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Abstract

We exploit the theory of regular matroids to study nice classes of

signed graphs (i.e. undirected graphs with odd and even edges) and of

grafts (í.e undirected graphs with odd and even nodes, associated with

T-joins). These classes are: signed graphs with no odd-K4 and no odd-

K3, and grafts with no K4-partition and no K3~2-partition (odd-K4 and

odd-K3, are special types of signed graphs, K4-partition and K3- parti-

tion are special types of grafts). We give a constructive characteriza-

tion of these classes, using Seymour's decomposition theorem for regular

matroíds. Moreover we derive characterizations from the orientability of

a regular matcoid. The latter characterizations we use to formulate se-

veral optimization problems related to odd cycles in signed graphs with

no odd-K4 and no odd-K3 and to T-joins in grafts with no K4-partition

and no K3~2-partition as min-cost-circulation problems. As a consequence

we prove some well-known min-max relatíons due to Seymour for these op-

timization problems. We also show how some graph theoretic results fol-

low.
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2) Centre for Mat}iematrics and Computer Sclence, P.O. Box 4079, 1009 AB
Amsterdam, the Netherlands.
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1. Introduction

A signed graph is a pair (G,EO), where G~(V(G),E(G)) is an undirected
graph and EO is a subset of the edge set E(G) of G. We allow multiple
edges and loops in G. The edges in EO are called odd, the other edgea
even. A cycle C in G is called odd (even) if EO n E(C) is odd (even- ~
respectively). A signed graph is bipartite if it contains no odd cycles.
In this paper a central role is played by the signed graphs indicated in
figure 1. Wriggled and dotted linea stand for (pairwise openly diajoint)
paths, dotted lines may have length zero, and odd indicates that the
corresponding faces are odd cyclea. Each signed graph of the first type
is called an odd-K4, each aigned graph of the second type an odd-K3.

odd-K4

.
~ ,uti. ~1.,Z~

`~~,o~~~
odd-K3

figure 1

In this paper we list a number of characterizationa of those signed
graphs which do not contain an odd-K4 or an odd-K3 as a aubgraph. Main-
ly, these characterizations follow from the theory of reaular matroids:
in sectíon 2 we define for each signed graph (G,EO) an associated binary
matroid, M(G,EO). It turns out that (G,EO) doea contain no odd-K4 and
no odd-K3 if and only if M(G,EO) ia regular. In the subsequent sections
we exploit results on regular matroids obtained by Tutte and Seymour
(section 3, 4 and S). In section 6 we give a characterization of signed
graphs not containing an odd-R4, The final section, section 7, we dis-
cuss a different object. Seymour [1980] introduces in hia paper on the
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decomposition of regular matroids the concept of rafts, i.e pairs [G,T]
where G is an undirected graph and T is a subset of V(G). In parallel
with the sections 2, 3, 4 and 5 we give characterizations of [hose
grafts for which a certain associated binary matroid is regular.
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2. Preliminaries; Binary Matroids Associated with Signed Graphs

Let G be an undirected graph, and let MG be its node-edge incidence ma-
trix, i.e. MG ts an V(G) x E(G) matrix with entries 0 and i. An entry of
MG is 1 if and only if its row
lumn index e E E(G). Moreover
the characteristic vector of E~

XE
0

The matroid M(G,E~) associated to the signed graph (G,E~) is the binary
matroid represented over GF(2) by the columns of the matrix:

1

0

0

I
i
L

i
I MG

index v E V(G) is an endpoint of its co-
for EG C E(G), let XE E~(G) denote
as a subset of E(G). ~

The element of M(G,E~) not in E(G) (corresponding to the fLrst column
of (2.1)), will be denoted by p. The reader will easily deduce the cir-
cuits, bases and rank-function of M(G,E~). With some exceptions
throughout the text we use notatíon and terminology of matroid theory as
given in the book of Welsh [1976]. For convenience we use the term cir~
cuit for a minimal dependent set in a matroid, and cycle for the fami-
liar subject in a graph. (So a cycle in G ís a circuit in M(G), the
cycle matroid of G.) Obviously M(G,E~) - M(G,E~AB) for any minimal cut
(co-cycle) B of G. (~ denotes symmetric difference). We call the opera-
tion: EG ~ EGDi3, resigning. We say that (G,ED) reduces to (G',E~) if

(G', E~) can be obtained from (G,EG) by a series of the following opera-
tions:

- deleting an edge from G(and Erom E~)-
- contracting an even edge of G;
- reslgning.
The relatlon of reduction with matroid minors is obvious:

("~" means "deletion", "`" means "contrac[ion")
- h1 (G,EG) `e s M(G` e, EG` {e}) if e E E(G);
- M (G,E~)~e - M (G~e, E~AB) in
B~~ if e~ EG, and B is any
If e is an even

case e E E(G) and e ís no
cut of G containing e

loop: M (G,EG)~e ~ M ( G `e, EG).

loop, where
in case e E E~;
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If e is an odd loop then M(G,E~)~e á M(G,E~)~p.
(since then e is parallel with p).

To be complete:
-,M(G,E~)`~p ís the binary matroíd with as circuits the even cycles ín

(G,Ep) and the sets of the form E(C1) v E(C2) where C1 and CZ are odd

cycles and IV(C1) n V(CZ)It 1.

M(G,E~)~p n M(G), i.e. the cycle matroid of the undirected graph G.

Regular Matroids

For the definition of a regular matroid we refer to Tutte [1971] or
Welsh [1976, p. 173]. Tutte [1958] proved that a binary matroid is regu-

~
lar if and only if it does not contain F7 or F7 as a minor. (The binary

~
representa[ion of F7 and of F7 are in figure 2; Welsh [1976] uses the

~notation M(Fano), M (Fano) respectively.)

F7
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

~
F7 .

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

figure 2

The signed graph in figure 3a will be denoted by K3 (bold edges odd).
The signed graph (G,E~) with G equal to the 4-clique and all edges odd,
will be denoted by K4.

(a) (b)

figure 3

The following propositions are easy to proof:
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Proposition 2.2.
Let (G,EO) be a signed graph. Then:
(i) M(G,EO) - F7 if and only íf (G,EO) z K3'

~
(ii) M(G,EO) - F7 tE and only lf (G,EO) ~ K4 (possibly after resig-

ning).

Proposition 2.3.
Let (G,EO) be a signed graph.
(1) The following are equivalent:
- M(G,EO) has an F7 minor using p;
- (G,EO) reduces to K3.
(ii) The following are equivalent:

~- l'4(G,EO) has an F7 minor using p:
- (G,EO) reduces to K4;
- (G,EO) contains an odd-K4.

Note that the assertions in (i) are not equivalent to "(G,EO) contains

an odd-K3". Since the signed graph in figure 3b reduces to K3, but does
not contain an odd-K3. However the following does hold:

Proposttion 2.4.

Let (Z,EO) be a signecí grapli. Then (C;,EO) does contaln ~n odd-K4 or an

odd-K3 if and only if (G,EO) can be reduced to K4 or to K3 .

The following lemma brings the signed graphs with no odd-K4 and no odd-
K3 within the theory of regular matroids.

Lemma 2.5.
Let (G,EO) be a signed graph. Then (G,EO) contains no odd-K4 and no odd-
K3 if and only if M(G,EO) is a regular matroid.
Proo E:

To prove tlie equívalence we may assume G to be 2-connected. Moreover we
may assume that (G,EO) ie not bipartite, and has no even loops. Hence
M(G,EO) is a connected matroid. However for connected matroids Seymour
[1977a] extended Tutte's result to: Let x be an element in a connected



matroid M. Then 1! is regular if and only if hJ has no F~ mínor and no
F~ minor usíng x. Together with Propositions 2.3 and 2.4 this proves the
lemma (take x - p), p

In section 6 we discuss signed graphs with no odd-K4. The following re-
sul[ due to Lovász and Schrijver [1985] makes it possible to use results
on signed graphs with no odd-K4 and no odd-K3 to signed graphs with no
odd-K4.

Theorem 2.6. (Lovász, Schrijver [1985])
Let (G,E~) be a signed graph, satisfying the following property:

If {u,v} C V(G) separates G, then one side of this two node cutset
(~) consists of two parallel edges, el and e2 say, with el E EO'

e2 ~ EG, or one side of this two node cutset is bipartite.

Then the following holds:
Let (G,E~) contain no odd-K4. Then (G,E~) ~ K3 or (G,Ep) contains no
odd-K3 .
Proof

Let (G,ED) be a signed graph satisfying ( ~), Suppose (G,EQ) contains no
odd-K4, but does contaín an odd-K3 . Let (G,Ép) be an odd-K3
contained in (G,EO) such that IE(P1)I f IE(P2)I -t- IE(P3)I i s minimal.
(P1, PZ and P3 are the paths indicated ín figure 4.)

. `
P3 V `O~ C3

3 ~~-~,~~~~`'`

figure 4

(~ . ~Ï~~)

2
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The odd cycles C1, C2 and C3, as well as the nodes vl, v2, v3, ul, u2,
and u3 are as indicated in figure 4. (Note that vi may be equal to
ui(1~1,2.3).)
DeElne: Vi:a V(Pi) u V(Ci) (ia1,2,3). if S C V(G), then a path P from u
to v is called an S-path if V(P) ~~ S 3{u,v}.

Claim: If P is a V(G)-path, then P is a Vi-path, for i-1,2 or 3.
Proof of claim.
Let P be a V(G)-path. Let u and v be the endpoints of P. Assume P is no
V1-path (1-1,2,3). Hence we may assume v~{vl,v2,v3}. Moreover we may
assume v~ V2. So u~{v2,v3}. Finally we may assume u E V1. (Indeed, if
u~ V1, then u s vl. Interchanging u and v, and renumbering indices
yields u E V1, v E V2.) We consider three cases.

Case I: v E V(C2)`{u2}. Then G and P together contain an odd-K4. This
yields a contradiction.
Case II: u E V(P1); v E V(P2). Then G and P together contain an odd-K3
with smaller ~E(P1)~ f ~E(P2)If IE(P3)I. Again we have a contradiction.
Case III: u E V(C1)`{ul}, v E V(P2). Now there are two possibilittes. If
the cycle C(see figure 5) is odd then G and P together contain an odd-
K4. If C is even we find an odd-K~ with smaller IE(P1)~ f ~E(P2)I ~-
~E(P3);. So both possibilitles yield a contradiction.

.
~. ~`'`~ 1 ~m~c~J ~-w

figure S

end of proof of claim
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Since G satisfies (~), the claim yields for i- 1, 2, 3: E(P1) -~, and
Ci consists of two parallel edges, one odd and one even. So
(G, ÉO) - K3. If V(G) - V(G) then by (~): (G,EO) -(G, ÉO) - K3 and the

theorem is proved. So let us suppose: V(G) ~ V(G). Let

v E V(G)`V(G). By (~) there are three internally node disjoint paths

O1, Q2 and Q3 each going from v to a different node on G. But this is

impossible since then G, Qi, Q2 and Q3 together contain an odd-K4. O

Remark:

The following result is i n a sense dual to Theorem 6.2:

Let (G,EO) be a signed graph, which does not reduce to K3. If G

is 3-connected then (G,EO) - K4 (possíbly after resigning) or

(G,EO) contains no odd-K4.

The proof essentially relies on the following statements:
- If G is 3-connected then so is M(G,EO).

- A 3-c~nnected binary matroid with no F~-mínor is regular or equal to
~

F~ (Seymour [1980]).
- If an element x of a binary matroid M is not contained in an F~-minor

of M, and 14~x has no F~-minor, then M has no F~-minor at all.
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3. Min-"iax Relations

If S is a finite set, S a collection of subsets of S, and w an integer
valued valued function on S, then a w-packing with elements of S is a
family S1, S2, ...,Sk of inembers of S(repetition allowed) such that for
each s E S we have that ~{i-1,...,k I s E Si} ~ ~ w(s). The number k is
called the cardinality of the packing.
Seymour [1977b] proved the following result:

Theorem 3.1.
Let M be a binary matroid, and let x be an element of M. Then the fol-
lowing are equivalent:
(i) M does not contain an F7-minor using x.
(ii) For each weight function w on the elements of M with non-negative
integer values, the minimum weight of any set C`{x}, where C is a cir-
cuit of M containing x, is equal to the maximum cardlnality of a w-
packíng with sets of the form C~ `{x}, where C~ is a cocircuit of M con-
taining x.

Together with Proposition 2.3, Seymour's result implies:

Corollary 3.2.
Let (G,E~) be a sígned graph.
(i) The followíng are equivalent:
-(G,EO) does not contaín an odd-K4.
- For each weight function w: E(G)-.7L}, we have:

The maximum cardinality of a w-packing with odd cycles is equal to the
minimum weight of a subset of E(G) meeting each odd cycle.

(ii) The following are equivalent:
-(G,E~) does not reduce to K3.
- For each weight function w: E(G) -.7l}, we have:

The minimum length of an odd cycle is equal to the maximum cardinality
of a w-packing with subsets of E(G), each meeting each odd cycle. ~

So we have a Eirst characterization for signed graphs with no odd-K4 and
no odd-K2,

3
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Corotlary 3.3.
Let (G,E~) be a signed gcaph. Then (G,Ep) does not contain an odd- K4 or

an odd-K3 if and only if for each weight function w: E(G) -r7l ~ both

micYmax relations in Corollary 3.2 hold, p

Remark
Corollary 3.3 can also be deríved from the fact that each regular ma-
troid has a totally unimodular (standard) representation matrix (over 7l)

(Tutte [1958].)
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4. Decomposition

In this aection we elaborate that every signed graph with no odd-K4 and
no odd-K3 can be decomposed into smaller such signed graphs, or in one
of three símple types. Here we use the famous result of Seymour on the
decomposition of regular matroids (Seymour (1980]), for the case of
signed graphs yieldíng a decomposition in signed graphs with no odd-K4
and no odd-K3.

Theorem 4.1. (Seymour [1980])
Let hlbe a regular matroid, then at least one of the following holds
(1) There exist subsets X1, X2 partitioning the element set X of ~d such

that rM(X1) t rM(X2) - rM(X) f k-1
where k 31, 2 and IX1~, ~X2~ ~ k
or k- 3 and IXII, IX2~ ~ 6,

(2) ~~1 is graphic, or is cographic, or is equal to the matroid, called
R10, represented over GF(2) by the columns of [he matrix:

1 0 0 0 0 1 1 1 0 0
0 1 0 0 0 0 1 1 1 0
0 0 1 0 0 0 0 1 1 1
0 0 0 1 0 1 0 0 1 1
0 0 0 0 1 1 1 0 0 1 a

Remark: Seymour [1980] states his result slightly different: In (1) he
only requires: IXII , IX2I ~ 4 if k s 3. However using the statements
(7.4), (9.2), and (14.2) of his paper one can eharpen this to:
IXII, IX2I ~ 6 if k 3 3. We use this in proving Theorem 4.3.

Important in the decompoeition for signed graphs with no odd-K4
and no odd-K3 is the notion of so-called sPlits.

Assume F,1, E2 are nonempty subsets of E(G) partitioning E(G). Denote the
set of nodes in V(G) spanned by E1 and E2 respectively, by V1 and V2
respectively. Gi is defined by V(Gi):a Vi, E(Gi) - Ei (i~1,2).



1-~s 1-it: Let IVIn V2I ~ 1. Then (G1, ElnEG) and (G2, E2nEG) are

said to form a 1-split of (G,E~).

2-split: Let ~vl n v2 ~- 2, vl n v2 -{u,v} say.

Moreover, let for i z 1, 2, Gi be eonnected and not a signed subgraph of

the signed graph in figure 6.

o~ld

even

fi~ure 6

Define (G1,E01) as follows: If (G2,E2n E~) is not bipartite add to

(~1~Eln ED) the two edges in figure 6. If (G2,E2 n E~) is bipartite, add

a single edge e from u to v. Take e E E01 if and only if there

exísts an odd uv-path in G2 (a path is odd if it contains an odd number

of odd edges). (G2,E02) is defined analogously. Now (G1,E01) and

(G2,E02) are said to form a 2-split of (G,ED). (In figure 7 we give an

example of a 2-split in case (G1,Ein E~) is not bipartite for i~1,2. The

bold edges are odd, the thin edges even.)

(G,E~) (~1'E01)
figure 7

3-split: Let IV1 n V2~ a 3, Vi n V2 -{ui,u2,u3} say.
Moreover, let ~2 be bipartite and connected. Finally, let
IE2I ) 4.
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G1 is defined as follows: V(G1):- VlU {v} (where v is a new node), and
E(G1):- E1 U{ulv, u2v, u3v}. É is the subset of {u2v, u3v}
defined by: uiv E É if and only if there exists an odd path from
ul to ui in (G2, E2 n E~) (1-2,3). We define E01:- (E1 n ED) U É,
Now (G1,E01) is said to form a 3-split of (G,E~).

If none of the above asawnptions hold we say that no split exists. Note
that ;r 1-aplit crlnsists oF only one aiKned graph. Moreuver note thwt if
no R-HplLt exísts Eor R ~ k(k-I,"L,3) then exch member of a k-sptlt ís a
reduction of (G,Ep). The following lemma is easy to prove.

Lemma 4.2.
Let (G,ED) be a signed graph with a k-split (k ~ 3) and with no R-split
for any R~ k. Then (G,E~) has no odd-K4 and no odd-K3 if each part of
the k-split has no odd-K4 and no odd-K3 . 0

Next we arive at the main result of this section.'

Theorem 4.3.
Let (G,E~) be a signed graph, with no odd-K4 and no odd-Kz . Then at
least one of the following holds:
(1) (G,E~) has a 1-, 2-, or 3-split.
(ii) There existsa node vp E V(G) such that all odd cycles in

(G,E~) contain v~.
(iii) G is planar with at most two odd faces.
(iv) (G,E~) is the signed graph in the figure below (possibly after

resigning). (Thín edges are even, bold edges are odd.)

fi;ure 8
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Proof:
Let (G,E~) be a signed graph with no odd-K4 and no odd-K3 . Suppose

(G,E~) has no 1-, 2-, or 3-split. Since M(G,Ep) is regular (Lemma 2.5)

we can apply Seymour's theorem (Theorem 4.1). We shall devide the proof

into two parts: In part (1) we consider case (1) of Theorem 4.1, and in

part (2) we consider case (2).

Part (1): Suppose there exist subsets E1, E2 partitioning the edge set
of G such that

(~) r;~G,Eii)(".~) {~r.~c,i~~~)("~2
u{p}) ~ rM(G~~O)(E(c:) u{p}) t k-i

with k-1,2 and IE1~ ~ k, IE2I f 1 ~ k, or k-3 and IElI ~ 6, IE2I t

1~ 6. For each E' ~ E(G) we have

r M(G)(E') f 1- r~(G~EO)(E' u{p}) -
r~G,E )(E' ) f 1 i f E' is bípartite

0

rM(G,E~)(E') if E' is not bipartite

Let e:- 0 of E1 is bipartite, and e:- 1 if E1 is not bipartite. Then

(~) ls equivalent to:

(~~) rM(G)(F.~) t rM(G)(FL) - rM(C)(":(G)) f( k-e) -1

If IE2I - 0, then k t IE2I f 1~ 1. Moreover by (~~): e- 0. Hence
(G,ED) is bipartite, so (iii) holds. So we may assume I E2I ~ 1.

Let Ei,...,Ei; EZ,...,E2 be the components of E1, E2 respectively. De-
fine the undirected graph H as follows. V(H) -
{ul,...,us, vl,...,vt}; for each v E V(G) spanned by Ei and EZ there ís
an edge from ui to v~ in H(i-1,...,s; jal,...,t). So H may have paral-

lel edges.

Claim 1: IE(H) ~- s f t t k- e- 2 3 IV(H) I f k- e- 2.

Proof of claim 1: Let Vi be the set of nodes spanned by Ei (ia1,2).
Then rM(G)(E1) - IV1I- s~ rM(G)(E2) - ~V2~ - t and rM(G)(E) ~
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IV(G)I- 1(G is connected since G has no 1-split). Since
~ V1 n VZ I- I E(H)I and IV1 U V2 I- I V(G) I,(~~) yields the claim.

end of proof of claim 1.

Claim 2: H ís a bipar[ite, connected graph, without isthmuses.
Proof of claim 2: Ry definition H is bipartite. If H is disconnected, or
has an isthmus, then (G,E~) has a 1-split.

end of proof of claim 2.

Claim 3: H has no two adjacent nodes of degree 2.
Proof of claim 3:
Let ui, v~ be adjacent nodes of H, both of degree 2. If between ui
and v~ there are parallel edges, then by claim 2: V(H) 3{ui,v~}. So
1-j-s-t31. By claim 1: k- e~ 2. Now, since (G,ED) has no 2-split,
E1 or EZ is contained in the signed graph of figure 6. But since
E1 and EZ both are connected this means rM(G)(E1) } rM(G)(E2) -
rM(G)(E(G)). So by (~~): k- e- 1, a contradiction. Therefore between
ui and v~ there is only one edge in H. Now É1:- Ei u E? and
E2:- E(G) ` E1 define a 2-split of G, contradicting our assumption that
no 2-split exists.

end of proof of claim 3.

Claim 4: k- 3, e a 0 and H is the graph in figure 9(c) below.

x~~'~ u

(a)

(c)

Proof of claim 4:
By claims 2 and 3: IE(H)I ~ ~V(H)I t 1. Hence by claim 1 k- e- 2~ i.
So k~ 3 and E~ 0, andlE(H)IaIV(H)If 1. Using the prevíous claims, it
is easy to see that (a), (b), and (c) (figure 9) are the only possibili-
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ties left. It remains to show that H cannot be equal to the graph ín
figure 9(a) and (b). Since k- 3 we have ~E1~ ~ 6, IE2I ~ 5.
If H is equal to the graph in figure 9(a) then eigther x or y corres-

ponds to an Ei or EZ with at least three edges. So we would have a 2-

split, a contradiction. If H is equal to the graph in figure 9(b) we

have a 3-split (e - 0, so E1 is bipartite), again a contradiction.

end of proof of claim 4.

We investigate the case that H equals the graph in figure 9(c). If

yl, y2 and y3 correspond to Ei, Ei and Ei respectively, then we have a
2-split. Indeed, at least one of the Ei has cardínality at least 2
(as IEII ~ 6), and hence it is not contained in the signed graph of fi-

gure 6(as EL is bipartite). So yl, y2 and y3 correspond to E2, EZ

and F.2 respectively, and x and z correspond to Ei and Ei. Since

(G,E ) has no 3-split, both IF.1~ and ~F,2~ are at most 3. I3ut

~E1~o~ h, and hence IEII- IE~I1- 3- Moreover both Ei, and F.i are

triangles, since otherwise (G,EO) would have a 2-split. For the same

reason each of EZ, E2, and EZ is contained in the graph of figure 6.
Conclusion: (G,E~) is contained in the signed graph of figure 7. If
(G,E~) is properly contained in it then possibility (iii) of the
theorem holds, and if not then (iv) holds. Summarizing, we have seen
that if (G,E~) has no 1-, 2-, or 3- split, then (G,E~) satisfies (111)
or (iv).

Part ("L) Let ti"(C,h;~l) sattsfy case ('L) of thcorem 4.1. The Eollowing wtll

be useful in the sequel.

Claim 5. Let G' be an undirected graph, without isolated nodes, such
that M(G') is i somorphic to M(G). Then G' is iso~norphic to G.

Proof of claim S:
G is 2-connected (since (G,E~) has no 1-split), so M(G) is a connected
matroid. Since M(G) is isomorphic to M(G'), G' is 2-connected. Moreover
1E {u,v} is a two node cutset of G, then one side of that cutset con-
sists of two parallel edges only (since there is no 2-split). Now a re-
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sult of Whitney's [1933] (cf. Welsh [1976, p. 86]) yields that G is iso-
morphic to G'.

end of proof of claim 5.

We now consider the three subcases in (2) in Theorem 4.1.

Case I: M(G,EO) i s graphic.
Hence there exísts an undirected graph G, such that.M(G) - M(G,EO).
Denote the edge i n E(G) corresponding to p by ep. Then M(G) -
:~1(G,EO)~p - M(G)~eD - M(G~eo). By claim 5 we may assiane now: G 3
G~ep. Taking v0 equal to the node in which ep is contracted we obtair.
that (G,EO) satisfies (11).

Case II: P9(G,EO) is cographic. Hence there exista an undirected graph
G such that M~(G) - Iy(G,EO). Again, let ep be the edge in E(G)

~co~responding to p. Then P?(G) ~ M(G,EO)~p 3 M(G)~e ~
Phl (G `ep). Hence G is planar, and by claim 5 we may assume that

G`e is ite planar dual. The only odd faces of G are the two faces cor-P
responding to the endpoints of e in G.PCase III: M (G,EO) - R10~
For any element x of R10 we have that R10~x is isomorphic to~
M (K33). This contradicts tlie fact that M(G,EO)~p z M(G) is
graphic. So case III cannot occur. O

Remark:
Theorem 4.3 together with Lemma 4.2 yields a polynomial-time algorithm
which determines whether or not a given signed graph contains an odd-K4
or an odd-K3.
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S. Orientations and Homomorphisms to odd cycles

An orientation of a sígned graph is a replacement of the odd edges by
directed edges. If in such an orientation for each cycle the number of
forwardly dírected edges minus the number of backwardly directed edges
is at most k in absolute value, we say that the orientation has discre-
Pancy k,

'I'hr~irom 5.1

Let (~~,~':~~) hc ~c vl};nrd };r.c~ilc. (~:,~`.~~) does not runt.cln nn odd-K4 or ~cn

odd-K3 íf and only if (G,E~) has an orienta[ion with discrepancy 1.

Proof:

The result follows from the following lemma:

Lemma:

Let M be a{0,1}- matrix. The matroid M represented over GF(2) by M is
regular tE and only if there exists a{0, t 1}-matrix N- M (mod 2)
which represents M over 7l.

ProoE of the lemma: First we prove [he if part.
~

F7 and P7 are not representable over 7L. So by Tutte's charac[erization
of rcYular ma[rolds (Tutte [1958]) any matroid representable over GF(2)
and over TI. is regular.
Next we prove the only if part. (This follows also from the orien[abili-
ty of regular matroids, cf. Welsh [1976, p. 175]. We shall not use this
in the proof below.) Let M be partitioned as below, such that M11 is a
non-singular r x r matrix (over GF(2)), where r is the rank of M over
GF(2).

Let Mli be the matrix inverse of M11 over GF(2). Then M is represented
over GF(2) by

(~) [I ~ M11M12]
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(where I denotes the r x r identity matrix). Sínce iy is regular, and (~)
is a standard matrix representation of M(cf. Welsh (1976, p. 137]),
there exists a{-1,0,1}matrix R- Mli M12, such that R is totally uni-
modular, i .e, all subdeterminants of R are 0 or t 1(Tutte [1958)).
Moreover [I; R] represents M over 7L. Using Ghouila-Houri's characteri-
zation of totally unimodular matrices ( Ghouila-Houri [1962)), one can
prove that there exist {-1,0,1} matrices N11 - M11 (mod 2), N21 - M21
(mod 2) such that both N11R and N21R are {-1,0,1} matríces. N11 is non-
~[nFular over Q, sínce det N11 -- det Míí - l(mod 2), and
N11R - M11R-1 M12 (mod 2), and N21R - M21R - M21M11M12 - M22 (mod 2)
(M22 - M21M11M12, since M11 is of full rank in M). So the desired matrix
N equals:

N11 Í Ni1R.

- ~-.---- `

N21 I N21R

end of proof of lemma.
To provr thi~ theorem, wc only c.onsider the only if pHrt. (The lf pr~rt ls
[rivial.) So, assume (G,EO) does not contain an odd-K4 or an odd-K~. Let
M be the representation matrix of P?(G,EO) defined in (2.1).
Since M(G,EO) is regular, the matrix N, as meant in the lemma, exists.
We may asswne:

1 ~I XE
N ~ ' - ~ - - - ~' where N 1 - MG (mod 2 )

0 ~ N1i

(as we may multiply columns by -1). Now N1 represents the cycle matroid
of G over 7f..

Claim: We may assume that each coliann of N1 has one 1 and one -1.
Proof oE the claim: Indeed, take any spanning forest F in G. By multi-
plying some of the rows of N1 by -1, we can achieve that each coliunn of
N1 corresponding to the edges in F contains one 1 and one -1. Now the
sum of the componenta of each of these columns is zero. Since F is a
basis in M(G), each column of N1 is a linear combination of the columns
corresponding to the edges in F. So each column of N1 is a linear combi-
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nation of the columns corresponding to the edges in F. Hence in eacà
coltmn of N1 the sum of the components is zero.
Since each column has exactly two nonzero entries, both from {1,-1},

this proves our claim.

end of proof of claim.

Next we define the orientation: F.dge uv E ED is direeted from u Co v if

the component of column corresponding with edge uv, indexed by u, v res-

pectively, ís -1, 1 respectively. To show that this oríentation has dis-

crepancy 1, take any cycle C in (G,E ). Since (G,E ) is regular there

exists a vector x- (xp, xl) E{0,1,-1C} {p} UE(G) suOch that

(i) xé - t 1 if and only if e E C,
(ii) xp - t 1 if and only if C is odd,

(iii) Nlxl - 0.

From xp f XE xl - 0 one now easily derives that the orientation defined

above has discrepancy 1. O

Remark:
Theorem 5.1 can also be proved using Theorem 4.3. We leave this to the

reader as an exercise.

The orientation Theorem 5.1 for signed graphs which do not contain an
~odd-K4 or an odd-K3 has some interesting applications. These applica-

tions will be the content oE the remaínder of this section. in these
appLícations the following will play a central role: Let (G,ED) be a
signed graph wíth no odd-K4 and no odd-K3 . Take any orientation of
(G,E~) with discrepancy 1. Orient the edges not in Ep arbitrary. The set
of ares obtained i n this way will be denote by ~. Let Á:- vu ~ uv E Á}.

First we shall see that the min-max relations in Corollary 3.2 are quite

easily proved for signed graphs with no odd-K4 and no odd-K2,3

Shortest odd cycle
Let w: E(G) -.7L~. The shortest odd cycle problem is:
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(5.2) Find an odd cycle C in (G,E ), which minimizes E w(e)0 eEE(c)

If V C V(G), we define [VJ to be the set of even edges i n E(G) leaving V
toqether with the odd edges i n E(G) contained in V or in V(G) ` V. The
collection {[V] IV C V(G)} i s contained in the collection of subsets of
f?(G) meeting each odd cycle in (G,F.O). Moreover the edge minimal members
oF {[V]IV C V(G)} are exactly the edge minimal subsets oE E(G) meeting
each odd cycle. Therefore Corollary 3.2 states that if (G,EO) has no
odd-K4 and no odd-K3~ then the minimum value i n (5.2) equals the maximum
value of the following packing problem:

(5.3) Find a maximum cardinality w-packing of E(G) by sets of the form
[V) (V E V(G)).

In order to prove thís min-max relation, we consider the following op-
ttmizatíon problem (with t~ and l~ as above)

(5.4) maximize a
s.t.: There are n~ E~ for v E V(G), v E Q,

such that for each uv E Ai:

In~ - nu f al C w(uv) if uv E EO
la~ - nu I ~ w(uv) if uv ~ EO

For each v~ 0 we define the following weight function, wa, on Á U Á:

if a L Á and a comes from e C En; then wo(a):~ w(e) - a,
if a E~ and a comes from e E E0, then wo(a):3 w(e) f a,
if a comes from an edge e~ E0, then wo(a):- w(e).

It is not hard to see that (5.4) is equivalent to

(5.5) maximize a
s.t.: There exists no directed cycle in (V~~U~) such that its

weiKht wlth respect to wo is negative.
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From the fact that the orientation of (G,E~), has discrepancy 1 one
y , y, of (5.5) is equal to theeasil derives that the maximum value a~ sa

~mínimum value of (5.2). Hence a is integral (since w is an integer
~

weight fiinction). For each u E V(G), n is defined as the mtnimalu
weight, with respect to wo~, of any dlrected path in (V,1(U1[) with end-

point u. So n~ is an integer for each u E V(G). Moreever, a~ and n~
u u

(u E V(G)) satisfy the constraints in (5.4). Define, for each
~

i-1,...,a the sets

~ ~
7.i:- {z E7l I z- itl, if2,...,ita (mod 2a )},

and the sets

V1:- {uE V(G) I nu E Zi}.

Then {[V1], [V2],...,[Vo~]} i s a w-packing of E(G). Indeed, this follows
easily from the following three

~ ~ ,~
(1) uv E[Vi] rl EG if and only i f I{nu, nv t o} n Zil - 1

(íi) uv E[Vi]`r:G íf and only if ~{nu, nv} n Zi~ - 1,

(iií) for zl, z2 E TL:
~ ~

{1-1,...,a 11{zí,z2} 'i Zil- l} c min{Izl-z21, a}.

Conclusion:
~

If a is the minimum weight of an odd cycle in (G,E~) then there exists
~

a w-packing of the edges in G by o sets of the form [V] with V C V(G).
So the min-max relation in Corollary 3.2 (ii) holds for signed graphs
with no odd-K4 and no odd-K1.

Item:~ rk ~:

(i) There exíst polynoml.~l rilgoríthms whLch solve (5.2) (1n any sígned
graph) (Grótschel, Pulleyblank [1981]: Gerards, Schrijver [1985]). For
graphs with no odd-K4 and no odd-K3 the discussion above yields an easy
polynomíal time algnrlthm for solving problem (5.3), at least as soon as
[he orientation with discrepancy 1 is known. Indeed, first find the mi-

~nimal length, o say, of an odd cycle in (G~EO), Define the weight func-
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tion wo~ on the ares as above. By calculating distances in this weighted
~directed graph one finds the values n,. (u E V(G)). To find the w-pac-

~ -king, some care is needed as a need not be polynomial in the input
~ ~size. By reducinq the values nu (u E V(G)) modulo 2a , we can determine

~(in polynomial time): D:- {d IO c d c 20 -1, there exist a u E V(G):
~ ~ ~
nu - d(mod 20 )}. For each i-0,..., o-1 define pi;~

~
{d E D I i c d c i t a -1}. Now note that in general several of these
Di 's are equal. Instead of determinating all Di, we determine all sets
Dk for which there exists an i with Di - Dk, and the number ak of indi-
ces i such that Ijk ~ Di. It is not hard to see that this can be done in
polynomial time (there are at most IV(G)I of these sets Dk). Now the
elements of the w-packing will be the sets [pk] taken with multplicit-
ly ak, where

~Vk -{u E V~there exists a d E Dk such that nu - d(mod 2a)}.

(íi) The dual of the linear program (5.4) is:

(5.6) Minimize E w(a)f(a)
aE~ U~

s.t. f iR n nonnep,ntive circulatton in (V,~UX) such that

E f(a) - E f(a) - 1.
aEÁ~IE~ aEÁ ~~ ED

It can be shown that ( 5.6) hae an integral optimal solution, and that
(5.6) is a reformulation of (5.2). (a E~ n ED (.~ n ED) means
a E l~ (~ respectively), and a comes from an odd edge.)

Packing with odd cycles

Let w: E(G) -~71f. The w-packing problem for odd cycles is:

(5.7) Find a maximum cardinality w-packing of E(G) by odd cycles.

Corollary 3.2 states that, if (G,E~) has no odd-K4 and no odd-K3~ then
the maximum value in (5.7) equals the minimum value in:
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(5.8) Find a set V C V(G) that minimizes E w(e).
e E[V]

([V] is defined in the subsection "shortest odd cycle" of this section).
Using the orientation Theorem 4.1 we now shall prove this min-max re-
lation for signed graphs with no odd-K4 and no odd-K3. Consider the
following circul~tíon prohlem:

(5.9) maxímtze E f(a) - E f(a)
a Et~ r1E0 a E~ rlEO

s.t. f i s a nonnegative circulation (V,E~ u~), such that:
for each al E Á, a2 E Á coming from the same edge
e E E(G): f(al) f f(aZ) c w(e).

Fonnulated this way, (5.9) is not a proper circulation problem. However
it can be transformed into a circula[ion problem, as follows: replace
each pair al E~, aZ E~ coming from an edge e E F,(G) by the configura-
tíon in figure I0. To arc é we asslgn capacity w(e), all o[her new capa-
cities are ~.

al

a2

fi~ure I(~

So we see that the maximum in (5.9) is achieved by an íntegral f.

Lemma 5.10: (5.7) and (5.9) are equivalent.
Proof:
For each cycle C in (G,EO) we define the circulation fC as follows. In
Á u Á there are two directed cycles which correspond in a natural way
with C. In case C is odd select from those two cycles that one which
uses more edges form Á then from ~. In case C is even select an arbi-
trary one of these two directed cycles. Call the directed cycle chosen
DC. Now let fC(a) - 1 íf a E DC, fC(a) ~ 0 else. Sínce orientation ~ has
discrepancy 1 we have: E fC(a) - E fC(a) ts equal [0 1

a E~ ~~ EO aE~ n EO
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if C is odd, and is equal to O if C is even. Now, let C1,...,C[ be a w-
packing by odd cycles. Then fC t... f fC is a feasible solution of

1 t
(5.9), with objective value t. Conversely, let f be an integral feasible
solution of (5.9). Then f is the sum of characteristic vectors oE direc-
ted cycles in D(G,EG). The number of odd cycles used in this sum is at
least the objective value of f. Ay the feasibility of f, these odd cy-

cles form a w-packing of E(G). p

The dual linear program of (5.9) is:

(5.11) minimize: E w(e)d(e)
e E E(G)

s.t. d(uv) E Q} for uv E E(G), such that
there are n E Q for u E V(G) satisfying:u
for each uv E p;
1-d(uv) ~ nv - nu ~ 1 t á(uv) if uv E E0,
-d(uv) ~ nv - nu C á(uv) if uv ~ EG,

Above we have seen that the dual linear program of (5.11), i.e. (5.9),
has an integral optimal value for each w: E(G) -r7l }. Hence, so has
(5.11). From this it follows that (5.11) has an integral optimal solu-
tion. This is a consequence of Lemma 5.12 below. As we shall see, Lemma
(5.12) is a corollary of a well known result of Edmonds and Giles []977]
(cf. Schrijver, Corollory 22.1a [1986]).

Lemma 5.12: Let M E 7~kxm~ N E~kxn~ and b E 71k, such that for each
c E 7Lk, for which

max {cTx I Mx f Ny t b}

exists, the optimal value of (~) is an integer. Then the optimal value
of (~) is at[ained by an (x,y) E TL m x Qn for each c. If moreover, N is
totally unimodular, then (~) is attained by an (x,y) E 7Lm xTl n for each
c for which (~) exists.
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Proof:
Let P:- {x E Qn~3 m[MxfNy C b]}. Then, under the assumptions of the

y E Qt
lemma, max {cTx I x EP} is an integer for each c E~(if the maximum

exists). From the above mentioned result of Edmonds and Giles [1977], it

then follows [hat P- convex hull (P~i7l n). This settles the lemma. p

For each d: E(G) --~ Q} we define the weight function ~: t~ U Ai --. 0 by
a

d(e) t l if a E A, and a comes from e E E~

~(a) - 6(e) - 1 1 f a E ~, and a comes fram e E F.G

d(e) if a E t~ U t~, and a comes from e~ EG.

Obviously (5.11) is equivalent to:

(5.13) minimize E w(e)d(e)
e E E(G)

s.t.6(e) E Q} for each e E F.(G), such that
there exists no directed cycle in ~ U~ with negative

weight with respect to ~.

Lemma: (5.13), and hence ( 5.11), has a{0,1}-valued optimal solution
d.
Proof: Orientation ~ has discrepancy 1. Hence for each directed cycle
~ in l~ U~( corresponding to cycle C i n G) we have that

E ~(a) - E 6(e) - 0,1 or -1. Together wi[h Lemma 5.12 this
a E G~ e E E(C) O
proves the lemma.

~ ~
Now, let d, n be an íntegral optimal solution of (5.11) with
6~ {0,1}- valued. Define V:- {u E V(G)I n~ is even }. It ís straightfor~u
ward to check that 6(uv) - 1 if and only if uv E[V]. So the optimal

solution of (5.11) corresponds with the optimal solution of (5.8).
Conclusion:

If (G,E~) has no odd-K4 and no odd-K3, then the maximum of (5.7) equals
the mimimum of (5.8). So the min-max relation in Corollary 3.2 (i) holds
for signed graphs with no odd-K4 and no odd-K~.

Next we give another applícation of the orlentatíon [heorem S.l.
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Homomorphisms to odd cycles

Let G1 and G2 be undirected graphs. We call a map ~: V(G1) --~ V(G2) a
homomorphism from G1 to G2, if ~(u)~(v) E E(G2) for each uv E E(G1).
A parity preserving subdivision of a signed graph (G,E~) is an undirec-
ted graph, obtained from G by replacing odd (even) edges by paths of odd
(even) length. The following result is another characterization of
signed graphs with no odd-K4 and no odd-K3.

Theorem 5.14
Let (G,E~) be a signed graph. Then (G,E~) has no odd-K4 and no odd-K3 if
and only if for each parity preserving subdívision G1 of (G,E ) with
shortest odd cycle C1, there exists a homomorphism ~ from G1 to C~.

Proof:

We leave the if part to the reader. E.g, for the graphs i n figure lla, b
there exísts no homomorphism to their shortest odd cycle. (However, for
the graph in figure llc such homomorphism exists.) For the only if part
we may assume: E~ ~ E(G), G1 - G. Let the length of the shortest odd
cycle in G be 2k t 1. We define the following weightfunction
w: t~U~ a7L

w(a):-

a
A

Using the fact that orientation ~ has discrepancy 1, it is not hard to
see that ~ U Á has no directed cycle with negative weight (with respect
to w), ilence there exista a"potential" ~: V(G) -.TL satísfying:

~u -~v ~`~(~ ) if uv E Á U t~, So m satisfies:

k ~~u -~v ~ k f 1

if uv E~. Hence for each uv E E(G): 2~ - 2~ - t 1(mod 2k f 1). Sou vu--. 2~(u) (mod 2k t 1) maps G to an cycle of lenght 2k t 1. p
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(a)

Remsrks:

(b)

~í~ure 11

(c)

(i) The proof above relies on Theorem 5.1, and hence on Tutte's deep
result that a matroid is regular if and only if it has no

~
F7 and no F7 minor. A direct elementary, though more complicated, proof
of (5.14) can be found in Gerards [1985].

(ii) Theorem (5.14) can be used to prove the min-max relation (ii) of
lemma 3.1 for signed graphs with no odd-K4 and no odd-K3 and weight
functíons w which satisfy: w(e) is odd if and only if e E E~.

(iii) From theorem 5.2 we immediately get: Let G be an undirected graph,
with no odd-K4 and no odd-K3 (EU-E(G)). T}ien G is 3-colorable. This is a
special case of a result of Catlin [1979] (Theorem 6.3 of this paper).
Using a similar technique as in the proof of (5.14) one can prove the
following result of Minty [1962]: A graph G has an orientation such tha[
for each cycle C the number of forward edges with respect to each of
both ocientations, of C is at least k IE(C~ if and only if G is
k-colorable.
Indeed, "only if" is trivial; "if" follows similarly to the proof of
Theorem (5.14) by defining:

k- l ífa~ Á

w(a):-

-1 if a E ~

(ív) Theorem 5.14 extends a result of Albertson, Catlin, and Gíbbons
[1984] stating that an undirected graph G can be mapped homomorphi-
cally onto an odd cycle of lenght M if no subgraph of G can be fold to a
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homeomorf of K4 in which all faces are cycles of lenght M(foldinR
means iteratively identifying nodes at distance two).

Stable sets
A stable set in an undirected graph G is a subset S of V(G), such that
uv r~ E(C) for each u, v E S.
The stable set polyhedron, PS(G), of G is the convex hull of the charac-
teristíc vectors of all stable sets in G. Using Theorem 5.l one can
prove:

Theorem 5.15:
Let G be an undirected graph, containing no odd-K4 and no odd-
2K3 (EO - E(G)). Then the system of inequalities:

u v

(u E V(G))
1 (uv E E(G))

~ V(C) -1
2 (C odd cycle Sn G)E xu

u E V(C)

is a so called totally dual integral system for PS(G). (cf. Edmonds,
Giles [1977]).

This result can be extended to graphs with no odd-K4, hereby extending a
result of Boulala and Uhry [1979]. (Gerards [1986], forthcoming paper.)

6 Signed Graphs with no odd-K4

Signed graphs with no odd-K4 have interesting properties with reapect to
combinatorial optimization. In section 3 we mentíoned Seymour's result
(Lemma (3.2), (i)). A second one is the following:

Let A be an integral m x n matrix such that i n each row the sum of the
absolute values of the entríes i s at most 2. Define the signed graph
E(A) as follows. Delete the rows which have one non-zero entry. Consider
the new matrix as the edge-node incidence matrix of a graph G(tows cor-
respond to edges). The edges corresponding to rows with a 1 and a-1
wíll be even i n E(A) , the other edges odd.
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Theorem 6.1 (Gerards, Schríjver [1985])

Let A be an integral m x n matrix, such that in each row the sum of the

absolute values of the entries is at mos[ 2. Then the following are

equivalent:
(í) E(A) does not contatn an odd-K4.

(11) For each a, b E ZL n; c, d E 7l,m the convex hull of all integral vec-

tors in
n

P:- {x E m I a t x t b: c ~ Ax t d}

n whereis equal to the intersection of the halfspaces {x E 0 Icx t[S]},
c E TL n, S E~ such that cx t R for each x E P. ([B] denotes the largest
integer not greater than S.) p

The following two theorems on signed graphs with no odd-K4 are proved
using Theorem 2.6 and results from the previous sections for signed
graphs wíth no odd-K4 and no odd-K~.

First we state a decompositíon theorem, due to Lovbsz, Schrijver, Sey-

mour, and Truemper [1984, unpublished papee]. IC immédiatély follows

from Theorems 2.6 and 4.3.

Theorem 6.2
Let (G,ED) be a signed graph containing no odd-K4. Then (G,E~) has a

1-, 2-, or 3- split, each part of the split contains no odd-K4, or

(G,ED) is a bipartite signed graph with one extra node (and edges joi-
ning that node), or (G,E~) is planar with at most two odd faces, or

2
(G,ED) - K3, or (G,ED) is the signed graph of figure 8.

Next we prove a result of Catlin [1979] using Theorems 2.6 and 5.1.

Theorem 6.3 (Catlin [1979])

0

Let G be an undirec[ed graph. If (G,E(G)) does not contain an odd-K4
then G is 3-colorable.
Proof:
Let G be a minimal counterexample. Obviously G is 2-connected. Suppose
{u,v} is a two node cutset of G. Then, one part of this cutset (possibly
after adding an edge from u to v) is a smaller counterexample. So G is
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3-connected, and by theorem 2.6 it contains no odd-K3. Now theorem 5.14
yields that G is 3-colorable, a contradiction. ~
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7 Grafts, T-joins

Along the lines of the previous sections we state some results on an

object called graft, by Seymour [1980]. A rg aft is a pair [G,T], where G

is an undirected graph and T a subset of V(G). Associated with a graft

we define the following binary matroid M[G,T]. Let MG be the node-edge

incidence matrix of G. Moreover let XT E IRV(G) be the characteristic

vector of T as a subset of V(G). Then M[G,T] is the binary matroid re-

presented over GF(2) by:~ ~ ~l~

MG i XT II

The element of M(G,T] corresponding to the last column of this matrix

will be denoted by t. A T-join is a collection E' of edges, in E(G) such

that each v E T meets an odd number of edges in E1, and each v~ T meets

an even number of edges in E1. The circuits of M[G,T] are the cycles in

G, and all unions of {t} with a minimal T-join in G. If V C V(G) such

that both V n T and (V(G)` V) n T are odd then the collectíon,

6(V), of edges from V to V(G)`V is called a T-cut. Note that the minimal

T-cuts are exactly those minimal edge sets meeting each T-join. Conver~

sely the minimal 'f-jolns ar~~ the minimal edge sets meeting each 'f-cut.

Remark:
There is a similari[y between grafts and signed graphs. Take an arbi-

~
trary minimal T-join EO in G. Then the circuits of M[G,T] are the even

cuts, and each union of {t} with an odd cut. Here odd (even) means, con-

taining an odd (even) number of edges from E0; so M[G,T] is obtained

from h]~(G) by signing in the same way as M(G,EO) is obtained from
M(G).

We define two special types of grafts: a K4-partition and a K3 2- ap rti-.
tion. They are indicated tn flKure l2. Clrcles stand for connected sub-

graphs, odd (even) Lndicates that the correspond[ng connected subgraph

contains an odd (even) number of inembers of T, and lines stand for

edges.
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K3~2 partition

In case each circle contains exactly one point we use the terms:
the graft K4, the graft K3~2 respectively. I.e. the graft K4 is
[K4, V(K4)], where K4 is the 4-clique, the graft K3 2 ís [K3~2,T] wherer
K3~2 is the complete bipartite graph with colorclasses of size 3 and 2,
and T~ V(K3~2) ` {w} where w is one of the nodes of degree 3. We say
that a graft [G,T] contains a K4-partition ( K3~Z-partition) if each com-
ponent of G containa a even n~ber of points in T, and at least one com-
ponent contains a K4-partition (K3~2-partition respectívely) covering
that component. (By covering we mean that each node of the component is
~ node of the K4-partition ( K3~2-partltion respectively).
We also define reduc[ion operations for grafts. There are: deletion of
an edge, and contraction of an edge. In the latter case we have to mo-
dify T too. If edge uv is contracted into the new node w, then T~uv is
T`{uv} if ~{u,v}~ n T~ is even and (T`{u,v}) V{w} else. If the graft
[G2,T2] is obtained from the graft [G1, T1] by one or more of these re-
ductions we say: [G1,T1] reduces to [G2,T2). The relation with matroid
minors i s obvious:
- M[G,T)`e - M[G`e,T];
- M[G,T]~e - M[G~e,T~e].
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`loreover

- ,N[G,T]'~,t - :~~1(G):

-~,1[G,T]~t is the binary ma[roid with as circuits: all minimal T-joins
and all cyc.les not containing a T-juin.

The following is easy to prove.

Lemma 7.1.

Let [G,T] be a graft. Then the following are equivalent:

(i) 41 [G,TJ has an F7-minor using t;

(ii) [G,T] reduces to the graft K4;

(iii) [G,T] contains a K4-partition.

Similarly, the following are equivalent:
~

(i) ~,' [G,T] has an F7-minor using t;

(ii) [G,T] reduces to the graft K3 2;~
(111) [G,T] contaíns a K3~2-partition.

Corollary 7.2.
Let [G,T] be a graft. Then ,ti1(C,T ] is regular 1E and only if [C,T] does
not contain an K4-partition or a K3~2-partition. ~

Min-max relations
Like in section 3, from Seymour's characterization of matroids with the
max-flow-min-cut-property (Seymour [1976]), the following
lows:

Theorem 7.3.
Let [G,T] be a graEt. Then the following are

(i) [G,T] contaíns no K4-partttiton;

(ii) For each weight functfon w: E(G) i7L ~

equivalent:

the minimum

result fol-

weight of a T-

join equals the maxímum cardinality of a w-packing with T-cuts.

Similarly, the following are equivalent:

(i)' [G,T] contains no K3~2-partition;
(ii)' For each weight functíon w: E(G) i 7L {, the minimum weight of a T-

cut equals the maximum cardinality of a w-packing with T-joins.

Decompositions
Now we go along the lines of section 4. First we define the notion of
splits for grafts. Assume F.1 and EZ are non-empty subsets of E(G), par-
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titioning E(G). Denote the set of nodes ín V(G) spanned by E1, E2 by V1,
V2, respectívely. G1 is defined by: V(G1):- Vi, E(G1):- E1 (1-1,2).
Moreover ass wne ~TI even and non-zero.

1-split

If IV1 n V2I- 0, then [G1,Tln V1], [G2,T n V2] is a 1-split of [G,T]. If
~V1 n V2~ - 1, V1 n V2 -{u} say, and G1 and G2 are connected, then
[G,T1], [G2,T2] i s a 1-split of (G,T). T1 is defined as T`V2 if IT n V2I
is even, and as (T`V2) U{u} if rf n V1~ is odd. T2 is defined similarly.

2-split

If ~V1 n V2 I- 2, V1 ~~ V2 -{u,v} say, and G1 and G2 are connected, then
we define [G1,T1) as follows.

If T`V1 ~ 0 then V(G1):3 V1, E(G1):- E1 V{uv}, and T1:3 T.
If T`V1 t~, then V(G1):s V1 U{v~}, E(G1) - ElU {uv~,v~v}, and T1:-~
(Tn V1) u{v } i f ~T `Vl l is odd, T1:- (T nVl)e{u,v~} if I T`V1~ is even.
[G2,T2] i s defined similarly. The pair ( G1,T1], [G2,T2] obtained in this
way is called a 2-split, unless G1 or GZ is equal to the graph i n figure
13 below, and w E T.

w

u C) v

fi~ure 13

3-split:
If IV1 ~~ V2~ ~ 3~ V1 n V2 ~{ul,u2,u3} saY.
T C Vi, IE2I ~ 4, then we define [G1,T1] as~ ~ ~E(G1):- E1V {ulv ,u2v ,u3v }, and T1:~T. We
(A 3-split has one part only.)

G1 and G2 are connected, and
~follows. V(G1):- V1U {v },

call [G1,T1) a 3-split.

The following is straightforward to prove
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Lemma 7.4.
Let [G,T] be a graft with a k-split (k t 3) and no R-split for any
k ~ k. Then [G,T] has no K4-partitíon and no K3 Z-partition íf and only~
iE each part of the k-split has no K4-partition and no K3~2-partittort.

Proof:
Under the conditions mentioned each part of a splít is a reduction of

the original graft. This settles one side of the equivalence. The other
side can be proved by case checking. p

Now we state and prove a decomposition result for grafts with no K4-par-

tition and no K3~2-partition.

Theorem 7.5

Let [G,TJ be a graft containing no K4-partítion and no K3 Z-partition.~
Then one of the following holds:

(t) [G,T] has a 1-, 2-, or 3-split.

(ií) ITI is odd or ITI t 2.
(iii) G is planar with all members of T on one common face.

(iv) G- K3~3, and T- V(K3,3).
Proof:
If [G,T] has no 1- or 2-split, then M[G,T] is graphic if and only if
(ii) holds, h1[G,T] is co-graphic if and only if (iíi) holds, and
M[G,T] - R10 if and only if (iv) holds. The proofs are similar to Part

(2) of the proof of Theorem 4.3.

The assumptions imply tha[,'.;[G,T] is regular. Assume [G,T] has no 1-, 2-
or 3-split and does not satisfy one of (ii), (iii) and (iv). We are go-
ing to derive a contradiction. By Theorem 4.1 we have a partition Elu
EZ of E(G) such that

(~) rM[G,T](E1) } rM[G,T](Epu{t}) - rM[G,T](E(G) U{t}) t k- 1

with k- 1, 2 and IE1~ , IEZI f 1~ k.

or k- 3 and IE1 I, ~E2 ~ f 1~ 6.

For each E' C E(G) we have:

rM[G~T](E') - rM(G)(E') - rhl[G,T](E~ u{t}) - e(E')
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where e(E~) - 0 if each component of (V(G),E') spans an even number of
points in T, and E(E~) - 1 else.
So from (~) we get:

rM(G)(E1) f rM(G)(E2) - rM(G) (E(G)) -E (k-e) -1,

where e:- e(E2) (E(E(G)) - 0, since, if not, then G is disconnected,

or ~TI is odd).

Define E~,...,Ei, E2,...,E2, and the auxilary graph H as ín the proof of

'Cheorem 4.3 (Note, that if E2 -~, then k- 1 and e- 0. So T-~, and

(ii) holds).

Claim 1: H is a bipartite connected graph with no isthmuses. Moreover

~E(H)I- IV(H)I-f- k- e- 2.

Proof of claim 1:
The proof is similar to the proofs of claim 1 and 2 of the proof of

Theorem 4.3.

end of proof of claim 1

Claim 2: k- 3, e- 0: 1~ is homeomorf to the graph in figure l4(b).
Proof of claim 2: If H is a cycle, then [G,T] would have a 2-split.
Claim 1 now yields k- e- 2 ~ 1. So E c k- 3, i.e. k- 3, e- 0. So
~E(H)I - IV(H)~ f 1. Since H has no isthmuses, H is homeomorf to one of
the graphs ín figure 14. If H is homeomorf with the graph in figure
14(a), then [G,T] has a 2-split. So H is homeomorf with the graph in
fígure 14(b).

end of proof of claim 2

f it;ure 14
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Hence G is of the form as in figure 15, where

A, B E{Ei,...Es, EZ,...,E2}, and C1, CZ and C3 are unions of elements

of {Ei,...,Ei,E2,...,E2}`{A,B}. Note that for i- 1, 2, 3 it is

possible that ui - vi, so Ci z 0.

fi~ure 15

Claim 3: Ci a~, Ci '{uivi}, or Ci -{uiwi,wivi} with wi E T, for i-

1, 2, 3. Moreover IC1 I f ICZ I f IC3 I t 5.

Proof of claim 3: The first part of the claim follows sínce [G,T] has no

2-split. If the second part would not be true, then Ci ~{uiwi,wivi}

with wi E T for each i- 1, 2, 3. But then [G,T] has a K3~2-partition (T

is even), a contradiction.
end of proof of claim 3

Claim 4: A U B a E1, C1 U CZ ~~ C3 - E2.
ProoE of claim 4: Since ~EII ~ 6, E1 cannot be contained in C1U CZU C3.

So we may assume A- Ei. The edges in C1 U C2 U C3 which are adjacent
with ul, u2, or u3 cannot be in E1 (Since A is a component of EZ). Now
from claim 3 and, again, ~E1~ ~ 6 i f follows that B~ Ei. Since EZ

~ 5, and IC1 ~~- ~C2 ~ f ~ C3 ~ t 5: C1 U CZ U C3 ~ E2
e nd of proof of claim 4
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Claim 5: G is the graph in figure 16; wl, w3 E T.
Proof of claim 5: From the previous it follows that we only need to
prove that A- F.~ and Bs F,i (figure 15) are triangles. If IE~I or IEilis
greater tlian or equal to 4, [G,T] has a 3-split. Since IElI~ 6, this
yields IEiI - IEi~ - 3. If Ei or Ei is not a triangle then one easily
finds a 1- or 2-split.

end of proof of claim 5

figure 16

So wl, w3 E T. If u2 E T, or v2 E T, then we would have a K3 Z-partition.
(as ITI is even). Hence T lies on the outer face of the planar graph G,
i.e. (iti) holds, a contradiction. ~

Orientations
The following result is proved similarly as Theorem 5.1.

'Cheorem 7.6
Let [G,T] be a graft. [G,T] has no K4-partitíon and no K3 2-partition if~
and only if one of the Eollowing holds.
( i) IT I is odd.

(ii) There exists a partition T1, TZ of T with I T1I 3 IT2I such that
each T-join is an edge disjoint union of cycles and of IT1I paths from
T1 to T2, p

Remark: Theorem 7.6 yields the following result ( answering a question of
A. Frank).
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Let G be an undirected connected graph. Then the following are
equivalent:

(i) G has an orientation t~ such that
I{uvE~luEX, v~ X}I - I uv E l~lu ~ X, vEX} I c 1, for

each mintmal cut ó(X).

(ii) [G.VoddJ has no K4-partition and no K3 2-partition..
(Vodd denotes the set of nodes in G with odd degree.)

We shall only indicate how (i) follows from (ic). Assume (11) holds. Let
T1, T2 be a partition of Vodd as in meant in (7.6 (íi)). Let C1,...Ck,
be a collection of cycles in G, and P1,...,PIT la collection of paths

1
from T1 to T2 such that E(C1),...,E(Ck), E(Pl),...,E(PIT I) partition

1
E(G) (E(G) is a Vodd-~oin). Now orient G such that each Ci becomes a

directed cycle, and each P1 becomes a path directed from its endpoint in
T1 to its endpoint in T2. That this orientation satisfies (i) follows
from the observation that if ó(X) is a minimal cut then IX n Tll -
IX nT2I c 1. (Indeed, since ó(X) is a minimal cut, there exists a Vodd-
join F such that IFr~d(X)I c i. Applying 7.6 (ii) to F yields
I X nTl I- I X nT2l c 1.)

Using Theorem 7.6 we shall now prove the min-max relations in Lemma 7,2
for the case that [G,T] has no K4-partition and no K3 2-partition. So.
let [G,TJ have this property. We may assume, that G is connected and
IT~ is even. Let Tl, T2 be a partition of T as is meant in Theorem 7.6.
We define a directed graph D as follows. V(D) ~ V(G), and the areset A
of D is obtained by replacing each edge uv by two ares, one uv, from u
to v, the other, vu from v to u.

Shortest T-join

Let w: E(G) ~ 7L~. The shortest T-join problem is:

(7.7) Find a T-join E'C E(G), which minimizes E w(e).
e E E'

This optimization problem is equivalent to the following circulation
problem (w(a):~ w(uv) for a- uv or a- ~u with uv E E(G)).
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(7.8) minimize E w(a)f(a)
a E A

S.t.

a enters u a leaves u
0 if u E V(G) ` T

1 if u E T1

E f(a) - E f(a) --1 if u E T~

f(a) ~ 0 if a ~ A.

To prove the equivalence, first observe that any T-join E~ in E(G) is

the edge disjoint union of ITlI patha from T1 to T2 and, possibly, some

cycles. So there exists a feasíble solution of (7.8), with

E w(a)f(a) - E w(e). Conversely, let f: A--. ~ be an optimal
aEA eEE'
solution of (7.8). Since the constraint matrix of (7.8) is totally uni-
modular we may assume that f(a) E 7L for each a E A. The set of ares
E':- {a E Alf(a) is odd} is a T-join, with e E E, w(e) c

E
a É A

w(a)f(a). So (7.7) and (7.8) are equivalent.

The dual linear program of (7.8) is (7.9) below; again there are inte-

~;ral o~itimal solutlons.

( 7.9 ) Maximize E tr - E n
uE T1 u uE TZ

u

s.t.n - n c w(uv) if uv E A.v u

Equivalently:

(7.10) maximize E n- E n
uE T1 u uET2 u

s.t.lnv - nul c w(uv) if uvE E(G).

Let n E 7lV(G) be an optimal solution of (7.10). Define for each a with
min {nulu E V(G)} c a c max {nulu E V(G)}, the set
V~:- {u E V(G) Inu ~ a}. We shall need the following lemma.
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Lemma 7.11 Let U C V(G) such that the subgraph of G induced by U is con-
nected. Then d(U) contains at least I~U n T1I - IU n T2II mutually
edge-disjoint T-cuts.
Proof: Let V1,...,V~ be the node sets of the components of the subgraph

of G induced by V(G)`V. Let, without loss of generality, Vi,...,Vk

(k ~ k) be those sets Vi withlVi n TI odd. Take edges el,...,ek E E(G)

from V1,...,Vk, respectively, to U. Then there exists a T-join E' such

that each e E E' is entirely contained in V, or in Vi (i-1,...,k), or

is an element of {el,...,ek}. Since E' contains an edge disjoint union

of IT1I paths from T1 to T2 it follows that k) IIV rl T1I - IV n T2II-
Since each d(Vi), i-1,...,k, is a T-cut this proves the lemma. O

Using this lemma we can construct a w-packíng with T-cuts of cardinality

at least E n- E n. For each a E 7L and each component V of
uE T1 u uE T2 u

V~ such that IV n T1I - IV n T2 I~ 0, take IV n T1 I- IV n T2I mutually

edge disjoint T-cuts in d(V). The T-cuts obtained in this way from the

desired T-packing, indeed, they form a w-packing since the sets d(V~)
do so. Moreover the cardinality of this w-packing is greater than or

equal to E n- E n(since the components V of V with
u E T1 u u E T2 u 1

IV .~ T1I - V rl T2It 0 are not used to construct the w-packing). What we
have proved now is that the minimum of (7.8) is not greater than the

maximum value in the following packing problem:

(7.12) Find a maximum cardinality w-packing with T-cuts.

The fact that this maximum is not smaller than the minimum of (7.8) is
trivial. Hence we have proved the min-max relation (ii) in Lemma 7.3 for
signed graphs with no K4-partition and no K3- partition.

Packing with T-joins

Let w E 7Z E(G). Consider the problem:

(7.13) Find a maximum cardinality w-packing with T-joins
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We shall prove that (7.13) is equivalent to

(7.14) maximíze k

k if u E T1

s.t. E f(a) - E f(a) --k if u E T1
a enters u a leaves u

0 3f uE V(G)`T

f(uv) ~- f(vu) G w(uv) if uv E E(G)

f(uv) ~ 0 if uv E A.

The fact that each w-packing with k T-joins yields a feasible solution
~

of (7.14) of value k is obvious. Conversely, let f: A i m},
~

k E q}form an optimal solution of (7.14) which is not a convex combi-

nation of other optimal solutions.

Lemma 7.15 k~ E 7L~; f~(a) E 7l } for a E A.

Proof Obviously, if k~ is integer an then so is f~(a) for a E A. (Ob-
~serve the construction i n figure 10.) Assume k ~ 7L ~. Let E' be the set

of edges uv E E(G) for which 0 ~ f(u~) -~ f(vu) ~ w(uv). Let V1,...,VR
be the vertex sets of the components of E'. If E' would contain a T-

~ ~join, then f, k would not be optimal. Let EO C E(G)`E' be a minimal
set so that EO V E' contaíns a T-join. Then there exists a set Vi~

~(i -1,...,R) such that there is exactly one edge, e say, in EO leaving
Vi,~. Let F be a minimal T-join in EO V E'. By the minimality of EO the
edge e must be in F. Since F is the edge-disjoint union of ITlI paths
from T1 to TZ we now know that IVi~ n Tl l- I Vi~ n T2 I- f 1. Now
the fact that f~(uv), f~(vu) E Tl for each uv E d(Vi~), and the fact that~ ~f and k form a feasible solution to (7.14) contradicts the fact that
k~ ~ 7l. ~

Next we must prove that there exists a w-packing with T-joins, of car-
dinality k~. This follows (by induction) from the following lemma:

Lemma 7.16: Let k E 7L~~ f E 7L } be a feasible solution of (7.14), with
k~ 1. Then there exists a solution k1E ~}~ fl E TL} with: kl - 1, and
for each a E A if fl(a) ~ 0 then f(a) ~ 0.
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Proof: Define the following capacitated auxilary digraph D'. V(D') -

V(D) U{s,t}. (s and t are two new nodes). The are set A(D') of D' con-

sists of the ares ín A together with all ares of the form su with u E TZ
~

and ut with u E T1. The capacity function c: A(D') i 7L} is defined by:

c(a) - f(a) if a E A, c(su) - 1 if u E T2, and c(ut) ~ 1 if u E T1. If

the lemma is not true then the maximal flow from s to t in this capaci-

tated auxilary digraph is less than IT2I. By the max-flo~rmirrcut theo-

rem there exists a U C V(G) such that

E c(a) ~ ITZI.
, c A( o' )

a leaves U U~ s}

Hence

(~t) E f(a) f IT2`UI f IT1 n UI ~ ITZI.
a E A
a leaves U

Since f and k form a feasíble solution of (7.14) we have

E f(a) ~ max {O,kITZiIU I -kIT1nUl}
a E A

a 1 eaves ll
Combining this with ( ~) we get

max {O,kl T2uU~ -kIT1uUl} ~ ITZUUI-IT1uUl.

which contradicts with k~ 1.

The dual linear program of (7.14) is

(7.17) minimize E w(e)k(e)
e E E(G)

s.t. n- n t fC(uv) ~ 0 if uv E Av u
R(e) ~ 0 if e E E(G)

E n- E n~ 1.
u E T1 u u E TZ u
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For each wE 7L ~E(G) [he minim~ value of (7.17) is an integer. (By Lemma
7.15 and linear programming duality.) Hence, by Lemma 5.12, (7.17) has
an integral optimal solution.

Using this lemma we can prove that (7.17) is equivalent to:

(7.1R) h'Ind n U C V(G) with IV(G)~~T~ odd, such that E w(e) is
e E d(U)

minimum.

To prove the equivalence, first assume that n, R form an integral fea-
sible optimal solution of (7.17). Then there exists a E 7L such that
V:- {u~au - a} satisfies IV n Tll ~ IV ~~T2I (since

E a- E n- 1). Since each T-join containslTll mutually edge
u ET1 u u ET2 u

disjoint paths from

for each uv E d(V):

E w(e) c E
e E d(U) e E
Conversely let U be

T1 to T2, d(V) contains a
n -u n~ ~ 0~ so R(uv) ) 1.

T-cut, d(U) say. Moreover
Therefore

w(e) c E w(e)R(e).
d(V) e E E(G)
an optimal solution to (7.18). By Lemma 7.11 we may

assume that IU rl Tll - IU ri T2I - 1. Define n:~ 1 if u E U; n:~ 0 ifu u
u E V(G)`U; R(e) - 1 if e E á(U) and R(e) ~ 0 if e E E(G) ` d(U). Then

E w(e) - E w(e)R(e) and n and R form a feasible solution
e E d(U) e E E(G)
of (7.17).

Grafts with no K3-partition.

The following result is of the same nature as Theorem 2.6.

Theorem 7.19
Let [G,T] be a graft wíth no K4-partition. If G has no one node cutset,
and for each two node cutset {u,v} of G, one side of the cut consists of
two edges uv~ and v~`v in series, with v~ E T, then [G,T] has no K3,2-
partition, or [G,T] is equal to the graft Kg~2 (i.e G is the bipartite
graph K3~2; T s V(G) `{w}, where w has degree 3).



Proof:

Assume [G,T] satisfies the assumptions and contains a K3 2-partition. We.
shall prove that (G,T] equals the graft K3~2. First we define extended

K3 2-partition, by figure 17. The sets U1, U2, V1, V2, V3, W1, W2, W3

cover V(G). The graphs induced by these sets are connected. For each

i-1,2,3 ~Vi n TI is odd, and IWi ri T I is odd or Wi a 41. The lines are

edges.

fi~ure 17

Since [G,T] has a K3~2-partitíon, it has an extended K3~2-partition. Let

U1, U2, etc.... be an extended K3~2-partition with IUII t IU2I minimal.

First note that if there would exist an edge from Vi u Wi to Vj U Wj

(itj) then [G,TJ would have a K4-partition.

Claim 1: There exists a ul E U1 and edges from ul to V1, V2, and V3.

Also [here exists a u2 E U2 and edges from u2 to Wi or if Wi a f7J to Vi

for 1- 1, 2, 3.
ProoE of claim 1: Obviously, we only need to prove the existence of ul.

There exísts a node u E U1 and mutually node disjoint paths Pl, P2, P3

from u to V1, V2, V3 respectively, such that the only points of P1, P2,

P3 not in U1 are the end points in V1, V2, V3 respectively. Let X be the

set of nodes in U1 which lie on P2 or on P3 (so u E X). Denote by Ui the

set of nodes v E U1` X for which there exists a path in U1`}{ from v to

V1. We prove that Ui - 0, i.e. P1 consists of a single edge. By symmetry
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between P1, P2 and P3 also P2 and P3 are single edges, so the node
ul E U1 exists: indeed, take ul - u. Hence we may suppose Ui ~~. We

shall construct an extended K3~2-partition, contradicting the minimality

of ~U1 ~ t IU2 I. Replace U1 by U1`Ui. If IU1 n T I is even replace V1 by

Ui u Vi. If IUi n TI is odd and W1 ~~ replace V1 by Ui u VI u W1, and

W1 by the empty set. If ~Ui n TI is odd and W1 z A replace V1 by Ui, and

set W1:- Vl. All other sets in the original K3~2-partition remain the

same. i3y this we obtained a new K3 2-partition violating the assumed
.

minimality of ~U1~ t ~U2~.
end of proof of claim 1

Claim 2: IUII - IU2I - 1
Proof of Claim 2: Let Ui :~ Ui `{ui} (1-1,2) where ul and u2 are the
nodes established by claim 1. As in the proof of claim 1 one easily

3
shows that no edge leaving U1 or U2 can enter u(Vi u Wi). Assume

i~ 1
U1 u U2 ~~. Then {ul,u2} is a two node cutset of G since there are no
edges from Vi u Wi to Vj u Wj (itj). We may assume that the two parts of

G separated by {ui,u2} are V1 U V2 U W1 u W2 and V3 u W3 u U1 u U2.

Since they both do not correspond to two edges in series we have a con-

tradiction. So U1 u U2 ~~, and claim 2 is settled.
end of proof of claim 2

Since there are no edges from Vi U Wi to Vj V Wj for i~ j(i,j~1,2,3),
the condition on two nodes cutsets of G yields that [G,T] is the graft
K3 2(note that since T is even exactly one of ul, u2 is in T). D.

Theorems 7.5 and 7.19 yield a decomposition result for grafts with no
K4-partition. With arguments similar to the remark at the end of section
2 one can prove that if G is 3-connected and has no K3 2-partition then.
ít has no K4-partition or is equal to the graft K4 (with TsV(K4)).

r,
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