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Abstract

When assets exhibit asymmetric dependence or joint downside risk, diversifica-

tion can fail and financial markets may be prone to systemic risk. We analyze the

dependence structure of risk factors in the US economy, using both correlations and

a parsimonious set of copulas. We find evidence of downside risk in several risk fac-

tors. Interestingly for research on systemic risk, the pairs with downside risk include

consumption with the Dow Jones, as well as consumption with market and size fac-

tors. Of these pairs, only the size factor exhibits an offsetting upside comovement with

consumption during good periods. We also discover significant dynamic behavior in

dependence for several risk factors, in particular betweenconsumption and the size

factor. Thus, financial markets exhibit time variation in downside risk. Our results

provide quantitative evidence on the susceptibility of financial markets to diversifica-

tion failure and systemic risk.
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1 Introduction and motivation

Dependence is at the heart of financial theories of risk, since it summarizes diversification

benefits.1 The net benefit of diversification is of great importance in today’s economic

climate. In general, the balance between diversification’sbenefits and costs hinges on the

degree of dependence across securities, as observed by Samuelson (1967), Veldkamp and

Van Nieuwerburgh (2009), Ibragimov, Jaffee, and Walden (2009b), and Shin (2009), among

others. Diversification benefits are typically assessed using a measure of dependence, such

as correlation.2 It is therefore vital for investors to have accurate measures of dependence.3

There are several measures available in finance, including the traditional correlation and

copulas. While each approach has advantages and disadvantages, they rarely have been

compared in the same empirical study. Such reliance on one dependence measure prevents

easy assessment of the degree of diversification opportunities, and how they differ over

time or across sectors.

Moreover, from an aggregate perspective, situations of high financial dependence often

signal extreme financial fragility, as evidenced by joint down moves of multiple economic

sectors and financial asset classes in the US in 2008 and 2009.Such failures of diversifi-

cation have deep economic and social repercussions.4 Financial dependence amplifies the

effect of surprise events.5 For example, the collapse of a major lending institution affects

many households, and can cause total insurance claims to increase geometrically, since

multiple classes are affected, including property loss andjob loss.6 The lack of empir-

ical research on such ”simultaneous hard times” means that individuals and society are

not prepared, when such preparation matters most. Historically, financial economists have

devoted considerable research effort to examine dependence of key risk factors. Most em-

pirical and theoretical studies consider average dependence, which is appropriate if the true

dependence structure is linear. However, when dependence is nonlinear, it is important to

1See Samuelson (1967); Solnik (1974); and Ibragimov, Jaffee, and Walden (2009b).
2See Solnik (1974); Ingersoll (1987) Chapter 4; and Carrieri, Errunza, and Sarkissian (2008).
3Throughout, we use the word dependence as an umbrella to cover any situation where two or more risk

factors move together. We adopt this practice because thereare numerous words in use (e.g. correlation,
concordance, co-dependency, coherence, and comovement),and we wish to use a general term. We do not
assume that any dependence measure is ideal, and throughoutwe indicate advantages and disadvantages as
the case may be.

4For research on the welfare cost of financial crises, see Chatterjee and Corbae (2007); Reinhart and
Rogoff (2009); and the references therein.

5See Krishnamurthy (2009) for economic explanations for such amplifications.
6For details on insurance during periods of macroeconomic dependence, see Jaffee and Russell (1997);

Jaffee (2006); and Ibragimov, Jaffee, and Walden (2009b) .
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use robust dependence measures.7 Recently there have evolved robust tools to study de-

pendence, such as copulas.8 While such tools have been applied successfully in banking

and international economics, there is no comparable research on financial risk factors. In

light of the above considerations, we investigate the dependence structure of important US

financial risk factors, using both correlations and a parsimonious set of copulas.

The main goal of this paper is to assess the dependence structure of US financial risk

factors. This research sheds light on diversification opportunities available in financial

markets. The recent history of US markets is interesting in itself, due to the large num-

ber of financial crises, increasingly globalized markets, and financial contagion.9 A sec-

ondary focus of our paper is the relation between dependenceand systemic stability. In

general, systemic instability increases with the degree ofmarket dependence, as observed

by Caballero and Krishnamurthy (2008); Ibragimov, Jaffee,and Walden (2009b), and Shin

(2009), among others. Systemic instability may also be exacerbated bycorrelation com-

plexity, when different dependence measures give conflicting or inaccurate signals. It is

therefore vital for households, banks and policymakers to have accurate estimates of de-

pendence. The importance of this issue is highlighted by both theoretical and applied re-

search.10 When portfolio distributions have tail dependence, not only do they represent

limited diversification, they also suggest a wedge between acceptable individual risk and

systemic risk. Thus, there are aggregate ramifications for elevated levels of financial depen-

dence. If systemic costs are too severe, a coordinating agency may be needed to improve

the economy’s resource allocation.11 Such policy considerations are absent from previ-

ous empirical research on risk factor dependence, and provide a further motivation for our

paper.

7See Granger (2001); Hamilton (2001); and Embrechts, McNeil, and Straumann (2002).
8These tools are drawn from distributional and asymptotic approaches in statistics. For distributional

approaches see Embrechts, McNeil, and Straumann (2002); Joe (1997); and Nelsen (1998). For asymptotic
approaches see Embrechts, Kluppelberg, and Mikosch (1997); and de Haan and Ferreira (2006).

9 See Dungey and Tambakis (2005); Reinhart (2008); and Reinhart and Rogoff (2009).
10See Rosenberg and Schuermann (2006); Ibragimov, Jaffee, and Walden (2009b); and Shin (2009).
11For related work, see Caballero and Krishnamurthy (2008); Ibragimov, Jaffee, and Walden (2009a); and

Shin (2009).
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1.1 Related empirical research

Previous research generally falls into either correlationor copula frameworks.12 The lit-

erature in each area applied to financial economics is vast and growing, so we summarize

only some key contributions.13 With regard to correlation, a major finding of Longin and

Solnik (1995) and Ang and Bekaert (2002) is that international stock correlations tend to

increase over time. Moreover, Cappiello, Engle, and Sheppard (2006) document that inter-

national stock and bond correlations increase in response to negative returns, although part

of this apparent increase may be due to an inherent volatility-induced bias.14 Regarding

copula-based studies of dependence, an early paper by Mashal and Zeevi (2002) shows

that the dependence structures of equity returns, currencies and commodities exhibit joint

heavy tails. Patton (2004) uses a conditional form of the copula relation (2) to examine

dependence between small and large-cap US stocks. He finds evidence of asymmetric de-

pendence in the stock returns. Patton (2004) also documentsthat knowledge of this asym-

metry leads to significant gains for investors who do not faceshort sales constraints. Patton

(2006) uses a conditional copula to assess the structure of dependence in foreign exchange.

Using a sample of Deutschemark and Yen series, Patton (2006)finds strong evidence of

asymmetric dependence in exchange rates. Jondeau and Rockinger (2006) successfully

utilize a model of returns that incorporates skewed-t GARCHfor the marginals, along with

a dynamic gaussian and student-t copula for the dependence structure. Rosenberg and

Schuermann (2006) analyze the distribution of bank losses using copulas to represent, very

effectively, the aggregate expected loss from combining market risk, credit risk, and op-

erational risk. Rodriguez (2007) constructs a copula-based model for Latin American and

East Asian countries. His model allows for regime switches,and yields enhanced predictive

power for international financial contagion. Okimoto (2008) also uses a copula model with

regime switching, focusing on the US and UK. Okimoto (2008) finds evidence of asymmet-

ric dependence between stock indices from these countries.Harvey and de Rossi (2009)

12 There is also a related literature that examines dependenceusing extreme value theory, as well as thresh-
old correlations or dynamic skewness. These papers all find evidence that dependence is nonlinear, increasing
more during market downturns for many countries, and for bank assets as well as stock returns. For extreme
value approaches, see Longin and Solnik (2001), Hartmann, Straetmans, and de Vries (2003), and Poon,
Rockinger, and Tawn (2004). For threshold correlations, see Ang and Chen (2002). For dynamic skewness,
see Harvey and Siddique (1999).

13For summaries of copula literature, see Cherubini, Luciano, and Vecchiato (2004), Embrechts, McNeil,
and Frey (2005), Jondeau, Poon, and Rockinger (2007), and Patton (2009). For more general information
on dependence in finance, see Embrechts, Kluppelberg, and Mikosch (1997), and Cherubini, Luciano, and
Vecchiato (2004).

14See Forbes and Rigobon (2002).
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construct a model of time-varying quantiles, which allow them to focus on the expectation

of different parts of the distribution. This model is also general enough to accommodate

irregularly spaced data. Harvey and Busetti (2009) devise tests for constancy of copulas.

They apply these tests to Korean and Thai stock returns and document that the dependence

structure may vary over time. Ning (2008) examines the dependence of stock returns from

North America and East Asia. She finds asymmetric, dynamic tail dependence in many

countries. Ning (2008) also documents that dependence is higher intra-continent relative

to across continents. Ning (2010) analyzes the dependence between stock markets and for-

eign exchange, and discovers significant upper and lower tail dependence between these

two asset classes. Chollete, Heinen, and Valdesogo (2009) use general canonical vines in

order to model relatively large portfolios of international stock returns from the G5 and

Latin America. They find that the model outperforms dynamic gaussian and student-t cop-

ulas, and also does well at modifying the VaR for these international stock returns. These

papers all contribute to the mounting evidence on significant asymmetric dependence in

joint asset returns.

1.2 Contribution of our paper

Our paper has similarities and differences with the previous literature. The main similarity

is that, with the aim of gleaning insight on risk and diversification, we estimate dependence

in financial markets. There are two main differences. First,we assess diversification using

both correlation and copula techniques, and we are agnosticex ante about which technique

is appropriate. To the best of our knowledge, ours is one of the first papers. Second, our

paper builds on specific finance theories of dependence and diversification. Previous em-

pirical research focuses very justifiably on establishing the existence of extreme or asym-

metric dependence. Understandably, these empirical studies are generally motivated by

implications for individual market participants and risk management benchmarks such as

VaR. By contrast, our work builds on theoretical risk research, and discusses both indi-

vidual and systemic implications of asset dependence structure. Most empirical research

assessing market dependence takes it for granted that larger dependence leads to poorer

diversification in practice. While this can be true, what is arguably more important from an

economic point of view is that there are aggregate ramifications for elevated asset depen-

dence. Therefore, we examine average dependence across risk factors, in order to obtain
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empirical insight on the possibility of a wedge between individual and social desiderata.

Such considerations are absent from most previous empirical copula research.

More broadly, our paper can be seen a providing a robust alternative examination of the

implications of theoretical research, to see whether theirpredictions hold differentially in

normal and extreme times. This scientific motivation has at least two dimensions. First,

existing theoretical models such as that of Lucas (1978) saythat assets are priced according

to their dependence with consumption. However, dependenceduring extremes should be

more important than dependence at other times, especially for agents that exhibit down-

side risk aversion.15 Such nonlinear dependence could not be easily captured by previous

studies using correlations. Second, the key insight in mosttheoretical research is that de-

pendence is to be avoided, and may indicate economic inefficiency. Thus, if dependence

during extremes is pronounced, this indicates inefficiencyduring bad times. In addition

to these scientific motivations, there is a strong practicalmotivation for the financial risk

factors. Specifically, one source of confusion in current financial market policy is the lack

of robust documentation of dependence in financial risk during extreme periods. Our paper

appears to be among the first to examine and document extreme dependence of important

risk factors in US financial markets.

The remaining structure of the paper is as follows. In Section 2 we review related theoret-

ical and empirical literature on dependence and diversification in finance. In Section 3 we

discuss our data and main results, and Section 4 concludes.

2 Dependence, diversification, and systemic risk

Dependence and diversification are cornerstones of modern finance. The notion that diver-

sification improves portfolio performance is pervasive in financial economics, and appears

in asset pricing, insurance, and international finance. A central precept is that, based on

the law of large numbers, a group of securities carries a lower variance than any single

security.16 An important caveat, noted as early as Samuelson (1967), concerns the depen-

dence structure of security returns, as we discuss below. This theoretical importance of

dependence structure motivates our use of copulas in the empirical analysis.

15See Kahneman and Tversky (1979); Barberis, Huang, and Santos (2001); and Polkovnichenko (2005).
16Aspects of this precept have been formalized by Markowitz (1952); Sharpe (1964); Lintner (1965);

Mossin (1966); and Samuelson (1967).
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2.1 Theoretical background

When assets have substantial dependence in their tails, diversification may not be optimal.17

In an early important paper, Samuelson (1967) examines the restrictive conditions needed

to ensure that diversification is optimal.18 He underscores the need for a general definition

of negative dependence, framed in terms of the distributionfunction of security returns. In

a significant development, Brumelle (1974) proves that negative correlation is neither nec-

essary nor sufficient for diversification, except in specialcases such as normal distributions

or quadratic preferences. Brumelle uses a form of dependence as a sufficient condition for

diversification, that involves the shape of the entire distribution. Thus, shortly after the

inception of modern portfolio theory, both Brumelle (1974)and Samuelson (1967) realize

and discuss the need for restrictions on the joint distribution, in order to obtain diversifica-

tion. However, that discussion has a gap: it stops short of examining multivariate (n > 2 )

asset returns, and the practical difficulty of imposing dependence restrictions on empirical

data. The use of copulas may be one way to fill this gap.19 The research of Embrechts,

McNeil, and Straumann (2002) introduces copulas into risk management. The authors first

show that standard Pearson correlations can go dangerouslywrong as a risk signal. They

then suggest the copula function as a flexible alternative tocorrelation, which can capture

dependence throughout the entire distribution of asset returns. A copulaC is by definition

a joint distribution with uniform marginals. In the bivariate case, that means

C(u, v) = Pr[U ≤ u, V ≤ v], (1)

whereU andV are uniformly distributed.20

17See Embrechts, McNeil, and Frey (2005); Jondeau, Poon, and Rockinger (2007); and Ibragimov (2009).
18Samuelson (1967) discusses several approaches to obtain equal diversification across assets, as well as

positive diversification in at least one asset. The distributional assumptions on security returns involve i.i.d.
and strict independence of at least one security. Although both utility functions and distributional assumptions
are relevant, Samuelson focuses on distributional concerns. A special case of dependence when diversification
may be optimal is that of perfect negative correlation. However, if a portfolio consists of more than 2 assets,
some of which are negatively correlated, then at least 2 mustbe positively correlated. This could still result
in suboptimality of diversification for at least one asset, when there are short sale constraints. See Ibragimov
(2009); and Samuelson (1967), page 7.

19 Another approach involves extreme value theory, see Embrechts, McNeil, and Frey (2005).
20See de la Peña, Ibragimov, and Sharakhmetov (2006), Definition 3.1. It is typical to express the copula

in terms of the marginal distributionsFX(x) andFY (y). In general, the transformations fromX andY to
their distributionsFX andFY are known as probability integral transforms, andFX andFY can be shown to
be uniformly distributed. See Cherubini, Luciano, and Vecchiato (2004), page 52; and Embrechts (2009).
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The intuition behind copulas is that they ”couple” or join marginals into a joint distribution.

Copulas often have convenient parametric forms, and summarize the dependence struc-

ture between variables.21 Specifically, for any joint distributionFX,Y (x, y) with marginals

FX(x) andFY (y), we can write the distribution as

FX,Y (x, y) = C(FX(x), FY (y)). (2)

The usefulness of (2) is that we can simplify analysis of dependence in a return distribution

FX,Y (x, y) by studying instead a copulaC. Since copulas represent dependence of arbitrary

distributions, in principle they allow us to examine diversification effects for heavy-tailed

joint distributions, following the logic of Brumelle (1974) and Samuelson (1967).

In order to place the above research in perspective, it is necessary to discuss two aspects

of financial risk, namely equilibrium asset pricing and systemic risk. Both aspects revolve

around issues of financial dependence. The equilibrium approach says that the price of

an asset is an increasing function of its dependence with either the market return or some

aggregate risk factor. Regarding the market return, the CAPM model of Sharpe (1964),

Lintner (1965) and Mossin (1966) says that under some conditions, for any stocki, its

returnRi relates to its dependence (covariance) with the market return Rm:

E(Ri) − Rf = βi[E(Rm) − Rf ], (3)

whereβ = Cov(Rm, Ri)/Var(Rm). Therefore, the greater its dependence with the market,

the higher an asset’s own return. Regarding aggregate risk factors, Lucas (1978) constructs

a dynamic equilibrium asset pricing model. Under rational expectations and in a station-

ary environment, the author shows that asset prices are characterized by a stochastic euler

equation.22 This equation may be written as

1 =
∫ ∞

−∞
M(1 + Ri)dFM,R(M, ri) = E[M(1 + Ri)], (4)

whereM is a discount factor that prices asset returnsRi, andF is the joint distribution

of M andRi. Equation (4) is typically re-expressed using the covariance decomposition

21This result holds for multivariate(n > 2) quantities. It is due to Sklar (1959), who proves that copulas
uniquely characterize continuous distributions. For non-continuous distributions, the copula will not neces-
sarily be unique. In such situations, the empirical copula approach of Deheuvels (1979) helps narrow down
admissible copulas.

22Expression (4) follows from Proposition 2 and Equation 6 of Lucas (1978).
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for both a risky asset and a riskless asset with returnRf , as0 = E[M(1 + Ri − Rf )] =

E[M ] ∗ E[(Ri − Rf ] − Cov[M, Ri − Rf ], or23

E[(Ri − Rf ] =
−Cov[M, Ri − Rf ]

E[M ]
. (5)

The intuition for (5) is similar to that of (3): asseti′s return is determined by risk, sum-

marized by its dependence (covariance) with the discount factorM . An asset that exhibits

large negative dependence withM will provide relatively small returns when the discount

factor (and marginal utility) is high. Such an asset does notoffer much to investors during

bad states of the world. Therefore, in order to entice investors to hold it, the asset requires

a large excess return. Although the covariance decomposition is useful in some settings, it

does not capture all the dependence in equilibrium, since covariance only measures linear

dependence.24

A tractable special case of the discount factorM involves linear factor models. Factor

models may be interpreted as linear versions ofM from above. For example, a 3-factor

model of risk is of the formM = α + λ1F1 + λ2F2 + λ3F3, whereλi, i = 1, 2, 3, is the

risk premium for factori.25 Standard risk factors comprise the market, size, book to market

and momentum, as well as liquidity, default risk, and volatility.26 In response to growing

research on atheoretical factor models, Campbell (1996) develops a loglinear asset pricing

model that allows for changing investment opportunities. In his model, equilibrium ex-

pected returns depend on covariances of securities with themarket and innovations in the

present value of future expected market returns. The authordemonstrates that a valid risk

factor can be any variable that forecasts market returns. Campbell also asserts that labor

income is an important factor to reflect investor wealth in asset pricing studies. Thus, de-

pendence of consumption, the stock market, and labor incomeare central to the approach

of Campbell (1996). Campbell’s results are structured around dependence considerations,

since the model’s testable implications involve correlations of innovations in consumption

growth and labor income growth. Furthermore, the loglinearmodel is obtained by a re-

striction of distributional dependence, namely the assumption that the joint distribution of

23See Campbell, Lo, and MacKinlay (1996); Campbell (2000); and Cochrane (2001).
24See Embrechts, McNeil, and Straumann (2002).
25See Cochrane (2001).
26The market, size and book to market factors are examined by Fama and French (1993). Momentum

is examined by Carhart (1997). Liquidity risk is studied by Pastor and Stambaugh (2003); Acharya and
Pedersen (2005); and Sadka and Koracjczyk (2008). Default risk is studied by Vassalou and Xing (2004).
Volatility risk is examined by Ang, Hodrick, Xing, and Zhang(2006).
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asset prices and consumption is lognormal.27 In a systematic study of major asset pricing

models, Hodrick and Zhang (2001) document that the Campbellmodel is the only one that

can plausibly price a standard universe of US stock returns.28 To summarize, in modern

finance the key asset pricing relations center on considerations of dependence, as shown in

the CAPM and discount factor approaches of (3) and (4) above.

The above approaches analyze investor decisions or risk, and say little about systemic risk.

Evidently investors’ decisions, in aggregate, may have an externality effect on financial and

economic markets. The existence of externalities related to ”excessive” diversification has

been emphasized by several recent theoretical papers.29 We discuss the following articles,

since their results relate to distributional dependence.30 Shin (2009) constructs a model to

analyze the relation between asset securitization and financial stability. Shin recognizes

that increased securitization, while reducing investor portfolio risk in many instances, may

also lower aggregate lending standards. In the author’s framework an important role is

given to endogeneity in credit, since lenders change creditsupply in response to perceived

risk. Hence in the model of Shin (2009), when securitizationdrives down lending standards

there is a tradeoff between credit expansion and systemwidestability. Once credit expands

too much to include excessively risky borrowers, the entirefinancial system features larger

likelihood of default and there is a financial market downturn. Consequently risk factors

related to default should become dependent during market downturns. Skreta and Veld-

kamp (2009) analyze the driving forces behind recent ratings inflation. The authors build

a theoretical model where the dynamics of information production for sophisticated se-

curities is driven by disagreement orasset complexity–situations where securities exhibit

large cross-sectional variance in value estimates, acrossthe various rating agencies.31 They

demonstrate that even if individual agencies are unbiased,complexity results in an ag-

gregate bias in disclosed ratings. Moreover, if this bias isattempted to be corrected by

27For more general tail dependence, the results of Campbell (1996) might not obtain. An alternative
method that permits the loglinear approach involves using asecond-order Taylor approximation to the euler
equation. See Campbell (1996), page 304.

28Hodrick and Zhang (2001) find that the Campbell model does nothave stable parameters, and is less
successful in robustness tests. For a comprehensive study of asset pricing models, see Campbell (2000).

29For empirical research on systemic risk, or risk of default,see Vassalou and Xing (2004). The authors
find that a factor that summarizes default risk is important for asset prices. Moreover, they show that a default
risk factor exhibits dependence with the other risk factorsof size and book to market, for portfolios in the
extreme quantiles. Furthermore, Campbell, Hilscher, and Szilagyi (2008) show that stocks with large default
risk earn anomalously small returns. For other research, see Duffee (1999).

30 Other theoretical papers include Krishnamurthy (2009); and Danielsson, Shin, and Zigrand (2009).
31More generally, the lack of agreement on (beliefs about) asset values has been shown to explain asset

bubbles for new technology, see Abreu and Brunnermeier (2003), and Hong, Scheinkman, and Xiong (2008).
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using investor-initiated ratings, there is a free-rider problem, which can result in a failure

in the market for information. Thus, complexity drives a wedge between optimal investor

acquisition of information, and market-wide aggregate production of information. While

Skreta and Veldkamp (2009) examine asset complexity in the means, it is also evident

that complexity may matter in a similar way for higher moments. The reason is that, as

discussed above, standard equilibrium asset pricing is based on correlations of securities,

either with consumption or with the market return. Furthermore, correlation complexity is

key to market failures in diversifying large risks, as examined by Ibragimov and Walden

(2007); Ibragimov, Jaffee, and Walden (2009b) and others. We therefore summarize the re-

sults of Shin (2009) and Skreta and Veldkamp (2009) by observing that if financial markets

have periods of over-lending, then risk factors related to default risk will exhibit asym-

metric dependence. Furthermore, if investors or ratings agencies disagree about securities’

values, risk factors will exhibit correlation complexity.

In another line of research, Ibragimov, Jaffee, and Walden (2009b) develop a model of

catastrophic risks. They characterize the existence ofnon-diversification traps: situations

where insurance providers may not insure catastrophic risks nor participate in reinsurance

even though there is a large enough market for complete risk sharing. Conditions for this

market failure to occur comprise limited liability or heavyleft-tailedness of risk distri-

butions. Economically speaking, if assets have infinite second moments, this represents

potentially unbounded downside risk and upside gain. In theface of this, insurers prefer to

ration insurance rather than decide coverage unilaterally.32 The authors go on to say that, if

the number of insurance providers is large but finite, then nondiversification traps can arise

only with distributions that have moderately heavy left tails. In a related paper, Ibragimov

and Walden (2007) examine distributional considerations that limit the optimality of diver-

sification. They show that non-diversification may be optimal when the number of assets is

small relative to their distributional support. They suggest that such considerations can ex-

plain market failures in markets for assets with possibly large negative outcomes. They also

identify theoretical non-diversification regions, where risk-sharing will be difficult to cre-

ate, and risk premia may appear anomalously large. The authors show that this result holds

for many dependent risks as well, in particular convolutions of dependent risk with joint

truncatedα-symmetric distributions. Since these convolutions exhibit heavy-tailedness and

dependence, copula models are potentially useful in empirical applications of this result, by

extracting the dependence structure of portfolio risks.In economic terms, diversification is

32This parallels the credit rationing literature of Jaffee and Russell (1976) and Stiglitz and Weiss (1981).
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disadvantageous under some heavy-tailed distributions because they exhibit large downside

dependence. Thus, the likelihood and impact of several catastrophes exceed that of a sin-

gle catastrophe. In a recent working paper, Ibragimov, Jaffee, and Walden (2009a) discuss

the importance of characterizing the potential for externalities transmitted from individual

bank risks to the distribution of systemic risk. Their modelhighlights the phenomenon of

diversification disasters: for some distributions, there is a wedge between the optimal level

of diversification for individual agents and for society. This wedge depends crucially on

the degree of heavy-tailedness: for very small or very largeheavy-tailedness, individual

rationality and social optimality agree, and the wedge is small. The wedge is potentially

largest for moderately heavy tailed risks.33 This result continues to hold for risky returns

with uncertain dependence or correlation complexity. Economically speaking, when risk

distributions are moderately heavy tailed, this represents potentially unbounded downside

risk and upside gain. In such a situation, some investors might wish to invest in several

asset classes, even though this contributes to an increasedfragility of the entire financial

system. Thus, individual and social incentives are not aligned. A similar situation exists

when the structure of asset correlations is complex and uncertain, a situation which may be

termed correlation complexity.34 The authors provide a calibration illustrating a diversifi-

cation disaster where society prefers concentration, while individuals prefer diversification.

As in Ibragimov, Jaffee, and Walden (2009b), they explain that their results hold for general

distributions, all of which exhibit tail dependence.35

The research above emphasizes on theoretical and practicalgrounds the importance of iso-

lating dependence in the joint distribution of risk factorsin order to say something concrete

about diversification and systemic risk. An additional, very current reason for measur-

ing dependence in a robust way is that most economic measuresof systemic risk (Adrian

and Brunnermeier (2008); Acharya, Pedersen, Philippon, and Richardson (2010)) involve

considerations of tail dependence.36

33The authors define a distributionF (x) to be moderately heavy-tailed if it satisfies the following relation,
for 1 < α < ∞ : limx→+∞ F (−x) = c+o(1)

xα l(x). Herec andα are positive constants andl(x) is a slowly
varying function at infinity. The parameterα is the tail index, and characterizes the heavy-tailedness of F. α
is a parameter in many copula functions. For more details, see de Haan and Ferreira (2006) and Embrechts,
Kluppelberg, and Mikosch (1997).

34 Individuals have an incentive to diversify because they do not bear all the costs in the event of systemic
crises. That is, the aggregate risk is an externality, as examined by Caballero and Krishnamurthy (2008), and
Shin (2009).

35These distributions include the student’s t, logistic, andsymmetric stable distributions.
36See also Hartmann, Straetmans, and de Vries (2003); Cherubini, Luciano, and Vecchiato (2004); and

Acharya, Cooley, Richardson, and Walter (2010).
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2.2 Consequences of measuring economic dependence by correlation

Most of the above results are originally formulated with some type of covariance. How-

ever, if we wish to isolate asymmetric dependence, covariances and correlations are not

enough.37 Covariance measures average linear dependence.38 However, average depen-

dence differs from dependence of the distribution, in general. Thus, covariance cannot

detect dependence in even simple nonlinear relations. Similar reasoning applies to any

statistical measure that builds on correlation, such as linear regression.39

Such fragility of correlation is of practical importance infinancial research and policy.

The correlation approach can mask theoretically importantnonlinearities, as demonstrated

by Granger (2001), Hamilton (2001), and Mogstad and Wiswall(2009). From a policy

perspective, it is crucial to understand the dependence patterns of key financial risk factors

during upturns versus downturns.40

3 Data and Results

Our data comprise personal consumption expenditure (CON),and 4 standard risk factors.

These risk factors include the market (MKT) factor (return on the market portfolio in ex-

cess of the riskfree rate), a size factor (SMB, the small-stock returns minus the big-stock

returns), a book-to-market factor (HML, the high-book-to-market-stock returns minus the

low-book-to-market stock returns), and a momentum factor (MOM). In addition, we use

the Dow-Jones Industrial Average (DJIA), which is a common proxy for aggregate market

behavior. The sample period is January 1959 to June 2008.41 In order to perform our analy-

sis it requires all variables to be stationary. Specifically, real consumption is not stationary,

so we take the first log differences. Moreover, all stationary series show evidence of het-

37In the Appendix, we will explain why correlation is misleading as a signal of diversification opportunities
and systemic risk. We also explain how copulas can help in estimating extreme dependence, since they are
rank based and invariant to common economic transformations. Such research has already been used success-
fully in international economics and banking. See Okimoto (2008); Ane and Kharoubi (2001); Rosenberg
and Schuermann (2006); and Patton (2006).

38See Casella and Berger (1990), Chapter 4; Embrechts, McNeil, and Straumann (2002).
39Further drawbacks of correlation include non-invariance and volatility bias, as outlined in the Appendix.
40For related literature on financial market asymmetries, seeDe Long and Summers (1986); Veldkamp and

Van Nieuwerburgh (2006); and Adrian and Brunnermeier (2008).
41The risk factors are downloaded from Kenneth French’s website. The Dow-Jones Industrial Average is

from WRDS, and aggregate personal consumption expenditureis from the St. Louis Federal Reserve.
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eroscedasticity. We therefore remove heteroscedasticitywith a GARCH(1,1) filter for all

variables except for the consumption variable, which requires an AR(1)-GARCH(1,1) to

remove the heteroscedasticity. We now discuss the dependence of these risk factors, using

first correlations and then copulas.

3.1 Estimating dependence by correlation

Table 2 shows dependence estimates obtained via correlations. First let us discuss linear

correlations. The maximum dependence is between the marketfactor and Dow Jones re-

turns, at 0.635. The maximal negative dependence is betweenthe market and HML, at

-0.3991. The closest to zero is between momentum and SMB, at 0.0151. Rank correlations

such as Spearman’sρ and Kendall’sτ are generally smaller than the linear correlation.

The largest dependence the maximal negative dependence, and the closest to independence

pairs are the same as those of the linear correlations. Thus,linear and rank correlations

agree with each other.

3.2 Estimating dependence: copulas

We now discuss more general, static dependence between consumption, the market, and

other risk factors. Table 3 presents the dependence structure of aggregate consumption

and financial risk factors, motivated by the consumption-based models of Lucas (1978)

and Campbell (1996). According to the linear correlationρ, aggregate consumption has

significant dependence with all financial risk factors, except for the boo-to-market factor.

Specifically, consumption is dependent with the size factor, the market factor, momentum,

and the Dow Jones. There is also evidence of downside risk (measured byτL between

consumption-SMB and consumption-Dow Jones, according to the SJC copula. However,

the left tail dependence is not detected by the Clayton copula. There is also strong evidence

of upside comovement between aggregate consumption and SMB. In economic terms, ag-

gregate consumption tends to exhibit joint downside risk with the Dow Jones, and there

is evidence that consumption comoves with the small firm return premia during both very

good and very bad times. Other risk factors have no significant relation to consumption

during extreme periods.

13



Table 4 presents estimates of dependence between the marketfactor and other factors,

inspired by the CAPM models of Sharpe (1964), Lintner (1965), and Mossin (1966). Ac-

cording to both the BIC, the best fitting model is always either the student-t copula or

another copula that features tail dependence. According togaussian and student-t copulas,

the market exhibits significant linear dependenceρ with all risk factors besides momentum.

Perhaps most interestingly, the market has strong significant tail dependence with SMB and

HML. For example, according to the SJC copula, the market’s tail dependence with SMB

and HML is approximately27% and17%, respectively. In economic terms, this means

that the likelihood of a joint downturn in the market the sizefactor is27% over our sample

period. Table 5 shows dependence between the Dow Jones return and financial risk factors.

The Dow Jones significant linear dependence with all risk factors, using either the gaussian

or student-t copulas. Regarding tail dependence, the Dow Jones exhibits significantτL with

SMB, as well as with the market and Dow Jones as established above. According to the

SJC copula, the probability of a joint down-move in both the Dow Jones and SMB is close

to 24% over our sample period.

We now discuss the empirical evidence ondynamicdependence across financial risk fac-

tors. Our model for estimating dynamic dependence is the DCCmodel of Engle (2002)

for the linear correlation coefficientρ in the Gaussian and student t copula, and that of

Patton (2006) for the tail dependence in the SJC and Clayton copula, described in the Ap-

pendix. Table 6 shows dynamic dependence between aggregateconsumption and other

risk factors. According to the gaussian copula, there are nosignificant dynamics in lin-

ear dependence. Our most striking finding in this table concerns the significant dynamic

dependence in the tail of consumption and the size factor. According to the SJC copula,

the correspondingβ coefficients on upper and lower tail dependence are−0.83 and0.78,

respectively. Sinceβ corresponds to the autoregressive term, this implies strong memory in

tail dependence between aggregate consumption and SMB. Another finding is that for the

consumption-market pair, the coefficientβL governing dynamic left tail dependence in the

Clayton copula is statistically significant at92%. This is interesting because, despite the

lack of dynamic linear dependence between consumption and the market in the gaussian

model, there is strong evidence of dynamic left tail dependence.

Table 7 shows dynamic dependence between the market and other risk factors. In this case,

there are significant dynamics in both linear and tail dependence. Regarding tail depen-

dence, the comprehensive SJC copula shows significant autoregressive estimatesβU and

βL close to90% for both SMB and HML. Thus, periods of joint upturns or downturns
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have strong likelihood of remaining for the next month, in our sample. Table 8 presents

estimates of dynamic dependence between the Dow Jones and financial risk factors. Once

again, there are significant dynamics in linear and tail dependence. Focusing on the com-

prehensive SJC copula, we findβU estimates of0.73 and7.77 for dependence in the Dow

Jones-SMB and Dow Jones-HML pairs, respectively. The corresponding estimates forβL

are0.87 and0.65. Therefore joint upturns and downturns tend to persist fromone period

to the next.

A graphical depiction of the dynamics in dependence is presented in figures 1 to 6. The

most striking lesson from these graphs is the variety of dynamic dependence between risk

factors. First, in all pairs, there exists positive lower tail dependence (joint downside risk).

Second, for all pairs except market factor-size, left tail dependence exceeds right tail de-

pendence, indicating a higher probability of joint downside risk than joint booms. While

some tail dependence coefficients converge rapidly to zero or a positive constant, others

tend to fluctuate widely. An interesting case is that of figure2, which shows from the SJC

copula that downside risk between consumption and the Dow Jones converges to a positive

constant. This is quantitative evidence that extremely lowconsumption is associated with

downturns in the stock market. Another interesting case is in figure 4, which shows large

variation in tail dependence between the market and size factors. Consequently, investors

face a great deal of uncertainty about downside risk from both market and size effects dur-

ing our sample. Therefore our results indicate that an assumption of constant downside risk

across all factors is not reasonable.

To summarize, there is evidence of significant downside riskand upside dependence be-

tween many risk factors. Interestingly from the perspective of research on systemic risk, the

pairs with downside risk include consumption with the Dow Jones, as well as with market

and size factors. Of these pairs, only the size factor exhibits a corresponding comove-

ment with consumption during good periods. Moreover, thereare significant dynamics in

both linear and downside dependence for several risk factors. Consumption has dynamic

downside dependence with the size factor. Both the market factor and the Dow Jones have

dynamics in dependence relative to SMB and HML, although these dynamics occur in good

and bad times. The existence of time-varying downside risk corroborates theoretical and

policy research such as Shin (2009) and Acharya, Cooley, Richardson, and Walter (2010).
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4 Conclusions

Dependence summarizes risk in modern finance, yet there are few robust studies of risk

factor dependence. When risk factors exhibit tail dependence and correlation complexity,

diversification fails and financial markets may be prone to systemic risk. Building on a large

body of theoretical research, we analyze the dependence structure of risk factors in the US

economy, using both correlations and a parsimonious set of copulas. We find evidence

of joint tail dependence in several US risk factors. Interestingly from the perspective of

research on systemic risk, the pairs with downside risk include consumption with the Dow

Jones, as well as consumption with market and size factors. Of these pairs, only the size

factor exhibits a corresponding upside comovement with consumption during good periods.

Moreover, the copula approach allows us to investigate dynamics in tail dependence or

downside risk. There are significant dynamics in both linearand downside dependence

for several risk factors. Consumption has dynamic downsidedependence with the size

factor. Both the market factor and the Dow Jones have dynamics in dependence relative to

SMB and HML, although these dynamics occur in good and bad times. Thus, our results

provide evidence of time varying upside and downside risk. More broadly, the existence of

downside risk across factors indicates that financial markets are susceptible to joint extreme

events.

Our research is among the first to use distributional techniques to provide quantitative ev-

idence on the exposure of financial markets to diversification failure and systemic risk.

Since many of these results would be hidden from traditionalcorrelation-based approaches,

a practical implication of this paper is that the copula approach may be a good candidate

for risk assessment and financial modelling.
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A Overview of diversification and copulas

Diversification is assessed with various dependence measures. If two assets have relatively lower

dependence, they offer better diversification than otherwise. In light of the above discussion, we

estimate dependence in two ways, using correlations and copulas.42 The extent of discrepancy

between the two can suggest correlation complexity. It can also be informative if we wish to obtain

a sense of possible mistakes from using correlations alone.We now define the dependence measures.

Throughout, we considerX andY to be two random variables, with a joint distributionFX,Y (x, y),

and marginalsFX(x) andFY (y), respectively.

A.1 Correlations

Correlations are the most familiar measures of dependence in finance. If properly specified, corre-

lations tell us about average diversification opportunities over the entire distribution. The Pearson

correlation coefficientρ is the covariance divided by the product of the standard deviations:

ρ =
Cov(X,Y )√

Var(X) · Var(Y )
(6)

The main advantage of correlation is its tractability. There are, however, a number of theoretical

shortcomings, especially in finance settings.43 First, a major shortcoming is that correlation is

not invariant to monotonic transformations. Thus, the correlation of two return series may differ

from the correlation of the squared returns or log returns. Second, there is substantial evidence

of infinite variance in financial data.44 From equation (6), if eitherX or Y has infinite variance,

the estimated correlation may give little information on dependence, since it will be undefined or

close to zero. A third drawback concerns estimation bias: bydefinition the conditional correlation

is biased and spuriously increases during volatile periods.45 Fourth, correlation is a linear measure

and therefore may overlook important nonlinear dependence. It does not distinguish, for example,

between dependence during up and down markets.46 Whether these shortcomings matter in practice

is an empirical question that we approach in this paper.

42Readers already familiar with dependence and copula concepts may proceed to Section 4.
43Disadvantages of correlation are discussed by Embrechts, McNeil, and Straumann (2002).
44See Mandelbrot (1963); Fama (1965); Gabaix, Gopikrishnan,Plerou, and Stanley (2003); and Rachev

(2003).
45See Forbes and Rigobon (2002). After adjusting for such bias, Forbes and Rigobon (2002) document

that prior findings of international dependence (contagion) are reversed.
46Such nonlinearity may be substantial, as illustrated by Angand Chen (2002) in the domestic context.

These researchers document significant asymmetry in downside and upside correlations of US stock returns.
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A related, nonlinear measure is therank (or Spearman)correlation, ρS . This is more robust

than the traditional correlation.ρS measures dependence of the ranks, and can be expressed as

ρS = Cov(FX(x),FY (y))√
Var(FX(x))Var(FY (y))

.47 The rank correlation is especially useful when analyzing data with

a number of extreme observations, since it is independent ofthe levels of the variables, and there-

fore robust to outliers. Another nonlinear correlation measure is one we termdownside risk,48 d(u).

This function measures the conditional probability of an extreme event beyond some thresholdu.

For simplicity, normalize variables to the unit interval[0, 1]. Hence

d(u) ≡ Pr(FX(x) ≤ u | FY (y) ≤ u). (7)

A final nonlinear correlation measure is lefttail dependence, λ(u), which is the limit of downside

risk as losses become extreme,

λ(u) ≡ lim
u↓0

Pr(FX(x) ≤ u | FY (y) ≤ u). (8)

A.2 Copulas

If we knew the entire joint distribution of international returns, we could summarize all relevant

dependence and therefore all diversification opportunities. In a portfolio of two assets with returns

X andY , all dependence is contained in the joint densityfX,Y (x, y). This information is often not

available, especially for large portfolios, because theremight be no simple parametric joint density

that characterizes the relationship across all variables.Moreover, there is a great deal of estimation

and mis-specification error in attempting to find the densityparametrically.

An alternative to measuring diversification in this settingis thecopula function C(u, v). From

expression (1) above, a copula is a joint distribution with uniform marginalsU andV , C(u, v) =

Pr[U ≤ u, V ≤ v]. As shown in (2), any joint distributionFX,Y (x, y) with continuous marginals

is characterized by a copula distributionC such thatFX,Y (x, y) = C(FX(x), FY (y)). It is often

convenient to differentiate equation (2) and use a corresponding ”canonical” density version

f(x, y) = c(FX(x), FY (y)) · fX(x) · fY (y), (9)

47See Cherubini, Luciano, and Vecchiato (2004), page 100.
48The concept of downside risk appears in a number of settings without being explicitly named. It is the

basis for many measures of systemic risk, see Cherubini, Luciano, and Vecchiato (2004) page 43; Hartmann,
Straetmans, and de Vries (2003); and Adrian and Brunnermeier (2008).
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wheref(x, y) and c(FX , FY ) are the joint and copula densities, respectively.49 Equation (9) is

interesting because it empowers us to separate out the jointdistribution from the marginals. For

example, if we are interested in why heavy tailedness increases risk in a US-UK portfolio, this

could come from either the fact that the marginals are heavy-tailed, or their dependence is heavy-

tailed, or both. This distinction is relevant whenever we are interested in the downside risk of the

entire portfolio, more than the heavy tailedness of each security in the portfolio. We estimate (9) in

Section 5, for different copula specifications.

There are a number of parametric copula specifications. We focus on three types, the normal, the

student-t, and the Clayton copulas, for several reasons.50 The normal specification is a natural

benchmark, as the most common distributional assumption infinance, with zero tail dependence.51

The student-t is useful since it has symmetric but nonzero tail dependenceand nests the normal

copula. The Clayton copula is useful because it has nonlinear dependence and asymmetric tail

dependence–the mass in its right tail greatly exceeds the mass in its left tail. Moreover, the Clayton

is a member of an important family, Archimedean copulas.52 Practically, these copulas represent

the most important shapes for finance, and are a subset of those frequently used in recent empiri-

cal papers.53 Table 1 provides functional forms of the copulas. They are estimated by maximum

likelihood.

There are several main advantages of using copulas in finance. First, they are a convenient choice

for modeling potentially nonlinear portfolio dependence,such as correlated defaults. This aspect of

copulas is especially attractive since they nest some important forms of dependence, as described in

Section 3.3. A second advantage is that copulas can aggregate portfolio risk from disparate sources,

such as credit and operational risk. This is possible even for risk distributions that are subjective

and objective, as in Rosenberg and Schuermann (2006). In a related sense, copulas permit one to

modeljoint dependence in a portfolio without specifying the distribution of individual assets in the

portfolio.54 A third advantage is invariance. Since the copula is based onranks, it is invariant under

49Specifically,f(x, y) =
∂2FX,Y (x,y)

∂x∂y
, and similarlyc(FX(x), FY (y)) = ∂2C(FX(x),FY (y))

∂x∂y
. The terms

fX(x) andfY (y) are the marginal densities.
50Since we wish to investigate left dependence or downside risk, we also utilize the survivor function of

the Clayton copula, denoted Survival Clayton.
51Tail dependence refers to dependence at the extreme quantiles as in expression (8). See de Haan and

Ferreira (2006).
52Archimedean copulas represent a convenient bridge to gaussian copulas since the former have depen-

dence parameters that can be defined through a correlation measure, Kendall’s tau. Extreme value copulas
are important since they can be used to model joint behavior of the distribution’s extremes.

53See for example, Embrechts, McNeil, and Straumann (2002), Patton (2004) and Rosenberg and Schuer-
mann (2006).

54This is usually expressed by saying that copulas do not constrain the choice of individual or marginal
asset distributions. For example, if we model asset returnsof the US and UK as bivariate normal, this
automatically restricts both the individual (marginal) USand UK returns to be univariate normal. Our semi-
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strictly increasing transforms. That is, the copula extracts the way in whichx andy comove, regard-

less of the scale used to measure them.55 Fourth, since copulas are rank-based and can incorporate

asymmetry, they are also natural dependence measures from atheoretical perspective. The reason

is that a growing body of research recognizes that investorscare a great deal about the ranks and

downside performance of their investment returns.56 More generally, since copulas are joint distri-

butions they are naturally well-suited to discussions of a vast array of research issues in economics.

These issues include optimal commodity bundling, income inequality, expected utility and parsimo-

nious modelling of dependent multivariate time series.57 In addition, copulas are directly relevant

to the practice of business, in the context of portfolio riskassessment. In an increasingly globalized

economy, security returns seem to exhibit unexpectedly greater dependence during certain periods,

as evidenced by recent international contagion episodes and US subprime mortgage spillovers. In

light of these unexpected events, copula-based stress testing methods can help explain, forecast, and

hedge extreme dependence in financial markets. Developmentof such copula-based methods is rel-

evant for many market actors, including institutional investors, hedge funds, regulatory authorities

and central banks.58

There are two drawbacks to using copulas. First, from a finance perspective, a potential disadvan-

tage is that many copulas do not have moments that are directly related to Pearson correlation. It

may therefore be difficult to compare copula results to thoseof financial models based on correla-

tions or variances. This is not an issue for our study, since our model selection chooses at copula,

which contains a correlation parameter. Second, from a statistical perspective, it is not easy to say

which parametric copula best fits the data, since some copulas may fit better near the center and oth-

ers near the tails. This issue is not strongly relevant to ourpaper, since the theoretical background

research from Section 2 focuses on asymmetry and tail dependence. Thus the emphasis is on the

shape of copulas, rather than on a specific copula. Further, we use several specification checks,

namely AIC, BIC, and a mixture model.

parametric approach avoids restricting the marginals by using empirical marginal distributions, based on
ranks of the data. Specifically, first the data for each marginal are ranked to form empirical distributions.
These distributions are then used in estimating the parametric copula.

55See Schweizer and Wolff (1981). For more details on copula properties, see Nelsen (1998), Chapter 2.
56 See Polkovnichenko (2005) and Barberis, Huang, and Santos (2001).
57 For research on some of these disparate topics, see the work of Ibragimov (2009) and Patton (2006).
58For example, it is well known that many pricing relations such as the CAPM and option-pricing formulae

do not function well outside of the elliptical world, see Chamberlain (1983). Copulas inherently capture such
complex dependence structures. Since the dependence structure of financial markets is dynamic, we also use
a conditional copula model of Patton (2006), see the Appendix. For research on the inherent dynamism of
capitalistic markets, see Phelps (2007).
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A.3 Relationship of diversification measures

We briefly outline the relationship of the diversification measures.59 If the true joint distribution is

bivariate normal, then the copula and traditional correlation give the same information. Once we

move far away from normality, there is no clear relation between correlation and the other measures.

However, all the other, more robust measures of dependence are pure copula properties, and do not

depend on the marginals. We describe relationships for rankcorrelationρS , downside riskd(u),

and tail dependenceλ(u) in turn. The relation between copulas and rank correlation is given by

ρS = 12

∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 3. (10)

This means that if we know the correct copula, we can recover rank correlation, and vice versa.

Therefore, rank correlation is a pure copula property. Regarding downside risk, it can be shown that

d(u) satisfies

d(u) ≡ Pr(FX(x) ≤ u | FY (y) ≤ u)

=
Pr(FX(x) ≤ u, FY (y) ≤ u)

Pr(FY (y) ≤ u)

=
C(u, u)

u
, (11)

where the third line uses definition (1) and the fact sinceFY (y) is uniform,Pr[FY (y) ≤ u] = u.

Thus downside risk is also a pure copula property and does notdepend on the marginals at all. Since

tail dependence is the limit of downside risk, it follows from (8) and (11) thatλ(u) = limu↓0
C(u,u)

u .

To summarize, the nonlinear measures that we consider are directly related to the copula, andρ

and the normal copula give the same information when the dataare jointly normal. While the

above discussion describes how to link the various conceptsin theory, there is little empirical work

comparing the different diversification measures. This provides a rationale for our empirical study.

For our economic applications below, we will also use an important notion related to the copula,

namelytail dependence. Intuitively, left tail dependenceλL refers to the relative amount of mass

in the lower quantile. Formally we define left tail dependence of a copulaC(u, v) as

λL ≡ lim
u↓0

C(u, u)

u
.60 (12)

59For background and proofs on the relations between dependence measures, see Cherubini, Luciano, and
Vecchiato (2004) Chapter 3; Embrechts, McNeil, and Frey (2005); and Jondeau, Poon, and Rockinger (2007).

60Right tail dependence is defined similarly, as

λR = lim
u↑1

C̄(u, u)

1 − u
,
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B The Methodology

B.1 Estimation method for copulas

One advantage of copula approach is that it can separate the dependence structure from the marginals,

with dependence completely captured in the copula function.61 Since our focus is on the dependence

between financial variables, rather than their marginals, we specify a parametric copula function but

make no assumptions on the marginal distributions of the macro variables. Therefore, the approach

is free of specification errors for the marginals.62 The estimation procedure comprises two steps. In

the first step, the marginal distribution functionG(.) is estimated non-parametrically via its rescaled

empirical cumulative distribution function (ECDF)

F̂ (xt) =
1

T + 1

T∑

t=1

1{Xt < x}. (13)

The ECDF is rescaled to ensure that the first order condition of the copula’s log-likelihood func-

tion is well defined for all finiteT .63 By the Glivenko–Cantelli theorem,̂FX(xt) converges to its

theoretical counterpartF (yt) uniformly.

In the second step, given the non-parametrically estimatedECDF, ̂F (xt) andĜ(yt), we estimate the

copula parametersθc parametrically by maximum likelihood, with

θ̂c = arg max
θc

L̃,

whereL̃(θc) =
1

T

∑
log c(F̂ (xt), Ĝ(yt); θc),

where c(.) is the copula density function. Joe (1997) provesthat under a set of regularity conditions,

the two-step estimator is consistent and asymptotically normal. Joe (1997) also demonstrates that

the two-step method is highly efficient. In addition, as indicated in Patton (2006), this method has

the benefit of being computationally tractable. Chen and Fan(2006) establish asymptotic properties

for this semi-parametric estimator.

whereC̄(u, u) = P (U > u, U > u) is the survival function ofC(u, u).
61See Sklar (1959); and Embrechts, McNeil, and Frey (2005); and Patton (2006).
62Our approach is therefore semi-parametric. For further details, see Joe (1997), and Cherubini, Luciano,

and Vecchiato (2004). Statistical properties of this approach are highlighted in the simulation studies of
Fermanian and Scaillet (2003).

63See Genest, Ghoudi, and Rivest (1995), and Chen and Fan (2006) for further discussion on this method-
ology.
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Copula estimation requires that the series be i.i.d. Since many of our macro series are not i.i.d., thus

we filter the variables with various ARMA-GARCH models.64 We then compute the ECDFs of the

filtered variables, which are used in the second-stage maximum likelihood estimation.

B.2 Static dependence model

The SJC copula model

To examine thedegree of dependence, we adopt the Symmetrised Joe Clayton (SJC) copula used in

Patton (2006). The SJC copula is a modification of the so called “BB7” copula of Joe (1997). It is

defined as

CSJC(u, v|λr, λl) (14)

= 0.5 × (CJC(u, v|λr, λl) + CJC(1 − u, 1 − v|λl, λr) + u + v − 1), (15)

whereCJC(u, v|λr, λl) is the BB7 copula (also called Joe-Clayton copula), which isin turn defined

as

CJC(u, v|λr, λl) (16)

= 1 − (1 −
{[

1 − (1 − u)k
]−r

+
[
1 − (1 − v)k

]−r
− 1

}−1/r

)1/k, (17)

with k = 1/log2(2 − λr) and r = −1/log2(λl) (18)

whereλl andλr ∈ (0, 1). By construction, the SJC copula is symmetric whenλl=λr. This copula

is very flexible since it allows for both asymmetric upper andlower tail dependence and symmetric

dependence as a special case.

B.3 Dynamic dependence model

In order to examine the possibility of dynamic or time varying tail dependence in the data, we

follow the approach of Patton (2006). We estimate the following ARMA-type process for the tail

dependence parametersτL,t andτU,t:

τL,t = (1 + exp(−hL,t))
−1, τU,t = (1 + exp(−hU,t))

−1, (19)

hL,t = wL + βLhL,t−1 + αL

p∑

j=1

|ut−j − vt−j |, (20)

64Details of the filtering procedure for the macro variables are available from the authors, upon request.
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hU,t = wU + βUhU,t−1 + αU

p∑

j=1

|ut−j − vt−j |. (21)

The dynamic models contain an autoregressive term designedto capture persistence in dependence,

and a variable which is a mean absolute difference betweenu andv. The latter variable is positive

when the two probability integral transforms are on the opposite side of the extremes of the joint

distribution and close to zero when they are on the same side of the extremes. The logistic transfor-

mation of the ARMA process guarantees that the weight and tail dependence parameters lie in the

[0,1] interval.
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Table 1: Distribution of various copulas

Copula Distribution Parameter Complete Independence
Range Dependence

Normal CN (u, v; ρ) = Φρ(Φ−1(u), Φ−1(v)) ρ ∈ (−1, 1) ρ = 1, or−1 ρ = 0

Student-t Ct(u, v; ρ, d) = td,ρ(t−1
d

(u), t−1
d

(v)) ρ ∈ (−1, 1) ρ = 1,or−1 ρ = 0

Clayton CC(u, v) = (u−αc + v−αc − 1)−1/αc αc > 0 αc αc =

Φρ(x, y) andtν,ρ(x, y) denote the standard bivariate normal and Student-t cumulative distributions,
respectively:Φρ(x, y) =

∫ x

−∞

∫ y

−∞
1

2π|Σ|
exp{− 1

2
(x y)Σ−1(x y)

′

}dxdy, and

tν,ρ(x, y) =
∫ x

−∞

∫ y

−∞

Γ( ν+2
2

)

Γ(ν/2)(νπ)|Σ|1/2 {1 + (s t)Σ−1(s t)
′

/ν}
−(ν+2)

2 dsdt. The correlation

matrix is given byΣ =

(
1 ρ
ρ 1

)
.
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Table 2: Dependence Structure of Financial Risk Factors: Correlations

The table presents linear (Pearson) and rank correlations of financial variables. The frequency is
monthly, and the time period is from January 1959 to June 2008.

Variables MKT DJIA SMB HML MOM CONS
MEAN 0.0045 0.0051 0.0021 0.0043 0.0088 0.0008

STD 0.0431 0.0348 0.0309 0.028 0.0389 0.002
Correlations MKT DJIA SMB HML MOM CONS

MKT 1 0.635 0.2991 -0.3991 -0.0737 0.1004
DJIA 1 0.3274 -0.1144 -0.1627 0.1852
SMB 1 -0.2692 0.0151 0.1902
HML 1 -0.1307 -0.0253
MOM 1 -0.0995
CON 1

Spearmanρ MKT DJIA SMB HML MOM CONS
MKT 1 0.5799 0.2773 -0.3664 -0.0483 0.0987
DJIA 1 0.329 -0.1362 -0.1314 0.129
SMB 1 -0.1924 0.0051 0.1617
HML 1 -0.1161 0.0149
MOM 1 -0.0713
CON 1

Kendall’s τ MKT DJIA SMB HML MOM CONS
MKT 1 0.4174 0.1957 -0.2538 -0.0317 0.0663
DJIA 1 0.2269 -0.0925 -0.0908 0.0864
SMB 1 -0.1335 0.0042 0.109
HML 1 -0.0829 0.0091
MOM 1 -0.0462
CON 1
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Table 3: Dependence Structure of Consumption and FinancialRisk Factors

The table presents the dependence between consumption and various financial risk factors. The
frequency is monthly, and the time period is January 1959 to June 2008. The parameters in each
column represent the estimated dependence between the variable at the head of each column and
consumption. For example, the parameters in the column entitled SMB show, for various copulas,
dependence estimates for consumption and the size factor SMB. The term SJC refers to the sym-
metrized Joe-Clayton copula of Patton (2006).ρ is the correlation coefficient.τL andτU represent
lower and upper tail dependence, respectively. T-statistics are in parentheses underneath parameter
estimates.

SMB -HML DJIA MKT MOM
Gaussian copula

ρ 0.2016 <0.0001 0.1882 0.1174 0.0936
(5.135) (<0.0001) (4.7543) (2.8673) (2.2681)

AIC -21.7471 2.0000 -18.6357 -5.9337 -3.0292
BIC -17.3619 6.3852 -14.2505 -1.5485 1.3560

t copula
ρ 0.2003 -0.0112 0.1815 0.1170 0.0917

(5.0484) (-0.2634) (4.4217) (2.7659) (2.1536)
ν 99.0000 51.0021 27.0000 27.0000 27.0000

(0.6406) (1977.2773) (15410.6549) (9534.5321) (15223.9041)
AIC -19.5076 3.9094 -17.8603 -5.2375 -1.8606
BIC -10.7372 12.6798 -9.0899 3.5329 6.9098

SJC copula
τL 0.1019 <0.0001 0.1153 0.1010 0.1653

(570.9851) (<0.0001) (2.6199) (0.1836) (0.1734)
τU 0.1022 0.0001 0.0022 <0.0001 <0.0001

(1573.1403) (<0.0001) (0.2279) (<0.0001) (<0.0001)
AIC -14.9234 4.2242 -24.5306 -6.6858 -0.1062
BIC -6.1530 12.9946 -15.7602 2.0846 8.6642

Clayton copula
τL 0.0276 0.0010 0.0607 0.0138 0.0114

(0.9803) (0.0001) (1.5707) (0.7219) (0.6642)
AIC -13.1673 9.8151 -24.0552 -9.9944 -8.9177
BIC -8.7821 14.2003 -19.6700 -5.6092 -4.5325
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Table 4: Dependence Structure of Market Return and Financial Risk Factors

The table presents the dependence between the market returnand various financial risk factors. The
frequency is monthly, and the time period is January 1959 to June 2008. The parameters in each
column represent the estimated dependence between the variable at the head of each column and
the market. For example, the parameters in the column entitled SMB show, for various copulas, de-
pendence estimates for the market and the size factor SMB. The term SJC refers to the symmetrized
Joe-Clayton copula of Patton (2006).ρ is the correlation coefficient.τL andτU represent lower and
upper tail dependence, respectively. T-statistics are in parentheses underneath parameter estimates.

SMB -HML -MOM CON SMB and -HML
Gaussian copula

ρ 0.2785 0.3599 <0.0001 0.1174 0.1870
(7.5144) (10.5619) (<0.0001) (2.8673) (4.7201)

AIC -44.2833 -77.7437 2.0000 -5.9337 -18.3633
BIC -39.8981 -73.3585 6.3852 -1.5485 -13.9781

t copula
ρ 0.2931 0.3673 -0.0059 0.1170 0.2009

(6.8996) (10.1576) (-0.122) (2.7659) (4.6191)
ν 4.5000 15.0000 2.7525 27.0000 4.7102

(7926.733) (3157.4595) (12580.6745) (9534.5321) (4.2859)
AIC -74.0044 -84.6966 -41.6819 -5.2375 -37.3301
BIC -65.2340 -75.9262 -32.9115 3.5329 -28.5597

SJC copula
τL 0.2675 0.1738 <0.0001 0.1010 0.0418

(5.3774) (3.1382) (<0.0001) (0.1836) (0.8584)
τU 0.0084 0.1990 0.1307 <0.0001 0.0969

(0.2429) (3.7071) (0.0472) (<0.0001) (1.8694)
AIC -69.1283 -83.4471 -1.2329 -6.6858 -25.9061
BIC -60.3580 -74.6767 7.5375 2.0846 -17.1357

Clayton copula
τL 0.2217 0.2125 0.0010 0.0138 0.0384

(4.6208) (4.4848) (0.0001) (0.7219) (1.1229)
AIC -65.5398 -60.7852 10.8127 -9.9944 -14.9109
BIC -61.1546 -56.4000 15.1979 -5.6092 -10.5257
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Table 5: Dependence Structure of the Dow Jones and FinancialRisk Factors

The table presents the dependence between the Dow Jones Industrial Average and various financial
risk factors. The frequency is monthly, and the time period is January 1959 to June 2008. The
parameters in each column represent the estimated dependence between the variable at the head of
each column and the Dow Jones. For example, the parameters inthe column entitled SMB show,
for various copulas, dependence estimates for the Dow Jonesand the size factor SMB. The term
SJC refers to the symmetrized Joe-Clayton copula of Patton (2006).ρ is the correlation coefficient.
τL andτU represent lower and upper tail dependence, respectively. T-statistics are in parentheses
underneath parameter estimates.

SMB -HML MOM CON
Gaussian copula

ρ 0.3458 0.1263 ¡0.0001 0.1882
9.9821 3.0949 <0.0001 4.7542

AIC -71.1580 -7.1911 2.0000 -18.6357
BIC -66.7729 -2.8059 6.3852 -14.2505

t copula
ρ 0.3348 0.1306 -0.1074 0.1815

(8.8163) (3.0903) (-2.3987) (4.4217)
ν 9.0000 27.0000 7.5031 27.0000

(8630.0822) (14114.1807) (2.9468) (15410.6548)
AIC -72.9861 -8.5301 -11.9683 -17.8603
BIC -64.2157 0.2403 -3.1979 -9.0899

SJC copula
τL 0.2356 0.1344 <0.0001 0.1153

(4.9032) (0.2130) (<0.0001) (2.6208)
τU 0.0895 <0.0001 <0.0001 0.0022

(1.6722) (<0.0001) (<0.0001) (0.2278)
AIC -78.3496 -1.3303 5.9835 -24.5306
BIC -69.5792 7.4401 14.7539 -15.7602

Clayton copula
τL 0.2308 0.0085 0.0010 0.0607

(4.9980) (0.5726) (0.0001) (1.5707)
AIC -70.7514 -7.1240 9.9067 -24.0552
BIC -66.3662 -2.7388 14.2919 -19.6700
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Table 6: Dynamic Dependence of Consumption and Financial Risk Factors

The table presents the dynamic dependence between consumption and various financial risk factors.
The frequency is monthly, and the time period is January 1959to June 2008. The parameters in
each column represent the estimated dependence between thevariable at the head of each column
and consumption. For example, the parameters in the column entitled SMB show, for various cop-
ulas, dependence estimates for consumption and the size factor SMB. The term SJC refers to the
symmetrized Joe-Clayton copula of Patton (2006). For the gaussian and student-t copulas,a andb
represent the coefficients on the autoregressive and variance terms in the DCC(1,1) model of Engle
(2002). For the SJC and Clayton copulas,w, α andβ represent the intercept, coefficient on the past
10 periods of cdf differences, and the autoregressive term,all from the dynamic copula model of
Patton (2006). T-statistics are in parentheses underneathparameter estimates.

DJIA MKT SMB -HML
Gaussian copula

α 0.0001 0.0233 0.0375 0.0001
(0.0001) (0.4802) (0.4683) (0.0001)

β 0.0001 0.0001 0.0001 0.0001
(0.0001) (0.0001) (<0.0001) (<0.0001)

AIC -16.6265 -4.3219 -20.5319 3.9628
BIC -7.8561 4.4485 -11.7615 12.7332

t copula
α 0.0001 0.0216 0.0372 0.0001

(0.0001) (0.3603) (0.4774) (0.0001)
β 0.0001 0.0001 0.0001 0.0001

(0.0001) (0.0001) (<0.0001) (<0.0001)
ν 22.0983 22.0827 200.0000 83.3797

(22.0891) (21.7349) (0.5096) (0.2941)
AIC -15.9063 -3.6405 -18.4056 5.8935
BIC -2.7507 9.5150 -5.2500 19.0490

SJC copula
wU 3.6317 -18.4926 -8.4052 -283.1822

(0.3947) (<0.0001) (-1.6753) (<0.0001)
αU -41.4127 -8.5843 13.4829 -148.0826

-(1.0115) (<0.0001) (1.0192) (<0.0001)
βU -0.5891 6.2576 -0.8314 186.8784

(-2.2088) (<0.0001) (-6.3542) (<0.0001)
wL -0.7358 -3.1499 0.1233 -60.1164

(-0.6003) (-0.4637) (0.0714) (<0.0001)
αL 0.1962 1.0630 -3.7292 -21.6583

(0.0985) (0.1592) (-0.5372) (<0.0001)
βL 0.6406 -0.0220 0.7326 73.2998

(1.5097) (-0.0107) (2.1864) (<0.0001)
AIC -17.0049 1.3379 -13.3086 14.4839
BIC 9.3063 27.6490 13.0025 40.7951

Clayton copula
wL -1.1483 0.3940 -0.1743 -49.4655

(-0.5496) (0.6939) (-0.1188) (<0.0001)
αL 0.4614 -2.4162 -2.6286 86.6726

(0.1574) (-1.3092) (-0.524) (<0.0001)
αL 0.6087 0.9197 0.7215 1479.6782

(1.0627) (10.6877) (1.8764) (<0.0001)
AIC -20.2532 -6.5682 -9.7721 10.8346
BIC -7.0977 6.5874 3.3834 23.9902
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Table 7: Dynamic Dependence of Market Return and Financial Risk Factors

The table presents the dynamic dependence between the Market and various financial risk factors.
The frequency is monthly, and the time period is January 1959to June 2008. The parameters in each
column represent the estimated dependence between the variable at the head of each column and
the market. For example, the parameters in the column entitled SMB show, for various copulas, de-
pendence estimates for the market and the size factor SMB. The term SJC refers to the symmetrized
Joe-Clayton copula of Patton (2006). For the gaussian and student-t copulas,a andb represent the
coefficients on the autoregressive and variance terms in theDCC(1,1) model of Engle (2002). For
the SJC and Clayton copulas,w, α andβ represent the intercept, coefficient on the past 10 periods
of cdf differences, and the autoregressive term, all from the dynamic copula model of Patton (2006).
T-statistics are in parentheses underneath parameter estimates.

SMB -HML SMB and -HML
Gaussian copula

α 0.0115 0.0159 0.0712
(1.2404) (1.7115) (0.0001)

β 0.9705 0.9720 1.6656
(35.919) (54.887) (0.0001)

AIC -45.8209 -84.1221 -20.2690
BIC -37.0505 -75.3517 -11.4986

t copula
α 0.0129 0.0247 0.0605

(1.4795) (1.2053) (1.2074)
β 0.9732 0.9514 0.5332

(53.557) (19.492) (1.0633)
ν 3.6407 7.2723 4.7666

(5.7379) (2.7935) (4.7113)
AIC -76.6909 -92.7498 -38.8826
BIC -63.5353 -79.5942 -25.7270

SJC copula
wU 3.3520 -0.3091 -3.7033

(0.853) (-0.2416) (-1.324)
αU -46.6246 -7.6505 9.5705

(-1.4008) (-1.507) (1.3386)
βU -0.9435 -0.9893 0.8807

(-15.8674) (-117.8088) (11.3119)
wL 0.4743 -2.6992 -3.3596

(0.3077) (-1.1766) (-0.6156)
αL -7.4310 -0.1873 5.4305

(-1.2838) (-0.0242) (0.4889)
βL -0.8322 -0.9652 0.2285

(-3.4429) (-27.0395) (0.222)
AIC -68.1397 -81.2792 -22.7918
BIC -41.8285 -54.9681 3.5193

Clayton copula
wL 0.5459 0.3747 -6.3707

(1.472) (1.1078) (-1.0446)
αL -3.2783 -2.3767 13.1113

(-1.6013) (-1.2226) (0.9476)
βL 0.6988 0.8165 0.2699

(4.1099) (6.1705) (0.4722)
AIC -68.5692 -62.3835 -12.8767
BIC -55.4136 -49.2280 0.2789

38



Table 8: Dynamic Dependence of Dow Jones and Financial Risk Factors

The table presents the dynamic dependence between the Dow Jones Industrial Average and various
financial risk factors. The frequency is monthly, and the time period is January 1959 to June 2008.
The parameters in each column represent the estimated dependence between the variable at the
head of each column and the Dow Jones. For example, the parameters in the column entitled SMB
show, for various copulas, dependence estimates for the DowJones and the size factor SMB. The
term SJC refers to the symmetrized Joe-Clayton copula of Patton (2006). For the gaussian and
student-t copulas,a and b represent the coefficients on the autoregressive and variance terms in
the DCC(1,1) model of Engle (2002). For the SJC and Clayton copulas,w, α andβ represent the
intercept, coefficient on the past 10 periods of cdf differences, and the autoregressive term, all from
the dynamic copula model of Patton (2006). T-statistics arein parentheses underneath parameter
estimates.

SMB -HML
Gaussian copula

α 0.0217 0.0181
(1.509) (1.5724)

β 0.9488 0.9587
(23.7413) (32.336)

AIC -74.4660 -8.7754
BIC -65.6956 -0.0050

t copula
α 0.0293 0.0184

(1.9402) (1.2102)
β 0.9306 0.9509

(26.0231) (22.3211)
ν 11.3348 12.2976

(1.9592) (1.8681)
AIC -76.9670 -10.7770
BIC -63.8114 2.3786

SJC copula
wU 0.2198 -8.8370

(0.3455) (<0.0001)
αU -3.3499 51.8283

(-0.7964) (<0.0001)
βU 0.7318 7.7728

(2.7833) (278588.67)
wL 0.2034 1.2280

(0.1368) (0.6646)
αL -6.9025 -8.4236

(-1.2548) (-0.7298)
βL -0.8722 0.6480

(-7.6033) (1.639)
AIC -74.7615 -1.0962
BIC -48.4503 25.2149

Clayton copula
wL 0.2603 -0.2394

(0.8403) (<0.0001)
αL -1.9686 3.7994

(-1.1078) (278448.06)
βL 0.7085 2.7395

(2.8795) (1145.9393)
AIC -70.6273 -2.3391
BIC -57.4717 10.8164
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Figure 1: Dynamics of Dependence between Consumption and the Market

The figure plots the dynamic behavior of dependence parameters for consumption and the market
return.
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Figure 2: Dynamics of Dependence between Consumption and the Dow Jones

The figure plots the dynamic behavior of dependence parameters for consumption and the Dow
Jones Industrial Average.
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Figure 3: Dynamics of Dependence between Consumption and the Size Factor

The figure plots the dynamic behavior of dependence parameters for consumption and the Size
Factor.
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Figure 4: Dynamics of Dependence between the Market and the Size Factor

The figure plots the dynamic behavior of dependence parameters for the Market and the Size Factor.
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Figure 5: Dynamics of Dependence between the Dow Jones and the Size Factor

The figure plots the dynamic behavior of dependence parameters for the Dow Jones and the Size
Factor.
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Figure 6: Dynamics of Dependence between the Book to Market Factor and the Size Factor

The figure plots the dynamic behavior of dependence parameters for the Book to Market Factor and
the Size Factor.
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