hull of the charac-
teristic vectors of all stable sets in G. Using Theorem 5.1 one can

prove:

Theorem 5.15:
Let G be an undirected graph, containing no odd-K, and no odd-
K§ (E0 = E(G)). Then the system of inequalities:

X > 0 (u € V(G))
X + x, < 1 (uv € E(G))
I X. § l!i%ll:l (C odd cycle in G)
ue ve) Y 0

is a so called totally dual integral system for PS(G). (cf. Edmonds,
Giles [1977]).

This result can be extended to graphs with no odd—Ka, hereby extending a
result of Boulala and Uhry [1979]. (Gerards [1986], forthcoming paper.)

6 Signed Graphs with no odd—K4

Signed graphs with no odd—Ka have interesting properties with respect to
combinatorial optimization. In section 3 we mentioned Seymour's result

(Lemma (3.2), (i)). A second one is the following:

Let A be an integral m x n matrix such that in each row the sum of the
absolute values of the entries is at most 2. Define the signed graph

£(A) as follows. Delete the rows which have one non-zero entry. Consider
the new matrix as the edge-node incidence matrix of a graph G (rows cor-
respond to edges). The edges corresponding to rows with a 1 and a -1

will be even in I(A) , the other edges odd.



31

Theorem 6.1 (Gerards, Schrijver [1985])
Let A be an integral m x n matrix, such that in each row the sum of the
absolute values of the entries 1is at most 2. Then the following are
equivalent:
(1) r(A) does not contain an odd—KA.
(i1) For each a, b € Z M. ¢, d€ Z™ the convex hull of all integral vec-
tors in

P:= {x€ ®n| a <x < b:ec < ax <d}
is equal to the intersection of the halfspaces {x € o" | ex < [8]}, where
ceZ™, B8 el such that cx < B for each x € P. ([B] denotes the largest

integer not greater than B.) o

The following two theorems on signed graphs with no edd-K, are proved
using Theorem 2.6 and results from the previous sections for signed
graphs with no odd-K, and no odd—K%,
First we state a decomposition theorem, due to Lovasz, Schrijver, Sey-
mour, and Truemper [1984, unpublished paper]. It immediately follows

from Theorems 2.6 and 4.3.

Theorem 6.2

Let (G,EO) be a signed graph containing no odd—KA. Then (G,E.) has a

1-, 2-, or 3- split, each part of the split contains no odd—K4, or
(G,EO) is a bipartite signed graph with one extra node (and edges joi-
ning that node), or (G,EO) is planar with at most two odd faces, or

2
(G,EO) = K

3 OF (G,Ey) is the signed graph of figure 8. O

Next we prove a result of Catlin [1979] using Theorems 2.6 and 5.1.

Theorem 6.3 (Catlin [1979])

Let G be an undirected graph. If (G,E(G)) does not contain an odd-K,
then G is 3-colorable.

Let G be a minimal counterexample. Obviously G is 2-connected. Suppose
{u,v} is a two node cutset of G. Then, one part of this cutset (possibly

after adding an edge from u to v) is a smaller counterexample. So G is
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3-connected, and by theorem 2.6 it contains no odd—KZ. Now theorem 5.14

3
yields that G is 3-colorable, a contradiction. o
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7 Grafts, T-joins

Along the lines of the previous sections we state some results on an
object called graft, by Seymour [1980]. A graft is a pair [G,T], where G
is an undirected graph and T a subset of V(G). Associated with a graft
we define the following binary matroid M [G,T]. Let M, be the node-edge
incidence matrix of G. Moreover let Xp € W(G) be the characteristic
vector of T as a subset of V(G). Then M[G,T] is the binary matroid re-

presented over GF(2) by:

»
]
e T |

The element of M [G,T] corresponding to the last column of this matrix
will be denoted by t. A T-join is a collection E' of edges, in E(G) such
that each v € T meets an odd number of edges in El, and each v € T meets

an even number of edges in gl

. The circuits of M[G,T] are the cycles in
G, and all unions of {t} with a minimal T-join in G. If V C V(G) such
that both VN T and (V(G)\ V) NT are odd then the collection,

§(V), of edges from V to V(G)\V is called a T-cut. Note that the minimal
T-cuts are exactly those minimal edge sets meeting each T-join. Conver-

sely the minimal T-joins are the minimal edge sets meeting each T-cut.

Remark:

There is a similarity between grafts and signed graphs. Take an arbi-
trary minimal T-join E; in G. Then the circuits of M*[G,T] are the even
cuts, and each union of {t} with an odd cut. Here odd (even) means, con-
taining an odd (even) number of edges from Eg: so M[G,T] is obtained
from M*(G) by signing in the same way as M(G,E;) is obtained from

M(G).

We define t ial t f grafts: -p i d -p -
e two spec ypes of grafts: a K, artition and a K3’2 arti
tion. They are indicated in figure 12. Circles stand for connected sub-
graphs, odd (even) Indicates that the corresponding connected subgraph
contains an odd (even) number of members of T, and lines stand for

edges.
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) ¢

K -partition K3 2—partition
b

fizurce 12

In case each circle contains exactly one point we use the terms:

the graft K respectively. I.e. the graft K, is

the graft KA’ 3,2

[K,, V(KA)], where K, 1s the 4-clique, the graft K3 2 is [K3’2,T] where
’
K3 o is the complete bipartite graph with colorclasses of size 3 and 2,
’

and T = V(K3’2)\ {w} where w is one of the nodes of degree 3. We say
that a graft [G,T] contains a K,;-partition (K3’2-part1tion) if each com
ponent of G contains a even number of points in T, and at least one com-
ponent contains a K,-partition (K3,2—part1tion respectively) covering
that component. (By covering we mean that each node of the component is
a node of the K,-partition (K3’2—partitton respectively).

We also define reduction operations for grafts. There are: deletion of
an edge, and contraction of an edge. In the latter case we have to mo—
dify T too. If edge uv is contracted into the new node w, then T/uv is
T\ {uv} 1f [{u,v}/nT| 1s even and (T\{u,v}) U {w} else. If the graft
[GZ'T2] is obtained from the graft [Gl' T;] by one or more of these re-
ductions we say: [Gl,Tl] reduces to [GZ’TZ]' The relation with matroid
minors is obvious:

- MIG,T]\e = M[G\e,T]:

- M[G,T]/e = M[G/e,T/e].



35

Moreover

- M[G,T]\t = ¥(G):

- 4 [G,T]1/t is the binary matrold with as circuits: all minimal T-joins
and all cycles not containing a T-join.

The following is easy to prove.

Lemma 7.1.

Let [G,T] be a graft. Then the following are equivalent:

(i) M [G,T] has an Fy-minor using t;

(ii) [G,T] reduces to the graft K;;

(iii) [G,T] contains a K,-partition.

Similarly, the following are equivalent:

(i) ¥ [G,T] has an F;—minor using t:

(ii) [G,T] reduces to the graft K5 ,:
(iii) [G,T] contains a K3’2—partition. O

Corollary 7.2.

Let [G,T] be a graft. Then M[G,T | is regular 1f and only if [G,T] does
not contain an K,-partition or a K3,2—partition. 0

Min-max relations

Like in section 3, from Seymour's characterization of matroids with the
max-flow-min-cut-property (Seymour [1976]), the following result fol-

lows:

Theorem 7.3.

Let [G,T] be a graft. Then the following are equivalent:

(1) [G,T] contains no K,-partititon;

(ii) For each weight function w: E(G) +Z , the minimum weight of a T-
join equals the maximum cardinality of a w-packing with T-cuts.

Similarly, the following are equivalent:

(i)' [G,T] contains no K3,2—partition;

(11)' For each weight function w: E(G) »Z + the minimum weight of a T-

cut equals the maximum cardinality of a w-packing with T-joins.

Decompositions
Now we go along the lines of section 4. First we define the notion of

splits for grafts. Assume E; and E, are non-empty subsets of E(G), par-



36

titioning E(G). Denote the set of nodes in V(G) spanned by E;, Ey by Vy,
V,, respectively. 51 is defined by: V(Ei):= Vi, E(Ei):= Ey (1=1,2).

Moreover assume [T| even and non-zero.

l—sglit
If [V, N Vy|= 0, then [El,Tln v,1, [62,'1‘ NV,] is a 1-split of [G,T].
Vi N vy| =1, Vi n V, = {u} say, and G and G, are connected, then

[G.Ty], [G,,Ty] 1is a l-split of [G,T]. T, is defined as T\V, 1f |T N V,|
is even, and as (T\VZ)LJ{u} 1€ T 0 Vﬂ is odd. Ty is defined similarly.

2-split

1f |Vl N Vzl =2, VNV, = {u,v} say, and 61 and 62 are connected, then
we define [GI'T1] as follows.

If T\V; = @ then V(G):= V;, E(G)):= E; U {uv}, and Ty := T.

If T\V, # 0; then V(G,):= VILJ{V*}, E(G,) = EILJ{uZ*,v*v}, and T :=
(TAv)U{v'} 1f |[T\V;| 1s odd, Tj:= (TNV))Afu,v } 1 [T \V;| 1s even.
[GZ,T2] is defined similarly. The pair [Gl,Tl], [GZ’T2] obtained in this
way 1s called a 2-split, unless 51 or 62 is equal to the graph in figure
13 below, and w € T.

u C)////////X:>\\\\\\\Z)v

figure 13

3-split:
If |v, N V2| =3,V Ny, = {u 1’“2’“3} say, El and 52 are connected, and
T C ¥y, |P2| > 4, then we define [Gl,T ] as follows. V(G ):= VIU {v ls
* *
E(Gy):= E U {uv »UV,ugY }. and T):=T. We call [G;,T,] a 3-split.
(A 3- split has one part only )

The following is straightforward to prove
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Lemma 7.4.

Let [G,T] be a graft with a k-split (k < 3) and no g-split for any

2 < k. Then [G,T] has no K,-partition and no K3’2—partition if and only
if each part of the k-split has no Ka—partition and no Ka‘z—partition.
Under the conditions mentioned each part of a split is a reduction of
the original graft. This settles one side of the equivalence. The other

side can be proved by case checking. [}

Now we state and prove a decomposition result for grafts with no K,-par-

tition and no K ,-partition.
»

Theorem 7.5

Let [G,T] be a graft containing no K,-partition and no K3’2—partition.
Then one of the following holds:

(i) [G,T] has a 1-, 2-, or 3-split.

(ii) |T| is odd or |T] € 2

(iii) G is planar with all members of T on one common face.

(iv) G = K3,3, and T = V(K3,3).

If [G,T] has no 1- or 2-split, then M[G,T] is graphic if and only if
(ii) holds, MG,T] is co-graphic if and only if (iii) holds, and

M[G,T] = Rjg 1f and only if (iv) holds. The proofs are similar to Part
(2) of the proof of Theorem 4.3.

The assumptions imply that »[G,T] is regular. Assume [G,T] has no 1-, 2-
or 3-split and does not satisfy one of (ii), (iii) and (iv). We are go-
ing to derive a contradiction. By Theorem 4.1 we have a partition EV
E, of E(G) such that

S e, 11D * e, m) B tD = type pB@ V{Eh + k-1

with k = 1, 2 and [E,] , ]Ezl +1 > k.
or k=3and [E/], [E;] +1 > 6.

For each E' Cc E(G) we have:

e, BT = Tueey B T Type, B VLD - e@D
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where e(E') = 0 if each component of (V(G),E') spans an even number of
points in T, and e(E') = 1 else.

So from (*) we get:

(**)

(El) +r rM(G) (E(G)) + (k-¢) -1,

() uee) B2) =

where e¢:= e(E;) (e(E(G)) = 0, since, if not, then G is disconnected,
or ]T| is odd).

De fine E:,...,ET, E;,...,E;, and the auxilary graph H as in the proof of
Theorem 4.3 (Note, that if E2 =@, then k = 1 and ¢ = 0. So T = @, and

(ii) holds).

Claim 1: H is a bipartite connected graph with no isthmuses. Moreover
|[E@)|= |v@E) |+ k - € - 2.

Proof of claim 1:

The proof is similar to the proofs of claim 1 and 2 of the proof of
Theorem 4.3.

end of proof of claim 1

Claim 2: k = 3, € = 0: H 18 homeomorf to the graph in figure 14(b).
Proof of claim 2: If H 1is a cycle, then [G,T] would have a 2-split.

Claim 1 now ylelds k — ¢ = 2 > 1. So e < k - 3, i.e. k=3, € = 0. So
|E(H)| = |[V(H)] + 1. Since H has no isthmuses, H is homeomorf to one of
the graphs in figure 14. If H is homeomorf with the graph in figure
14(a), then [G,T] has a 2-split. So H is homeomorf with the graph in
figure 14(b).

end of proof of claim 2

(a) (b)

figure 14
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Hence G is of the form as in figure 15, where

A, B € {Ei"'.Eif E;,...,E;}, and Cy» Cy and C5 are unions of elements
of {El,eesES,ED, e B3N (A} Note that for 1 = 1, 2, 3 it is

possible that uy = vy, so Cy = @.

figure 15

Claim 3: ¢; = @, Cy = {uivi}, or C; = {uiwi’wivi with w, € T, for 1 =
1, 2, 3. Moreover |C1| + |C2| + ]C3| g Se
Proof of claim 3: The first part of the claim follows since [G,T] has no

2-split. If the second part would not be true, then Ci = {uiwi’wivi

with wy € T for each 1 = 1, 2, 3. But then [G,T] has a Ky 2—particion (T
’

is even), a contradiction.

end of proof of claim 3

Claim 4: AUB = El’ C, U Cy U Cqy = E,.

Proof of claim 4: Since lEll > 6, E; cannot be contained in C,V C,Y Cqe
So we may assume A = Ei. The edges 1in Cl U C2 v C3 which are adjacent
with ups Uy, or ug cannot be in E1 (Since A is a component of EZ). Now

from claim 3 and, again, |E1| > 6 if follows that B = Ei. Since EZ
>5, and || + [cy| + lcgl s cpuc,ucy =By
end of proof of claim 4
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Claim 5: G is the graph in figure 16; w;, w3 € T.

Proof of claim 5: From the previous it follows that we only need to

prove that A = E} and B= Ef (figure 15) are triangles. If |E%| or |Ef|is

greater than or equal to 4, [G,T] has a 3-split. Since |El|> 6, this

yields ]Ei| = IEfI = 3. 1f E! or E? 1s not a triangle then one easily
finds a 1- or 2-split.

1 1

end of proof of claim 5

figure 16

So w;, w3 € T. If uy €T, or vp € T, then we would have a K, 2-partition
’
(as |T| is even). Hence T lies on the outer face of the planar graph G,

i.e. (1ii) holds, a contradiction. O

Orientations

The following result is proved similarly as Theorem 5.1.

Theorem 7.6

Let [G,T] be a graft. [G,T] has no K,-partition and no K3’2—particion if
and only if one of the following holds.

(L) |T| is odd.

(1i) There exists a partition T}, T, of T with |Tﬂ = |Tp| such that
each T-join is an edge disjoint union of cycles and of |T1| paths from
T, to Ty. O

Remark: Theorem 7.6 yields the following result (answering a question of

A. Frank).
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Let G be an undirected connected graph. Then the following are
equivalent:
(i) G has an orientation X such that
{ovek|uex, ve¢ x}| - |[{a0 € Kjué X, vex}| <1, for
each minimal cut &(X).
(11) [G,Vodd] has no Kh-partition and no K3’2—partition.
(Vodd denotes the set of nodes in G with odd degree.)
We shall only indicate how (i) follows from (ic). Assume (ii) holds. Let
Tl’ T2 be a partition of Vodd as 1n meant in (7.6 (i1)). Let Cl""ck’

be a collection of cycles in G, and Pl,..., la collection of paths

PlTl
from T1 to T2 such that E(Cl)""’E(Ck)’ E(Pl),...,E(PlT

E(G) (E(G) is a Vodd-join). Now orient G such that each Cy becomes a

|) partition
1

directed cycle, and each Py becomes a path directed from its endpoint in
T1 to its endpoint in T2. That this orientation satisfies (i) follows
from the observation that 1f 6(X) is a minimal cut then |Xr1Tl| -
[XrﬁT2| < l. (Indeed, since §(X) is a minimal cut, there exists a Vodd—
join F such that |Fr16(X)| < 1. Applying 7.6 (ii1) to F yields

| X:ﬁTl[ = |Xr\T2| < 1.)
Using Theorem 7.6 we shall now prove the mimmax relations in Lemma 7.2
for the case that [G,T] has no Ka—partition and no K3’2—partition. So
let [G,T] have this property. We may assume, that G is connected and

|T| is even. Let Tl’ T2 be a partition of T as is meant in Theorem 7.6.
We define a directed graph D as follows. V(D) = V(G), and the arcset A
of D is obtained by replacing each edge uv by two arcs, one :3, from u

—
to v, the other, vu from v to u.

Shortest T—-join

Let w: E(G) *Z,. The shortest T-join problem is:
(7.7) Find a T-join E'CE(G), which minimizes I w(ie).
ecE'

This optimization problem is equivalent to the following circulation

problem (w(a):= w(uv) for a = uv or a = 33 with uv € E(G)).
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(7.8) minimize = w(a)f(a)
a €A
gt 1 1f u €T
A f(a) - T f(a) =¢-1 if u € Ty

a enters u a leaves u
Oifuev(c)\T

£Ca) > 0 if a € A.

To prove the equivalence, first observe that any T-join E' in E(G) is
the edge disjoint union of |T1| paths from T; to T, and, possibly, some
cycles. So there exists a feasible solution of (7.8), with

T w(a)f(a) = I w(e). Conversely, let f: A —+ 0, be an optimal
a €A e€E'
solution of (7.8). Since the constraint matrix of (7.8) is totally uni-

modular we may assume that f(a) € ZZ for each a € A. The set of arcs
E':= {a € A|f(a) is odd} is a T-join, with - é - w(e) <
a é " w(a)f(a). So (7.7) and (7.8) are equivalent.

The dual linear program of (7.8) 1is (7.9) below: again there are inte-
gral optimal solutions.

(7.9) Maximize " - )3 m

L
u u
u € T1 wE T2

Setem = 7. € W(uv) 1if uv € A.
v u
Equivalently:

(7.10) maximize T - b b

u

b
u e Tl 2

setofm = w | < w(uv) 1f uvE E(G).
Let weEZV(G) be an optimal solution of (7.10). Define for each A with

min {nu|u € V(G)} < A < max {wulu € V(G)}, the set

v i {ue V() |n, > A}. We shall need the following lemma.
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Lemma 7.11 Let U € V(G) such that the subgraph of G induced by U is con-

nected. Then §(U) contains at least ]]U nT == |U N T2|| mutually

l
edge-disjoint T-cuts. :
Proof: Let Vl,...,VE be the node sets of the components of the subgraph
of G induced by V(G)\V. Let, without loss of generality, ViseeesVy
(k < 2) be those sets Vy with|Vy N T| odd. Take edges ej,...,ey € E(G)
from Vl""’vk’ respectively, to U. Then there exists a T-join E' such

that each e € E' is entirely contained in V, or im Vy (i=1,...,%), or

is an element of {el,...,ek}. Since E' contains an edge disjoint union
of |T,| paths from T| to T, it follows that k > [|vn T,| - lvng,l].
Since each G(Vi), i=l,...,k, is a T-cut this proves the lemma. 0O

Using this lemma we can construct a w-packing with T-cuts of cardinality

at least ) " - I m . For each A € Z and each component V of
wE T,  WET,
vV, such that [VnTy - |[VvNTy| > 0, take lv r'\'1‘1| - v r1T2| mutually

edge disjoint T-cuts in §(V). The T-cuts obtained in this way from the
desired T-packing. Indeed, they form a w-packing since the sets G(VA)

do so. Moreover the cardinality of this w-packing 1is greater than or

equal to z T, - z m_ (since the components V of V_ with
u u A
w & T u'&’T
1 2
M @Il = ¥n T2|< 0 are not used to construct the w-packing). What we

have proved now is that the minimum of (7.8) is not greater than the

maximum value in the following packing problem:

(7.12) Find a maximum cardinality w-packing with T-cuts.
The fact that this maximum is not smaller than the minimum of (7.8) is
trivial. Hence we have proved the minmmax relation (ii) in Lemma 7.3 for

signed graphs with no K,-partition and no Kg— partition.

Packing with T-joins

Let we 7ZE(G). Consider the problem:

(7.13) Find a maximum cardinality w-packing with T-joins
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We shall prove that (7.13) is equivalent to

(7.14) maximize k

kifue’l‘1

St I f(a) - PN f(a) =4-k if u € T,
t leaves u
SRS - 041if ueV(G)\T -

£(uv) + £(Vu) < w(uv) 1if uv € E(G)
£(T¥) > 0 if uv € A.

The fact that each w-packing with k T-joins yields a feasible solution
*
of (7.14) of value k is obvious. Conversely, let f : A » 0

k € l) form an optimal solution of (7.14) which 18 not a convex combi-

nation of other optimal solutions.

Lemma 7.15 k'€ Z,: f'(a) €Z , for a € A.
Proof Obviously, if k* is integer an then so is f*(a) for a € A. (0b-
i
serve the construction in figure 10.) Assume k € Z ++ Let E' be the set
— —

of edges uveE(G) for which 0 < f(uv) + f(vu) < w(uv). Let VireensV,

be the vertex sets of the components of E'. If E' would contain a T-
join, then f*, k* would not be optimal. Let Y C E(G)\E' be a minimal

set so that EO

U E' contains a T-join. Then there exists a set Vy*
(i*=1,...,l) such that there is exactly one edge, e say, in 0 leaving
Vix- Let F be a minimal T-join in ALY E'. By the minimality of EO the

edge e must be in F. Since F is the edge-disjoint union of |T;| paths

from T, to IZ we now know that [V,;* N T | - |Vy* N T, | =+ 1. Now
t:e fact that f (uv), f (vu) € Z for each uv 5(vi*), and the fact that
f and k form a feasible solution to (7.14) contradicts the fact that
¢ z. o

Next we must prove that there exists a w-packing with T-joins, of car-
*
dinality k . This follows (by induction) from the following lemma:
s A
Lemma 7.16: Let k e Z,, fe 7 + be a feasible solution of (7.14), with
k > 1. Then there exists a solution kIEz+, f, € zf: with: k; = 1, and
for each a € A if fl(a) > 0 then £(a) > 0.
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Proof: Define the following capacitated auxilary digraph D'. V(D') =
v(D) U {s,t}. (s and t are two new nodes). The arc set A(D') of D' con-
sists of the arcs in A together with all arcs of the form su with u e T,
and ut with u € T,. The capacity function c: A(D') +7Z, is defined by:
c(a) = f(a) 1f a € A, c(Eﬁ) =11f u € Ty, and c(ﬁ?) =1 1if u € Tl' I£
the lemma is not true then the maximal flow from s to t in this capaci-

tated auxilary digraph is less than |T,|. By the max-flow-min-cut theo—
2

rem there exists a U C V(G) such that

I efa) < ]TZI.
a € A(D")
a leaves UU (s}

Hence

(*) £ f(a) + |T,\u| + [T, U] < |T
a €A
a leaves U

2

Since f and k form a feasible solution of (7.14) we have

T f(a) » max {0,k|T,NU| —k|T nul}
2 1
a €A
a leaves U
Combining this with (*) we get

max {0,k | T,0U| -k|T VU[} < [T,V U|-|T,UU].
which contradicts with k > 1. m|

The dual linear program of (7.14) is

(7.17) minimize b w(e)2(e)
e € E(G)
Sietie LI + 2(uv) > 0 if v € A
2(e) > 0 1f e € E(G)
L n o= X n = 1.
veT, ¢ weT, Y

1 2
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For each weZ +E(G) the minimum value of (7.17) is an integer. (By Lemma
7.15 and linear programming duality.) Hence, by Lemma 5.12, (7.17) has

an integral optimal solution.
Using this lemma we can prove that (7.17) is equivalent to:

(7.18) Find a U C V(G) with |V(G) " T| odd, such that T w(e) is
e € §(U)

minimumn.

To prove the equivalence, first assume that w, ¢ form an integral fea-

sible optimal solution of (7.17). Then there exists A € Z such that

~

V:i= {u|1ru = 1A} satisfies |V 0T1| # |V n T2| (since
T " - I m = 1). Since each T-join contains |T;| mutually edge
u u
u € T1 a € T2

disjoint paths from T, to Ty, §(V) contains a T-cut, §(U) say. Moreover
for each uv € §(V): = B # 0: so 2(uv) » 1. Therefore
b w(e) < T w(e) < z w(e)e(e).

e € 5(U) e € 5(V) e € E(G)
Conversely let U be an optimal solution to (7.18). By Lemma 7.11 we may

assume that }U nNTy - |U n T?_[ = 1. Define 0, 11f u € U; LA 0 1f
u e V(G)\U: 2(e) =1 if e € 6§(U) and 2(e) = 0 if e € E(G) \ 6(U). Then
)5 w(e) = ) w(e)g2(e) and ¢ and ¢ form a feasible solution

e € §(0) e € E(G)
of (1:X7)s

Grafts with no Ki—partition.

The following result is of the same nature as Theorem 2.6.

Theorem 7.19

Let [G,T] be a graft with no K,-partition. If G has no one node cutset,
and for each two node cutset {u,v} of G, one side of the cut consists of
two edges av and v'v in series, with v e T, then [G,T] has no K3,2—
partition, or [G,T] is equal to the graft K3, 2 (1.e G is the bipartite
graph K3 5; T = V(G) \ {w}, where w has degree 3).



Proof:
Assume [G,T] satisfies the assumptions and contains a Kj z—partition. We
’
shall prove that [G,T] equals the graft Kj 5. First we define extended
. ERtchEse
K3 2-partition, by figure 17. The sets U;, U, Vy, Vo, V3, Wy, Wy, W5

e
cover V(G). The graphs induced by these sets are connected. For each

1=1,2,3 |V4 N T|is odd, and |W; N T| 1s odd or Wy = $. The lines are

edges.

figure 17

Since [G,T] has a K3 2—part1tion, it has an extended Kj Z—partition. Let
’ b

Uy, Uy, etce..e be an extended K3’2-part1tion with |U1| + [U2| minimal.

First note that if there would exist an edge from V4 U Wy to leJ wj

(i#j) then [G,T] would have a K,-partition.

Claim 1: There exists a u; € U, and edges from u; to V;, V,, and Vj.
Also there exists a uy € Uy and edges from u; to Wy or if Wy = f to vy
for i = 1, 2, 3.

Proof of claim 1: Obviously, we only need to prove the existence of uy.

There exists a node u € U, and mutually node disjoint paths P,;, P,, Pq
from u to Vy, Vo, vy respectively, such that the only points of Py, Py,
P3 not in Ul are the end points in Vl' Vo, Vy respectively. Let X be the
set of nodes in Ul which lie on P, or on P3 (so u € X). Denote by Ui the
set of nodes v € U;\X for which there exists a path in Ul\x from v to

V,. We prove that Ui = 0y dees Py consists of a single edge. By symmetry
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between P;, P, and P5 also P, and P4 are single edges, so the node

u, € Uy exists: indeed, take u; = u. Hence we may suppose Ui # P. We
shall construct an extended K3’2—partition, contradicting the minimality
of |u; |+ |Uy[. Replace U; by U\Uj- If U] N T| 1s even replace V; by
Ui ) Vl. 1If |Ui N T| 1is odd and W, # $# replace vV, by Ui U Vl u wl, and
W, by the empty set. If |Ui N T| is odd and wl = f replace Vl by Ui, and
set Wj:= V. All other sets in the original K3’2-partit10n remain the
same. By this we obtained a new Ka’z—partition violating the assumed
minimality of |Ull + |U2|.

end of proof of claim 1

Claim 2: |U}| = [Uy] =1
Proof of Claim 2: Let ﬁi

nodes established by claim 1. As in the proof of claim 1 one easily
3
shows that no edge leaving ﬁl or ﬁz can enter U (V4 U W;). Assume
i=1

ﬁl ) 52 # . Then {ul,uz} is a two node cutset of G since there are no

edges from V1 v Wy to Vj (U] Wj (i#j). We may assume that the two parts of

= Uy \ {u;} (1=1,2) where u; and u, are the

G separated by {ul’u2} are V; UV, UW, UW, and V3 U W3 U ﬁl U ﬁé.

Since they both do not correspond to two edges in series we have a con-

tradiction. So ﬁ V] ﬁ

1 5 = @, and claim 2 is settled.

end of proof of claim 2

Since there are no edges from V; u W, to Vj U Wj for 1 # J (1,;3=1,2,3),
the condition on two nodes cutsets of G yields that [G,T] is the graft

K (note that since T 1s even exactly one of u u; 1s in T). O
3,2 1 52

Theorems 7.5 and 7.19 yield a decomposition result for grafts with no

Ka—partition. With arguments similar to the remark at the end of section

2 one can prove that if G is 3-connected and has no K3 p—partition then
»

it has no K,-partition or is equal to the graft K, (with T-V(Ka)).
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