RESEARCH MEMORANDUM

Signed Graplis - Regular Matroids - Grafts
by
A.M.H. Gerards and A. Schrijver

```
Signed Graphs - Regular Matroids - Grafts
```

by A.M.H. Gerards ${ }^{1)}$ and A. Schrijver ${ }^{1,2)}$

Abstract

We exploit the theory of regular matroids to study nice classes of signed graphs (i.e. undirected graphs with odd and even edges) and of grafts (i.e undirected graphs with odd and even nodes, associated with T-joins). These classes are: signed graphs with no odd- K_{4} and no oddK_{3}^{2}, and grafts with no K_{4}-partition and no $\mathrm{K}_{3,2}$-partition (odd- K_{4} and odd- K_{3}^{2}, are special types of signed graphs, K_{4}-partition and K_{3}^{2} partition are special types of grafts). We give a constructive characterization of these classes, using Seymour's decomposition theorem for regular matroids. Moreover we derive characterizations from the orientability of a regular matroid. The latter characterizations we use to formulate several optimization problems related to odd cycles in signed graphs with no odd- K_{4} and no odd- K_{3}^{2} and to T -joins in grafts with no K_{4}-partition and no $K_{3}, 2^{\text {-partition as min-cost-circulation problems. As a consequence }}$ we prove some well-known min-max relations due to Seymour for these optimization problems. We also show how some graph theoretic results follow.

[^0]
1. Introduction

A signed graph is a pair $\left(G, E_{0}\right)$, where $G=(V(G), E(G))$ is an undirected graph and E_{0} is a subset of the edge set $E(G)$ of G. We allow multiple edges and loops in G. The edges in E_{O} are called odd, the other edges even. A cycle C in G is called odd (even) if $E_{0} \cap E(C)$ is odd (even, respectively). A signed graph is bipartite if it contains no odd cycles. In this paper a central role is played by the signed graphs indicated in figure l. Wriggled and dotted lines stand for (pairwise openly disjoint) paths, dotted lines may have length zero, and odd indicates that the corresponding faces are odd cycles. Each signed graph of the first type is called an odd- K_{4}, each signed graph of the second type an odd $-K_{3}^{2}$.

odd $-\mathrm{K}_{4}$

figure 1

In this paper we list a number of characterizations of those signed graphs which do not contain an odd- K_{4} or an odd- K_{3}^{2} as a subgraph. Mainly, these characterizations follow from the theory of regular matroids: in section 2 we define for each signed graph (G, E_{0}) an associated binary matroid, $M\left(G, E_{0}\right)$. It turns out that $\left(G, E_{0}\right)$ does contain no odd $-K_{4}$ and no odd $-K_{3}^{2}$ if and only if $M\left(G, E_{0}\right)$ is regular. In the subsequent sections we exploit results on regular matroids obtained by Tutte and Seymour (section 3, 4 and 5). In section 6 we give a characterization of signed graphs not containing an odd- K_{4}. The final section, section 7 , we discuss a different object. Seymour [1980] introduces in his paper on the
decomposition of regular matroids the concept of grafts, i.e pairs [G,T] where G is an undirected graph and T is a subset of $V(G)$. In parallel with the sections $2,3,4$ and 5 we give characterizations of those grafts for which a certain associated binary matroid is regular.

2. Preliminaries; Binary Matroids Associated with Signed Graphs

Let G be an undirected graph, and let M_{G} be its node-edge incidence matrix, i.e. M_{G} is an $V(G) \times E(G)$ matrix with entries 0 and 1 . An entry of M_{G} is 1 if and only if its row index $v \in V(G)$ is an endpoint of its co1 umn index $e \in E(G)$. Moreover for $E_{0} \subset E(G)$, let $X_{E_{0}} \in \mathbb{R}^{E(G)}$ denote the characteristic vector of E_{0} as a subset of $E(G)$.
The matroid $M\left(G, E_{0}\right)$ associated to the signed graph (G, E_{0}) is the binary matroid represented over $\mathrm{GF}(2)$ by the columns of the matrix:
(2.1) $\left[\begin{array}{c:lc}1 & 1 & x_{E_{0}} \ldots \\ \hdashline 0 & & M_{G} \\ 0 & & \end{array}\right]$

The element of $M\left(G, E_{0}\right)$ not in $E(G)$ (corresponding to the first column of (2.1)), will be denoted by p. The reader will easily deduce the circuits, bases and rank-function of $M\left(G, \mathrm{E}_{0}\right)$. With some exceptions throughout the text we use notation and terminology of matroid theory as given in the book of Welsh [1976]. For convenience we use the term circuit for a minimal dependent set in a matroid, and cycle for the familiar subject in a graph. (So a cycle in G is a circuit in $M(G)$, the cycle matroid of G.) Obviously $M\left(G, E_{0}\right)=M\left(G, E_{0} \Delta B\right)$ for any minimal cut (co-cycle) B of G. (Δ denotes symmetric difference). We call the operation: $E_{0} \rightarrow E_{0} \Delta B$, resigning. We say that (G, E_{0}) reduces to (G ', E_{0}^{\prime}) if
($G^{\prime}, E_{0}^{\prime}$) can be obtained from (G, E_{0}) by a series of the following operations:

- deleting an edge from G (and from E_{0});
- contracting an even edge of G;
- resigning.

The relation of reduction with matroid minors is obvious:
("/" means "deletion", "\" means "contraction")

- $M\left(G, E_{0}\right) \backslash e=M\left(G \backslash e, E_{0} \backslash\{e\}\right)$ if $e \in E(G)$;
- $M\left(G, E_{0}\right) / e=M\left(G / e, E_{0} \Delta B\right)$ in case $e \in E(G)$ and e is no loop, where $B=\emptyset$ if $e \notin E_{0}$, and B is any cut of G containing e in case $e \in E_{0}$; If e is an even loop: $M\left(G, E_{0}\right) / e=M\left(G \backslash e, E_{0}\right)$.

If e is an odd loop then $M\left(G, \mathrm{E}_{0}\right) / \mathrm{e} \cong M\left(\mathrm{G}, \mathrm{E}_{0}\right) / \mathrm{p}$.
(since then e is parallel with p).
To be complete:

- $M\left(G, E_{0}\right) \backslash \mathrm{p}$ is the binary matroid with as circuits the even cycles in (G, E_{0}) and the sets of the form $E\left(C_{1}\right) \cup E\left(C_{2}\right)$ where C_{1} and C_{2} are odd cycles and $\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right| \leqslant 1$. $M\left(G, E_{0}\right) / p=M(G)$, i.e. the cycle matroid of the undirected graph G.

Regular Matroids

For the definition of a regular matroid we refer to Tutte [1971] or Welsh [1976, p. 173]. Tutte [1958] proved that a binary matroid is regular if and only if it does not contain F_{7} or F_{7}^{*} as a minor. (The binary representation of F_{7} and of F_{7}^{*} are in figure 2; Welsh [1976] uses the notation M (Fano), M^{*} (Fano) respectively.)

$$
F_{7}:\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] \quad F_{7}^{*}:\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

figure 2
The signed graph in figure 3 a will be denoted by K_{3}^{2} (bold edges odd). The signed graph (G, E_{0}) with G equal to the $4-c 1 i q u e$ and all edges odd, will be denoted by K_{4}.

figure 3
The following propositions are easy to proof:

Proposition 2.2.

Let (G, E_{0}) be a signed graph. Then:
(i) $M\left(G, E_{0}\right) \cong F_{7}$ if and only if $\left(G, E_{0}\right) \cong K_{3}^{2}$;
(ii) $M\left(G, E_{0}\right) \cong \mathrm{F}_{7}^{*}$ if and only if $\left(\mathrm{G}, \mathrm{E}_{0}\right) \cong \mathrm{K}_{4}$ (possibly after resigning).

Proposition 2.3.

Let (G, E_{0}) be a signed graph.
(i) The following are equivalent:

- $M\left(G, E_{0}\right)$ has an F_{7} minor using p;
- ($\mathrm{G}, \mathrm{E}_{0}$) reduces to K_{3}^{2}.
(ii) The following are equivalent:
- $\quad M\left(G, \mathrm{E}_{0}\right)$ has an F_{7}^{*} minor using p ;
- (G, E_{0}) reduces to K_{4};
- $\left(G, E_{0}\right)$ contains an odd- K_{4}.

Note that the assertions in (i) are not equivalent to " G, E_{0}) contains an odd $-K_{3}^{2 "}$. Since the signed graph in figure $3 b$ reduces to K_{3}^{2}, but does not contain an odd $-\mathrm{K}_{3}^{2}$. However the following does hold:

Proposition 2.4.

Let $\left(G, E_{0}\right)$ be a signed graph. Then (G, E_{0}) does contain an odd- K_{4} or an odd $-K_{3}^{2}$ if and only if (G, E_{0}) can be reduced to K_{4} or to K_{3}^{2}.

The following lemma brings the signed graphs with no odd- K_{4} and no oddK_{3}^{2} within the theory of regular matroids.

Lemma 2.5.
Let ($\mathrm{G}, \mathrm{E}_{0}$) be a signed graph. Then ($\mathrm{G}, \mathrm{E}_{0}$) contains no odd $-\mathrm{K}_{4}$ and no oddK_{3}^{2} if and only if $M\left(G, E_{0}\right)$ is a regular matroid.
Proof:
To prove the equivalence we may assume G to be 2 -connected. Moreover we may assume that (G, E_{0}) is not bipartite, and has no even loops. Hence $M\left(G, \mathrm{E}_{0}\right)$ is a connected matroid. However for connected matroids Seymour [1977a] extended Tutte's result to: Let x be an element in a connected
matroid M. Then M is regular if and only if M has no F_{7} minor and no F_{7}^{*} minor using x . Together with Propositions 2.3 and 2.4 this proves the lemma (take $\mathrm{x}=\mathrm{p}$).

In section 6 we discuss signed graphs with no odd- K_{4}. The following result due to Lovász and Schrijver [1985] makes it possible to use results on signed graphs with no odd $-\mathrm{K}_{4}$ and no odd $-\mathrm{K}_{3}^{2}$ to signed graphs with no odd $-K_{4}$.

Theorem 2.6. (Lovász, Schrijver [1985])
Let (G, E_{0}) be a signed graph, satisfying the following property:

If $\{u, v\} \subset V(G)$ separates G, then one side of this two node cutset (*) consists of two parallel edges, e_{1} and e_{2} say, with $e_{1} \in E_{0}$, $e_{2} \notin E_{0}$, or one side of this two node cutset is bipartite.

Then the following holds:
Let $\left(G, E_{0}\right)$ contain no odd- K_{4}. Then (G, E_{0}) $\cong K_{3}^{2}$ or (G, E_{0}) contains no odd-K ${ }_{3}^{2}$.
Proof
Let (G, E_{0}) be a signed graph satisfying (*). Suppose (G, E_{0}) contains no odd- K_{4}, but does contain an odd $-\mathrm{K}_{3}^{2}$. Let $\left(\tilde{\mathrm{G}}, \tilde{\mathrm{E}}_{0}\right)$ be an odd $-\mathrm{K}_{3}^{2}$
contained in (G, E_{0}) such that $\left|E\left(P_{1}\right)\right|+\left|E\left(P_{2}\right)\right|+\left|E\left(P_{3}\right)\right|$ is minimal. $\left(P_{1}, P_{2}\right.$ and P_{3} are the paths indicated in figure 4.)

The odd cycles C_{1}, C_{2} and C_{3}, as well as the nodes $v_{1}, v_{2}, v_{3}, u_{1}, u_{2}$, and u_{3} are as indicated in figure 4. (Note that v_{1} may be equal to $u_{i}(1=1,2,3)$.)
Define: $V_{1}:=V\left(P_{i}\right) \cup V\left(C_{1}\right)(1=1,2,3)$. If $S \subset V(G)$, then a path P from u to v is called an S-path if $V(P) \cap S=\{u, v\}$.

Claim: If P is a $V(\tilde{G})$-path, then P is a V_{i}-path, for $i=1,2$ or 3 . Proof of claim.
Let P be a $V(\tilde{G})$-path. Let u and v be the endpoints of P. Assume P is no v_{i}-path ($\mathrm{i}=1,2,3$). Hence we may assume $\mathrm{v} \notin\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Moreover we may assume $v \notin v_{2}$. So $u \notin\left\{v_{2}, v_{3}\right\}$. Finally we may assume $u \in v_{1}$. (Indeed, if $u \notin v_{1}$, then $u \neq v_{1}$. Interchanging u and v, and renumbering indices yields $u \in V_{1}, v \in V_{2}$.) We consider three cases.

Case I: $v \in V\left(C_{2}\right) \backslash\left\{u_{2}\right\}$. Then \tilde{G} and P together contain an odd $-K_{4}$. This yields a contradiction.
Case II: $u \in V\left(P_{1}\right) ; v \in V\left(P_{2}\right)$. Then \tilde{G} and P together contain an odd- K_{3}^{2} with smaller $\left|E\left(P_{1}\right)\right|+\left|E\left(P_{2}\right)\right|+\left|E\left(P_{3}\right)\right|$. Again we have a contradiction. Case III: $u \in V\left(C_{1}\right) \backslash\left\{u_{1}\right\}, v \in V\left(P_{2}\right)$. Now there are two possibilities. If the cycle C (see figure 5) is odd then \widetilde{G} and P together contain an oddK_{4}. If C is even we find an odd- K_{3}^{2} with smaller $\left|E\left(P_{1}\right)\right|+\left|E\left(P_{2}\right)\right|+$ $\left|E\left(P_{3}\right)\right|$. So both possibilities yield a contradiction.

figure 5
end of proof of claim

Since G satisfies (*), the claim yields for $1=1,2,3: E\left(P_{1}\right)=\varnothing$, and C_{i} consists of two parallel edges, one odd and one even. So $\left(\widetilde{G}, \tilde{E}_{0}\right) \cong K_{3}^{2}$. If $V(G)=V(\widetilde{G})$ then by $(*):\left(G, E_{0}\right)=\left(\widetilde{G}, \tilde{E}_{0}\right) \cong K_{3}^{2}$ and the theorem is proved. So let us suppose: $V(G) \neq V(\widetilde{G})$. Let $v \in V(G) \backslash V(\widetilde{G})$. By (*) there are three internally node disjoint paths Q_{1}, Q_{2} and Q_{3} each going from v to a different node on \tilde{G}. But this is impossible since then \tilde{G}, Q_{1}, Q_{2} and Q_{3} together contain an odd $-K_{4}$.

Remark:

The following result is in a sense dual to Theorem 6.2:

Let $\left(G, E_{0}\right)$ be a signed graph, which does not reduce to K_{3}^{2}. If G is 3 -connected then $\left(G, E_{0}\right) \cong K_{4}$ (possibly after resigning) or (G, E_{0}) contains no odd $-K_{4}$.

The proof essentially relies on the following statements:

- If G is 3 -connected then so is $M\left(G, E_{0}\right)$.
- A 3-connected binary matroid with no F_{7}-minor is regular or equal to F_{7}^{*} (Seymour [1980]).
- If an element x of a binary matroid M is not contained in an F_{7} minor of M, and M / x has no F_{7}-minor, then M has no F_{7}-minor at all.

3. Min-Max Relations

If S is a finite set, S a collection of subsets of S, and w an integer valued valued function on S, then a packing with elements of S is a family $S_{1}, S_{2}, \ldots, S_{k}$ of members of S (repetition allowed) such that for each $s \in S$ we have that $\left|\left\{1=1, \ldots, k \mid s \in S_{i}\right\}\right| \leqslant w(s)$. The number k is called the cardinality of the packing.
Seymour [1977b] proved the following result:

Theorem 3.1.
Let M be a binary matroid, and let x be an element of M. Then the following are equivalent:
(i) M does not contain an F_{7}-minor using x.
(ii) For each weight function w on the elements of M with non-negative integer values, the minimum weight of any set $C \backslash\{x\}$, where C is a circuit of M containing x, is equal to the maximum cardinality of a $w-$ packing with sets of the form $C^{*} \backslash\{x\}$, where C^{*} is a cocircuit of M containing x.

Together with Proposition 2.3, Seymour's result implies:

Corollary 3.2.

Let (G, E_{0}) be a signed graph.
(1) The following are equivalent:

- $\left(G, E_{0}\right)$ does not contain an odd- K_{4}.
- For each weight function $w: E(G) \rightarrow \mathbb{Z}_{+}$, we have:

The maximum cardinality of a w-packing with odd cycles is equal to the minimum weight of a subset of $E(G)$ meeting each odd cycle.
(ii) The following are equivalent:

- (G, E_{0}) does not reduce to K_{3}^{2}.
- For each weight function $w: E(G) \rightarrow \mathbb{Z}_{+}$, we have: The minimum length of an odd cycle is equal to the maximum cardinality of a w-packing with subsets of $E(G)$, each meeting each odd cycle.

So we have a first characterization for signed graphs with no odd- K_{4} and no odd $-K_{3}^{2}$.

Corollary 3.3.
Let $\left(G, E_{0}\right)$ be a signed graph. Then $\left(G, E_{0}\right)$ does not contain an odd $-K_{4}$ or an odd $-K_{3}^{2}$ if and only if for each weight function $w: E(G) \rightarrow \mathbb{Z}+$ both min-max relations in Corollary 3.2 hold.

Remark

Corollary 3.3 can also be derived from the fact that each regular matroid has a totally unimodular (standard) representation matrix (over \mathbb{Z}) (Tutte [1958].)

4. Decomposition

In this section we elaborate that every signed graph with no odd- K_{4} and no odd $-\mathrm{K}_{3}^{2}$ can be decomposed into smaller such signed graphs, or in one of three simple types. Here we use the famous result of Seymour on the decomposition of regular matroids (Seymour [1980]), for the case of signed graphs yielding a decomposition in signed graphs with no odd- K_{4} and no odd $-K_{3}^{2}$.

Theorem 4.1. (Seymour [1980])
Let M be a regular matroid, then at least one of the following holds
(1) There exist subsets X_{1}, X_{2} partitioning the element set X of M such that $\mathrm{r}_{M}\left(\mathrm{X}_{1}\right)+\mathbf{r}_{M}\left(\mathrm{X}_{2}\right)=\mathbf{r}_{M}(\mathrm{X})+\mathrm{k}-1$
where $k=1,2$ and $\left|x_{1}\right|,\left|x_{2}\right| \geqslant k$
or $k=3$ and $\left|X_{1}\right|,\left|X_{2}\right| \geqslant 6$.
(2) M is graphic, or is cographic, or is equal to the matroid, called R_{10}, represented over $\mathrm{GF}(2)$ by the columns of the matrix:

$$
\left[\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Remark: Seymour [1980] states his result slightly different: In (1) he only requires: $\left|X_{1}\right|,\left|X_{2}\right| \geqslant 4$ if $k=3$. However using the statements (7.4), (9.2), and (14.2) of his paper one can sharpen this to: $\left|X_{1}\right|,\left|X_{2}\right|>6$ if $k=3$. We use this in proving Theorem 4.3.

Important in the decomposition for signed graphs with no odd- K_{4} and no odd $-K_{3}^{2}$ is the notion of so-called splits.

Assume E_{1}, E_{2} are nonempty subsets of $E(G)$ partitioning $E(G)$. De note the set of nodes in $V(G)$ spanned by E_{1} and E_{2} respectively, by V_{1} and V_{2} respectively. \bar{G}_{i} is defined by $V\left(\bar{G}_{i}\right):=V_{i}, E\left(\bar{G}_{i}\right)=E_{i}(i=1,2)$.

1-split: Let $\left|V_{1} \cap V_{2}\right| \leqslant 1$. Then $\left(\bar{G}_{1}, E_{1} \cap E_{0}\right)$ and ($\left.\bar{G}_{2}, E_{2} \cap E_{0}\right)$ are said to form a 1 -split of (G, E_{0}).

2-sp1it: Let $\left|\mathrm{V}_{1} \cap \mathrm{~V}_{2}\right|=2, \mathrm{~V}_{1} \cap \mathrm{~V}_{2}=\{\mathrm{u}, \mathrm{v}\}$ say. Moreover, let for $1=1,2, \bar{G}_{1}$ be connected and not a signed subgraph of the signed graph in figure 6.

figure 6

Define (G_{1}, E_{01}) as follows: If $\left(\bar{G}_{2}, E_{2} \cap E_{0}\right)$ is not bipartite add to $\left(\bar{G}_{1}, E_{1} \cap E_{0}\right)$ the two edges in figure 6. If $\left(\bar{G}_{2}, E_{2} \cap E_{0}\right)$ is bipartite, add a single edge e from u to v. Take $e \in E_{01}$ if and only if there exists an odd uv-path in G_{2} (a path is odd if it contains an odd number of odd edges). $\left(\mathrm{G}_{2}, \mathrm{E}_{02}\right)$ is defined analogously. Now $\left(\mathrm{G}_{1}, \mathrm{E}_{01}\right)$ and $\left(G_{2}, E_{02}\right)$ are said to form a 2 -split of (G, E_{0}). (In figure 7 we give an example of a 2 -split in case $\left(G_{i}, E_{i} \cap E_{0}\right)$ is not bipartite for $i=1,2$. The bold edges are odd, the thin edges even.)

figure 7

3-split: Let $\left|v_{1} \cap v_{2}\right|=3, v_{1} \cap v_{2}=\left\{u_{1}, u_{2}, u_{3}\right\}$ say. Moreover, let \bar{G}_{2} be bipartite and connected. Finally, let $\left|E_{2}\right| \geqslant 4$.
G_{1} is defined as follows: $V\left(G_{1}\right):=V_{1} \cup\{\tilde{v}\}$ (where \tilde{v} is a new node), and $E\left(G_{1}\right):=E_{1} \cup\left\{u_{1} \tilde{v}, u_{2} \tilde{v}, u_{3} \tilde{v}\right\}$. \tilde{E} is the subset of $\left\{u_{2} \tilde{v}, u_{3} \tilde{v}\right\}$ defined by: $u_{i} \widetilde{v} \in \tilde{E}$ if and only if there exists an odd path from u_{1} to u_{i} in $\left(\bar{G}_{2}, E_{2} \cap E_{0}\right)(i=2,3)$. We define $E_{01}:=\left(E_{1} \cap E_{0}\right) \cup \widetilde{E}$. Now $\left(G_{1}, E_{01}\right)$ is said to form a 3-split of (G, E_{0}).

If none of the above assumptions hold we say that no split exists. Note that a $3-s p l i t$ consists of only one signed graph. Moreover note that if no ℓ-split exists for $\ell<k(k=1,2,3)$ then each member of a k-split is a reduction of (G, E_{0}). The following lemma is easy to prove.

Lemma 4.2.

Let $\left(G, E_{0}\right)$ be a signed graph with a k-split ($k \leqq 3$) and with no ℓ-split for any $\ell<k$. Then $\left(G, E_{0}\right)$ has no $o d d-K_{4}$ and no odd $-K_{3}^{2}$ if each part of the k-split has no odd $-\mathrm{K}_{4}$ and no odd $-\mathrm{K}_{3}^{2}$.

Next we arive at the main result of this section.

Theorem 4.3.
Let $\left(G, E_{0}\right)$ be a signed graph, with no odd $-K_{4}$ and no odd $-K_{3}^{2}$. Then at least one of the following holds:
(i) $\left(G, E_{0}\right)$ has a $1-, 2-$, or $3-$ split.
(ii) There exists a node $v_{0} \in V(G)$ such that all odd cycles in (G, E_{0}) contain v_{0}.
(iii) G is planar with at most two odd faces.
(iv) (G, E_{0}) is the signed graph in the figure below (possibly after resigning). (Thin edges are even, bold edges are odd.)

figure 8

Proof:
Let (G, E_{0}) be a signed graph with no odd $-K_{4}$ and no odd- K_{3}^{2}. Suppose ($\mathrm{G}, \mathrm{E}_{0}$) has no $1-, 2-$, or 3 -split. Since $M\left(\mathrm{G}, \mathrm{E}_{0}\right)$ is regular (Lemma 2.5) we can apply Seymour's theorem (Theorem 4.1). We shall devide the proof into two parts: In part (1) we consider case (1) of Theorem 4.1, and in part (2) we consider case (2).

Part (1): Suppose there exist subsets E_{1}, E_{2} partitioning the edge set of G such that
(*) $r_{M\left(G, E_{0}\right)}\left(E_{1}\right)+r_{M\left(G, E_{0}\right)}\left(E_{2} \cup\{p\}\right)=r_{M\left(G, E_{0}\right)}(E(G) \cup\{p\})+k-1$
with $k=1,2$ and $\left|E_{1}\right| \geqq k,\left|E_{2}\right|+1 \geqslant k$, or $k=3$ and $\left|E_{1}\right| \geqq 6,\left|E_{2}\right|+$ $1 \geqslant 6$. For each $E^{\prime} \subset E(G)$ we have
$r_{M(G)}\left(E^{\prime}\right)+1=r_{M\left(G, E_{0}\right)}\left(E^{\prime} \cup\{p\}\right)=\left\{\begin{array}{l}r_{M\left(G, E_{0}\right)}\left(E^{\prime}\right) \text { if E' is not bipartite } \\ r_{M\left(G, E_{0}\right)}\left(E^{\prime}\right)+1 \text { if } E^{\prime} \text { is bipartite }\end{array}\right.$
Let $\varepsilon:=0$ of E_{1} is bipartite, and $\varepsilon:=1$ if E_{1} is not bipartite. Then (*) is equivalent to:
(**) $\mathrm{r}_{M(\mathrm{G})}\left(\mathrm{E}_{1}\right)+\mathrm{r}_{M(\mathrm{G})}\left(\mathrm{E}_{2}\right)=\mathrm{r}_{M(\mathrm{G})}(\mathrm{E}(\mathrm{G}))+(\mathrm{k}-\varepsilon)-1$

If $\left|E_{2}\right|=0$, then $k \leqslant\left|E_{2}\right|+1=1$. Moreover by (**): $\varepsilon=0$. Hence ($\mathrm{G}, \mathrm{E}_{0}$) is bipartite, so (iii) holds. So we may assume $\left|\mathrm{E}_{2}\right| \geqslant 1$.

Let $E_{1}^{1}, \ldots, E_{1}^{s} ; E_{2}^{1}, \ldots, E_{2}^{t}$ be the components of E_{1}, E_{2} respectively. Define the undirected graph H as follows. $V(H)=$ $\left\{u_{1}, \ldots, u_{s}, v_{1}, \ldots, v_{t}\right\}$; for each $v \in v(G)$ spanned by E_{1}^{i} and E_{2}^{j} there is an edge from u_{i} to v_{j} in $H(i=1, \ldots, s ; j=1, \ldots, t)$. So H may have parallel edges.

Claim 1: $|\mathrm{E}(\mathrm{H})|=\mathrm{s}+\mathrm{t}+\mathrm{k}-\varepsilon-2=|\mathrm{V}(\mathrm{H})|+\mathrm{k}-\varepsilon-2$. Proof of claim 1: Let V_{i} be the set of nodes spanned by $E_{i}(1=1,2)$. Then $r_{M(G)}\left(E_{1}\right)=\left|v_{1}\right|-s, r_{M(G)}\left(E_{2}\right)=\left|v_{2}\right|-t$ and $r_{M(G)}(E)=$

$$
\begin{aligned}
& |V(G)|-1 \text { (G is connected since } G \text { has no l-split). Since } \\
& \left|V_{1} \cap V_{2}\right|=|E(H)| \text { and }\left|V_{1} \cup V_{2}\right|=|V(G)|,(* *) \text { yields the claim. } \\
& \text { end of proof of claim } 1 .
\end{aligned}
$$

Claim 2: H is a bipartite, connected graph, without isthmuses. Proof of claim 2: By definition H is bipartite. If H is disconnected, or has an isthmus, then $\left(G, E_{0}\right)$ has a l-split.
end of proof of claim 2.

Claim 3: H has no two adjacent nodes of degree 2.
Proof of claim 3:
Let u_{i}, v_{j} be adjacent nodes of H, both of degree 2. If between u_{i} and v_{j} there are parallel edges, then by $c \operatorname{laim} 2: V(H)=\left\{u_{i}, v_{j}\right\}$. So $\mathbf{i}=\mathbf{j}=\mathrm{s}=\mathrm{t}=1$. By claim $1: \mathrm{k}-\varepsilon=2$. Now, since $\left(G, E_{0}\right.$) has no 2-split, E_{1} or E_{2} is contained in the signed graph of figure 6. But since E_{1} and E_{2} both are connected this means $\mathrm{r}_{M(G)}\left(\mathrm{E}_{1}\right)+\mathrm{r}_{M(\mathrm{G})}\left(\mathrm{E}_{2}\right)=$ $\mathbf{r}_{M(G)}(\mathrm{E}(\mathrm{G}))$. So by $(* *): \mathrm{k}-\varepsilon=1$, a contradiction. Therefore between ${ }_{\sim}{ }_{i}$ and v_{j} there is only one edge in H. Now $\tilde{E}_{1}:=E_{1}^{i} \cup E_{2}^{j}$ and $\widetilde{E}_{2}:=E(G) \backslash \widetilde{E}_{1}$ define a 2-split of G, contradicting our assumption that no 2-split exists.
end of proof of claim 3.

Claim 4: $k=3, \varepsilon=0$ and H is the graph in figure $9(c)$ below.

(a)

(b)

(c)
figure 9

Proof of claim 4:

By claims 2 and $3:|E(H)| \geqslant|V(H)|+1$. Hence by claim $1 k-\varepsilon-2 \geqslant 1$. So $k=3$ and $\varepsilon=0$, and $|E(H)|=|V(H)|+1$. Using the previous claims, it is easy to see that (a), (b), and (c) (figure 9) are the only possibili-
ties left. It remains to show that H cannot be equal to the graph in figure 9 (a) and (b). Since $k=3$ we have $\left|E_{1}\right| \geqslant 6,\left|E_{2}\right| \geqslant 5$. If H is equal to the graph in figure $9(a)$ then eigther x or y corresponds to an E_{1}^{1} or E_{2}^{1} with at least three edges. So we would have a 2split, a contradiction. If H is equal to the graph in figure $9(b)$ we have a 3 -split $\left(\varepsilon=0\right.$, so E_{1} is bipartite), again a contradiction.
end of proof of claim 4.

We investigate the case that H equals the graph in figure 9(c). If y_{1}, y_{2} and y_{3} correspond to E_{1}^{1}, E_{1}^{2} and E_{1}^{3} respectively, then we have a 2-split. Indeed, at least one of the E_{1}^{i} has cardinality at least 2 (as $\left|E_{1}\right| \geqslant 6$), and hence it is not contained in the signed graph of figure 6 (as E_{1} is bipartite). So y_{1}, y_{2} and y_{3} correspond to E_{2}^{1}, E_{2}^{2} and E_{2}^{3} respectively, and x and z correspond to E_{1}^{1} and E_{1}^{2}. Since $\left(G, E_{0}\right)$ has no 3-split, both $\left|E_{1}^{1}\right|$ and $\left|E_{1}^{2}\right|$ are at most 3. But $\left|E_{1}\right| \geq 6$, and hence $\left|E_{1}^{1}\right|=\left|E_{1}^{2}\right|=3$. Moreover both E_{1}^{1}, and E_{1}^{2} are triangles, since otherwise (G, E_{0}) would have a $2-s p l i t$. For the same reason each of E_{2}^{1}, E_{2}^{2}, and E_{2}^{3} is contained in the graph of figure 6. Conclusion: (G, E_{0}) is contained in the signed graph of figure 7. If (G, E_{0}) is properly contained in it then possibility (iii) of the theorem holds, and if not then (iv) holds. Summarizing, we have seen that if (G, E_{0}) has no $1-, 2-$, or $3-$ split, then (G, E_{0}) satisfies (iii) or (iv).

Part (2) Let $M\left(G, E_{0}\right)$ satisfy case (2) of theorem 4.1. The following will be useful in the sequel.

Claim 5. Let G^{\prime} be an undirected graph, without isolated nodes, such that $M\left(\mathrm{G}^{\prime}\right)$ is isomorphic to $M(\mathrm{G})$. Then G^{\prime} is isomorphic to G .

Proof of claim 5:

G is 2-connected (since $\left(G, E_{0}\right)$ has no $\left.1-s p l i t\right)$, so $M(G)$ is a connected matroid. Since $M(G)$ is isomorphic to $M\left(G^{\prime}\right)$, G^{\prime} is 2-connected. Moreover if $\{u, v\}$ is a two node cutset of G, then one side of that cutset consists of two parallel edges only (since there is no 2-split). Now a re-
sult of Whitney's [1933] (cf. Welsh [1976, p. 86]) yields that G is isomorphic to G^{\prime}.
end of proof of claim 5 .

We now consider the three subcases in (2) in Theorem 4.1.

Case I: $M\left(G, E_{0}\right)$ is graphic.
Hence there exists an undirected graph \tilde{G}, such that $M(\tilde{G}) \cong M\left(G, E_{0}\right)$. Denote the edge in $E(\tilde{G})$ corresponding to p by e_{p}. Then $M(G)=$ $M\left(\mathrm{G}, \mathrm{E}_{0}\right) / \mathrm{p} \cong M(\tilde{\mathrm{G}}) / \mathrm{e}_{\mathrm{p}}=M\left(\tilde{\mathrm{G}} / \mathrm{e}_{\mathrm{p}}\right)$. By claim 5 we may assume now: $\mathrm{G}=$ \tilde{G} / e_{p}. Taking v_{0} equal to the node in which e_{p} is contracted we obtair that (G, E_{0}) satisfies (ii).

Case II: $M\left(G, E_{0}\right)$ is cographic. Hence there exists an undirected graph \widetilde{G} such that $M^{*}(\tilde{G})=M\left(G, E_{0}\right)$. Again, let e_{p} be the edge in $E(\widetilde{G})$ corresponding to p . Then $M(\mathrm{G})=M\left(\mathrm{G}, \mathrm{E}_{0}\right) / \mathrm{p}=M^{*}(\tilde{\mathrm{G}}) / \mathrm{e}_{\mathrm{p}}=$ $M^{*}\left(\tilde{G} \backslash e_{p}\right)$. Hence G is planar, and by claim 5 we may assume that $\tilde{G} \backslash e_{p}$ is its planar dual. The only odd faces of G are the two faces corresponding to the endpoints of e_{p} in \tilde{G}.
Case III: $M\left(G, \mathrm{E}_{0}\right)=\mathrm{R}_{10}$.
For any element x of R_{10} we have that R_{10} / x is isomorphic to $M^{*}\left(\mathrm{~K}_{33}\right)$. This contradicts the fact that $M\left(\mathrm{G}, \mathrm{E}_{0}\right) / \mathrm{p}=M(\mathrm{G})$ is graphic. So case III cannot occur.

Remark:

Theorem 4.3 together with Lemma 4.2 yields a polynomial-time algorithm which determines whether or not a given signed graph contains an odd- K_{4} or an odd $-K_{3}^{2}$.
5. Orientations and Homomorphisms to odd cycles

An orientation of a signed graph is a replacement of the odd edges by directed edges. If in such an orientation for each cycle the number of forwardly directed edges minus the number of backwardly directed edges is at most k in absolute value, we say that the orientation has discrepancy k.

Theorem 5.1
Let (G, F_{0}) be a slgned graph. ($\left(G, F_{0}\right)$ does not contaln an odd- K_{4} or an odd $-K_{3}^{2}$ if and only if (G, E_{0}) has an orientation with discrepancy 1 .
Proof:
The result follows from the following lemma:
Lemma:
Let M be a $\{0,1\}$ - matrix. The matroid M represented over $G F(2)$ by M is regular if and only if there exists a $\{0, \pm 1\}$-matrix $N \equiv M(\bmod 2)$ which represents M over \mathbb{Z}.
$\frac{\text { Proof of the lemma: }}{\star}$ First we prove the if part.
F_{7} and F_{7}^{*} are not representable over \mathbb{Z}. So by Tutte's characterization of regular matrolds (Tutte [1958]) any matroid representable over GF(2) and over $Z /$ is regular.
Next we prove the only if part. (This follows also from the orientability of regular matroids, cf. Welsh [1976, p. 175]. We shall not use this in the proof below.) Let M be partitioned as below, such that M_{11} is a non-singular $r x r$ matrix (over $G F(2)$), where r is the rank of M over GF(2).

$$
\left(\begin{array}{c:c}
M_{1} & M_{12} \\
\hdashline M_{21} & M_{22}
\end{array}\right]
$$

Let M_{11}^{-1} be the matrix inverse of M_{11} over $G F(2)$. Then M is represented over GF(2) by

$$
\left[\begin{array}{l:l}
I & M_{11}^{-1} M_{12} \tag{*}
\end{array}\right]
$$

(where I denotes the $r \times r$ identity matrix). Since M is regular, and (*) is a standard matrix representation of M (cf. Welsh [1976, p. 137]), there exists a $\{-1,0,1\}$ matrix $R \equiv M_{11}^{-1} M_{12}$, such that R is totally unimodular, i.e. all subdeterminants of R are 0 or ± 1 (Tutte [1958]). Moreover [I!R] represents M over \mathbb{Z}. Using Ghoulla-Houri's characterization of totally unimodular matrices (Ghouila-Houri [1962]), one can prove that there exist $\{-1,0,1\}$ matrices $N_{11} \equiv M_{11}(\bmod 2), N_{21} \equiv M_{21}$ (mod 2) such that both $N_{11} R$ and $N_{21} R$ are $\{-1,0,1\}$ matrices. N_{11} is nonsingular over Q, since $\operatorname{det} N_{11} \equiv \operatorname{det} M_{11} \equiv 1(\bmod 2)$, and $N_{11} R \equiv M_{11} R \equiv M_{12}(\bmod 2)$, and $N_{21} R \equiv M_{21} R \equiv M_{21} 1_{11_{1}^{-1} M_{12} \equiv M_{22}(\bmod 2)}$ $\left(M_{22} \equiv M_{21} M_{11}^{-1} M_{12}\right.$, since M_{11} is of full rank in $\left.M\right)$. So the desired matrix N equals:

$$
\left[\begin{array}{c:c}
N_{11} & N_{11} R \\
\hdashline N_{21} & N_{21} R
\end{array}\right]
$$

end of proof of 1 emma.
To prove the theorem, we only consider the only if part. (The if part is trivial.) So, assume (G, E_{0}) does not contain an odd $-K_{4}$ or an odd $-K_{3}^{2}$. Let M be the representation matrix of $M\left(G, E_{0}\right)$ defined in (2.1). Since $M\left(G, E_{0}\right)$ is regular, the matrix N, as meant in the lemma, exists. We may assume:

$$
N=\left[\begin{array}{c:c}
1 & x_{E_{0}} \\
\hdashline 0 & N^{1}
\end{array}\right] \quad \text { where } N^{1} \equiv M_{G}(\bmod 2)
$$

(as we may multiply columns by -1). Now N^{1} represents the cycle matroid of G over 7 .
Claim: We may assume that each column of N^{1} has one 1 and one -1 .
Proof of the claim: Indeed, take any spanning forest F in G. By multiplying some of the rows of N^{1} by -1 , we can achieve that each column of N^{1} corresponding to the edges in F contains one 1 and one -1 . Now the sum of the components of each of these columns is zero. Since F is a basis in $M(G)$, each column of N^{1} is a linear combination of the columns corresponding to the edges in F. So each column of N^{1} is a linear combi-
nation of the columns corresponding to the edges in F. Hence in each column of N^{1} the sum of the components is zero.
Since each column has exactly two nonzero entries, both from $\{1,-1\}$, this proves our claim.
end of proof of claim.

Next we define the orientation: Edge $u v \in E_{0}$ is directed from u to v if the component of column corresponding with edge uv, indexed by u, v respectively, is $-1,1$ respectively. To show that this orientation has discrepancy 1 , take any cycle C in (G, E_{0}). Since (G, E_{0}) is regular there exists a vector $x=\left(x_{p}, x^{l}\right) \in\{0,1,-1\}\{p\} \cup E(G)$ such that

> (i) $x_{e}^{1}= \pm 1$ if and only if $e \in C$
> (ii) $\quad x_{p}= \pm 1$ if and only if C is odd, (iii) $N^{1} x^{1}=0$

From $x_{p}+x_{E} x^{1}=0$ one now easily derives that the orientation defined above has discrepancy 1.

Remark:

Theorem 5.1 can also be proved using Theorem 4.3. We leave this to the reader as an exercise.

The orientation Theorem 5.1 for signed graphs which do not contain an odd $-K_{4}$ or an odd $-K_{3}^{2}$ has some interesting applications. These applications will be the content of the remainder of this section. In these applications the following will play a central role: Let (G, E_{0}) be a signed graph with no odd $-K_{4}$ and no odd $-K_{3}^{2}$. Take any orientation of (G, E_{0}) with discrepancy 1. Orient the edges not in E_{0} arbitrary. The set of arcs obtained in this way will be denote by \vec{A}. Let $\stackrel{A}{A}:=\{\overrightarrow{v u} \mid \overrightarrow{u v} \in \vec{A}\}$.

First we shall see that the min-max relations in Corollary 3.2 are quite easily proved for signed graphs with no odd- K_{4} and no odd- K_{3}^{2}.

Shortest odd cycle
Let $w: E(G) \rightarrow \mathbb{Z}_{+}$. The shortest odd cycle problem is:
(5.2) Find an odd cycle C in $\left(G, E_{0}\right)$, which minimizes $e_{\in E(c)}^{\sum_{E}} w(e)$

If $V \subset V(G)$, we define [V] to be the set of even edges in $E(G)$ leaving V together with the odd edges in $E(G)$ contained in V or in $V(G) \backslash V$. The collection $\{[\mathrm{V}] \mid \mathrm{V} \subset \mathrm{V}(\mathrm{G})\}$ is contained in the collection of subsets of $E(G)$ meeting each odd cycle in (G, E_{0}). Moreover the edge minimal members of $\{[V] \mid V \subset V(G)\}$ are exactly the edge minimal subsets of $E(G)$ meeting each odd cycle. Therefore Corollary 3.2 states that if (G, E_{0}) has no odd $-K_{4}$ and no odd $-\mathrm{K}_{3}^{2}$, then the minimum value in (5.2) equals the maximum value of the following packing problem:
(5.3) Find a maximum cardinality w-packing of $E(G)$ by sets of the form $[\mathrm{V}](\mathrm{V} \in \mathrm{V}(\mathrm{G}))$.

In order to prove this min-max relation, we consider the following optimization problem (with \grave{A} and \overleftarrow{A} as above)
(5.4) maximize σ
s.t.: There are $\pi_{v} \in \mathbb{Q}$ for $v \in V(G), \sigma \in Q$, such that for each $\overrightarrow{u v} \in \vec{A}$:

$$
\begin{array}{ll}
\left|\pi_{v}-\pi_{u}+\sigma\right| & \leqslant w(u v) \text { if } u v \in E_{0} \\
\left|\pi_{v}-\pi_{u}\right| & <w(u v) \text { if } u v \notin E_{0}
\end{array}
$$

For each $\sigma>0$ we define the following weight function, w^{σ}, on $\vec{A} \cup \dot{A}^{+}$:

> if $a \in \stackrel{A}{A}$ and a comes from $e \in E_{0}$: then $w^{\sigma}(a):=w(e)-\sigma$, if $a \in \AA$ and a comes from $e \in E_{0}$, then $w^{\sigma}(a):=w(e)+\sigma$, if a comes from an edge $e \notin E_{0}$, then $w^{\sigma}(a):=w(e)$.

It is not hard to see that (5.4) is equivalent to
(5.5) maximize σ
s.t.: There exists no directed cycle in ($\mathrm{V}, \stackrel{\AA}{\mathrm{A}} \cup \stackrel{\AA}{\mathrm{A}}$) such that its weight with respect to w^{σ} is negative.

From the fact that the orientation of (G, E_{0}), has discrepancy 1 one easily derives that the maximum value, σ^{*} say, of (5.5) is equal to the minimum value of (5.2). Hence σ^{\star} is integral (since w is an integer weight function). For each $u \in V(G), \pi_{u}^{*}$ is defined as the minimal weight, with respect to $w^{\sigma^{*}}$, of any directed path in (V, $\bar{A} \cup \AA$) with endpoint u. So π_{u}^{*} is an integer for each $u \in V(G)$. Moreover, σ and π_{u}^{*} $(u \in V(G))$ satisfy the constraints in (5.4). Define, for each $i=1, \ldots, \sigma^{*}$ the sets

$$
Z_{i}:=\left\{z \in \mathbb{Z} \mid z=1+1, i+2, \ldots, i+\sigma^{*}\left(\bmod 2 \sigma^{*}\right)\right\},
$$

and the sets

$$
v_{i}:=\left\{u \in v(G) \mid \pi_{u}^{*} \in Z_{i}\right\} .
$$

Then $\left\{\left[V_{1}\right],\left[V_{2}\right], \ldots,\left[V_{\sigma}^{*}\right]\right\}$ is a w-packing of $E(G)$. Indeed, this follows easily from the following three
(i) $\quad u v \in\left[V_{i}\right] \cap E_{0}$ if and only if $\left|\left\{\pi_{u}^{*},{ }_{\pi_{v}}^{*}+\sigma^{*}\right\} \cap Z_{i}\right|=1$,
(ii) uv $\in\left[V_{i}\right] \backslash E_{0}$ if and only if $\left|\left\{\pi_{u}^{*}, \pi_{v}^{*}\right\} \cap Z_{i}\right|=1$,
(iii) for $z_{1}, z_{2} \in \mathbb{Z}$:

$$
\left\{1=1, \ldots, \sigma^{*} \mid\left\{\left\{z_{1}, z_{2}\right\} \cap z_{i} \mid=1\right\} \leqslant \min \left\{\left|z_{1}^{-z_{2}}\right|, \sigma^{*}\right\}\right.
$$

Conclusion:
If σ^{*} is the minimum weight of an odd cycle in (G, E_{0}) then there exists a w-packing of the edges in G by σ^{*} sets of the form [V] with $V \subset V(G)$. So the min-max relation in Corollary 3.2 (ii) holds for signed graphs with no odd- K_{4} and no odd $-K_{3}^{2}$.

Remarks

(i) There exist polynomial algorithms which solve (5.2) (in any signed graph) (Grötschel, Pulleyblank [1981]: Gerards, Schrijver [1985]). For graphs with no odd $-K_{4}$ and no odd $-K_{3}^{2}$ the discussion above yields an easy polynomial time algorithm for solving problem (5.3), at least as soon as the orientation with discrepancy 1 is known. Indeed, first find the minimal length, σ^{*} say, of an odd cycle in $\left(G, E_{0}\right)$. Define the weight func-
tion $w^{\sigma^{*}}$ on the arcs as above. By calculating distances in this weighted directed graph one finds the values $\pi_{u}^{*}(u \in V(G))$. To find the w-packing, some care is needed as σ^{*} need not be polynomial in the input size. By reducing the values $\pi_{u}^{*}(u \in V(G))$ modulo $2 \sigma^{*}$, we can determine (in polynomial time): $D:=\left\{d \mid 0 \leqslant d \leqslant 2 \sigma^{*}-1\right.$, there exist a $u \in V(G):$ $\left.\pi_{u}^{*} \equiv \mathrm{~d}\left(\bmod 2 \sigma^{*}\right)\right\}$. For each $i=0, \ldots, \sigma^{*}-1$ define $D_{i}:=$
$\left\{d \in D \mid 1 \leqslant d \leqslant 1+\sigma^{*}-1\right\}$. Now note that in general several of these D_{i} 's are equal. Instead of determinating all D_{i}, we determine all sets \widetilde{D}_{k} for which there exists an i with $D_{i}=\tilde{D}_{k}$, and the number λ_{k} of indices i such that $\tilde{D}_{k}=D_{1}$. It is not hard to see that this can be done in polynomial time (there are at most $|V(G)|$ of these sets \tilde{D}_{k}). Now the elements of the w-packing will be the sets [$\tilde{\mathrm{V}}_{\mathrm{k}}$] taken with multplicit1y λ_{k}, where
$\tilde{\mathrm{V}}_{\mathrm{k}}=\left\{\mathrm{u} \in \mathrm{V} \mid\right.$ there exists a $\mathrm{d} \in \widetilde{\mathrm{D}}_{\mathrm{k}}$ such that $\left.\pi_{u}^{*} \equiv \mathrm{~d}(\bmod 2 \sigma)\right\}$.
(ii) The dual of the linear program (5.4) is:

s.t. $\quad f i s$ a nonnegative circulation in $(V, \vec{A} \cup \AA)$ such that

$$
\sum_{a \in \vec{A} \cap E_{0}} \quad f(a)-\sum_{a \in A}^{\leftarrow} \cap E_{0} f(a)=1
$$

It can be shown that (5.6) has an integral optimal solution, and that (5.6) is a reformulation of (5.2). ($a \in \mathbb{A} \cap \mathrm{E}_{0}\left(\AA \cap \mathrm{E}_{0}\right)$ means $a \in \overparen{A}$ (\AA respectively), and a comes from an odd edge.)

Packing with odd cycles

Let $w: E(G) \rightarrow \mathbb{Z}_{+}$. The w-packing problem for odd cycles is:
(5.7) Find a maximum cardinality w-packing of $E(G)$ by odd cycles.

Corollary 3.2 states that, if $\left(G, E_{0}\right)$ has no odd $-K_{4}$ and no odd $-K_{3}^{2}$, then the maximum value in (5.7) equals the minimum value in:
(5.8) Find a set $V \subset V(G)$ that minimizes $\Sigma \quad w(e)$.

$$
\mathrm{e} \in[\mathrm{~V}]
$$

([V] is defined in the subsection "shortest odd cycle" of this section). Using the orientation Theorem 4.1 we now shall prove this min-max relation for signed graphs with no odd- K_{4} and no odd- K_{3}^{2}. Consider the following circulation problem:

s.t. f is a nonnegative circulation $(V, \overleftarrow{A} \cup \AA)$, such that:
for each $a_{1} \in \vec{A}, a_{2} \in \AA$ coming from the same edge $e \in E(G): f\left(a_{1}\right)+f\left(a_{2}\right) \leqslant w(e)$.

Formulated this way, (5.9) is not a proper circulation problem. However it can be transformed into a circulation problem, as follows: replace each pair $a_{1} \in \vec{A}, a_{2} \in \AA$ coming from an edge $e \in E(G)$ by the configuration in figure 10 . To arc \vec{e} we assign capacity $w(e)$, all other new capacities are ∞.

fispure 10

So we see that the maximum in (5.9) is achieved by an integral f.

Lemma 5.10: (5.7) and (5.9) are equivalent.
Proof:
For each cycle C in (G, E_{0}) we define the circulation f_{C} as follows. In $\vec{A} \cup \AA$ there are two directed cycles which correspond in a natural way with C. In case C is odd select from those two cycles that one which uses more edges form \vec{A} then from \AA. In case C is even select an arbitrary one of these two directed cycles. Call the directed cycle chosen D_{C}. Now let $f_{C}(a)=1$ if $a \in D_{C}, f_{C}(a)=0$ else. Since orientation \vec{A} has

if C is odd, and is equal to O if C is even. Now, let C_{1}, \ldots, C_{t} be a $w-$ packing by odd cycles. Then $f_{C_{1}}+\ldots+f_{C_{t}}$ is a feasible solution of (5.9), with objective value t. Conversely, let f be an integral feasible solution of (5.9). Then f is the sum of characteristic vectors of directed cycles in $D\left(G, E_{0}\right)$. The number of odd cycles used in this sum is at least the objective value of f. By the feasibility of f, these odd cycles form a w-packing of $E(G)$.

The dual 1 inear program of (5.9) is:

$$
\begin{aligned}
& \text { (5.11) minimize: } \quad \sum \quad w(e) \delta(e) \\
& \quad \text { e } \in E(G) \\
& \text { s.t. } \delta(u v) \in \mathbb{Q}_{+} \text {for } u v \in E(G), \text { such that } \\
& \text { there are } \pi_{u} \in \mathbb{Q} \text { for } u \in V(G) \text { satisfying: } \\
& \text { for each } \overrightarrow{u v} \in \vec{A}: \\
& l-\delta(u v)<\pi_{v}-\pi_{u}<1+\delta(u v) \text { if } u v \in E_{0}, \\
& -\delta(u v)<\pi_{v}-\pi_{u} \leqslant \delta(u v) \text { if uv } \notin E_{0},
\end{aligned}
$$

Above we have seen that the dual linear program of (5.11), i.e. (5.9), has an integral optimal value for each $w: E(G) \rightarrow \mathbb{Z}+^{*}$ Hence, so has (5.11). From this it follows that (5.11) has an integral optimal solution. This is a consequence of Lemma 5.12 below. As we shall see, Lemma (5.12) is a corollary of a well known result of Edmonds and Giles [1977] (cf. Schrijver, Corollory 22.la [1986]).

Lemma 5.12: Let $M \in \mathbb{Z}^{k x m}, N \in \mathbb{Z}^{k \times n}$, and $b \in \mathbb{Z}^{k}$, such that for each $c \in \mathbb{Z}^{k}$, for which
(*) $\quad \max \left\{c^{T} x \mid M x+N y \leqslant b\right\}$
exists, the optimal value of (*) is an integer. Then the optimal value of (*) is attained by an $(x, y) \in \mathbb{Z}^{m} x \mathbb{Q}^{n}$ for each c. If moreover, N is totally unimodular, then (*) is attained by an $(x, y) \in \mathbb{Z}^{m} \times \mathbb{Z}^{n}$ for each c for which (*) exists.

Proof:
Let $\left.P:=\left\{\left.x \in \mathbb{Q}^{n}\right|_{G} m^{[M x+N y} \leqslant b\right]\right\}$. Then, under the assumptions of the lemma, $\max \left\{c^{T} x \mid x \in P\right\}$ is an integer for each $c \in \mathbb{Z}^{\mathrm{n}}$ (if the maximum exists). From the above mentioned result of Edmonds and Giles [1977], it then follows that $\mathrm{P}=$ convex hull $\left(\mathrm{P} \cap \mathbb{Z}^{\mathrm{n}}\right)$. This settles the lemma.

For each $\delta: E(G) \rightarrow \mathbb{Q}_{+}$we define the weight function $太: \AA \cup \vec{A} \rightarrow \mathbb{Q}$ by

$$
\delta(a)= \begin{cases}\delta(e)+1 & \text { if } a \in \vec{A}, \text { and a comes from } e \in E_{0} \\ \delta(e)-1 & \text { if } a \in \AA, \text { and a comes from } e \in E_{0} \\ \delta(e) & \text { if } a \in \overparen{A} \cup \overleftarrow{A}, \text { and a comes from } e \notin E_{0} .\end{cases}
$$

Obviously (5.11) is equivalent to:
(5.13) minimize $e \sum_{\in}^{\Sigma} E(G)$ w(e) $\delta(e)$

$$
\begin{aligned}
& \text { s.t. } \delta(e) \in \mathbb{Q}_{+} \text {for each } e \in E(G) \text {, such that } \\
& \text { there exists no directed cycle in } \not \subset \AA \notin \text { with negative } \\
& \text { weight with respect to } \vec{\delta} \text {. }
\end{aligned}
$$

Lemma: (5.13), and hence (5.11), has a $\{0,1\}$-valued optimal solution δ.
Proof: Orientation \vec{A} has discrepancy 1. Hence for each directed cycle © in $\AA \cup \AA$ (corresponding to cycle C in G) we have that

Now, let δ^{*}, π^{*} be an integral optimal solution of (5.11) with $\delta^{*}\{0,1\}-$ valued. Define $V:=\left\{u \in V(G) \mid \pi_{u}^{*}\right.$ is even $\}$. It is straightforward to check that $\delta(u v)=1$ if and only if $u v \in[V]$. So the optimal solution of (5.11) corresponds with the optimal solution of (5.8).
Conclusion:
If ($\mathrm{G}, \mathrm{E}_{0}$) has no odd- K_{4} and no odd- K_{3}^{2}, then the maximum of (5.7) equals the mimimum of (5.8). So the min-max relation in Corollary 3.2 (i) holds for signed graphs with no odd $-\mathrm{K}_{4}$ and no odd $-\mathrm{K}_{3}^{2}$.

Next we give another application of the orientation theorem 5.1.

Let G_{1} and G_{2} be undirected graphs. We call a map $\phi: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ a homomorphism from G_{1} to G_{2}, if $\phi(u) \phi(v) \in E\left(G_{2}\right)$ for each $u v \in E\left(G_{1}\right)$. A parity preserving subdivision of a signed graph (G, E_{0}) is an undirected graph, obtained from G by replacing odd (even) edges by paths of odd (even) length. The following result is another characterization of signed graphs with no odd $-\mathrm{K}_{4}$ and no odd $-\mathrm{K}_{3}^{2}$.

Theorem 5.14

Let $\left(G, E_{0}\right)$ be a signed graph. Then $\left(G, E_{0}\right)$ has no odd $-K_{4}$ and no odd- K_{3}^{2} if and only if for each parity preserving subdivision G^{1} of (G, E_{0}) with shortest odd cycle C^{1}, there exists a homomorphism ϕ from G^{1} to C^{1}.

Proof:

We leave the if part to the reader. E.g. for the graphs in figure 1 la , b there exists no homomorphism to their shortest odd cycle. (However, for the graph in figure llc such homomorphism exists.) For the only if part we may assume: $E_{0}=E(G), G^{l}=G$. Let the length of the shortest odd cycle in G be $2 k+1$. We define the following weight function $\mathrm{w}: \AA \cup \AA \rightarrow \mathbb{Z}$

$$
w(a):=\left\{\begin{array}{l}
k+1 \text { if } a \in \vec{A} \\
-k \quad \text { if } a \in \overleftarrow{A}
\end{array}\right.
$$

Using the fact that orientation \vec{A} has discrepancy 1 , it is not hard to see that $\vec{A} \cup \stackrel{A}{A}$ has no directed cycle with negative weight (with respect to w). Hence there exists a "potential" $\phi: V(G) \rightarrow \mathbb{Z}$ satisfying:
$\phi_{u}-\phi_{v} \leqslant w(\overrightarrow{u v})$ if $\overrightarrow{u v} \in \vec{A} \cup \AA$. So ϕ satisfies:

$$
\mathrm{k} \leqslant \phi_{\mathrm{u}}-\phi_{\mathrm{v}} \leqslant \mathrm{k}+1
$$

if $\overrightarrow{u v} \in \vec{A}$. Hence for each uv $\in E(G): 2 \phi_{u}-2 \phi_{v}= \pm 1(\bmod 2 k+1)$. So $u \rightarrow 2 \phi(u)(\bmod 2 k+1)$ maps G to an cycle of lenght $2 k+1$.

Eigure 11

Remarks:
(i) The proof above relies on Theorem 5.1, and hence on Tutte's deep result that a matroid is regular if and only if it has no F_{7} and no F_{7}^{*} minor. A direct elementary, though more complicated, proof of (5.14) can be found in Gerards [1985].
(ii) Theorem (5.14) can be used to prove the min-max relation (ii) of lemma 3.1 for signed graphs with no odd $-K_{4}$ and no odd- K_{3}^{2} and weight functions which satisfy: $w(e)$ is odd if and only if e $\in E_{0}$. (iii) From theorem 5.2 we immediately get: Let G be an undirected graph, with no odd $-K_{4}$ and no odd $-K_{3}^{2}\left(E_{0}=E(G)\right)$. Then G is 3 -colorable. This is a special case of a result of Catlin [1979] (Theorem 6.3 of this paper). Using a similar technique as in the proof of (5.14) one can prove the following result of Minty [1962]: A graph G has an orientation such that for each cycle C the number of forward edges with respect to each of both orientations, of C is at least $\frac{1}{k}|E(C)|$ if and only if G is k-colorable.
Indeed, "only if" is trivial: "if" follows similarly to the proof of Theorem (5.14) by defining:

$$
w(a):= \begin{cases}k-1 & \text { if } a \in \vec{A} \\ -1 & \text { if } a \in \AA\end{cases}
$$

(iv) Theorem 5.14 extends a result of Albertson, Catlin, and Gibbons [1984] stating that an undirected graph G can be mapped homomorphically onto an odd cycle of lenght M if no subgraph of G can be fold to a
homeomorf of K_{4} in which all faces are cycles of lenght M (folding means iteratively identifying nodes at distance two).

Stable sets

A stable set in an undirected graph G is a subset S of $V(G)$, such that uv $\nexists E(G)$ for each $u, v \in S$.
The stable set polyhedron, $P_{S}(G)$, of G is the convex hull of the characteristic vectors of all stable sets in G. Using Theorem 5.1 one can prove:

Theorem 5.15:
Let G be an undirected graph, containing no odd $-K_{4}$ and no odd$K_{3}^{2}\left(E_{0}=E(G)\right)$. Then the system of inequalities:

$$
\left\{\begin{array}{l}
x_{u} \geqslant 0 \quad(u \in V(G)) \\
x_{u}+x_{v} \leqslant 1 \quad(u v \in E(G)) \\
\sum_{u \in V(C)} x_{u} \leqslant \frac{|V(C)|-1}{2}(C \text { odd cycle in } G)
\end{array}\right.
$$

is a so called totally dual integral system for $P_{S}(G)$. (cf. Edmonds, Giles [1977]).

This result can be extended to graphs with no odd- K_{4}, hereby extending a result of Boulala and Uhry [1979]. (Gerards [1986], forthcoming paper.)

6 Signed Graphs with no odd- K_{4}

Signed graphs with no odd- K_{4} have interesting properties with respect to combinatorial optimization. In section 3 we mentioned Seymour's result (Lemma (3.2), (i)). A second one is the following:

Let A be an integral $m \times n$ matrix such that in each row the sum of the absolute values of the entries is at most 2. Define the signed graph $\Sigma(A)$ as follows. Delete the rows which have one non-zero entry. Consider the new matrix as the edge-node incidence matrix of a graph G (rows correspond to edges). The edges corresponding to rows with a 1 and $a-1$ will be even in $\Sigma(A)$, the other edges odd.

Theorem 6.1 (Gerards, Schrijver [1985])
Let A be an integral $m \times n$ matrix, such that in each row the sum of the absolute values of the entries is at most 2. Then the following are equivalent:
(i) $\Sigma(A)$ does not contain an odd $-\mathrm{K}_{4}$.
(ii) For each $a, b \in \mathbb{Z}^{n} ; c, d \in \mathbb{Z}^{m}$ the convex hull of all integral vectors in

$$
P:=\left\{x \in \mathscr{D}^{n} \mid a \leqslant x \leqslant b: c \leqslant A x \leqslant d\right\}
$$

is equal to the intersection of the halfspaces $\left\{x \in 0^{n} \mid c x \leqslant[\beta]\right\}$, where $c \in \mathbb{Z}^{n}, \beta \in \mathbb{Q}$ such that $c x \leqslant \beta$ for each $x \in P$. ([β] denotes the largest integer not greater than β.)

The following two theorems on signed graphs with no odd- K_{4} are proved using Theorem 2.6 and results from the previous sections for signed graphs with no odd $-\mathrm{K}_{4}$ and no odd $-\mathrm{K}_{3}^{2}$.

First we state a decomposition theorem, due to Lovâsz, Schrifver, Seymour, and Truemper [1984, unpublished paper]. It immediately follows from Theorems 2.6 and 4.3.

Theorem 6.2

Let (G, E_{0}) be a signed graph containing no odd $-K_{4}$. Then (G, E_{0}) has a $1-, 2-$, or $3-$ split, each part of the split contains no odd $-K_{4}$, or (G, E_{0}) is a bipartite signed graph with one extra node (and edges joining that node), or (G, E_{0}) is planar with at most two odd faces, or $\left(G, E_{0}\right)=K_{3}^{2}$, or $\left(G, E_{0}\right)$ is the signed graph of figure 8 .

Next we prove a result of Catin [1979] using Theorems 2.6 and 5.1.

Theorem 6.3 (Catlin [1979])
Let G be an undirected graph. If $(G, E(G))$ does not contain an odd- K_{4} then G is 3 -colorable.

Proof:
Let G be a minimal counterexample. Obviously G is 2-connected. Suppose $\{u, v\}$ is a two node cutset of G. Then, one part of this cutset (possibly after adding an edge from u to v) is a smaller counterexample. So G is

3-connected, and by theorem 2.6 it contains no odd- K_{3}^{2}. Now theorem 5.14 yields that G is 3 -colorable, a contradiction.

Along the lines of the previous sections we state some results on an object called graft, by Seymour [1980]. A graft is a pair [G,T], where G is an undirected graph and T a subset of $V(G)$. Associated with a graft we define the following binary matroid $M[G, T]$. Let M_{G} be the node-edge incidence matrix of G. Moreover let $X_{T} \in \mathbb{R}^{V}(G)$ be the characteristic vector of T as a subset of $V(G)$. Then $M[G, T]$ is the binary matroid represented over GF(2) by:

$$
\left[\begin{array}{ll}
M_{G} & \vdots \\
x_{T}
\end{array}\right\}
$$

The element of $M[G, T]$ corresponding to the last column of this matrix will be denoted by t. A T-join is a collection E^{\prime} of edges, in $E(G)$ such that each $v \in T$ meets an odd number of edges in E^{1}, and each $v \notin T$ meets an even number of edges in E^{1}. The circuits of $M[G, T]$ are the cycles in G, and all unions of $\{t\}$ with a minimal T-join in G. If $V \subset V(G)$ such that both $V \cap T$ and $(V(G) \backslash V) \cap T$ are odd then the collection, $\delta(V)$, of edges from V to $V(G) \backslash V$ is called a T-cut. Note that the minimal T -cuts are exactly those minimal edge sets meeting each T -join. Conversely the minimal T -joins are the minimal edge sets meeting each T -cut.

Remark:

There is a similarity between grafts and signed graphs. Take an arbitrary minimal T-join E_{0} in G. Then the circuits of $M^{*}[G, T]$ are the even cuts, and each union of $\{t\}$ with an odd cut. Here odd (even) means, containing an odd (even) number of edges from E_{0}; so $M[G, T]$ is obtained from $M^{*}(G)$ by signing in the same way as $M\left(G, E_{0}\right)$ is obtained from $M(G)$.

We define two special types of grafts: a K_{4}-partition and a $\mathrm{K}_{3,2}$-partition. They are indicated in figure 12. Circles stand for connected subgraphs, odd (even) Indicates that the corresponding connected subgraph contains an odd (even) number of members of T, and lines stand for edges.

K_{4}-partition

$\mathrm{K}_{3,2}$-partition

Fi,ure 12

In case each circle contains exactly one point we use the terms: the graft K_{4}, the graft $K_{3,2}$ respectively. I.e. the graft K_{4} is [$K_{4}, V\left(K_{4}\right)$], where K_{4} is the 4-clique, the graft $K_{3,2}$ is [$K_{3,2}, T$] where $K_{3,2}$ is the complete bipartite graph with colorclasses of size 3 and 2 , and $T=V\left(K_{3,2}\right) \backslash\{w\}$ where w is one of the nodes of degree 3. We say that a graft $[G, T]$ contains a K_{4}-partition ($K_{3,2}$-partition) if each component of G contains a even number of points in T, and at least one component contains a K_{4}-partition ($K_{3,2}$-partition respectively) covering that component. (By covering we mean that each node of the component is a node of the K_{4}-partition ($\mathrm{K}_{3}, 2$-partition respectively). We also define reduction operations for grafts. There are: deletion of an edge, and contraction of an edge. In the latter case we have to modify T too. If edge uv is contracted into the new node w, then $T / u v$ is $T \backslash\{u v\}$ if $|\{u, v\}| \cap T \mid$ is even and $(T \backslash\{u, v\}) \cup\{w\}$ else. If the graft $\left[G_{2}, T_{2}\right]$ is obtained from the graft $\left[G_{1}, T_{1}\right]$ by one or more of these reductions we say: $\left[G_{1}, T_{1}\right]$ reduces to $\left[G_{2}, T_{2}\right]$. The relation with matroid minors is obvious:
$-M[G, T] \backslash e=M[G \backslash e, T]:$
$-M[G, T] / e=M[G / e, T / e]$.

Moreover
$-M[\mathrm{G}, \mathrm{T}] \backslash \mathrm{t}=\mathrm{M}(\mathrm{G}):$

- $M[G, T] / t$ is the binary matroid with as circuits: all minimal T-joins and all cycles not containing a T-join.
The following is easy to prove.
Lemma 7.1.
Let $[G, T]$ be a graft. Then the following are equivalent:
(i) $M[G, T]$ has an F_{7}-minor using t;
(ii) $[G, T]$ reduces to the graft K_{4};
(iii) [G,T] contains a K_{4}-partition.

Similarly, the following are equivalent:
(i) $M[G, T]$ has an F_{7}^{*}-minor using t :
(ii) $[G, T]$ reduces to the graft $K_{3,2}$:
(iii) $[G, T]$ contains a $K_{3,2}$-partition.

Corollary 7.2.
Let [G,T] be a graft. Then $M[G, T$ l is regular if and only if [G,T] does not contain an K_{4}-partition or a $\mathrm{K}_{3,2}$-partition.

Min-max relations

Like in section 3, from Seymour's characterization of matroids with the max-flow-min-cut-property (Seymour [1976]), the following result fol1ows:

Theorem 7.3.

Let $[G, T]$ be a graft. Then the following are equivalent:
(i) $[G, T]$ contains no K_{4}-partititon;
(ii) For each weight function $w: E(G) \rightarrow \mathbb{Z}+$ the minimum weight of a $T-$ join equals the maximum cardinality of a w-packing with T-cuts.
Similarly, the following are equivalent:
(i)' [G,T] contains no $\mathrm{K}_{3,2}$-partition;
(ii)' For each weight function $w: E(G) \rightarrow \mathbb{Z}+$ the minimum weight of a $T-$ cut equals the maximum cardinality of a w-packing with T-joins.

Decompositions

Now we go along the lines of section 4. First we define the notion of splits for grafts. Assume E_{1} and E_{2} are non-empty subsets of $E(G)$, par-
titioning $E(G)$. Denote the set of nodes in $V(G)$ spanned by E_{1}, E_{2} by V_{1}, V_{2}, respectively. \bar{G}_{1} is defined by: $V\left(\bar{G}_{i}\right):=V_{1}, E\left(\bar{G}_{i}\right):=E_{i}(1=1,2)$. Moreover assume $|T|$ even and non-zero.

1-split

If $\left|V_{1} \cap V_{2}\right|=0$, then $\left[\bar{G}_{1}, T \cap V_{1}\right],\left[\bar{G}_{2}, T \cap V_{2}\right]$ is a 1 -split of $[G, T]$. If $\left|\mathrm{V}_{1} \cap \mathrm{~V}_{2}\right|=1, \mathrm{~V}_{1} \cap \mathrm{v}_{2}=\{\mathrm{u}\}$ say, and G_{1} and G_{2} are connected, then $\left[\bar{G}, T_{1}\right],\left[\bar{G}_{2}, T_{2}\right]$ is a l-split of $[G, T] . T_{1}$ is defined as $T \backslash V_{2}$ if $\left|T \cap V_{2}\right|$ is even, and as $\left(T \backslash V_{2}\right) \cup\{u\}$ if $\left|T \cap V_{1}\right|$ is odd. T_{2} is defined similarly.

2-sp1it

If $\left|\mathrm{v}_{1} \cap \mathrm{v}_{2}\right|=2, \mathrm{v}_{1} \cap \mathrm{v}_{2}=\{\mathrm{u}, \mathrm{v}\}$ say, and $\overline{\mathrm{G}}_{1}$ and $\overline{\mathrm{G}}_{2}$ are connected, then we define $\left[\mathrm{G}_{1}, \mathrm{~T}_{1}\right]$ as follows.
If $T \backslash V_{1}=\emptyset$ then $V\left(G_{1}\right):=V_{1}, E\left(G_{1}\right):=E_{1} \cup\{u v\}$, and $T_{1}:=T$.
If $T \backslash V_{1} \neq \emptyset$, then $V\left(G_{1}\right):=v_{1} \cup\left\{\mathrm{v}^{*}\right\}, E\left(G_{1}\right)=E_{1} \cup\left\{u v^{*}, v^{*} v\right\}$, and $T_{1}:=$ $\left(T \cap V_{1}\right) \cup\left\{\mathrm{v}^{*}\right\}$ if $\left|\mathrm{T} \backslash \mathrm{V}_{1}\right|$ is odd, $\mathrm{T}_{1}:=\left(\mathrm{T} \cap \mathrm{V}_{1}\right) \Delta\left\{\mathrm{u}, \mathrm{v}^{*}\right\}$ if $\left|\mathrm{T} \backslash \mathrm{V}_{1}\right|$ is even. $\left[G_{2}, T_{2}\right]$ is defined similarly. The pair $\left[G_{1}, T_{1}\right],\left[G_{2}, T_{2}\right]$ obtained in this way is called a 2-split, unless \bar{G}_{1} or \bar{G}_{2} is equal to the graph in figure 13 below, and $w \in T$.

figure 13

3-split:

If $\left|v_{1} \cap v_{2}\right|=3, v_{1} \cap v_{2}=\left\{u_{1}, u_{2}, u_{3}\right\}$ say, \bar{G}_{1} and \bar{G}_{2} are connected, and $T \subset \mathrm{~V}_{1},\left|\mathrm{E}_{2}\right|>4$, then we define $\left[\mathrm{G}_{1}, \mathrm{~T}_{1}\right]$ as follows. $\mathrm{V}\left(\mathrm{G}_{1}\right):=\mathrm{V}_{1} \cup\left\{\mathrm{v}^{*}\right\}$, $E\left(G_{1}\right):=E_{1} \cup\left\{u_{1} v^{*}, u_{2} v^{*}, u_{3} v^{*}\right\}$, and $T_{1}:=T$. We call $\left[G_{1}, T_{1}\right]$ a 3-split. (A 3-split has one part only.)

The following is straightforward to prove

Lemma 7.4.
Let $[G, T]$ be a graft with a k-split $(k \leqslant 3)$ and no ℓ-split for any $\ell<k$. Then $[G, T]$ has no K_{4}-partition and no $K_{3,2}$-partition if and only if each part of the k-split has no K_{4}-partition and no $K_{3,2}$-partition.
Proof:
Under the conditions mentioned each part of a split is a reduction of the original graft. This settles one side of the equivalence. The other side can be proved by case checking.

Now we state and prove a decomposition result for grafts with no K_{4}-partition and no $\mathrm{K}_{3}, 2$-partition.

Theorem 7.5

Let $[G, T]$ be a graft containing no K_{4}-partition and no $K_{3,2}$-partition. Then one of the following holds:
(i) $[G, T]$ has a $1-, 2-$, or $3-s p l i t$.
(ii) $|\mathrm{T}|$ is odd or $|\mathrm{T}| \leqslant 2$.
(iii) G is planar with all members of T on one common face.
(iv) $G=K_{3,3}$, and $T=V\left(K_{3,3}\right)$.

Proof:
If [G,T] has no 1 - or 2 -split, then $M[G, T]$ is graphic if and only if (ii) holds, MG,T] is co-graphic if and only if (iii) holds, and $M[G, T]=R_{10}$ if and only if (iv) holds. The proofs are similar to Part (2) of the proof of Theorem 4.3.

The assumptions imply that $M[G, T]$ is regular. Assume [G,T] has no 1-, 2or 3-split and does not satisfy one of (ii), (iii) and (iv). We are going to derive a contradiction. By Theorem 4.1 we have a partition $E_{1} \cup$ E_{2} of $E(G)$ such that
(*)

$$
\mathrm{r}_{M[\mathrm{G}, \mathrm{~T}]}\left(\mathrm{E}_{1}\right)+\mathrm{r}_{M[\mathrm{G}, \mathrm{~T}]}\left(\mathrm{E}_{2} \cup\{\mathrm{t}\}\right)=\mathrm{r}_{M[\mathrm{G}, \mathrm{~T}]}(\mathrm{E}(\mathrm{G}) \cup\{\mathrm{t}\})+\mathrm{k}-1
$$

with $k=1,2$ and $\left|E_{1}\right|,\left|E_{2}\right|+1 \geqslant k$. or $k=3$ and $\left|E_{1}\right|,\left|E_{2}\right|+1 \geqslant 6$.

For each $E^{\prime} \subset E(G)$ we have:

$$
\mathrm{r}_{M[\mathrm{G}, \mathrm{~T}]}\left(\mathrm{E}^{\prime}\right)=\mathbf{r}_{M(\mathrm{G)}}\left(\mathrm{E}^{\prime}\right)=\mathbf{r}_{M[\mathrm{G}, \mathrm{~T}]}\left(\mathrm{E}^{\prime} \cup\{\mathrm{t}\}\right)-\varepsilon\left(E^{\prime}\right)
$$

where $\varepsilon\left(E^{\prime}\right)=0$ if each component of (V(G), E') spans an even number of points in T, and $\varepsilon\left(E^{\prime}\right)=1 \mathrm{else}$.
So from (*) we get:
(**)

$$
\mathrm{r}_{M(G)}\left(\mathrm{E}_{1}\right)+\mathbf{r}_{M(G)}\left(\mathrm{E}_{2}\right)=\mathrm{r}_{M(G)}(\mathrm{E}(\mathrm{G}))+(\mathrm{k}-\varepsilon)-1,
$$

where $\varepsilon:=\varepsilon\left(E_{2}\right)(\varepsilon(E(G))=0$, since, if not, then G is disconnected, or $|T|$ is odd).
Define $E_{1}^{1}, \ldots, E_{1}^{s}, E_{2}^{1}, \ldots, E_{2}^{t}$, and the auxilary graph H as in the proof of Theorem 4.3 (Note, that if $E_{2}=\emptyset$, then $k=1$ and $\varepsilon=0$. So $T=\emptyset$, and (ii) holds).

Claim 1: H is a bipartite connected graph with no isthmuses. Moreover $|E(H)|=|V(H)|+k-\varepsilon-2$.
Proof of claim 1:
The proof is similar to the proofs of claim 1 and 2 of the proof of Theorem 4.3.

$$
\text { end of proof of claim } 1
$$

Claim 2: $k=3, \varepsilon=0: H$ is homeomorf to the graph in figure $14(\mathrm{~b})$. Proof of clatm 2: If H is a cycle, then [G,T] would have a 2-split. Claim l now yields $k-\varepsilon-2>1$. So $\varepsilon \leqslant k-3$, i.e. $k=3, \varepsilon=0$. So $|\mathrm{E}(\mathrm{H})|=|\mathrm{V}(\mathrm{H})|+1$. Since H has no isthmuses, H is homeomorf to one of the graphs in figure 14. If H is homeomorf with the graph in figure 14(a), then [G,T] has a 2-split. So H is homeomorf with the graph in figure 14(b).

(a)

(b)
figure 14

Hence G is of the form as in figure 15, where $A, B \in\left\{E_{1}^{1}, \ldots E_{1}^{s}, E_{2}^{1}, \ldots, E_{2}^{t}\right\}$, and C_{1}, C_{2} and C_{3} are unions of elements of $\left\{E_{1}^{1}, \ldots, E_{1}^{s}, E_{2}^{1}, \ldots, E_{2}^{t}\right\} \backslash\{A, B\}$. Note that for $i=1,2,3$ it is possible that $u_{1}=v_{1}$, so $C_{1}=\emptyset$.

figure 15

Claim 3: $C_{i}=\varnothing, C_{i}=\left\{u_{i} v_{i}\right\}$, or $C_{i}=\left\{u_{i} w_{i}, w_{i} v_{i}\right\}$ with $w_{i} \in T$, for $1=$ 1, 2, 3. Moreover $\left|C_{1}\right|+\left|C_{2}\right|+\left|C_{3}\right| \leqslant 5$.
Proof of claim 3: The first part of the claim follows since [G,T] has no 2-split. If the second part would not be true, then $C_{i}=\left\{u_{i} w_{i}, w_{1} v_{i}\right\}$ with $w_{i} \in T$ for each $i=1,2,3$. But then $[G, T]$ has a $K_{3,2}$-partition (T is even), a contradiction.
end of proof of claim 3

Claim 4: $A \cup B=E_{1}, C_{1} \cup C_{2} \cup C_{3}=E_{2}$.
Proof of claim 4: Since $\left|E_{1}\right| \geqslant 6, E_{1}$ cannot be contained in $C_{1} \cup C_{2} \cup C_{3}$. So we may assume $A=E_{1}^{1}$. The edges in $C_{1} \cup C_{2} \cup C_{3}$ which are adjacent with u_{1}, u_{2}, or u_{3} cannot be in E_{1} (Since A is a component of E_{2}). Now from claim 3 and, again, $\left|E_{1}\right| \geqslant 6$ if follows that $B=E_{1}^{2}$. Since E_{2} >5, and $\left|C_{1}\right|+\left|C_{2}\right|+\left|C_{3}\right| \leqslant 5: C_{1} \cup C_{2} \cup C_{3}=E_{2}$
end of proof of claim 4

Claim 5: G is the graph in figure $16 ; w_{1}, w_{3} \in T$.
Proof of claim 5: From the previous it follows that we only need to prove that $A=E_{1}^{1}$ and $B=E_{1}^{2}$ (figure 15) are triangles. If $\left|E_{1}^{1}\right|$ or $\left|E_{1}^{2}\right|$ is greater than or equal to $4,[G, T]$ has a 3-split. Since $\left|E_{1}\right| \geqslant 6$, this yields $\left|E_{1}^{1}\right|=\left|E_{1}^{2}\right|=3$. If E_{1}^{1} or E_{1}^{2} is not a triangle then one easily finds a 1 - or $2-s p l i t$.

figure 16

So $w_{1}, w_{3} \in T$. If $u_{2} \in T$, or $v_{2} \in T$, then we would have a $K_{3,2}$-partition (as $|T|$ is even). Hence T lies on the outer face of the planar graph G, i.e. (iii) holds, a contradiction.

Orientations

The following result is proved similarly as Theorem 5.1.

Theorem 7.6

Let $[G, T]$ be a graft. [G,T] has no K_{4}-partition and no $K_{3,2}$-partition if and only if one of the following holds.
(i) $|\mathrm{T}|$ is odd.
(ii) There exists a partition T_{1}, T_{2} of T with $\left|T_{1}\right|=\left|T_{2}\right|$ such that each T-join is an edge disjoint union of cycles and of $\left|T_{1}\right|$ paths from T_{1} to T_{2}.

Remark: Theorem 7.6 yields the following result (answering a question of A. Frank).

Let G be an undirected connected graph. Then the following are equivalent:
(i) G has an orientation \grave{A} such that $|\{\overrightarrow{u v} \in \vec{A} \mid u \in X, v \notin X\}|-|\{\overrightarrow{u v} \in \vec{A} \mid u \notin X, v \in X\}| \leqslant 1$, for each minimal cut $\delta(X)$.
(ii) $\left[G, V_{\text {odd }}\right]$ has no K_{4}-partition and no $\mathrm{K}_{3,2}$-partition. ($V_{\text {odd }}$ denotes the set of nodes in G with odd degree.)
We shall only indicate how (i) follows from (ic). Assume (ii) holds. Let $\mathrm{T}_{1}, \mathrm{~T}_{2}$ be a partition of $\mathrm{V}_{\text {odd }}$ as in meant in (7.6 (ii)). Let $\mathrm{C}_{1}, \ldots \mathrm{C}_{\mathrm{k}}$, be a collection of cycles in G, and $P_{1}, \ldots,\left.P_{\mid T}\right|^{a}$ collection of paths from T_{1} to T_{2} such that $E\left(C_{1}\right), \ldots, E\left(C_{k}\right), E\left(P_{1}\right), \ldots, E\left(P\left|T_{1}\right|\right)$ partition $E(G)$ ($E(G)$ is a $\left.V_{\text {odd }}-j o i n\right)$. Now orient G such that each C_{i} becomes a directed cycle, and each P_{i} becomes a path directed from its endpoint in T_{1} to its endpoint in T_{2}. That this orientation satisfies (i) follows from the observation that if $\delta(X)$ is a minimal cut then $\left|X \cap T_{1}\right|-$ $\left|X \cap T_{2}\right| \leqslant 1$. (Indeed, since $\delta(X)$ is a minimal cut, there exists a $V_{o d d^{-}}$ join F such that $|F \cap \delta(X)| \leqslant 1$. Applying 7.6 (ii) to F yields $\left.\left|\mathrm{X} \cap \mathrm{T}_{1}\right|-\left|\mathrm{X} \cap \mathrm{T}_{2}\right| \leqslant 1.\right)$

Using Theorem 7.6 we shall now prove the min-max relations in Lemma 7.2 for the case that $[G, T]$ has no K_{4}-partition and no $K_{3,2}$-partition. So let $[G, T]$ have this property. We may assume, that G is connected and $|T|$ is even. Let T_{1}, T_{2} be a partition of T as is meant in Theorem 7.6. We define a directed graph D as follows. $V(D)=V(G)$, and the arcset A of D is obtained by replacing each edge $u v$ by two arcs, one $\overrightarrow{u v}$, from u to v, the other, $\overrightarrow{v u}$ from v to u.

Shortest T-join

Let $w: E(G) \rightarrow \mathbb{Z}_{+}$. The shortest T-join problem is:
(7.7) Find a T-join $E^{\prime} \subset E(G)$, which minimizes $\sum_{e \in E^{\prime}} w(e)$.

This optimization problem is equivalent to the following circulation problem (w(a):= w(uv) for $a=\overrightarrow{u v}$ or $a=\overrightarrow{v u}$ with $u v \in E(G)$).
(7.8) minimize $\underset{\in}{\Sigma} w(a) f(a)$

$$
\begin{aligned}
& \text { s.t. } \underset{\text { a enters } u}{\Sigma} f(a)-\underset{\text { a leaves } u}{\sum} f(a)=\left\{\begin{aligned}
& 1 \text { if } u \in T_{1} \\
&-1 \text { if } u \in T_{2} \\
& 0 \text { if } u \in V(G) \backslash T
\end{aligned}\right. \\
& f(a) \geqslant 0 \quad \text { if } a \in A .
\end{aligned}
$$

To prove the equivalence, first observe that any T-join E^{\prime} in $E(G)$ is the edge disjoint union of $\left|T_{1}\right|$ paths from T_{1} to T_{2} and, possibly, some cycles. So there exists a feasible solution of (7.8), with
$\Sigma w(a) f(a)=\sum_{E^{\prime}} w(e)$. Conversely, let $f: A \rightarrow Q_{+}$be an optimal $a \in A \quad e \in E^{\prime}$ solution of (7.8). Since the constraint matrix of (7.8) is totally unimodular we may assume that $f(a) \in \mathbb{Z}$ for each $a \in A$. The set of arcs $E^{\prime}:=\{a \in A \mid f(a)$ is odd $\}$ is a T-join, with $e \underset{\in}{\sum} E^{\prime} w(e)$ <
$a \stackrel{\sum}{\in} A^{w(a) f(a)}$. So (7.7) and (7.8) are equivalent.

The dual inear program of (7.8) is (7.9) below: again there are integral optimal solutions.
(7.9) Maximize $\underset{u \in T_{1}}{\Sigma} \pi_{u}-\underset{u \in T_{2}}{ } \pi_{u}$

$$
\text { s.t. } \pi_{v}-\pi_{u} \leqslant w(\overrightarrow{u v}) \text { if } \overrightarrow{u v} \in A
$$

Equivalent1y:
(7.10) maximize $\underset{u \in T_{1}}{ } \pi_{u}-\underset{u \in T_{2}}{ }{ }^{-} \pi_{u}$

$$
\text { s.t. }\left|\pi_{v}-\pi_{u}\right|<w(u v) \quad \text { if } u v \in E(G)
$$

Let $\pi \in \mathbb{Z}^{V(G)}$ be an optimal solution of (7.10). Define for each λ with $\min \left\{\pi_{u} \mid u \in V(G)\right\} \leqslant \lambda \leqslant \max \left\{\pi_{u} \mid u \in V(G)\right\}$, the set $V_{\lambda}:=\left\{u \in V(G) \mid \pi_{u} \geqslant \lambda\right\}$. We shall need the following lemma.

Lemma 7.11 Let $U \subset V(G)$ such that the subgraph of G induced by U is connected. Then $\delta(U)$ contains at least $\left|\left|U \cap T_{1}\right|-\left|U \cap T_{2}\right|\right|$ mutually edge-disjoint T-cuts.

Proof: Let V_{1}, \ldots, V_{ℓ} be the node sets of the components of the subgraph of G induced by $V(G) \backslash V$. Let, without 1 oss of genera1ity, V_{1}, \ldots, V_{k}
$(k \leqslant \ell)$ be those sets V_{1} with $\left|V_{i} \cap T\right|$ odd. Take edges $e_{1}, \ldots, e_{k} \in E(G)$ from V_{1}, \ldots, V_{k}, respectively, to U. Then there exists a T-join E^{\prime} such that each $e \in E^{\prime}$ is entirely contained in V, or in $V_{1}(i=1, \ldots, \ell)$, or is an element of $\left\{e_{1}, \ldots, e_{k}\right\}$. Since E^{\prime} contains an edge disjoint union of $\left|\mathrm{T}_{1}\right|$ paths from T_{1} to T_{2} it follows that $\mathrm{k} \geqslant\left|\left|\mathrm{V} \cap \mathrm{T}_{1}\right|-\left|\mathrm{V} \cap \mathrm{T}_{2}\right|\right|$. Since each $\delta\left(V_{i}\right), i=1, \ldots, k$, is a T-cut this proves the lemma.

Using this lemma we can construct a w-packing with T-cuts of cardinality at least $\sum_{u \in T_{1}} \pi_{u}-\sum_{u \in T_{2}} \pi_{u}$. For each $\lambda \in \mathbb{Z}$ and each component V of V_{λ} such that $\left|\mathrm{V} \cap \mathrm{T}_{1}\right|-\left|\mathrm{V} \cap \mathrm{T}_{2}\right|>0$, take $\left|\mathrm{V} \cap \mathrm{T}_{1}\right|-\left|\mathrm{V} \cap \mathrm{T}_{2}\right|$ mutually edge disjoint T-cuts in $\delta(V)$. The T-cuts obtained in this way from the desired T-packing. Indeed, they form a ω-packing since the sets $\delta\left(V_{\lambda}\right)$ do so. Moreover the cardinality of this w-packing is greater than or equal to $\underset{u \in T_{1}}{\sum} \pi_{u}-\underset{u \in T_{2}}{\sum} \pi_{u}$ (since the components V of V_{λ} with $\left|\mathrm{V} \cap \mathrm{T}_{1}\right|-\mathrm{V} \cap \mathrm{T}_{2} \mid \leqslant 0$ are not used to construct the w-packing). What we have proved now is that the minimum of (7.8) is not greater than the maximum value in the following packing problem:
(7.12) Find a maximum cardinality w-packing with T-cuts.

The fact that this maximum is not smaller than the minimum of (7.8) is trivial. Hence we have proved the min-max relation (ii) in Lemma 7.3 for signed graphs with no K_{4}-partition and no K_{3}^{2} - partition.

Packing with T-joins

Let $w \in \mathbb{Z}^{E(G)}$. Consider the problem:
(7.13) Find a maximum cardinality w-packing with T-joins

We shall prove that (7.13) is equivalent to
(7.14) maximize k

$$
\begin{aligned}
& f(\overrightarrow{u v})+f(\overrightarrow{v u}) \leqslant w(u v) \text { if } u v \in E(G) \\
& f(\overrightarrow{u v})>0 \quad \text { if } \overrightarrow{u v} \in A \text {. }
\end{aligned}
$$

The fact that each w-packing with k T-joins yields a feasible solution of (7.14) of value k is obvious. Conversely, let $f^{*}: A \rightarrow \oplus_{+}$,
$k^{*} \in \mathbb{Q}_{+}$form an optimal solution of (7.14) which is not a convex combination of other optimal solutions.

Lemma $7.15 k^{*} \in \mathbb{Z}_{+}: f^{*}(a) \in \mathbb{Z}_{+}$for $a \in A$.
Proof Obviously, if k^{*} is integer an then so is $f^{*}(a)$ for a $\in A$. (Observe the construction in figure 10.) Assume $k^{*} \notin \mathbb{Z}+{ }^{\circ}$ Let E^{\prime} be the set of edges $u v \in E(G)$ for which $0<f(\overrightarrow{u v})+f(\overrightarrow{v u})<w(u v)$. Let v_{1}, \ldots, v_{ℓ} be the vertex sets of the components of E^{\prime}. If E^{\prime} would contain a T join, then f^{*}, k^{*} would not be optimal. Let $E^{0} \subset E(G) \backslash E^{\prime}$ be a minimal set so that $E^{0} \cup E^{\prime}$ contains a T-join. Then there exists a set $V_{i} *$ ($i^{*}=1, \ldots, \ell$) such that there is exactly one edge, e say, in E^{0} leaving $V_{i *}$. Let F be a minimal T-join in $E^{0} \cup E^{\prime}$. By the minimality of E^{0} the edge e must be in F. Since F is the edge-disjoint union of $\left|T_{1}\right|$ paths from T_{1} to T_{2} we now know that $\left|\mathrm{V}_{\mathrm{i}} * \cap \mathrm{~T}_{1}\right|-\left|\mathrm{V}_{\mathrm{i}} * \cap \mathrm{~T}_{2}\right|= \pm$ 1. Now the fact that $f^{*}(\overrightarrow{u v}), f^{*}(\overrightarrow{v u}) \in \mathbb{Z}$ for each uv $\in \delta\left(V_{i *}\right)$, and the fact that f^{*} and k^{*} form a feasible solution to (7.14) contradicts the fact that $\mathrm{k}^{*} \notin \mathbb{Z}$.

Next we must prove that there exists a w-packing with T-joins, of cardinality k^{*}. This follows (by induction) from the following lemma:

Lemma 7.16: Let $k \in \mathbb{Z}_{+}, f \in \mathbb{Z}_{+}^{A}$ be a feasible solution of (7.14), with $k>1$. Then there exists a solution $k_{1} \in \mathbb{Z}_{+}, f_{1} \in \mathbb{Z}_{+}^{A}$ with: $k_{1}=1$, and for each $a \in A$ if $f_{1}(a)>0$ then $f(a)>0$.

Proof: Define the following capacitated auxiliary digraph $D^{\prime} \cdot V\left(D^{\prime}\right)=$ $V(D) \cup\{s, t\}$. (s and t are two new nodes). The arc set $A\left(D^{\prime}\right)$ of D^{\prime} consists of the arcs in A together with all arcs of the form $\overrightarrow{s u}$ with $u \in T_{2}$ and $\overrightarrow{u t}$ with $u \in T_{1}$. The capacity function $c: A\left(D^{\prime}\right) \rightarrow \mathbb{Z}_{+}$is defined by: $c(a)=f(a)$ if $a \in A, c(\overrightarrow{s u})=1$ if $u \in T_{2}$, and $c(\overrightarrow{u t})=1$ if $u \in T_{1}$. If the lemma is not true then the maximal flow from s to t in this capacitate auxilary digraph is less than $\left|T_{2}\right|$. By the max-flow-min-cut therem there exists a $U \subset V(G)$ such that

$$
\begin{aligned}
& \Sigma \quad c(a)<\left|T_{2}\right| . \\
& a \in A\left(D^{\prime}\right) \\
& \text { a leaves } U \cup\{s\}
\end{aligned}
$$

Hence
(*)

$$
\begin{aligned}
& \stackrel{\sum}{\in} \mathrm{f}(\mathrm{a})+\left|\mathrm{T}_{2} \backslash \mathrm{U}\right|+\left|\mathrm{T}_{1} \cap \mathrm{U}\right|<\left|\mathrm{T}_{2}\right| \cdot \\
& \text { a leaves } \mathrm{U}
\end{aligned}
$$

Since f and k form a feasible solution of (7.14) we have

$$
\begin{aligned}
& \sum_{\mathrm{a} \in \mathrm{~A}}^{\mathrm{A}} \mathrm{f}(\mathrm{a}) \geqslant \max \left\{0, \mathrm{k}\left|\mathrm{~T}_{2} \cap \mathrm{U}\right|-\mathrm{k}\left|\mathrm{~T}_{1} \cap \mathrm{U}\right|\right\} \\
& \text { a leaves } \mathrm{U} \\
& \text { Combining this with }(*) \text { we get }
\end{aligned}
$$

$$
\max \left\{0, \mathrm{k}\left|\mathrm{~T}_{2} \cup \mathrm{U}\right|-\mathrm{k}\left|\mathrm{~T}_{1} \cup \mathrm{U}\right|\right\}<\left|\mathrm{T}_{2} \cup \mathrm{U}\right|-\left|\mathrm{T}_{1} \cup \mathrm{U}\right|
$$

which contradicts with $k>1$.

The dual linear program of (7.14) is
(7.17) minimize $\quad \sum \in E(G)$ w(e) $\ell(e)$

$$
\begin{aligned}
& \text { s.t. } \quad \pi_{v}-\pi_{u}+\ell(u v) \geqslant 0 \text { if } \overrightarrow{u v} \in A \\
& \ell(e) \geqslant 0 \text { if e } \in E(G) \\
& \quad \Sigma \in T_{u}-{ }_{u} \sum_{u \in T_{2}} \pi_{u}=1
\end{aligned}
$$

For each $w \in \mathbb{Z}+E(G)$ the minimum value of (7.17) is an integer. (By Lemma 7.15 and linear programming duality.) Hence, by Lemma 5.12, (7.17) has an integral optimal solution.

Using this lemma we can prove that (7.17) is equivalent to:
(7.18) FInd a $U \subset V(G)$ with $|V(G) \cap T|$ odd, such that \sum w(e) is minimum.

To prove the equivalence, first assume that π, ℓ form an integral feasible optimal solution of (7.17). Then there exists $\lambda \in \mathbb{Z}$ such that $\tilde{\mathrm{V}}:=\left\{\left.\mathrm{u}\right|_{\mathrm{u}}=\lambda\right\}$ satisfies $\left|\tilde{\mathrm{V}} \cap \mathrm{T}_{1}\right| \neq\left|\tilde{\mathrm{V}} \cap \mathrm{T}_{2}\right|$ (since
 disjoint paths from T_{1} to $T_{2}, \delta(\tilde{V})$ contains a $T-c u t, \delta(U)$ say. Moreover for each $u v \in \delta(\tilde{v}): \pi_{u}-\pi_{v} \neq 0$; so $\ell(u v) \geqslant 1$. Therefore

Conversely let U be an optimal solution to (7.18). By Lemma 7.11 we may assume that $\left|U \cap T_{1}\right|-\left|U \cap T_{2}\right|=1$. Define $\pi_{u}:=1$ if $u \in U ; \pi_{u}:=0$ if $u \in V(G) \backslash U ; \ell(e)=1$ if $e \in \delta(U)$ and $\ell(e)=0$ if $e \in E(G) \backslash \delta(U)$. Then
$e \underset{e \in \delta(U)}{\sum} w(e)=\sum_{E(G)} w(e) \ell(e)$ and π and ℓ form a feasible solution of (7.17).

Grafts with no K_{3}^{2}-partition.

The following result is of the same nature as Theorem 2.6.

Theorem 7.19

Let $[G, T]$ be a graft with no K_{4}-partition. If G has no one node cutset, and for each two node cutset $\{u, v\}$ of G, one side of the cut consists of two edges uv* and $v^{*} v$ in series, with $v^{*} \in T$, then $[G, T]$ has no $K_{3}, 2^{-}$ partition, or $[G, T]$ is equal to the graft $K_{3,2}$ (i.e G is the bipartite graph $K_{3,2} ; T=V(G) \backslash\{w\}$, where w has degree 3).

Proof:

Assume $[G, T]$ satisfies the assumptions and contains a $K_{3,2}$-partition. We shall prove that $[G, T]$ equals the graft $K_{3,2}$. First we define extended $K_{3,2}$-partition, by figure 17. The sets $U_{1}, U_{2}, V_{1}, V_{2}, V_{3}, W_{1}, W_{2}, W_{3}$ cover $V(G)$. The graphs induced by these sets are connected. For each $\mathrm{i}=1,2,3 \quad\left|\mathrm{~V}_{1} \cap \mathrm{~T}\right|$ is odd, and $\left|\mathrm{W}_{1} \cap \mathrm{~T}\right|$ is odd or $\mathrm{W}_{1}=\emptyset$. The 1ines are edges.

figure 17
Since $[G, T]$ has a $K_{3,2}$-partition, it has an extended $K_{3,2}$-partition. Let $\mathrm{U}_{1}, \mathrm{U}_{2}$, etc.... be an extended $\mathrm{K}_{3,2}$-partition with $\left|\mathrm{U}_{1}\right|+\left|\mathrm{U}_{2}\right|$ minimal. First note that if there would exist an edge from $V_{i} \cup W_{i}$ to $V_{j} \cup W_{j}$ $(i \neq j)$ then $[G, T]$ would have a K_{4}-partition.

Claim 1: There exists a $u_{1} \in U_{1}$ and edges from u_{1} to V_{1}, V_{2}, and V_{3}. Also there exists a $u_{2} \in U_{2}$ and edges from u_{2} to W_{1} or if $W_{1}=\emptyset$ to V_{1} for $1=1,2,3$.
Proof of claim 1: Obviously, we only need to prove the existence of u_{1}. There exists a node $u \in U_{1}$ and mutually node disjoint paths P_{1}, P_{2}, P_{3} from u to V_{1}, V_{2}, V_{3} respectively, such that the only points of P_{1}, P_{2}, P_{3} not in U_{1} are the end points in V_{1}, V_{2}, V_{3} respectively. Let X be the set of nodes in U_{1} which lie on P_{2} or on P_{3} (so $u \in X$). Denote by U_{1}^{\prime} the set of nodes $v \in U_{1} \backslash X$ for which there exists a path in $U_{1} \backslash X$ from v to V_{1}. We prove that $U_{1}^{\prime}=\emptyset$, i.e. P_{1} consists of a single edge. By symmetry
between P_{1}, P_{2} and P_{3} also P_{2} and P_{3} are single edges, so the node $u_{1} \in U_{1}$ exists: indeed, take $u_{1}=u$. Hence we may suppose $U_{1}^{\prime} \neq \emptyset$. We shall construct an extended $K_{3,2}$-partition, contradicting the minimality of $\left|\mathrm{U}_{1}\right|+\left|\mathrm{U}_{2}\right|$. Replace U_{1} by $\mathrm{U}_{1} \backslash \mathrm{U}_{1}^{\prime}$. If $\left|\mathrm{U}_{1}^{\prime} \cap \mathrm{T}\right|$ is even replace V_{1} by $\mathrm{U}_{1}^{\prime} \cup \mathrm{V}_{1}$. If $\left|\mathrm{U}_{1}^{\prime} \cap \mathrm{T}\right|$ is odd and $\mathrm{W}_{1} \neq \emptyset$ replace V_{1} by $\mathrm{U}_{1}^{\prime} \cup \mathrm{V}_{1} \cup \mathrm{~W}_{1}$, and W_{1} by the empty set. If $\left|U_{1}^{\prime} \cap T\right|$ is odd and $W_{1}=\emptyset$ replace V_{1} by U_{1}^{\prime}, and set $W_{1}:=V_{1}$. All other sets in the original $K_{3,2}$-partition remain the same. By this we obtained a new $K_{3,2}$-partition violating the assumed minimality of $\left|U_{1}\right|+\left|U_{2}\right|$.
end of proof of claim 1

Claim 2: $\left|\mathrm{U}_{1}\right|=\left|\mathrm{U}_{2}\right|=1$
Proof of Claim 2: Let $\tilde{\mathrm{U}}_{\mathrm{i}}:=\mathrm{U}_{1} \backslash\left\{\mathrm{u}_{1}\right\}(\mathrm{i}=1,2)$ where u_{1} and u_{2} are the nodes established by claim 1. As in the proof of claim 1 one easily 3
shows that no edge leaving \tilde{U}_{1} or \tilde{U}_{2} can enter $\underset{i=1}{\cup}\left(V_{i} \cup W_{i}\right)$. Assume $\tilde{\mathrm{U}}_{1} \cup \tilde{\mathrm{U}}_{2} \neq \emptyset$. Then $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}$ is a two node cutset of G since there are no edges from $V_{i} \cup W_{i}$ to $V_{j} \cup W_{j}(i \neq j)$. We may assume that the two parts of G separated by $\left\{u_{1}, u_{2}\right\}$ are $V_{1} \cup V_{2} \cup W_{1} \cup W_{2}$ and $V_{3} \cup W_{3} \cup \tilde{U}_{1} \cup \tilde{U}_{2}$. Since they both do not correspond to two edges in series we have a contradiction. So $\tilde{\mathrm{U}}_{1} \cup \tilde{\mathrm{U}}_{2}=\emptyset$, and claim 2 is settled.
end of proof of claim 2

Since there are no edges from $V_{1} \cup W_{1}$ to $V_{j} \cup W_{j}$ for $i \neq j(i, j=1,2,3)$, the condition on two nodes cutsets of G yields that $[G, T]$ is the graft $K_{3,2}$ (note that since T is even exactly one of u_{1}, u_{2} is in T).

Theorems 7.5 and 7.19 yield a decomposition result for grafts with no K_{4}-partition. With arguments similar to the remark at the end of section 2 one can prove that if G is 3 -connected and has no $K_{3,2}$-partition then it has no K_{4}-partition or is equal to the graft K_{4} (with $T=V\left(K_{4}\right)$).

References

[1984] M.O. Albertson, P.^. Catlin and L. Gibbons, Homomorphisms of 3chromatic graphs, IL, Congressus Numerantium XLVIII, 1985.
[1979] M. Boulala and J.P. Uhry, Polytope des indépendants d'un graphe série-parallèle, Discrete Mathematics 27 (1979) 225-243.
[1979] P.A. Catlin, Hajos' graph coloring conjecture: variations and counterexamples, Journal of Combinatorial Theory (B) 26 (1979) 268-274.
[1977] J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs, Annals of Discrete Mathematics 1 (1977) 185-204.
[1985] A.M.H. Gerards, Homomorphisms of graphs into odd cycles, Research Memorandum FEW 185, Katholieke Hogeschool Tilburg.
[1986] A.M.H. Gerards, Extensions of Köning's theorems to graphs with no odd $-K_{4}$, in preparation.
[1985] A.M.H. Gerards and A. Schrijver, Matrices with the Edmonds-Johnson property, Report No. 85363; Inst. für Okon. u. Oper. Res. Uni. Bonn, W.Germany, to appear in Combinatorica.
[1962] A. Ghouila-Houri, Caractérisation des matrices totalement unimodulaires, Comptes Rendus Hebdomadaires des Séances de 1'Académie des Sciences (Paris) 254 (1962) 1192-1194.
[1981] M. Grötschel and W.R. Pulleyblank, Weakly bipartite graphs and the max-cut problem, Operations Research Letters 1 (1981) 23-27.
[1984] L. Lovász, A. Schrijver, P.D. Seymour and K. Truemper, [unpublished paper].
[1984] L. Lovăsz and A. Schrijver, [personal communication].
[1962] G.J. Minty, A theorem on n-colouring the points of a linear graph, American Mathematical Monthly 67 [1962] 623-624.
[1986] A. Schrijver, Theory of Linear and Integer Programming, John Wiley \& Sons.
[1977a] P.D. Seymour, A note on the production of matroid minors, Journal of Combinatorial Theory (B) 22 (1977) 289-295.
[1977b] P.D. Seymour, The matroids with the max-flow min-cut property, Journal of Combinatorial Theory (B) 23 (1977) 189-222.
[1980] P.D. Seymour, Decomposition of regular matroids, Journal of Combinatorial Theory (B) $\underline{28}$ (1980) 305-359.
[1958] W.T. Tutte, A homotopy theorem for matroids I, II, Transactions of the American Mathematical Society 88 (1958) 144-164, 161-174.
[1971] W.T. Tutte, Introduction to the Theory of Matroids, American Elsevier, New York, 1971.
[1976] D.J.A. Welsh, Matroid Theory, Academic Press, London, 1976.
[1933] H. Whitney, 2-isomorphic graphs, American Journal of Mathematics 55 (1933) 245-254.

```
168 T.M. Doup, A.J.J. Talman
    A continuous deformation algorithm on the product space of unit
    simplices
l69 P.A. Bekker
    A note on the identification of restricted factor loading matrices
170 J.H.M. Donders, A.M. van Nunen
    Economische politiek in een twee-sectoren-model
171 L.H.M. Bosch, W.A.M. de Lange
    Shift work in health care
172 B.B. van der Genugten
    Asymptotic Normality of Least Squares Estimators in Autoregressive
    Linear Kegression Models
173 R.J. de (iroof
    Geisoleerde versus gecoördineerde economische politick in een twee-
    regiomodel
174 G. van der Laan, A.J.J. Talman
    Adjustment processes for finding economic equilibria
175 B.R. Mei jboom
    Horizontal mixed decomposition
176 F. van der Ploeg, A.J. de Zeeuw
    Non-cooperative strategies for dynamic policy games and the problem
    of time inconsistency: a comment
177 B.R. Mei jboom
    A two-level plamning procedure with respect to make-or-buy deci-
    sions, including cost allocations
178 N.J. de Beer
    Voorspelprestaties van het Centraal Planbureau in de periode }195
    t/m 1980
178a N.J. de Beer
    BIJLAGEN bij Voorspelprestaties van het Centraal Planbureau in de
    periode 1953 t/m 1980
179 R.J.M. Alessie, A. Kapteyn, W.H.J. de Freytas
    De invloed van demografische factoren en inkomen op consumptieve
    uitgaven
180 P. Kooreman, A. Kapteyn
    Estimation of a game theoretic model of household labor supply
181 A.J. de Zeeuw, A.C. Meijdam
    On Expectations, Information and Dynamic Game Equilibria
```

182 Cristina Pennavaja Periodization approaches of capitalist development. A critical survey

183 J.P.C. Kleijnen, G.L.J. Kloppenburg and F.L. Meeuwsen Testing the mean of an asymmetric population: Johnson's modified T test revisited

184 M.O. Nijkamp, A.M. van Nunen Freia versus Vintaf, een analyse

185 A.H.M. Gerards
Homomorphisms of graphs to odd cycles
186 P. Bekker, A. Kapteyn, T. Wansbeek Consistent sets of estimates for regressions with correlated or uncorrelated measurement errors in arbitrary subsets of all variables

187 P. Bekker, J. de Leeuw The rank of reduced dispersion matrices

188 A.J. de Zeeuw, F. van der Ploeg Consistency of conjectures and reactions: a critique

189 E.N. Kertzman Belastingstructuur en privatisering

190 J.P.C. Kleijnen Simulation with too many factors: review of random and groupscreening designs

191 J.P.C. Kleijnen
A Scenario for Sequential Experimentation
192 A. Dortmans
De loonvergelijking
Afwenteling van collectieve lasten door loontrekkers?
193 R. Heuts, J. van Lieshout, K. Baken
The quality of some approximation formulas in a continuous review inventory model

194 J.P.C. Kleijnen
Analyzing simulation experiments with common random numbers
195 P.M. Kort
Optimal dynamic investment policy under financial restrictions and adjustment costs

196 A.H. van den Elzen, G. van der Laan, A.J.J. Talman
Adjustment processes for finding equilibria on the simplotope

197 J.P.C. Kleijnen
Variance heterogeneity in experimental design
198 J.P.C. Kleijnen Selecting random number seeds in practice

199 J.P.C. Kleijnen Regression analysis of simulation experiments: functional software specification

200 G. van der Laan and A.J.J. Talman An algorithm for the linear complementarity problem with upper and lower bounds

201 P. Kooreman Alternative specification tests for Tobit and related models

```
202 J.H.F. Schilderinck
    Interregional Structure of the European Community. Part III
```

203 Antoon van den Elzen and Dolf Talman A new strategy-adjustment process for computing a Nash equilibrium in a noncooperative more-person game

204 Jan Vingerhoets Fabrication of copper and copper semis in developing countries. A review of evidence and opportunities.

205 R. Heuts, J. v. Lieshout, K. Baken An inventory model: what is the influence of the shape of the lead time demand distribution?

206 A. v. Soest, P. Kooreman A Microeconometric Analysis of Vacation Behavior

207 F. Boekema, A. Nagelkerke Labour Relations, Networks, Job-creation and Regional Development A view to the consequences of technological change

208 R. Alessie, A. Kapteyn Habit Formation and Interdependent Preferences in the Almost Ideal Demand System

209 T. Wansbeek, A. Kapteyn Estimation of the error components model with incomplete panels

210 A.L. Hempenius The relation between dividends and profits

211 J. Kriens, J.Th. van Lieshout A generalisation and some properties of Markowitz' portfolio selection method

212 Jack P.C. Kleijnen and Charles R. Standridge Experimental design and regression analysis in simulation: an FMS case study

213 T.M. Doup, A.H. van den Elzen and A.J.J. Talman Simplicial algorithms for solving the non-linear complementarity problem on the simplotope

214 A.J.W. van de Gevel
The theory of wage differentials: a correction
215 J.P.C. Kleijnen, W. van Groenendaal
Regression analysis of factorial designs with sequential replication

```
2l6 T.E. Nijman and F.C. Palm
    Consistent estimation of rational expectations models
217 P.M. Kort
    The firm's investment policy under a concave adjustment cost func-
    tion
218 J.P.C. Kleijnen
    Decision Support Systems (DSS), en de kleren van de keizer ...
219 T.M. Doup and A.J.J. Talman
    A continuous deformation algorithm on the product space of unit
    simplices
220 T.M. Doup and A.J.J. Ta1man
    The 2-ray algorithm for solving equilibrium problems on the unit
    simplex
221 Th. van de Klundert, P. Peters
    Price Inertia in a Macroeconomic Model of Monopolistic Competition
222 Christian Mulder
    Testing Korteweg's rational expectations model for a small open
    economy
223 A.C. Meijdam, J.E.J. Plasmans
    Maximum Likelihood Estimation of Econometric Models with Rational
    Expectations of Current Endogenous Variables
224 Arie Kapteyn, Peter Kooreman, Arthur van Soest
    Non-convex budget sets, institutional constraints and imposition of
    concavity in a flexibele household labor supply model.
225 R.J. de Groof
    Internationale coördinatie van economische politiek in een twee-
    regio-twee-sectoren model.
226 Arthur van Soest, Peter Kooreman
    Comnent on 'Microeconometric Demand Systems with Binding Non-Nega-
    tivity Constraints: The Dual Approach'
227 A.J.J. Talman and Y. Yamamoto
    A globally convergent simplicial algorithm for stationary point
    problems on polytopes
228 Jack P.C. Kleijnen, Peter C.A. Karremans, Wim K. Oortwijn, Willem
    J.H. van Groenendaal
    Jackknifing estimated weighted least squares
229 A.H. van den Elzen and G. van der Laan
    A price adjustment for an economy with a block-diagonal pattern
230 M.H.C. Paardekooper
    Jacobi-type algorithms for eigenvalues on vector- and parallel
    computer
```

231 J.P.C. KleiJnen Analyzing simulation experinents with common random numbers
232 A.B.T.M. van Schaik, R.J. Mulder On Superimposed Recurrent Cycles
233 M.H.C. Paardekooper Sameh's paralle1 eigenvalue algorithm revisited
234 Pieter H.M. Ruys and Ton J.A. Storcken Preferences revealed by the choice of friends

235 C.J.J. Huys en E.N. Kertzman
Effectieve belastingtarieven en kapitaalkosten
236 A.M.H. Gerards
An extension of König's theorem to graphs with no odd- K_{4}

Bibliotheek K. U. Brabant

17000010597053

[^0]: 1) Department of Econometrics, Tilburg University, P.0. Box 90153, 5000 LE, Tilburg, the Netherlands.
 2) Centre for Mathematrics and Computer Scfence, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands.
