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We focus on the behaviour of simulation outcomes of discrete event dynamic
systems. This behaviour is characterized by several kinds of Performance
Measures. We arrive at a description of a wide class of discrete event
dynamic systems. Within this context we define Perturbation Analysis, a
technique to quantify the dependence of simulation outcomes on changes in
parameter inputs.

Subject classification: ~61 Discrete Event Dynamic Systems and Perturbation
Analysis.

A simulation practitioner is not interested in a detailed description of all
stages a simulation goes through; he or she is merely interested in one or a
few global measures of its performance. This paper is inspired by the work
of Ho and his group of researchers at Harvard University concerning
Perturbation Analysis ( P~A) (see, e.g. Ho (1983), Suri (1984), Ho et. al.

(1984), including further references). Although the technique of P~A itself
has met essentisl criticism from Heidelberger (1986), the fundaments on
which it is based may still prove worthwile.

These fundaments are formed by a general and cohesive description
of a commonly used kind of simulation, namely Discrete Event Dynamic System
(DEDS) simulation, in which a real world system is modelled as a series of
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events; between two consecutive events the system does not alter.
Simulation-programs for DEDS "jump" from event to successor-event, each time
adjusting a clock, and updating performance measures. The latter are used to
compute the final performance measures, the user is really interested in.

In section 1 a detailed description oF a DEDS is given; in section
2 we introduce deratives of random variables; in section 3 P~A is described
as an example of the description in section 1; section 4 contains a dis-
cussion.

1. System Description

A DEDS can be described as a series of events. Between two events, the sys-
tem does not change; it is in some state. The points of time at which the
events take place (or, equivalently, the system changes from one state to
another) are called the eventtimes. The behaviour of a system is completely
specified by the initial state, and an enumeration of the actual events and
eventtimes.

Example: In an M~M~1-queue there are two types of events: arrival
and departure; and a countable number of states: in state 0 the
system is empty; in state 1 a customer is served, no one is
waiting; in state 2 a customer is served, another one is waiting;
etc. A simulation experiment results in an initial state, a se-
quence of arrivals and departures, and their eventtimese. Zn this
case, we might as well enumerate the states instead of the events;
however, this is not always so.

In general, an enumeration of the actual states is not sufficient to
describe the behaviour of the system, as the following example shows.

Example. Suppose we have two parallel servers, that work at dif-
ferent costs. Both are busy, and one customer is waíting, In the
next state, both devices are busy, no customer is waiting. We do
not know what happened in between.
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Not every sequence of events is possible (e.g. no customer can leave an
empty system); the state of the system determines which events can possibly
happen next. By X we denote the set of system-states. Given any xEX there is
a finite set of events that can take place next. This set is denoted by
E(x), the exit-states of x.

Example. In the M~M~1-queue we have X-{0,1,2,...}. The set oF all
events is {A,D}, with arrival A and departure D. If the system is
in state 0, only A can be the next event; in any other state, both
A and D are possible. So E(0)-{A}; E(1)-E(2)-...-{A,D}.

To ascertain that we can check whether a given sequence of actual events is
indeed possible, we need the sequence of states. Suppose the system started
in state x~, and events el, e2,...,ek-1 occured. To make sure that a certain

event e can be the next event, e must be an element of E(xk-1), in which

xk-1 is the present state. So xk-1 must be known. This can be achieved by

requiring: s state and an event (which is possible in that state) together
completely determine the next state.

When evaluating a simulation, we do not want an exhausive descrip-
tion of every step it went through, we want its behaviour to be
characterized by one or a few performance measures (PM's). A PM is a func-
tion of the states and events the system goes through during the simulation,
and the duration of these states.

Example. Suppose we want to know the mean number of customers wait-
ing to be served, and the mean waiting time per served customer,
for the M~M~1-queue. We start in an arbitrary state and stop the
simulation when N customers have been treated. The mean number of

mcustomers is Ei-~ ipi in which pi is the probability that i cus-

tomers are waiting. We estimate pi by the time during which i

customers are waiting divided by the total simulation time. We may
as well compute the total waiting time and divide this quantity by
the total simulation time.
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The mean waiting time per served customer can be computed as the
total waiting time divided by the total number of customers served.
So we need total waiting time, total simulation time, and total
number of customers served. These quantities can easily be computed
by accumulation at each event.

Suppose the simulation consists of the series of states x~,xl,x2,... with
xiEX (i-0,1,2,...). The actual events are el,e2,... that take place at
points of time 01,02,... . In other words, the simulation starts in the
prespecified state x~ at time 0~-0. At 01 event el takes place (elEE(x~))
and the next state ís xl, etc.

Let the kth interval run from Ok-1 to Ok (k-1,2,...). During this
interval the system is in state xk-1; the interval ends with ek. Let each

state xEX correspond with a number fs(x), and each event eEE-x~E(x) cor-

respond with a number fo(e). A basic PM in the kth interval yk is defined as

Yk - (Ok-Ok-1)fs(x1c-1) , fo(ek).

A simple PM over the intervals K1 through K2 (K1~K2) is defined as

1 K2 byK1,K2 - K2-K141 F-k-K1 yk' (1.2)

Note that a simple PM is defined as the mean of basic PM's. We might as well
have defined it as the sum of basic PM's, were it not that, in order to be
able to make statements about populations, we want to allow For K2~.
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We can have several functions f and f, say f(1) f(1) f(2) f(2)s o s' o ' s ' o '
... f(n) f(n). These give n different basic PM's yb(1) yb(n) ~d n dif-' s ' o s ' s
ferent simple PM's yK~i) K(1),...,yK~n) K(n). A general PM is a function of

1 ' 2 1 ' 2
simple PM's.

Example: To compute the mean number of customers waiting we need
the total waiting time and the total simulation time. The waiting

time in the kth interval is (Ok-Ok-1)max{xk-1-1,0}, so we take

1fs (x)-max{x-1,0} and fól)(e)-0 for all e. Then the following

quantity is K-1 times the total waiting time:

y11R- IS Ek-1 yk(1) - K~-1 (~k-Ok-1)max{xic-1-1.0}.

The duration of the kth interval ís ~k-~k-1' So we take

2fs (x)-1 for all x and fo2)(e)-0 for all e. Then

(2) 1 EK yb(2) - 1 EK- (O -O )- 1(O O)y1,K- K k-1 k K k-i k k-1 K K- 0

is K-1 times the total simulation time. Now y(1)~y(2) is the mean1,K 1,K
number of customers waiting.
To compute the mean waiting time per served customer we need the

total waiting time, that is Kyi1K, and the total number of cus-

tomers served. The number of customers served in the kth interval
is 0 if the interval ends with an arrival; it is 1 iF a departure
terminates the interval. So we take

fs3)(x) - 0 for all x and fo3)(A) - 0 ; fo3)(D) - 1.

Then
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y(3) 1`k- yb(3) : 1~ f(3)(e )- K-1N
1,K - K -1 k K -1 o k D

in which ND is the number of departures in the first K intervals.

Now yi1K~yi3K is the mean waiting time per served customer.

A PM is a function of the states and events the system goes through during
the simulation, and the duration of the states. It is possible to define
basic PM's in such a way that any PM is a function of basic PM's, and so it
is a function of simple PM's. But s function of simple PM's is what we
called a general PM. So a general PM is indeed general, i.e. it covers the
concept of a PM. In the appendix a formal proof for this statement is given.
From this proof a general method for determining the functions fs and fo,

given a specific PM, is directly deductible.
We saw that, when the system is in state xk-1, there is a finite

set of events that can take place next. We called this set E(xk-1).

Example. In an empty queueing system the next event is an arrival.
When the system is not empty, the event is either an arrival or a
departure. Which event will actually happen, depends on the time at
which the two possible events are scheduled. In many situations
(the M~M~1-queue is one of these) the fact that one event happens,
does not have any influence on the points of time at which the
other ones are scheduled. However, we do not want to impose
restrictions like this on the systems in general.

Associated with all events e E E(xk-1) is a point of time tk(e), i.e. the

time at which e will happen, if nothing else happens before. We leave open
the possibility that e won't happen at all, due to some other event.

Example. Now we need some other example than the M~M~1-queue.
Suppose we have a closed queueing network, in which two kinds of
jobs circulate: kind A and kind B. At a certain node in the network
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we have two parallel devices, D1 and D2. Both A and H prefer D1

over D2, and D1 prefers A over B, i.e. if D1 is working on a

job of kind B, and a job of kind A arrives, then D1 immediatly

starts working on A, and B is sent to device D2, if this one is

idle; to a queue otherwise (so-called preemptive piority). So, if
the events "finish job B on server D1" and "arrival of job A" are

both scheduled, and the latter is scheduled before the former, the
former won't happen at all.

The set {tk(e)~eEE(xk-1)} can be viewed as a calendar. We demand that all

tk(e) ~ ~k-1'
The event that will actually take place, is the one with the smal-

lest tk(e). This event is the one that we called ek, and it terminates state

xk-1. This happens at point of time Ok, as we saw before; so Ok-tk(ek). Then

the system enters state xk, which is completely determined by xk-1 and ek.

By doing this step by step, we know the progress of the system essentially,
provided that we know the "calenders" {tl(e)~eEE(x~)}, {t2(e)~eEE(xl)}, etc.

We assume that when the system is initialized in state x0, then in

one way or another, we know {tl(e)~eEE(x~)}. Now if we can make an induction

step from state xk-1 to state xk, then we have a complete description of the

simulation.
At point of time Ok the system leaves xk-1 because of ekEE(xk-1).

The system enters state xk, ín which the possible events are collected in

the set E(xk). Consider any eEE(xk). What will be tk~l(e), the point of time

connected with e? We restrict ourselves to two possibilities:

(i) there is some e'EE(xk-1), e'~ek, so that tk{1(e)-tk(e') (1.3.a)

(ii) tkal(e)-0k~(some random number, to be discussed presently). (1.3.b)
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Example. In the M~M~1-queue we have, except for the idle state, two
events in E(x). One of these will take place; the other one will
maintain its scheduled time; so we use method (i). However, we
might as well use method ( ii), as the process is memoryless. Zf an
arrival has taken place, we must use method (i i) for the next
arrival.
Next consider the example with the two kinds of jobs A and B, and
parallel devices D1 and D2. IF we assume that device D2 "finishes
the job" if an interrupted job B comes from D1, then the event
"finish B on DZ" will have the same point of time as the former
event "finish B on D1", so rule ( i) is used with e'~e; if D2 has to

start all over again, rule (ii) is appropriate.

How do we find tk~l(e), when method (ii) is used? In this case

tktl(e) - ~k 4 g

where g is a continuous positive random variable, with a distribution depen-
ding on xk-1 (the latest state the system was in), ek (the latest event),

and e(the event of interest). So we write explicitly

tlctl(e) - ~k } g e e'xk-1' k'
(1.4)

To assure the uniqueness of ek, there must be exactly one eEE(xk-1) such
that tk(e)-0k. The way in which tk(e) is computed, guarantees this with

probability 1, provided that if two different events have associated times
computed by rule ( 1.3.a), then the events from which their times originate,
are also different; in symbols:

~F 11 M
be e,e EE(xk), e~e , and let there be e',e 'EE(xk-1), such that

M M
tk.lÍe)-tkÍe'). tk~l(e )-tk(e ~).
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M
Then e' ~ e '.

An alternative formulation is:
let e'EE(xk-1), e'~ek. Then there is at most one eEE(xk) so that

tk.l(e)-tk(e').

Note. Instead of inethods (i) and ( ii), we might have given a more
general way of computation, such as

there is some e'EE(xk-1), e'~e, such that

tktl(e) - ~k . f(g.tk(e')-Ok)

in which g is some random number and f is some function.

In this paper we have disregarded this kind of generalization, as
it would make the sequal far more complicated without clarifying
anything more.

2. Derivates of random variables.

In order to discuss P~A we need derivatives of random variables, the topic
of this section. Suppose g is a positive continuous random variable (such as
time to the next event) with a distribution depending on some parameter v.
For L-Uo, g has cumulative distribution Fv . During the simulation we obtain

0
observations g0 of g by generating (pseudo-)random numbers u from a uniform

distribution on (0,1), and solving u-Fv (g~), that is we use the inverse
0

transformation

B~ - Fv1Íu).
0

(2.1)

If we change v from v0 to v~F~v, and keep u constant (i.e. we use

common random numbers), then the observation will change into
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60 . ng - FyO.ev(u) - FvO.ev(Fv0(g0)). (2-2)

See Suri (1983) for s further discussion on this subject.
Instead of u-Fy(g) we can write u-F(v,g). If F, as a function of v

and g, is differentiable to both v and g, then we can differentiate the lat-
ter equation to v, keeping u constant. This yields

dF dF dg
0 - lv } dg dv

or

~ - - rdFl-1 ~F
dv - ldgJ w'

(2.3.a)

(2.3.b)

Example. When customers arrive in a system according to an exponen-
tisl distribution with parameter v, the cumulative distribution

function is Fy(g)-1-e-yg. Equations (2.3) show that

0- ge-vg t Le-yg
á

or

dU - -(ve-yg)-1Be-yg - -B~v.

(2.4.a)

(2.4.b)

In a simulation, a realisation of a random variable g from an exponential
distribution is computed from a value u, sampled from a uniform distribution

on (0,1), as g-- y-1 .in u. Hence

~ - v-Z .~n u - -g~vdv (2.5)
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which is identical to eq. (2.4.b). We interpret (2.5) as follows: the mar-
ginal effect of the parameter v is higher, the higher g is; see figure 1.

FIGURE 1 ABOUT HERE

Example. When customers arrive in a system according to an exponen-

tial distribution with parameter v, the arrival-time of the kth

customer is the arrival-time of the (k-1)st customer, plus a random
-vgk

variable gk, with cumulative distribution function (cdf) F-1-e .

In symbols

tk - tk-1 ; gk (2.6)

or tk(v)-tk-1(v)tgk(v) in which we can take t~-0. The derivative of

tk to v is now simply

dtk dtk-1 dgk
dv - dv ` dv (2.7)

dg
in which ávk is computed as in the former example. We might also

take a look at the cdf of tk. Zt is simply verified that this cdf

is 0 if tk~tk-1; and if tk~tk-1 then it is

-v(t -t - )
1 -e k kl (28)
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-v(tk-tk-1)
Again we take u-1-e and we differentiate to v, keeping u
constant. This yields

dtk dtk-1
0- tk - tk-1 ` v dv - v dv '

dgkSo, using gk-tk-tk-1 ( 2.6) and dv --gk,v (2.5), we get (2.7), as is

easily verified. This example shows that, if the distribution of a
variable depends on v and some other parameters, these other
parameters have to be taken into account in the computation of the
derivative.

If g is a random variable with a distribution depending on v and some other
parameters, collected in a vector a with elements also dependent on v, then
the former definitions need some adjustment. Suppose that

a~ - a(v~)
go 4 pg o g(vOtAU)

and g has cumulative distribution Fa v. Then (2.2) changes into

-1g0 . og - FaOtea.vOtev(Fa0 v0(BO)) (2.9)

and, by writing u-F(a,v;g), differentiation with respect to v, keeping u
constant yields the analogs of (2.3):

O-~dF ~ ~F dF~
j daj dv } ~v ' dg dv

d - - (dg, -1 ( ~ daj á ' áv~ '

(2.10.a)

(2.10.b)
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3. Perturbed systems.

We now consider the DEDS (see section 1) not only for v-v~ but also for
L-vo40L (cf. section 2). The system description we gave in section 1 is
valid for both v-v~ and L-YO~~L, but all variables introduced in section 1
are dependent on the value of v, so we should write xk(v~) or X.(vOt~L)
instead of xk, etc. From now on, if we write xk (yk,Ok, etc.), wFeC always
mean xk(v0), etc. If L~LO, this will be explicitly stated.

The state of the system, the events and the other variables
describing the system, are not only dependent on v, but also on a random
number stream. If we call this random number stream 4-(u1,~2,...)', then the
correct notation for state k is xk(v~,Q). We omit 4 if this cannot cause
confusion.

Suppose z is a function of v. Then we write ez short for z(vOtOL)-

z(v~), and if z is a differentiable function of v, then dz is short for

oá (vo).

Suppose we know the history of the system up to the point where it
enters xk(v~) and xk(vOt~v) respectively. We now investigate what happens in

one step of the system, i.e. until the system reaches xk}1(vD) and xk}1(v~

;ov). By doing so. we can afterwards use induction arguments to describe the
simulated system and the perturbations as a whole.

Assume that up till entering xk the change of v from v~ to vOt~L

does not effect the state, so 7Ck(LOt~Y) - Xk(YO). Then the set of possible

events is not changed by the change in v, so E(xk(v~}GV)) - E(xk(v~)).

However, the time at which we entered xk does change: we entered xk at

Ok(v~) or 8t Ok(LOtOL), for which we assume that

Ok(v~tev) - ~k(v~) y dOk . o(nv) (3.1)
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in which the symbol o(ey) means that that the random variable

(Ok(v~.GV) - Ok(y~) - dOk)(nv)-1

has limit 0 for ~y-~0 for any Fixed value v~ of v and for any given Ok(v0).

The times t(e) can also change. We assume that for any eEE(xk)

tk~l(e,v~~nv) - tktl(e,v~) . dtk41(e) t o(ov). (3.2)

Now Ok~l(y~) - min{tktl(e,v~)~eEE(xk)}. For Ov sufficiently small,

tk;l(e,v~) C tk~l(e',v0) implies tk~l(e,v~~nv) C tk}1(e',v0.~v), so ek41,

the event with the smallest tktl for y-v~, is also the event with the smal-

lest tk~l for v-vOtOL, which means that ek~l(LO~~y) - ek~l(LO). As

Ok}1(v~~OV) - tk~l(ek~1.LOfGy)

- tktl(ek41.v~) t dtkrl(ektl) t o(ey)

- Ok41(v~) t dtktl(ek;l) t o(oy)

we see that, if we take dOktl - dtkfl(ektl), we get

Ok}1(vOtov) - Ok}1(v~) t dOk~l t o(oy). (3.3)

We assumed Xk(vo4~L) - Xk(LO) and saw that ekal(LOt~L) - ek}1(LO). WE con-

clude that xkyl(LOtGL) - K ~1(v~). Again the set of possible events does not

change, but how will the tlitmes tkt2(e), eEE(xkrl), change?

Be eEE(xk}1). Then either (i) tk~2(e) - tk;l(e') for some e'EE(xk),
or (ii) tkf2(e) - ~ktl 4 g e .e ~ see (1.3) and (1.4). If (i) holds,

xlc' kal
then

tkt2(e,v~}~v) - tk~l(e'.v~~oy)
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- tktl(e',v~) t dtktl(e') . o(ev)

- tk}2(e,v0) t dtktil(e') f o(ev)

and we see that, if we take dtkt2(e) - dtk~l(e'), then

tk~2(e,v~.ev) - tka2(e,v~) . dtk;2(e) ~ o(ev).

If (ii) holds, then

tk;2(e.v~fev) - ~ktl(v~.ev) . g e 'e(yO.ey)
Xic' k~ 1

in which

Ok.l(L~teL) - Ok;l(L~) ; dOktl f o(ev)

according to (3.3). anà

(3.4)

(3-5)

(3.6)

g e e(y~,ev)-F-1 e e,v .ev(F e e y(B e e(v~)))
Xlc' ktl' X1c' ktl' 0 Xic' ktl' 0 X1c' k41'

where F e ,e,v is the cdf of g e e(v0); an analoguous definition
Xlc' ktl 0 X1c' k}1

holds for v~~ev. For simplicity's sake, we omit the indices xktl' ek~l ~d
e, and we rewrite

B(L~tey) - Fy1teL(Fy ( B(L~)))
~ ~

which is the same as

Fy 4eL(g(L~'eL)) - Fy (B(y~)).
~ ~

This relation remains true, if we write the indices as argvments:
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F( B(vOfev) .UO~eL) - F(g(LO).v~).

We define ( using the notation ":-" for "is defined as")

eg :- g(vOtev) - g(v0)

and write out

F(B(vOtev)~LOtGY) ' F(B(LO).eB.vO.ev)

- F(B(v0).v0) . e dg t e~ ~

2
. ege ~ir~~ . o(eg) . o(ev).

This is substituted into (3.7), yielding

2eg(ag t ev~~v . 0(1)) --evjy . o(nv)g

or, after some elementary algebra,

eg - -ev(dg } e ~Jgw ` 0(1))-1(w ~ o(ev))

- n~ . o(nv).

From (3.8) and (3.9) we conclude

B(LOteL) ' g(vo) r dg r O(eL).

(3.7)

(3.8)

(3.9)

(3.10)

Substituting (3.6) and (3.10) into (3.5), we obtain, with dtk~2(e)-dOk}l.dg,

that

tk}2(e,vOtev) - tkt2(e,v0) 4 dtk42(e) t o(ev). (3.11)
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Resuming: there are two ways to compute tkr2(e). In both ways the relation

(3.2) is carried over one interval. The assumption (3.1) is also carried
over one interval, and so does the assumption x(v~tev) - x(v~). So if we

start the simulation in x~(v~tev)-X~(L~) at point of time

O~(v~teL)-O~(L~)-O and we make sure that tl(e,v~tev)-t1(e,v0).dtl(e)to(ev)

for all eEE(x0), then induction leads to the conclusion that for any

k-0,1,2,.....

~(vOtev) - xk(v0)

OkMl(vOtev) - Ok}1(v~) ; dOk}1 . o(ev)

tk~l(e,v~.ev)-tka1(e,v~)tdtk}1(e)}o(ev), veEE(xk).

Can we derive relations like (3.12) for the PM's too? A basic PM was defined
as

Yk - (~k-~k-1)fs(xlc-1) . fo(ek).

If we change v from v~ to vOtev, the xk-1 and ek do not change; only the 0's

do. We have

yk(v~tnv) - {Ok(v~fev) - ~k-1(vp.ev)}fs(~c-1) t fo(ek)

- {Ok(v~)-Ok-1(v~)tdOk-dOk-1}o(ev)}fs(xk-1)'fo(ek)

- Yk(v~) . (dOk-dOk-1)fs(xlc-1) ' o(ev). (3.13)

For a simple PM it immediately follows from

1 K2 b
YK1,K2 - K2-Kltl Ek-K1 yk

that
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K
yKl KZ(vOtov)-YK1 K2(vD)tK2-K1}1Ek?K1(dOk-dOk-1)fs(xk-1){o(ov).

so that

dydv,K2 - K2-Kltl ~k?K (dok - ddv-1)fs(xic-1)'1
(3.i4)

So to compute the derivative of a simple PM to v. the only information we
need is the derivative of the points of time Ok. The latter follow from the

derivatives of the scheduled points of time tk(e). Only if tk(e) is computed
according to (1.3.b), then we need an extra computation, more complicated
than an addition. The derivatives are computed in the same simulation run as
the PM's themselves.

If ov is small enough - and we do take ev infinitesimally small -
the history of the simulation is the same, whether v-v~ or v-v~t~v. The only
things that change, are the lengths of the successive intervals, as
reflected in (3.14), where we see that a simple PM is a differentiable func-
tion of v. A general PM was defined as a function of simple PM's. Now we
define an admissible PM as a differentiable function of simple PM's, which
immediately gives as a result: an admissible PM is differentiable to v.

4. Discussion.

We have given a description of a DEDS, and we have seen how P~A can be ex-
plained in our terminology. The merits of P~A are not further discussed in
this article; see Heidelberger (1987) for the most recent contribution to
this discussion.

The description presented here, is very general in that it is not
limited to a certain simulation language. It can be extented to more situa-
tions that can occur in a DEDS. We give the following examples.

Simultaneity. Imagine a situation in which a workpiece, upon leav-
ing some device, has probability p of joining one queue, and probability q-
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1-p of joining another queue. This kind of situations dces not fit into our
discription, in which we demanded that a state and an event together com-
pletely determine the successor state. We might say that, instead of the
event "finish at A", followed by either "start at B" or "start at C", we
have two events "finish at A, start at B" and "finish at A, start at C",
which are scheduled at the same time. But then min{tk(e)~eEE(x)} can be as-

sumed by two different events e, which we prohibited! It is clear that the
description has to be extended to include this possibility.

Preemption. In systems with preemption it may occur, that a the ar-
rival of a higher-priority workpiece interrupts the work on a lower-priority
workpiece. The work on the latter is resumed after finishing the former.
While the device is busy with the high priority workpiece, the remaining
time needed for the other one must be part of the state. In this case a
change in v will result in a change in the state. This possibility needs a
more refined definition of state than used in the present description of a
DEDS.

The given description of a DEDS is not yet suited to cover every
possible DEDS, but it may prove to be worthwile as a basis for a really
general description.
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Appendix. A general PM is indeed general.

We want to prove that any PM is a general PM. We introduced a PM as a func-
tion of the states and events the system goes through during the simulation,
and the duration of the states. So any PM can be written as

z(x~.el-A~.el.x1.~2-Ol,e2,...,x,~-1'~,~-~~-1'e~,....xiC-1'~K-oK-1'eK)'

Both X and E are countable. We define functions h(~):X~I1 and h(~):E~fis o
(~-1,...,K), and a function z:R3K-~R, so that

z(h(1)(x ).~ -O h(1)(e ).h(~)(x ).0 -O h(2)(e ) ......,s 0 1 0' 0 1 s 1 2 1' 0 2

h(~)(x ).O O h(~)(e ).......h(K)(xiC-1)'~K-~K-1'hoK)(eK)) -s .~-1 ~--~C-1' o .~ s

z(x~,01-O~,el,x1,02-O1,e2,....x,~-1'~,~-0~-1'e~,...,xI{-1'oK-oK-1.eK)

for all values of all arguments. Now we construct PM's as follows. First
we define for ,~-1,...,K, xEX, eEE the functions

fgl'~)(x) :- hs~)(x) f(1'~)(e) :- 00

f(2'~)(x) :- 1s
f(3.~)(x) :- os

f(2'~)(e) :- 0s
fg3.~)(e) :- hó~)(e)

Associated with these are the following basic PM's:

yb(1'~) - Í~ -0 - )h(~)( )k k k 1 s x1c-1
b(2.~)

yk - ~k-Ok-1
yk(3.~) - ho~)(ek)
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for any .i- 1,...,K. Corresponding with these we define 3K simple PM's

Y~1~~) - (~~-0~-1)hs~)(X1c-1)

(2'~) - O -0Y~,.~ - ,~ ~l-1

Y~3~~) - ha~)(e~),

again for .i-1,...,K. Now

z(Y(1'1)~Y(2'1) Y(2.1) Y(3.1) Y(2,1)~Y(2.2) Y(2.2) Y(3.2) ..1.1 1.1 ' 1,1 ' 1,1 ' 2.2 2.2 ' 2,2 ' 2,2

... y(1'~)~Y(2.~) Y(2,~) Y(3.~) Y(1,K)~Y(2.K) Y(2.K) y(3 .K))
' ~.~ ~.~ ' ~.~ ' ~.~ ' ' K,K K,K ' K,K ' K,K

is a function of simple PM's; so by definition it is a general PM. It equals
the arbitrary PM z we started with, so we may conclude that indeed any PM is
a general PM.
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