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Equilibrium selection in supermodular games with
mean payoff technologies∗

Burkhard Hehenkamp� and Oddvar M. Kaarbøe�
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Abstract

We examine an evolutionary model of equilibrium selection, where all individ-
uals interact with each other, recurrently playing a strictly supermodular game.
Individuals play (myopic) best responses to the current population proÞle, occa-
sionally they pick an arbitrary strategy at random. To address the robustness of
equilibrium selection in this simultaneous play scenario, we investigate whether
different best-response approximations can lead to different long run equilibria.
Keywords: equilibrium selection, supermodular games, simultaneous play, best-

response approximation
JEL-Class.-No.: C72, C73

1. Introduction

The theory of supermodular games provides a framework for the analysis of systems
marked by strategic complementarities. First introduced by Topkis (1979) and fur-
ther explored by Milgrom and Roberts (1990) and Vives (1990), it includes models of
oligopolistic competition, macroeconomic coordination failure, Bertrand price competi-
tion, bank runs, R&D competition, or Becker�s (1990) model of individual consumers�
demand for restaurant seats or theater tickets. Supermodular games are characterized
by the following properties: (i) each player�s action set is partially ordered; (ii) marginal
returns to increasing one�s action rise with increases in the other players� action; and (iii),
in the case of multidimensional actions, marginal returns to any single component of the
player�s action rise with increases in his other components. As a result, supermodular
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games exhibit monotonically increasing best-response functions, whenever actions can
be completely ordered.
In the presence of increasing best-response functions, the possibility of multiple equi-

libria arises, creating an equilibrium selection problem: without any plausible equilibrium
selection at hand, these types of games lack predictive power in that it remains unclear
how players co-ordinate on equilibrium play. Among other things, Kandori and Rob
(1995) address this objection (KR henceforth). Applying tools from stochastic evolu-
tionary game theory (Kandori et al, 1993; Young, 1993), they show how the geometry of
best-response functions helps in singling out a generically unique long run equilibrium.
Even though the context of random matching is the one most widely studied in

evolutionary game theory, many models of economic interaction are better characterized
by simultaneous play.1 This interaction scenario refers to situations where the entire
population plays the game under consideration simultaneously. Each player�s objective
function depends on his own action and on some summary statistics of other (or all)
players� behavior. This statistics is typically taken to be some average (arithmetic,
geometric, harmonic etc.) of the current action proÞle. For instance, in models of
monopolistic competition individual proÞt depends on own price and the geometric mean
of other players� prices (cf. Blanchard and Kiyotaki, 1987); in production externality
models an individual�s productivity (or production) depends on the average production
level in the economy (cf. Cooper and Haltiwanger, 1996); in coordination games with
simultaneous play a player�s best response is to exactly match the average action of other
players.
While KR mainly focus on the random matching scenario, they also provide an

example of linear payoff functions that can be interpreted in both a random matching
and in a simultaneous play scenario. Since the analyses for both interpretations coincide,
the authors conclude �that random matching is not an essential part of [their] model.�
Investigating class coordination games with simultaneous play, Robles (1997) develops
results that fully characterize the set of long run equilibria. He conÞrms KR�s conclusion
in that he extends their approach to the simultaneous play scenario. Robles allows for
general linear summary statistics, which are taken to summarize the current play of the
population. Since this summary statistics can in general assume more values than pure
actions exist, he has to transform the summary statistics into the set of pure actions. To
this end, he picks a speciÞc rounding function. For the salient case, where the summary
statistics is taken to be the mean, it turns out that the set of long run equilibria is
bounded away from the extreme strategies. It always includes the Pareto efficient Nash
equilibrium.
Recently, Robles� (1997) Þnding has been challenged by Hansen and Kaarbøe (2002,

HK henceforth). Considering class coordination games with mean payoff technologies,
they show that equilibrium selection is sensitive to how the summary statistics is trans-
formed into pure actions. More speciÞcally, choosing the appropriate rounding function,
any limit state of the mutation-free process can be the unique long run equilibrium of

1Schelling (1973) introduced �simultaneous play� into economics. In biology, Maynard Smith (1982)
coined the �playing the Þeld� model. Crawford (1991, 1997) also argues for introducing genuine simul-
taneous interaction into the evolutionary literature.
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the stochastic evolutionary process. Put differently, equilibrium selection depends on
the shape of best-response functions off-side the grid of pure actions.
The main question we address here is whether this sensitivity of equilibrium selection

to the rounding function carries over to supermodular games with simultaneous play. To
this end, we provide a sufficient condition under which the answer is negative. Notice
that we can rephrase the problem whether rounding matters as a problem of approxi-
mation. We start from a symmetric strictly supermodular �original� game, where both
the individual action and the mean of others� actions are deÞned on a continuous action
space. To facilitate comparison with the papers by HK, KR, and Robles, we represent
the symmetric original game by its best-response function. Subsequently, we discretize
the individual action set so that, off-side the grid of pure actions, best-responses have to
be �rounded� to pure actions. To capture any reasonable way of rounding, we introduce a
class of feasible approximating best-response functions. The problem of approximation is
then, whether, for sufficiently Þne discretizations of the individual action set, equilibrium
selection does depend on feasible best-response approximations.

2. The model

We consider a population of players that, simultaneously and recurrently, play the same
symmetric strictly supermodular stage game. Payoffs depend on own action choice and
on the mean of other players� actions. From time to time, players adjust their behavior
adopting (myopic) best replies against the summary statistic. Rarely, players pick an
arbitrary action at random.

2.1. The original game

Let N := {1, . . . ,N} denote the set of N players, which we index by n ∈ N . Similarly,
let M := [0,M ]⊆IR+ represent the set of actions, m ∈ M. The payoff of any player
n ∈ N depends on his own action mn ∈M and the mean of other players� actions

µ(m−n) =
1

N − 1
X

n0∈N\{n}
mn0 .

Payoffs are symmetric in players� identity, i.e.

πn = π(mn, µ(m−n)),

for some π : M2 →IR+ and all players n ∈ N . Moreover, we assume payoffs to be
continuous and strictly supermodular, the latter of which says that, for all m0 < m00,
the difference π(m00, µ)− π(m0, µ) is strictly increasing in µ. Denote this stage game by
Γ := (N ,M2,π).
Alternatively, we could take the mean with respect to all players� actions. For some

given supermodular game, the speciÞcation of µ might affect the set of equilibria and,
similarly, the set of equilibria selected by the evolutionary process. However, notice
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that our Þndings only make use of the assumption of supermodularity but not of the
particular speciÞcation of µ. Therefore, they remain valid for both speciÞcations of µ.
One might think of Γ as a game that arises from some �larger� game bΓ = (N ,dM2, bπ)

after all iteratively dominated actions have been removed. In this case, the following
assumptions imposed upon the larger game bΓ enable one to shrink down the set of
actions: (i) cM is a path-connected complete lattice, e.g. a closed interval [M,M ]; (ii)bπ(mn, µ) is upper semi-continuous in mn, for any given µ, and continuous in µ, for any
given mn; (iii) bπ(mn, µ) is bounded; and (iv) bπ(mn, µ) is supermodular in mn and has
increasing differences inmn and µ. Notice that the game speciÞed above, Γ = (N ,M2,π),
satisÞes these assumptions. Given assumptions (i)-(iv), we could then apply Theorem
5 in Milgrom and Roberts (1990, p. 1265). It states that there exist a largest and a
smallest serially undominated (pure) action, each of which corresponds to a symmetric
Nash equilibrium (NE) in pure actions. Accordingly, we think of m = 0 as the smallest
NE action and m =M as the largest NE action after all strictly dominated actions have
iteratively been removed from the �larger� game bΓ.
Denote the set of pure NE actions byMNE, i.e.

MNE = {m∗ ∈M|π(m∗,m∗) ≥ π(m,m∗) ∀m ∈M}.
We assume the set of NE actions to be Þnite, K :=#MNE < ∞. Without loss of
generality, we index the NE actions such thatMNE = {m∗

1, . . . ,m
∗
K} with m∗

1 < . . . <
m∗
K , m

∗
1 = 0 and m

∗
K =M.

The following proposition collects two well-known properties of supermodular games.

Proposition 1. Let BR(·) represent the best-response correspondence of the original
game. Then we have (i) (m1, . . . ,mN) ∈ MNE =⇒ mn = m1, for all n ∈ N ; and (ii)
m ∈ BR(µ),m0 ∈ BR(µ0), and µ < µ0 imply m ≤ m0.

Proof. Claim (ii) is contained in Milgrom and Roberts (1990). To establish (i),
assume that (m1, . . . ,mN) represents an asymmetric Nash equilibrium, i.e. mn < mn0

for some n 6= n0,
π(mn, µ(m−n)) ≥ π(mn0, µ(m−n)), (2.1)

and

π(mn0 , µ(m−n0)) ≥ π(mn, µ(m−n0)). (2.2)

By supermodularity, π(mn0, µ)− π(mn, µ) is strictly increasing in µ. Since mn < mn0

implies µ(m−n0) < µ(m−n), it follows that

π(mn0 , µ(m−n0))− π(mn, µ(m−n0)) < π(mn0 , µ(m−n))− π(mn, µ(m−n)).

However, because of (2.1) and (2.2) the LHS is positive and the RHS is negative, respec-
tively, which yields a contradiction. Thus, claim (i) holds true.
Part (i) says that no asymmetric NE in pure actions exists. According to part (ii),

strict supermodularity implies weak monotonicity of the best-response correspondence.
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The discretized game

Applying the standard framework of stochastic evolutionary game theory, which is based
on Þnite state space Markov chains, we discretize the original game. To this end, we
consider a discretized action space with equidistant actions, Mδ = {0, δ, 2δ, . . . ,M},
where M = Lδ for some L∈ IN and δ > 0. Since we intend to compare the robustness of
NE actions in the original game with the robustness of NE actions in the approximated
game, it is warranted to assume that all NE actions of the original game belong to the
discretized action space, i.e. MNE ⊆Mδ.
Notice that the mean can assume more values than pure actions exist inMδ. Taking

this into account, we denote the discretized game by Γδ = (N ,Mδ ×M, π). To indicate
that payoffs coincide in the original and in the discretized game, we use the same label
�π� to denote the pay-off function although, mathematically, these are different functions.
Observe also that the discretized game Γδ inherits the property of strict supermodularity
from the original game Γ.
LetMNE

δ denote the set of pure NE actions of Γδ. Obviously, we haveMNE ⊆MNE
δ .

However, in order to compare the robustness of NE actions in the original and in the
approximated game, respectively, it is also warranted to assume that no additional equi-
librium arises in the discretized game, i.e. MNE ⊇MNE

δ . Combining both inclusions,
we impose the following assumption on the discretized game:
Assumption A.

MNE =MNE
δ . (2.3)

The set of grid sizes, δ > 0, satisfying (2.3) is denoted by D := {δ > 0 : MNE
δ =

MNE}. Observe that D 6= ∅, since we assumed the number of Nash equilibria to be Þnite,
K <∞.
Assuming (2.3) is not as innocent as it might appear at Þrst sight, as, for some

games, every discretization of the action set results in existence of an additional NE
action. For instance, discretizing the action set of the standard Bertrand oligopoly game
results in the additional NE action where players charge the lowest price strictly above
marginal cost.2 Therefore, it is important to notice that, for the class of supermodular
games with mean payoff technologies, which is under consideration here, this is not the
case. Accordingly, the class of games covered by our results is not further restricted by
Assumption A.
Imposing Assumption A, the Þrst result of Proposition 1 carries over to the dis-

cretized game Γδ. As for the second, we Þrst have to deÞne best respones in terms of
the discretized game.

Best-response approximation

To facilitate comparison with the papers by Hansen and Kaarbøe (2002), Kandori and
Rob (1995), and Robles (1997), we take best-response functions as our starting-point.
We impose the following assumption:

2See e.g. Alós-Ferrer (1999).
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Assumption B. The best-response correspondence of the original game is single-
valued and continuous as a function. The best-response function is denoted BR(·),
where BR :M→M and µ 7→ BR(µ).
Observe that strict supermodularity immediately implies the best-response function

to be strictly increasing. It then follows that all Nash equilibria in pure actions are strict.
Assumption B essentially incorporates the �continuity� assumption as originally pro-

posed by Kandori and Rob (1995). To see this, let us Þrst restate their assumption:
whenever two pure actions, m and m0, represent best responses to mixed actions α
and α0, respectively, i.e. m ∈ BR(α) and m0 ∈ BR(α0), then any intermediate action,
m < m00 < m0, should represent a unique best response to some convex combination of
α and α0, i.e. there should exist a λ ∈ (0, 1) such that BR(λα + (1 − λ)α0) = {m00}.
Imposing this assumption to hold true for the discretized game Γδ and any discretization
δ ∈ D, would imply that the best-response correspondence is single-valued, which in fact
means it is a function.
Turning towards the best-response approximation of the discretized games Γδ, δ ∈ D,

one has to restrict the class of feasible best-response functions, b :M→Mδ. First of all,
we have already mentioned earlier that the mean can take more values than pure actions
exist inMδ. Therefore, we have to specify which values the best-response function can
assume for µ ∈ M \Mδ. Second, the best-response function should reßect that the
discretized game Γδ is supermodular. Third, representing the discretized game, b(·)
should approximate the best-response function BR(·) of the original game. Fourth and
Þnally, the sets of Nash equilibria corresponding to b(·) and BR(·) should coincide. Only
then, we have the same candidates for equilibrium selection.
Accordingly, if b :M →Mδ denotes a best-response approximation of the original

best-response function BR(·), we assume the following:

(i) b(·) is (weakly) increasing,
(ii) ∀m ∈Mδ : BR

−1(m) ⊂ b−1(m), and
(iii) ∀m ∈Mδ : BR(m) = m⇐⇒ b(m) = m.

Condition (i) preserves the supermodular structure, condition (ii) incorporates the
idea of approximation, and condition (iii) imbeds Assumption A. Notice that b(·) can no
longer be strictly increasing, for the mean can assume more values than actions exist in
Mδ. SinceMδ is Þnite, it follows that b(·) is piece-wise constant.
Condition (ii) requires that, for any action of the discretized game, m ∈Mδ, the fol-

lowing should hold true: whenever m is optimal against mean µ in the original game, i.e.
µ = BR−1(m), thenm remains optimal against µ under the best-response approximation
b(·). Notice that BR−1(·) denotes the inverse function to BR(·), while b−1(m) represents
the inverse image of m under b :M→Mδ, i.e. b−1(m) = {µ ∈M : b(m) = µ}.
Finally, condition (iii) ensures that, for any δ > 0, any best-response representation

of the discretized game, b ∈ Bδ, satisÞes Assumption A, i.e. MNE
δ (b) = MNE, where

MNE
δ (b) denotes the set of pure NE actions under best-response approximation b(·).
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For any δ ∈ D, we denote the set of all feasible approximated best-response functions
by

Bδ := {b :M→Mδ : b satisÞes properties (i)-(iii)}.

2.2. The evolutionary process

We now turn towards the dynamic speciÞcation of the evolutionary process. To this
end, we take a bird�s-eye view and look at the population as a whole rather than at the
behavior of single players.
Given any action proÞle at time t, (mt

1,m
t
2, . . . ,m

t
N), a state of the evolutionary pro-

cess is a frequency distribution of all actions used at that time, i.e. st = (st0, s
t
δ, . . . , s

t
M)

is such that stm = #{n ∈ N : mt
n = m } represents the number of players employing

action m, for all m ∈Mδ. Obviously, we must have
P

m∈Mδ
stm = N so that the state

space is given by

Sδ =
(
s ∈ {0, 1, . . . , N}L+1 :

X
m∈Mδ

sm = N

)
.

Let sm denote the state where all players employ action m.
To determine the payoff earned by any action m ∈ Mδ, given the current state is

st ∈ Sδ, we have to remove this player from the population proÞle st. Let st−m be the
according population proÞle of other players� actions, i.e. st−m = (st0, . . . , s

t
m−δ, s

t
m −

1, stm+δ, . . . , s
t
M), where action m ∈Mδ has to be actually played by at least one player,

i.e. stm ≥ 1. Given st−m, we write with slight abuse of notation

µ(st−m) =
1

N − 1

"X
m0 6=m

m0 · stm0 +m · (stm − 1)
#
,

for m such that stm ≥ 1. Obviously, we have µ(st−m) = µ(mt
−n) if (and only if) player n

uses action m. Then the payoff earned from action m ∈Mδ can be derived as

πtm = π(m,µ(s
t
−m)).

Adaptation dynamics

For δ > 0, Þx b ∈ Bδ arbitrarily. With some probability ζ ∈ (0, 1), each player revises
his action, adopting a (myopic) best response against other players� mean action,

mt+1
n ∈ b(µ(st−m)),

for all players n ∈ N . With complementary probability 1 − ζ, the player sticks with
his previous action, i.e. mt+1 = mt. For simplicity, we assume the revision probability,
ζ ∈ (0, 1), to be independent across players. (Allowing ζ ∈ (0, 1) to vary across players
would not change our results.)
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Mutation dynamics

Once players have adapted their behavior, their choice is subject to random shocks,
which might be considered as mistakes or mutations. With probability ξ > 0, each player
picks an arbitrary action from the action set Mδ. Similar to the above, the mutation
probability ξ > 0 is assumed to be independent across players.

The overall process

The overall process (involving adaptation plus mutation) constitutes a discrete-time
Markov process with Þnite state space Sδ. The dynamics of adaptation and mutation
fully characterize the transition matrix of the process, which we denote P (ξ, ζ, δ) =
(pss0(ξ, ζ, δ))s,s0∈Sδ . Here, the transition probability pss0(ξ, ζ, δ) represents the probability
of the dynamic system to make a transition from s ∈ Sδ to s0 ∈ Sδ within one period �
given the mutation probability ξ, the adaptation probability ζ, and the grid size δ. The
mutation-free or pure adaptation process corresponds to P (0, ζ, δ).
The presence of mutations implies that every transition from one state to another has

positive probability. Therefore, the Markov process is aperiodic, (positive) recurrent and
irreducible for any ξ > 0. A standard result in the theory of Markov chains then guar-
antees existence and uniqueness of an invariant distribution φ(ξ, ζ, δ). This distribution
describes the long-run frequencies with which every state is observed (with probability
one) along any sample path. Accordingly, if ∆(Sδ) denotes the set of probability mea-
sures deÞned on Sδ, then we have φ(ξ, ζ, δ) ∈ ∆(Sδ). As a characteristic feature of these
types of processes, the stationary distribution does not depend on the starting-point.
Therefore, we can assume the process to start in an arbitrary state s0 ∈ Sδ.
To capture the idea of rare mutations, we look at the behavior of the process as the

rate of mutation becomes small or, formally, at the limit distribution

φ∗(ζ, δ) := lim
ξ→0

φ(ξ, ζ, δ).

Based upon arguments in Freidlin and Wentzell (1984), Young (1993) has shown this
limit to exist. Following Young, we call any state s ∈ Sδ that has strictly positive
probability under φ∗(ζ, δ), i.e. with φ∗s(ζ , δ) > 0, stochastically stable.

3. Approximation

In this section we show that equilibrium selection does not depend on best-response
approximation provided that discretization of the action set is sufficiently Þne (Theorem
3.1). To this end, we Þrst establish that approximation of the original best-response
function by functions from Bδ is uniform (Lemma 1). Subsequently, we build on this
�vertical� approximation result to establish a �depth� approximation result (Lemma 2),
relating the �depth� of the original best-response function to that of the best-response
approximations from Bδ. As already illustrated by Kandori and Rob (1995), it is the
�depth� rather than the �size� of basins of attraction that determines equilibrium selection
for strictly supermodular games. Since Lemma 2 only applies to interior NE actions, we
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continue with analyzing the case of boundary NE actions (Lemma 3). Our main result,
Theorem 3.1, concludes this section.
We start with determining the limit sets of the pure adaptation process. Only these

limit sets represent candidates for stochastic stability.

Proposition 2. Fix the grid size δ ∈ D, Þx the revision probability ζ ∈ (0, 1), and let
b ∈ Bδ be arbitrary. Then each limit set is a singleton. The set of the corresponding
limit states, S0, is in one-to-one correspondence with the set of NE actions, i.e.

S0 = {sm ∈ Sδ : m ∈MNE}.
Proof. The claim can be established along the lines of Theorem 2 in Kandori and

Rob, 1995, p. 400.
Recall that, for any Þxed δ ∈ D, we have MNE = MNE

δ (b) for any b ∈ Bδ by
deÞnition of Bδ. Then Proposition 2 says the following. First, all limit sets consist of
single states. This implies that the process of pure adaptation does not display cycling
behavior or drift. Second, only monomorphic states, where all players use the same
action, represent candidates for stochastic stability. Third, the corresponding action
must represent a NE action. Fourth, the set of limit states, S0, does not depend on
revision probability ζ ∈ (0, 1). And Þnally, the set of limit states neither depends on the
best-response approximation b ∈ Bδ.
While the set of limit states does not depend on the best-response approximation

b ∈ Bδ, the limit distribution in general will do so. To capture this dependence, let us
denote the set of NE actions corresponding to stochastically stable states byM∗(b), i.e.

M∗(b) := {m ∈MNE : φ∗sm(δ) > 0}.
Determining the set of stochastically stable states, we rely on mutation-cost analysis

such as Þrst introduced by Kandori et al (1993) and Young (1993). For each m ∈
MNE, deÞne a m-tree T as a directed spanning tree onMNE such that, for every m0 ∈
MNE\{m}, the collection T contains a path PT (m0) = {(m0,m1), (m1,m2), . . . , (mk,m)}
leading from m0 to m, i.e. m is the root of T. We denote the set of all m-trees by
Tm. Furthermore, for any best-response approximation b ∈ Bδ, let Cb(m0,m00) be the
minimum number of mutations required by the overall process to make a transition from
m0 to m00, where m0,m00 ∈MNE. Finally, we introduce the stochastic potential Cb(m)
of any NE action m ∈MNE by setting Cb(m) := minT∈Tm

P
(m0,m00)∈T C

b(m0,m00). Then,
Lemma 1 in Young (1993) allows us to characterize stochastic stability: m ∈M∗(b) if
and only if Cb(m) ≤ Cb(m0) for all m0 ∈MNE.
The following Lemma states that approximation of the original best-response function

BR(·) by best-response functions from Bδ is uniform.
Lemma 1. (Uniform Approximation of the Original Best Response) ∀ε > 0 : ∃δ > 0 :
∀δ ∈ (0, δ) : ∀b ∈ Bδ : supµ∈M |BR(µ)− b(µ)| < ε

Proof. We show that setting δ(ε) := ε does the job. To this end, Þx ε > 0. Let
BR−1(Mδ) denote the set of mean actions µ ∈ M such that some action m ∈ Mδ
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represents a best response to µ, i.e. BR−1(Mδ) = {µ ∈ M : BR(µ) = m for some
m ∈Mδ}.
First, if bµ ∈ BR−1(Mδ) then BR(bµ) = b(bµ) = m for some m ∈Mδ and all b ∈ Bδ

by property (ii) in the deÞnition of Bδ. Hence, BR(bµ)− b(bµ) = 0.
Second, for bµ ∈ M \ BR−1(Mδ), set µ := max{µ ∈ BR−1(Mδ) : µ < bµ } and

µ := min{µ ∈ BR−1(Mδ) : µ > bµ }. These numbers are well deÞned because of {0,M} ⊂
BR−1(Mδ). By selection of bµ and construction of µ and µ, we have µ < bµ < µ and
BR(µ) = BR(µ) + δ. Moreover, it follows that BR(µ) = b(µ) and BR(µ) = b(µ), for
any b ∈ Bδ, which in turn implies BR(µ) − BR(µ) = b(µ) − b(µ) = δ. Since BR(·)
is strictly increasing and b ∈ Bδ is weakly increasing, we obtain BR(µ) < BR(bµ) <
BR(µ) = BR(µ) + δ and b(µ) ≤ b(bµ) ≤ b(µ) = b(µ) + δ, respectively. Combining the
two chains of inequalities, we obtain −δ < BR(bµ)− b(bµ) < δ.
Thus, setting δ(ε) := ε, we have supµ∈M |BR(µ)− b(µ)| < δ < ε, for all δ ∈ (0, δ)

and all b ∈ Bδ.
In fact, we have established the following corollary:

Corollary 1. Fix δ ∈ D. For all b ∈ Bδ, we have: supµ∈M |BR(µ)− b(µ)| < δ.

We continue with introducing further notation preparing the mutation-cost analysis.
Choose δ ∈ D arbitrarily. By Proposition 2, only NE actions represent candidates for
stochastic stability. Let m0,m00 ∈MNE be two adjacent NE actions such that m0 < m00

and deÞne upward and downward depth of the original best-response function between
m0 and m00 as

DBR(m0,m00) : = min{a ∈ [0, 1] : BR(aM + (1− a)µ) ≥ µ for all µ ∈ [m0,m00]} and

DBR(m00,m0) : = min{a ∈ [0, 1] : BR((1− a)µ) ≤ µ for all µ ∈ [m0,m00]}, (3.1)

respectively. Notice that both minima exist, becausegBRz : [0, 1]→M, a 7−→gBRz(a) :=
BR(az + (1 − a)µ), is a continuous function on a compact intervall for each z = 0,M
and all µ ∈ [m0,m00] and becausegBRM(1) = BR(M) =M ≥ µ andgBR0(1) = BR(0) =
0 ≤ µ holds true for all µ ∈ [m0,m00] ⊂M. Moreover, observe that gBRM(·) is strictly
increasing, whilegBR0(·) is strictly decreasing.
The upward (downward) depth between adjacent actions m0 < m00 characterizes

the minimum share of players that have to mutate to the highest (lowest) action M
(0) in order to move the dynamics into the basin of attraction of NE action m00 (m0).
Accordingly, the numbers

CBR(m0,m00) := max{§N ·DBR(m0,m00)
¨
, 1} (3.2)

characterize the minimum number of mutating players required by the overall process
to make a transition from m0 to m00, for any m0,m00 ∈MNE

δ (where, for any x ∈IR+, the
function dxe denotes the smallest integer number such that x ≤ dxe). IfDBR(m0,m00) = 0
then one mutation is required to make a transition from m0 to m00, since {sm0} is a limit
state, i.e. CBR(m0,m00) = 1 for all N ∈IN.

10



Figure 3.1 illustrates the upward and downward depth of the original best-response
function between adjacent NE actionsm0 < m00 < m000, respectively. We haveDBR(m0,m00) =
a1, D

BR(m00,m000) = 0, DBR(m000,m00) = a2, and DBR(m00,m0) = 0.

Include Figure 3.1 about here.

Finally, let Db(m0,m00) and Cb(m0,m00) represent the corresponding notions where
some best-response approximation b ∈ Bδ replaces the original best-response function
BR(·). Since b(·) is a step-function and hence discontinuous at some points, it is no
longer clear that the minimum really exists. However, the set

{a ∈ [0, 1] : b(aM + (1− a)µ) ≥ µ for all µ ∈ [m0,m00]}
is non-empty, since it always contains a = 1. Therefore, it suffices to replace the minimum
operator by the inÞmum operator. We set

Db(m0,m00) : = inf{a ∈ [0, 1] : b(aM + (1− a)µ) ≥ µ ∀µ ∈ [m0,m00]} and

Cb(m0,m00) : = max{§N ·Db(m0,m00)
¨
, 1}.

Similar notation applies to the case of downward depth.

The following two lemmas characterize the approximation behavior of best-response
step-functions from Bδ in terms of both upward and downward depth. At Þrst, Lemma
2 covers the case of interior NE actions, m0,m00 ∈MNE \{0,M}. It states that, for suffi-
ciently close approximations b ∈ Bδ, both upward and downward depth of the respective
approximating function become arbitrarily close to upward and downward depth of the
original best-response function BR(·), respectively. Subsequently, Lemma 3 deals with
the case of boundary NE actions, m0 = 0 or m00 =M .

Lemma 2. (Uniform Approximation of Depth) Consider adjacent NE actions m0,m00 ∈
MNE \ {0,M} such that m0 6= m00. Then, for any ε > 0, there exists some δ > 0 such
that, for all δ ∈ D ∩ (0, δ), we have¯̄

DBR(m0,m00)−Db(m0,m00)
¯̄
< ε for all b ∈ Bδ.

Proof. We establish the claim for the case of upward depth. The opposite case can
be dealt with similarly. Accordingly, Þx m0,m00 ∈MNE \{0,M} such that m0 < m00 and
m ∈MNE implies either m ≤ m0 or m ≥ m00. Moreover, choose δ0 > 0 sufficiently small
such that max{m0,m00} < M − δ0 and min{m0,m00} > δ0.
First, by Lemma 1, we have that

BR(µ)− δ < b(µ) < BR(µ) + δ for all µ ∈M (3.3)

and all b ∈ Bδ, such that δ ∈ (0, δ0) ∩D.

11
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Figure 3.1: Upward and downward depth of the original best-response function
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Second, we extend the notion of DBR(m0,m00) to DBR+δ(m0,m00) and DBR−δ(m0,m00).
I.e., we set

DBR+η(m0,m00) := min {1, inf {a ∈ [0, 1] : BR(aM + (1− a)µ) + η ≥ µ ∀ µ ∈ [m0,m00]}} ,

for η ∈ {−δ, δ}.We set inf ∅ :=∞ in order to take into account that, for η = δ > 0, the
set

{a ∈ [0, 1] : BR(aM + (1− a)µ) + η ≥ µ ∀ µ ∈ [m0,m00]}
might be empty. From (3.3), it follows that

DBR+δ(m0,m00) ≤ Db(m0,m00) ≤ DBR−δ(m0,m00) ∀b ∈ Bδ ∀δ ∈ D ∩ (0, δ0). (3.4)

Third, we show that

DBR+η(m0,m00) = max
µ∈[m0,m00]

BR−1(µ− η)− µ
M − µ , for all η ∈ [−δ, δ] (3.5)

and all δ ∈ D ∩ (0, δ0). To see this, we transform the deÞnition of DBR+η(m0,m00):

DBR+η(m0,m00) = min {a ∈ [0, 1] : BR(aM + (1− a)µ) + η ≥ µ for all µ ∈ [m0,m00]}
= min

½
a ∈ [0, 1] : a ≥ BR−1(µ− η)− µ

M − µ for all µ ∈ [m0,m00]
¾

= min

½
a ∈ [0, 1] : a ≥ max

µ∈[m0,m00]

BR−1(µ− η)− µ
M − µ

¾
= max

µ∈[m0,m00]

BR−1(µ− η)− µ
M − µ .

The second equality holds true because µ− η ∈ (0,M) holds true for all µ ∈ [m0,m00] by
selection of δ0.
Fourth, since the right hand side of (3.5) is continuous and strictly decreasing in η,

so is the left hand side. Hence, the outer expressions of relation (3.4) converge as we
take the limit δ → 0,

lim
δ→0

DBR+δ(m0,m00) = DBR(m0,m00) and

lim
δ→0

DBR−δ(m0,m00) = DBR(m0,m00).

Finally, this in turn implies that also the nested expression in (3.4) converges, i.e.,
for any ε > 0, there exists some δ > 0 such that, for any δ ∈ D ∩ (0,min{δ, δ0}) and any
b ∈ Bδ, we have ¯̄

DBR(m0,m00)−Db(m0,m00)
¯̄
< ε.

13



Figure 3.2 illustrates the intuition underlying the proof of Lemma 2. It depicts the
original best-response function BR(·) as well as its shifted graph BR(·) − δ. By the
corollary to Lemma 1, the shifted best-response BR(·) − δ provides a lower bound on
all feasible best-response approximations b ∈ Bδ, i.e. BR(·) − δ < b(·), for any given
grid size δ ∈ D. Turning towards the upward depth between m and m0, the lower bound
BR(·)− δ on b(·) transforms into an upper bound on upward depth, i.e. Db(m0,m00) ≤
DBR−δ(m0,m00). Similarly, the upper bound BR(·) + δ translates into a lower bound on
upward depth, i.e. DBR+δ(m0,m00) ≤ Db(m0,m00). It is then evident that, as δ → 0,
we have DBR+η(m0,m00) = DBR(m0,m00) for η ∈ {−δ, δ} and hence approximation of
upward depth is uniform.

Include Figure 3.2 about here.

According to Lemmas 1 and 2, the family of best-response functions, b ∈ Bδ, not only
approximates the original best-response function BR(·) vertically, which is ensured by
the assumptions underlying Bδ. For interior NE actions, approximation is also in terms
of upward and downward depth of the best-response function.
This Þnding is by no means trivial, since (i) it was not clear that approximation by

functions in Bδ is uniform and (ii) that we could overcome the problem that best-reponse
step-functions are not invertible. The latter was key, since we needed to draw inferences
from approximation in the rangeMδ to approximation in the domainM.
Turning towards the case of boundary Nash equilbrium actions, Lemma 3 shows that

approximation in terms of depth is arbitrarily close, provided the equilibrium action
under consideration is stable with respect to the original best-response function BR(·).
If it is unstable with respect to BR(·), then approximation in terms of depth is no longer
arbitrarily close, but the equilibrium action remains unstable under any best-response
approximation b ∈ Bδ, for any δ ∈ D sufficiently small.

Lemma 3. Let m∗
K−1 > 0 and m

∗
K =M be adjacent NE actions.

(i) Suppose m∗
K = M is stable, i.e. BR(µ) > µ for all µ ∈ (m∗

K−1,m
∗
K). Then, for any

ε > 0, there exists some δ > 0 such that for all δ ∈ D ∩ (0, δ) and all b ∈ Bδ we have¯̄
DBR(m0,m00)−Db(m0,m00)

¯̄
< ε,

where m0,m00 ∈ {m∗
K−1,m

∗
K},m0 6= m00.

(ii) SupposeM is unstable, i.e. BR(µ) < µ for all µ ∈ (m∗
K−1,m

∗
K). Then, for any ε > 0,

there exists some δ > 0 such that for all δ ∈ D ∩ (0, δ) and all b ∈ Bδ we have
DBR(m∗

K−1,M)− ε ≤ Db(m∗
K−1,M) ≤ 1 and (3.6)

0 ≤ Db(M,m∗
K−1) < ε.

A similar result obtains for the case of m∗
1 = 0 and m

∗
2 < M .
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Figure 3.2: Uniform approximation of upward depth for interior NE actions
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Proof. Claims (i) and (ii) can be established using techniques similar to those in
Lemma 2. To prove claim (i) one has to replace BR(µ)−δ by b(µ) := max{BR(µ)−δ, µ}
for µ close to M, and to see that b(µ) ≤ b(µ) for all b ∈ Bδ. As to the Þrst part of claim
(ii), note that b(µ) =M−δ for all µ close toM (so that b(µ) =M implies µ =M) would
be compatible with b ∈ Bδ. Therefore, the only uniform upper bound on Db(m∗

K−1,M) is
1. Similarly, regarding the second part of claim (ii), observe that b(µ) =M for all µ close
to M is also compatible with b ∈ Bδ. Accordingly, though we have DBR(M,m∗

K−1) = 0,
it can be that Db(M,m∗

K−1) > 0.
Figure 3.3 illustrates part (ii) of Lemma 3. Set µ := BR−1(M − δ). For any Þxed

δ ∈ D and arbitrary bµ ∈ (µ,M ], the following shape of best-response approximations bbµ
is compatible with bbµ ∈ Bδ:

bbµ(µ) =
½

M for µ ∈ [bµ,M ] and
M − δ for µ ∈ [µ, bµ).

Altering bµ allows to shift upward and downward depth arbitrarily within the ranges
given in Lemma 3(ii).

Include Figure 3.3 about here.

As a corollary to part (ii) of Lemma 3, we note that actions that are unstable under
BR(·) remain unstable under any best-response approximation b ∈ Bδ provided that
discretization is sufficiently Þne. According to inequality (3.6), there is a uniform lower
bound on Db(m∗

K−1,M) holding for all b ∈ Bδ. This uniform lower bound converges to
DBR(m∗

K−1,M) as ε > 0 goes to zero. WhenM is unstable, we have DBR(m∗
K−1,M) > 0

so that, for ε > 0 sufficiently small, we even have DBR(m∗
K−1,M) − ε > ε. Since the

left hand side of the latter is the uniform lower bound on all b ∈ Bδ, it follows that
Db(M,m∗

K−1) < ε ≤ DBR(m∗
K−1,M) − ε ≤ Db(m∗

K−1,M). Thus, M is unstable with
respect to all b ∈ Bδ provided that ε > 0 is chosen sufficiently small.
We continue introducing notation required to state our main theorem. LetDBR(m) :=

minT∈Tm
P

(m0,m00)∈T D
BR(m0,m00), where, for non-adjacent NE actions mi < mj, we set

DBR(mi,mj) = maxi<k≤jDBR(mk−1,mk) andDBR(mj ,mi) = maxi<k≤jDBR(mk,mk−1).
Similarly, deÞne CBR(m) := minT∈Tm

P
(m0,m00)∈T C

BR(m0,m00) and, for non-adjacent
NE actions mi < mj, CBR(mi,mj) = maxi<k≤j CBR(mk−1,mk) and CBR(mj,mi) =
maxi<k≤j CBR(mk,mk−1) in accordance with Theorem 5 in Kandori and Rob (1995).
We call any NE action m ∈MNE mutation-dominant if and only if DBR(m) < DBR(m0)
for all m0 ∈MNE \ {m}.
The observation in Lemmas 2 and 3 has a direct consequence stated in Theorem

3.1 below: For any strictly supermodular game Γ with a mutation-dominant NE ac-
tion, equilibrium selection does not depend on the best-response approximation b ∈ Bδ,
provided that discretization is sufficiently Þne (δ sufficiently small). Moreover, it is the
mutation-dominant NE action that is selected. I.e. the selected equilibrium action can
be characterized in terms of the original game.
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Theorem 3.1. Consider any strictly supermodular game that has a mutation-dominant
NE action m∗ ∈MNE. Then there is some δ > 0 such that, for all δ ∈ D∩ (0, δ) and all
b ∈ Bδ, we haveM∗(b) = {sm∗}, i.e. sm∗

is the unique stochastically stable state.

Proof. We prove the claim for the case where both boundary actions, m = 0,M, are
stable so that we can apply part (i) of Lemma 3. In case of unstable boundary actions
the proof has to be adapted, fallling back on part (ii) of the Lemma.
Let m∗ ∈MNE be such that

DBR(m∗) = min
T∈Tm∗

X
(m0,m00)∈T

DBR(m0,m00) < min
T∈Tm

X
(m0,m00)∈T

DBR(m0,m00) = DBR(m),

for all m ∈MNE \ {m∗}. Pick a minimum cost m∗-tree T ∗ ∈ Tm∗ so that DBR(m∗) =P
(m0,m00)∈T ∗ D

BR(m0,m00) and, for some arbitrary other NE action m 6= m∗, an arbitrary
m-tree T ∈ Tm. Choose 0 < ε < DBR(m)−DBR(m∗). By Lemmas 2 and 3, there exists
δ > 0 such that for all δ ∈ D∩(0, δ) and all b ∈ Bδ,we have

¯̄
DBR(m0,m00)−Db(m0,m00)

¯̄
<

ε/(2K−2), for arbitrary adjacent NE actionsm0 6= m00. (Recall that K <∞ denotes the
number of NE actions). Notice that by deÞnition of DBR(m0,m00) and by Theorem 5 in
Kandori and Rob (1995), the depth between non-adjacent NE actions can be determined
focusing on adjacent NE actions.
For T ∗ ∈ Tm∗, it then follows that

Db(m∗) =
X

(m0,m00)∈T ∗
Db(m0,m00) <

X
(m0,m00)∈T ∗

·
DBR(m0,m00) +

ε

2(k − 1)
¸

= DBR(m∗) +
ε

2
,

whereas, for T ∈ Tm, we have

Db(m) =
X

(m0,m00)∈T
Db(m0,m00) >

X
(m0,m00)∈T

·
DBR(m0,m00)− ε

2(k − 1)
¸

= DBR(m∗)− ε
2
.

Combining both inequalities, we thus obtain

Db(m)−Db(m∗) ≥ DBR(m)−DBR(m∗)− ε > 0, (3.7)

for any b ∈ Bδ, where the last inequality holds true by selection of ε.
To establish unique stochastic stability of m∗, it suffices to show that Cb(m) −

Cb(m∗) > 0, for N sufficiently large. However, recalling the deÞnitions Cb(m) :=
minT∈Tm

P
(m0,m00)∈T C

b(m0,m00) and Cb(m0,m00) := max{§N ·Db(m0,m00)
¨
, 1}, the claim

directly follows from 3.7.
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4. Conclusions

The main insight of this article has been that, for strictly supermodular games with
simultaneous play, rounding of the original best-response function to pure actions has
no important impact on the long run equilibrium. Put differently, best-response approx-
imation does not affect equilibrium selection provided that discretization is sufficiently
Þne.
Our analysis has been warranted, since Hansen and Kaarbøe (2002) have shown

for coordination games that equilibrium selection strongly depends on best-response
approximations. Notice that their result remains valid even for very Þne discretizations
of the individual action set.
The difference between Hansen and Kaarbøe (2002) and the present article is the

following. At Þrst, for strictly supermodular games exhibiting a Þnite number of Nash
equilibria, the best-response function of the original game does not coincide with the
45◦-line. Therefore, the basins of attraction of each Nash equilibrium must display a
strictly positive depth (recall from Kandori and Rob, 1995, that the relative size of
these depths determines equilibrium selection). For sufficiently Þne discretizations of
the individual action grid, it thus follows that also the depth of basins of attraction
under the approximating best-response function is strictly positive. Our core result
then was to establish that the depths corresponding to different feasible best-response
approximations actually come arbitrarily close to each other provided that discretization
is sufficiently Þne.
For coordination games this is different. As shown by Hansen and Kaarbøe, round-

ing essentially determines the depth of the basins of attractions. Since for sufficiently
Þne discretizations all depths of basins of attraction become arbitrarily close to zero,
it remains always possible to affect the relative depth of these basins by constructing
appropriate best-response approximations. This is what Hansen and Kaarbøe exploit to
generate their results.
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