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Abstract 
 
We propose a new class of interacting Markov chain Monte Carlo (MCMC) algorithms 

designed for increasing the efficiency of a modified multiple-try Metropolis (MTM) algorithm. 

The extension with respect to the existing MCMC literature is twofold. The sampler proposed 

extends the basic MTM algorithm by allowing different proposal distributions in the multiple-

try generation step. We exploit the structure of the MTM algorithm with different proposal 

distributions to naturally introduce an interacting MTM mechanism (IMTM) that expands the 

class of population Monte Carlo methods and builds connections with the rapidly expanding 

world of adaptive MCMC. We show the validity of the algorithm and discuss the choice of the 

selection weights and of the different proposals. We provide numerical studies which show that 

the new algorithm can perform better than the basic MTM algorithm and that the interaction 

mechanism allows the IMTM to efficiently explore the state space. 
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1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are now essential for the
analysis of complex statistical models. In the MCMC universe, one of the
most widely used class of algorithms is defined by the Metropolis-Hastings
(MH) (Metropolis et al., 1953; Hastings, 1970) and its variants. An impor-
tant generalization of the standard MH formulation is represented by the
multiple-try Metropolis (MTM) (Liu et al., 2000). While in the MH formu-
lation one accepts or rejects a single proposed move, the MTM is designed
so that the next state of the chain is selected among multiple proposals. The
multiple-proposal setup can be used effectively to explore the sample space
of the target distribution and subsequent developments made use of this
added flexibility. For instance, Craiu and Lemieux (2007) and Bédard et al.
(2010) propose to use antithetic and quasi-Monte Carlo samples to generate
the proposals and to improve the efficiency of the algorithm while Pandolfi
et al. (2010b) and Pandolfi et al. (2010a) apply the multiple-proposal idea
to a trans-dimensional setup and combine Reversible Jump MCMC with
MTM.

This work further generalizes the MTM algorithm presented in Liu et al.
(2000) in two directions. First, we show that the original MTM transition
kernel can be modified to allow for different proposal distributions in the
multiple-try generation step while preserving the ergodicity of the chain.
The use of different proposal distributions gives more freedom in designing
MTM algorithms for target distributions that require different proposals
across the sample space. An important challenge remains the choice of the
distributions used to generate the proposals and we propose to address it
by expanding upon methods used within the population Monte Carlo class
of algorithms.

The class of population Monte Carlo procedures (Cappé et al., 2004;
Del Moral and Miclo, 2000; Del Moral, 2004; Jasra et al., 2007) has been
designed to address the inefficiency of classical MCMC samplers in complex
applications involving multimodal and high dimensional target distributions
(Pritchard et al., 2000; Heard et al., 2006). Its formulation relies on a number
of MCMC processes that are run in parallel while learning from one another
about the geography of the target distribution.

A second contribution of the paper is finding reliable generic methods for
constructing the proposal distributions for the MTM algorithm.We propose
an interacting MCMC sampling design for the MTM that preserves the
Markovian property. More specifically, in the proposed interacting MTM
(IMTM) algorithm, we allow the distinct proposal distributions to use in-
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formation produced by a population of auxiliary chains. We infer that the
resulting performance of the MTM is tightly connected to the performance
of the chains’ population. In order to maximize the latter, we propose and
compare via simulations a number of strategies that can be used to tune the
auxiliary chains.

In the next section we discuss the IMTM algorithm, propose a number
of alternative implementations and prove their ergodicity. In Section 3 we
focus on some special cases of the IMTM algorithm and in Section 4 the
performance of the methods proposed is demonstrated with simulations and
real examples. We end the paper with a discussion of future directions for
research.

2 Interacting Monte Carlo Chains for MTM

We begin by describing the MTM and its extension for using different pro-
posal distributions.

2.1 Multiple-Try Metropolis With Different Proposal Dis-
tributions

Suppose that of interest is sampling from a distribution π that has support
in Y ⊂ Rd and is known up to a normalizing constant. Assuming that the
current state of the chain is x, the update defined by the MTM algorithm
of Liu et al. (2000) is described in Algorithm 1.

Note that while the MTM uses the same distribution to generate all
the proposals, it is possible to extend this formulation to different proposal
distributions without altering the ergodicity of the associated Markov chain.

Let Tj(·|x), with j = 1, . . . ,M , be a set of proposal distributions for
which Tj(y|x) > 0 if and only if Tj(x|y) > 0. Define

wj(x, y) = π(x)Tj(y|x)λj(x, y) j = 1, . . . ,M

where λj(x, y) is a nonnegative symmetric function in x and y that can be
chosen by the user. The only requirement is that λj(x, y) > 0 whenever
T (x, y) > 0. Then the MTM algorithm with different proposal distributions
is given in Algorithm 2.
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Algorithm 1. Multiple-try Metropolis Algorithm (MTM)

1. Draw M trial proposals y1, . . . , yM from the proposal distribu-
tion T (·|x). Compute w(yj , x) for each j ∈ {1, . . . ,M}, where
w(y, x) = π(y)T (x|y)λ(y, x), and λ(y, x) is a symmetric func-
tion of x, y.

2. Select y among the M proposals with probability proportional to
w(yj , x), j = 1, . . . ,M .

3. Draw x∗1, . . . , x
∗
M−1 variates from the distribution T (·|y) and let

x∗M = x.

4. Accept y with generalized acceptance probability

ρ = min

{
1,
w(y1, x) + . . .+ w(yM , x)

w(x∗1, y) + . . .+ w(x∗M , y)

}
.

Algorithm 2. MTM with Different Proposal Distributions

1. Draw independently M proposals y1, . . . , yM such that yj ∼
Tj(·|x). Compute wj(yj , x) for j = 1, . . . ,M .

2. Select Y = y among the trial set {y1, . . . , yM} with probability
proportional to wj(yj , x), j = 1, . . . ,M . Let J be the index of the
selected proposal. Then draw x∗j ∼ Tj(·|y), j 6= J , j = 1, . . . ,M
and let x∗J = x.

3. Accept y with probability

ρ = min

{
1,
w1(y1, x) + · · ·+ wM (yM , x)

w1(x∗1, y) + · · ·+ wM (x∗M , y)

}
and reject with probability 1− ρ.

It should be noted that Algorithm 2 is a special case of the interacting
MTM presented in the next section and that the proof of ergodicity for
the associated chain follows closely the proof given in Appendix A for the
interacting MTM and is not given here.
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2.2 General Construction

Undoubtedly, Algorithm 2 offers additional flexibility in organizing the MTM
sampler. This section introduces generic methods for using a population of
MCMC chains to define the proposal distributions.

Consider a population of N chains, X(i) = {x(i)n }n∈N and i = 1, . . . , N .
For full generality we assume that the ith chain has MTM transition kernel

with Mi different proposals {T (i)
j }1≤j≤Mi (if we set Mi = 1 we imply that

the chain has a MH transition kernel). The interacting mechanism allows
each proposal distribution to possibly depend on the values of the chains at

the previous step. Formally, if Ξn = {x(i)n }Ni=1 is the vector of values taken
at iteration n ∈ N by the population of chains, then we allow each proposal
distribution used in updating the population at iteration n+1 to depend on
Ξn. The mathematical formalization is used in the description of Algorithm
3. One expects that the chains in the population are spread throughout the
sample space and thus the proposals generated are a good representation of
the sample space Y ultimately resulting in better mixing for the chain of
interest.

The first step in Algorithm 3 suggests that each proposal distribution
used in each parallel MTM chain is allowed to depend on the current states
of all the chains in the population. However, this general formulation for
the IMTM, though correct in theory, can be difficult to tune efficiently in
a given practical problem. Before we move to discuss implementations that
simplify and enhance the practical application of the IMTM algorithm, we
prove below that the chain underlying Algorithm 3 is ergodic to π.

In order to give a representation of the IMTM transition density let us

introduce the following notation. Let T (i)(y1:Mi |x) =
∏Mi
k=1 T

(i)
k (yk|f̃

(i)
n (x))

and T
(i)
−j (y1:Mi |x) =

∏Mi
k 6=j T

(i)
k (yk|f̃

(i)
n (x)) and define dy1:Mi =

∏Mi
k=1 dyk and

dy−j =
∏Mi
k 6=j dyk.

The transition density associated to the population of chains is then

K(Ξn,Ξn+1) =

N∏
i=1

Ki(x
(i)
n , x

(i)
n+1) (1)

where

Ki(x, y) =

Mi∑
j=1

A
(i)
j (x, y)T

(i)
j (y|x) +

1−
Mi∑
j=1

B
(i)
j (x)

 δx(y) (2)
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is the transition kernel associated to the i-th chain of algorithm with

A
(i)
j (x, y) =

∫
Y2(Mi−1)

w̃
(i)
j (y, x)ρ

(i)
j (x, y)T

(i)
−j (x

∗
1:Mi
|y)T

(i)
−j (y1:Mi |x)dx∗−jdy−j

and

B
(i)
j (x) =

∫
Y2(Mi−1)+1

ρ
(i)
j (x, y)T

(i)
−j (x

∗
1:Mi
|y)T (i)(y1:Mi |x)dx∗−jdy1:Mi .

Algorithm 3. Interacting Multiple Try Algorithm (IMTM)

• For i = 1, . . . , N

1. Let x = x
(i)
n and define the map f̃

(i)
n (z) =

(x
(1:i−1)
n , z, x

(i+1:N)
n )T ; for j = 1, . . . ,Mi draw yj ∼

T
(i)
j (·|f̃ (i)n (x)) independently and compute

w
(i)
j (yj , x) = π(yj)T

(i)
j (x|f̃ (i)n (yj))λ

(i)
j (yj , x).

2. Select J ∈ {1, . . . ,Mi} with probability proportional to

w
(i)
j (yj , x), j = 1, . . . ,Mi and set y = yJ .

3. For j = 1, . . . ,Mi and j 6= J draw x∗j ∼ T
(i)
j (·|f̃ (i)n (y)), let

x∗J = x
(i)
n and compute

w
(i)
j (x∗j , y) = π(x∗j )T

(i)
j (y|f̃ (i)n (x∗j ))λ

(i)
j (x∗j , y).

4. Set x
(i)
n+1 = y with probability

ρi = min

{
1,
w

(i)
1 (y1, x) + . . .+ w

(i)
Mi

(yMi , x)

w
(i)
1 (x∗1, y) + . . .+ w

(i)
Mi

(x∗Mi
, y)

}

and x
(i)
n+1 = x

(i)
n with probability 1− ρi.

In the above equations w̃
(i)
j (yj , x) = w

(i)
j (yj , x)/(w

(i)
j (y, x)+w̄

(i)
−k(y1:Mi |x)),

with j = 1, . . . ,Mi and w̄
(i)
−j(y1:Mi |x) =

∑Mi
k 6=j w

(i)
k (yk, x), are the normalized
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weights used in the selection step of the IMTM algorithm and

ρ
(i)
j (x, y) = min

{
1,
w

(i)
j (y, x) + w̄

(i)
−j(y1:Mi |x)

w
(i)
j (x, y) + w̄

(i)
−j(x

∗
1:Mi
|y)

}
is the generalized MH ratio associated to a MTM algorithm.

The validity of the IMTM algorithm relies upon the detailed balance
condition.

Theorem 1. The transition density Ki(x
(i)
n , x

(i)
n+1) associated to the i-th

chain of the IMTM algorithm satisfies the conditional detailed balanced con-
dition.

Proof See Appendix A.

Since each transition Ki(x
(i)
n , x

(i)
n+1), i = 1, . . . , N has π(x) as stationary

distribution and satisfies the conditional detailed balance condition then the
joint transition K(Ξn,Ξn+1) =

∏N
i=1Ki(x

(i)
n , x

(i)
n+1) has π(x)N as a station-

ary distribution.

3 Practical Implementation

It should be noted that at each iteration of the IMTM the computational
complexity of the algorithm is O(

∑N
i=1Mi). This can become burdensome

when the number of chains, N , and the number of proposals, Mi, are si-
multaneously large so one needs to decide between increasing the number of
chains or the number of proposals. We distinguish two possible strategies
in designing the interaction mechanism. The first strategy is to use a small
number of chains, say 5 ≤ N ≤ 20, and a number of proposals equal to the
number of chains, i.e. Mi = N , for all 1 ≤ i ≤ N . In this way all the chains
can interact at each iteration of the algorithm and many search directions
can be included among the proposals.

A second strategy is to use a higher number of chains, e.g. N = 100, in
order to possibly have, at each iteration, a good approximation of the target
or a much higher number of search directions for a good exploration of
the sample space. This algorithm design strategy is common in Population
Monte Carlo or Interacting MCMC methods. Clearly when a high number
of chains is used within IMTM, it is necessary to set Mi < N , possibly
Mi = 1 for each auxiliary chain.

In this section we discuss a few strategies to built the Mi proposals
for each chain and in the simulation section we compare the two strategies
outlined above.
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3.1 Parsing the Population of Auxiliary Chains

Although one may run a large number of auxiliary chains, one may not
want to use all the chains at each iteration of the IMTM. One approach
that turned out to be successful in our applications consists in selecting a
random subset of chains from the population in order to build the proposals.
For ease of description, assume that Mi = M < N , for all chains, 1 ≤ i ≤
N . Then, when updating the i-th chain of the population, we sample the
random indices I1, . . . , IM−1 from the uniform distribution U{1, . . . , N} and
we let IM = i. Then the M proposals used for chain i will be allowed to
depend only on the current states of those chains with indices I1, . . . , IM
(which includes the index i). Using the notation introduced and letting

I
(i)
n = (I1, . . . , IM ) then the M proposals used for chain i at time n are

sampled using T
(i)
j (y|x(I1)n , . . . , x

(IM )
n ), for all j = 1, . . . ,M . Our simulation

experiments showed a good performance when we used a relatively simpler
version in which the jth proposal depends only on the current state of chain

Ij , i.e., it is sampled using T
(i)
j (·|x(Ij)n ), for all j = 1, . . . ,M . One can see

that the interweaving of the chains is performed by allowing the proposals
used in chain i to be sampled conditional not only on the current state of

the chain, x
(i)
n , but also on the current states of those chains whose indices

are sampled at random and stored in I
(i)
n .

Another important issue directly connected to the practical implemen-

tation of the IMTM is the choice of λ
(i)
j (x, y). Previously suggested forms

for the function λ
(i)
j (x, y) (Liu et al., 2000) are:

a) λ
(i)
j (x, y) = 2{T (i)

j (x|y) + T
(i)
j (y|x)}−1

b) λ
(i)
j (x, y) = {T (i)

j (x|y)T
(i)
j (y|x)}−α, α > 0.

Little guidance is offered in the existent literature regarding the choice of λ
and, to our knowledge, in most applications of the original MTM algorithm
the default choice is λ = 1.

Here we propose to include in the construction of λ the information
provided by the population of chains. Therefore we suggest to modify the
above functions to

a′) λ
(i)
j (x, y) = 2νj {T (i)

j (x|y) + T
(i)
j (y|x)}−1

b′) λ
(i)
j (x, y) = νj {T (i)

j (x|y)T
(i)
j (y|x)}−α, α > 0,
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where the factor νj is

νj =
1

N

[
1 +

N∑
i=1

1{j}(J
(i)
n−1)

]
, j = 1, . . . ,M, (3)

and J
(i)
n−1 is the index of the proposal selected in the ith chain update at

iteration n − 1. It can be seen that the {νj}1≤j≤M capture the behaviour
of the auxiliary chains at the previous iteration. More precisely, νj will be
relatively larger for those proposal distributions Tj(·|·) whose samples have
been selected as the potential next states for the chains in the population
at iteration n − 1. The modifications proposed for λ(·, ·) would increase
the use of those proposal distributions favoured by the population of chains
at previous iteration. Since νj depends only on samples generated at the
previous step by the population of chains, the ergodicity of the IMTM chain
is preserved. In the simulation section we compare the performance of IMTM
coupled with either a’) or b’) when α = 1.

3.2 Annealed IMTM

Our belief in IMTM’s improved performance is underpinned by the assump-
tion that the population of Monte Carlo chains is spread throughout the
sample space. This can be partly achieved by initializing the chains using
draws from a distribution overdispersed with respect to π (see also Jennison,
1993; Gelman and Rubin, 1992) and partly by modifying the stationary dis-
tribution for some of the chains in the population. Specifically, we consider
the sequence of annealed distributions πt = πt with t ∈ {ξ1, ξ2, . . . , ξN},
where 1 = ξ1 > ξ2 > . . . > ξn, for instance ξt = 1/t. When t, s are close
temperatures, πt is similar to πs, but π = π1 may be much harder to sample
from than πξN , as has been long recognized in the simulated annealing and
simulated tempering literature (see Marinari and Parisi, 1992; Geyer and
Thompson, 1994; Neal, 1994). Therefore, it is likely that some of the chains
designed to sample from π1, . . . , πN have good mixing properties, making
them good candidates for the population of MCMC samplers needed for the
IMTM. Recent theoretical work by Atchadé et al. (2010) has build, in an
adaptive setup, connections between the temperature ladder and the opti-
mal scaling problem. Such an analysis goes beyond the scope of this paper;
in the simulation section we compare three methods for constructing the
temperature ladder 1 = ξ1 > ξ2 > . . . > ξn.

We consider the Monte Carlo population made of the N−1 chains having
{π2, . . . , πN} as stationary distributions. However, the use of MTM for each
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auxiliary chain may be redundant since for smaller ξi’s the distribution πi
is easy to sample from. For this reason, in our simulations we shall use the
annealed IMTM (AIMTM) in which the first chain is ergodic to π is based on
the IMTM transition kernel and each auxiliary chain is a MH chain (M = 1)
with target πi, 2 ≤ i ≤ N . The AIMTM is described in Algorithm 4. In
practice, we always use the current state of the chain ergodic to π (ξ = 1)
among the states used for generating one of the proposals (e.g., in Algorithm
4 we automatically set I1 = 1 and let I2, . . . , IM be sampled at random).

An additional gain could be obtained if the auxiliary chains’ transition
kernels are modified using adaptive MCMC strategies (see also Chauveau
and Vandekerkhove, 2002, for another example of adaption for interacting
chains). However, letting the auxiliary chains adapt indefinitely results in
complex theoretical justifications for the IMTM which go beyond the scope
of this paper and will be presented elsewhere. Our recommendation is to use
finite adaptation for the auxiliary chains prior to the start of the IMTM. One
could take advantage of multi-processor computing units and use parallel
programming to increase the computational efficiency of this approach.

The adaptation of λ
(i)
j , through the weights νj defined in (3), should be

used cautiously in this case. The aim of the annealing procedure is to allow
the higher temperatures chains to explore widely the sample space and to
improve the mixing of the MTM chain. Using νj the context of annealed
IMTM could arbitrarily penalize some of the higher temperature proposals
and reduce the effectiveness of the annealing strategy. For this reason we
do not consider using adaptive λ’s for AIMTM.

Finally, we would like to note that it is possible to obtain a Monte Carlo
approximation of a quantity of interest by using the output produced by all
the chains in the population. For example let

I =

∫
Y
h(x)π(x)dx

be the quantity of interest where h is a test function. It is possible to
approximate this quantity as follows

INT =
1

T

T∑
n=1

1

ζ̄

N∑
j=1

h(x(j)n )ζj(x
(j)
n )

where x
(i)
n is the output of the i-th chain ergodic to target πξi at time n, for

all n = 1, . . . , T and all i = 1, . . . , N , ζj(x) = π(x)/πξj (x) are the importance

weights and ζ̄ =
∑N

j=1 ζj(x
(j)
n ).
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Algorithm 4. Annealed IMTM Algorithm (AIMTM)

• For i = 1

1. Let x = x
(i)
n and sample I1, . . . , IM from U{1, . . . , N}.

2. For j = 1, . . . ,M draw yj ∼ T (i)
j (·|x(Ij)n ) independently and

(a) If Ij 6= 1 set

w
(i)
j (yj , x) = π(yj)T

(i)
j (x|x(Ij)n )λ

(i)
j (yj , x).

(b) If Ij = 1 set

w
(i)
j (yj , x) = π(yj)T

(i)
j (x|yj)λ(i)j (yj , x).

3. Select J ∈ {1, . . . ,M} with probability proportional to

w
(i)
j (yj , x), j = 1, . . . ,M and set y = yJ .

4. Let x∗J = x
(i)
n and for j = 1, . . . ,M , j 6= J ,

(a) If Ij 6= 1 draw x∗j ∼ T
(i)
j (·|x(Ij)n ),

(b) If Ij = 1 draw x∗j ∼ T
(i)
j (·|y)

5. Compute w
(i)
j (x∗j , y) using the same rule as in 2.

6. Set x
(i)
n+1 = y with probability ρi, where ρi is the general-

ized MH ratio of the IMT algorithm and x
(i)
n+1 = x

(i)
n with

probability 1− ρi.

• For i = 2, . . . , N we perform the usual MH update using proposal
distribution T (i) for chain i, that is:

1. Let x = x
(i)
n and update the proposal function T (i)(·|x).

2. Draw y ∼ T (i)(·|x) and compute

ρi = min

{
1,
π(y)ξiT (i)(x|y)

π(x)ξiT (i)(y|x)

}
.

3. Set x
(i)
n+1 = y with probability ρi and x

(i)
n+1 = x

(i)
n with prob-

ability 1− ρi.
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4 Simulation Results

4.1 Beta Mixture Model

Mixture models have been widely applied in many fields to capture het-
erogeneity in the data and Bayesian inference for such models represents a
challenging statistical issue. More specifically, in the Bayesian analysis of
mixture models, as the posterior distribution of a k-components mixture is
invariant with respect to permutation of the labels of the parameters and
exhibits k! modes. Sampling from the posterior is therefore a challenging
problem which rarely can be solved successfully by the conventional single-
chain MCMC methods. More efficient sampling algorithms are thus needed.
As emphasized by Jasra et al. (2007) in the context of Bayesian mixture
models, population Monte Carlo methods allow to sample efficiently from
the posterior distribution.

We consider here a Bayesian mixture of normals that was previously
used by Jasra et al. (2005) and Jasra et al. (2007) for comparing the per-
formance of different population Monte Carlo methods. Let y1, . . . yn be n
i.i.d. samples with density

K∑
h=1

τhf(y|µh, η−1h ) (4)

where K is the number of mixture components and f(yi|µh, η−1h ) is the
density of a normal distribution with location parameter µh and precision
parameter ηh. The weights τh ≥ 0, h = 1, . . . ,K of the mixture are such
that

∑K
h=1 τh = 1. We assume the following priors (see also Jasra et al.,

2005; Richardson and Green, 1997).

µj ∼ N (ξ, κ−1), ηj ∼ Ga(α, β), τ1:k−1 ∼ Dir(δ) (5)

where N (ξ, κ−1), Ga(α, β) and Dir(δ) are, respectively, the normal distri-
bution with location ξ and precision κ, the gamma distribution with shape
parameter α and scale parameter β and the symmetric Dirichlet distribution,
with parameter δ.

We will use the problem of sampling from the posterior distribution de-
fined by the model above as a benchmark for comparing the IMTM methods
proposed in this paper with other population Monte Carlo algorithms based
on MH kernels. We assume we have available a dataset of 100 (simulated)
samples from an equally weighted, (i.e. τj = 1/k for j = 1, . . . , k) nor-
mal mixture with k = 4 components with true means, (µ1, µ2, µ3, µ4)

T =

(−3, 0, 3, 6)T , and equal standard deviations η
−1/2
k = 0.55, 1 ≤ k ≤ 4.
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The algorithms being compared below are the following:

MH A population of Monte Carlo algorithms in which all the N par-
allel chains have random walk MH (RWMH) kernels in which the
j-th Gaussian proposal distribution has covariance σ2j I where σj =
0.01 + 0.59 ∗ j/N for all 1 ≤ j ≤ N such that the acceptance rates
obtained for the population of chains are between 10-60%.

MH1 A population of Monte Carlo algorithms in which each of the N
parallel chains run a RWMH algorithm whose proposal distribution
is a mixture of 4 normal densities. The standard deviations of the
proposals are divided equally between 0.01 and 0.3.

MH2 A population of Monte Carlo algorithms in which each of the N tran-
sition kernels is a mixture of four RWMH kernels with same standard
deviations as those defined for MH2.

The above algorithms do not allow interaction between the parallel
chains which is arguably less flexible than the IMTM setup. Therefore
we include in our comparison the above three algorithms to which we
apply the cross-over interaction introduced by Liang and Wong (2001).
The different chains of the population have the same target thus the
acceptance-probability of the cross-over move is one.

MH.c.o The MH algorithm described above with cross-over moves.

MH1.c.o The MH1 algorithm described above with cross-over moves.

MH2.c.o The MH2 algorithm described above with cross-over moves.

The six algorithms described above are compared with the following
IMTM samplers:

IMTM-TA An IMTM algorithm with N chains defined as in Section 3.1

and using λ
(i)
j (x, y) = 2{T (i)

j (x|y) + T
(i)
j (y|x)}−1 weights. The j-th

proposal uses T
(i)
j (y|x) = N(x, σ2j I) where σj = 0.01 + 0.59 ∗ j/M for

all 1 ≤ j ≤M , 1 ≤ i ≤ N .

IMTM-TA-a The same algorithm as IMTM-TA but with adaptive weights

λ
(i)
j (x, y) = 2νj{T (i)

j (x|y) + T
(i)
j (y|x)}−1 where νj is defined as in (3)

IMTM-IS An IMTM algorithm identical to IMTM-TA but using λ
(i)
j (x, y) =

{T (i)
j (x|y)T

(i)
j (y|x)}−1 weights.
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IMTM-IS-a The same algorithm as IMTM-IS but with adaptive weights

λ
(i)
j (x, y) = νj{T (i)

j (x|y)T
(i)
j (y|x)}−1 where νj is defined as in (3).

The comparison is made with respect to the estimation of the marginal
means µ1, . . . µ4. We consider T = 100, 000 iterations and J = 100 chains for
the MH, MH1, MH2, MH.c.o, MH1.c.o and MH2.c.o algorithms. For all the
IMTM algorithms we used T = 10, 000 iterations, produced from running
N = 100 chains each with M = 10 proposals.

We observed from all the simulation experiments that IMTM-TA and
IMTM-IS have similar performances, so we present the graphical results only
for IMTM-TA. A typical output of the IMTM-TA algorithm is given in the
top panel of Figure 1 which shows, for one of the chains in the population, the
traces for each of the four coordinates sampled, µ1, µ2, µ3 and µ4. We notice
that the chain is able to switch frequently between the different modes of
the posterior distribution and this compares favourably with the MH, MH1
and MH2 algorithms, with and without cross-over. The MH chains rarely
switch between modes as can be seen also in Figure 1 of Jasra et al. (2007).

In order to give an alternative representation of the raw output of the
population of chains we follow Frühwirth-Schnatter (2006) and present in
Figure 2 the samples produced by each algorithm. The bottom panel in Fig-
ure 2 has been produced by projecting the samples on all the planes (µi, µj)
with i 6= j (in total we have K(K − 1) = 12 such planes) and then superim-
posing all the plots into a single one. As discussed in Frühwirth-Schnatter
(2006) the number of simulation clusters in this graphical representation,
for a K-components mixture, is K(K − 1) = 12, that is equal to 12 in our
example. In the same panel we show (red line) the trajectory of one of the
chains.

In Figure 2 we show samples produced by the other algorithms considered
in the comparison. The six populations of chains, MH, MH1, MH2, with
and without cross-over, are able to visit different modes of the posterior.
Note that the samples from the population of MH chains are usually not
evenly distributed across the different posterior modes. Moreover the single
chains of the population of the MH algorithms usually visit only one of the
clusters and are not able to visit the other clusters. In each panel the red
line illustrates the path of a single chain. One can easily notice the difficulty
of the MH, MH1 or MH2 chains without cross-over to explore the posterior
surface. The red lines shown in the right-side panels crystallize the effect of
the cross-over moves on the mixing property of the population of interacting
chains. Each chain is now able to visit many modes and this results in
improved efficiency for the class of MH algorithms considered here. However,
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Figure 1: Top panel: Trace plots generated using 9,000 samples obtained
for µ1, . . . , µ4 (the first 1,000 samples have been discarded) from one of the
IMTM-TA1 chains. Bottom panel: The dots represent the projection of the
values sampled by the IMTM-TA population of chains on the (µi, µj) planes,
with i 6= j. The trajectory of one of the chains is projected in red on the
plane (µ1, µ2).
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Without Cross-over With Cross-over

MH

MH1

MH2

Figure 2: The dots represent the projection of the values sampled by the
population of MH chains considered in the simulation on the (µi, µj) planes,
with i 6= j. The plots illustrate the samples obtained without cross-over
(left column) and with cross-over (right column) for the MH (top row),
MH1 (middle row) and MH2 (bottom row). The trajectory of one of the
chains is shown in red.
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one can glance the superiority of the IMTM-TA algorithm by looking at one
of the paths shown in the bottom panel of Figure 1 where it can be seen
that the chain visits often many modes of the posterior distribution.

The efficiency improvement is also noticeable from the autocorrelation
functions (ACF) shown in Figure 3. For each method included in the com-
parison, the curves shown are obtained by averaging the ACF estimates over
the N chains of the population and over 10 replicates. The MH with cross-
over are more efficient then the parallel MH algorithms but still less efficient
than the IMTM algorithms.

The results in Table 1 show that the IMTM algorithms are generally
able to produce more efficient estimates than the MH class of algorithms
considered in the comparison. Given the plots described above, it is not
surprising that by adding the cross-over moves brings the efficiency of the
MH, MH1 and MH2 closer to that of the IMTM samplers, especially when
the number of parallel chains is large (N=100). However when we reduce the
number of chains (e.g. N = 20) the performance of the MH algorithms (with
and without cross-over) is clearly inferior to that of the IMTM algorithms.
Interestingly, the estimation results of the IMTM-TA and IMTM-IS perform
similarly whether we choose to adapt the weights λj or not.

4.1.1 Comparison in the Presence of Annealing

The performance of the MH, MH1 and MH2 populations can be improved
by combining them with an annealing procedure. Our interest, here, lies in
comparing AIMTM with the algorithms MH, MH1, MH2 which are modified
to incorporate an annealing-based strategy. We consider once again two
variants of the AIMTM defined by the choice of weights λj . Specifically, we
consider AIMTM-TA and AIMTM-IS as Algorithm 4 with, respectively, the
same λ’s as IMTM-TA and IMTM-IS.

We also consider the uniform, logarithmic and power tempering schemes
that were also suggested by Jasra et al. (2007), and are defined as:

ξi = ξi−1 −
1

N

ξi = log(ξi−1 + 1)/ log(Q), Q > 0

ξi = (ξi−1 −Q)ψ, ψ > 0, Q ∈ (0, 1)

for i = 2, . . . , N with ξ1 = 1. The three tempering schemes will be denoted
with M1, M2 and M3 in what follows. For the MH algorithms we will
build chain i ergodic to πξi and construct different scales for the chains of
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N=100 N=20
1 2 3 4 MSE 1 2 3 4 MSE

MH 0.81 0.42 2.08 1.06 18.83 0.39 0.69 0.67 2.28 26.76
(4.22) (4.37) (4.39) (4.10) (5.35) (5.16) (6.02) (3.15)

MH1 0.72 0.21 0.62 0.91 5.42 0.10 0.17 0.66 0.78 7.35
(2.12) (2.09) (2.14) (2.19) (2.47) (1.89) (2.49) (2.91)

MH2 0.99 1.89 1.47 1.01 3.30 0.11 2.80 0.42 0.37 5.09
(1.57) (1.73) (1.87) (1.89) (1.99) (1.71) (1.98) (1.85)

MH c.o. 1.87 1.09 1.91 1.66 7.89 1.74 1.11 1.01 1.75 11.02
(2.52) (2.79) (2.88) (2.92) (3.14) (3.12) (3.58) (3.33)

MH1 c.o. 0.65 0.21 1.59 1.46 2.77 0.51 0.22 1.83 1.12 3.51
(1.86) (1.35) (1.24) (1.35) (1.48) (1.91) (1.27) (1.91)

MH2 c.o. 1.11 1.69 1.27 1.26 2.17 0.59 1.68 0.97 1.14 2.26
(1.33) (1.34) (1.76) (1.29) (1.43) (1.16) (1.36) (1.58)

IMTM-IS 1.40 1.52 1.37 1.42 1.05 1.36 1.39 1.61 1.69 1.42
(1.01) (0.98) (1.22) (0.87) (0.98) (1.20) (1.12) (1.42)

IMTM-IS-a 1.37 1.44 1.58 1.54 0.49 1.31 1.71 1.35 1.72 1.18
(0.83) (0.56) (0.71) (0.64) (0.81) (0.97) (1.23) (1.24)

IMTM-TA 1.31 1.46 1.53 1.61 0.52 1.29 1.21 1.70 1.32 0.89
(0.38) (1.06) (0.48) (0.73) (1.34) (1.05) (0.31) (0.59)

IMTM-TA-a 1.56 1.39 1.60 1.37 0.47 1.63 1.75 1.61 1.44 0.85
(0.48) (0.91) (0.76) (0.42) (0.76) (0.86) (1.02) (0.97)

Table 1: Estimates of µ1, . . . , µ4 and its standard deviations (in parenthe-
sis). For the parallel MHs, without and with cross-over (c.o.), we considered
alternatively N = 20 and N = 100 chains and T = 100, 000 iterations. For
the IMTMs, without and with adaptation (IMTM-TA-a and IMTM-IS-a),
we consider N = 100 chains T = 10, 000 iterations and J = 10 different
proposals (selected randomly within the other chains of the population).
Values results from average over 10 runs of the different algorithms. For
expository purposes, we report, for each algorithm and the different popula-
tion sizes and the Mean Square Error (MSE), averaged over the parameters,
with respect to the theoretical value that is 1.5.

17



Figure 3: Autocorrelation functions for the methods considered. The curves
are obtained by averaging over the population of chains used for each algo-
rithm and over the 10 replicated runs of each algorithm.

the population as in Jasra et al. (2007). For the i-th chain the proposal
variance σi = σ1/(1 + γi) with σ1 = 0.5.

For the logarithmic scheme M2 we consider Q = 2.25 and for the power
scheme M3 we set Q = 0.001 and ψ = 3/2 as suggested in Jasra et al. (2007).

We report the estimates for each mean µi in in Table 2. The AE column
shows the maximum bias (over the four means). One can see easily that, on
average, the AIMT yields the smallest errors within each tempering scheme.
Note that the results are not directly comparable with the ones in Table
1 because in the experiments without tempering all the chains of the pop-
ulation have the same target and have been used in order to estimate the
parameters of the mixture. In the experiments with the different tempering
schemes we consider, for each algorithm, the output of the chain with ξi = 1,
which has the target π. The results in Table 2 show that the AIMTM algo-
rithms outperform the population of MH, MH1 and MH2 chains for all the
three different tempering schemes. The logarithm and power decay schemes
seem to give the best result when combined with the AIMTM.
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M1
1 2 3 4 AE

MH 1.81 0.73 1.02 1.79 0.97
MH1 0.64 1.62 0.91 1.59 0.86
MH2 0.81 1.75 1.12 1.99 0.69

AIMTM1-IS 1.83 1.43 1.98 1.37 0.48
AIMTM1-TA 0.89 1.15 1.92 1.81 0.61

M2
1 2 3 4 AE

MH 0.84 0.72 1.41 0.93 0.78
MH1 1.67 1.57 1.06 1.84 0.54
MH2 1.71 1.32 1.52 1.01 0.49

AIMTM1-IS 1.44 1.91 1.37 1.26 0.41
AIMTM1-TA 1.86 1.19 1.51 1.49 0.36

M3
1 2 3 4 AE

MH 0.82 1.25 0.83 0.97 0.68
MH1 1.79 1.42 1.33 0.98 0.52
MH2 0.99 1.27 1.63 1.69 0.51

AIMTM1-IS 1.19 1.97 1.16 1.12 0.47
AIMTM1-TA 1.37 1.04 1.86 1.77 0.46

Table 2: Estimates of µ1, . . . , µ4. For the MHs we considered N = 100 chains
and T = 100, 000 iterations. For the AIMTM1 we consider N = 100 chains
T = 10, 000 iterations and J = 10 proposals. For expository purposes, we
report the maximum absolute bias (AE) for each algorithm and tempering
scheme.

The gain in efficiency with respect to the populations of MH-type al-
gorithms is evident also from the ACF functions presented in Figure 4).
The ACF have been obtained by averaging over 10 independent runs of the
algorithms considered in the comparison.

4.1.2 Multivariate Normal Mixture

We compare, for high-dimensional target distribution, the population Monte
Carlo algorithms (MHs with cross-over and IMTM-TA) described in the
previous section. The target considered for the comparison is the follow-
ing multivariate mixture of two normals with a sparse variance-covariance
structure

1

3
N20(µ1,Σ1) +

2

3
N20(µ2,Σ2) (6)
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Figure 4: Autocorrelation functions obtained by averaging over 10 indepen-
dent runs of each algorithm for the population of MH and AMTM chains.

with µ1 = (3, . . . , 3)′, µ2 = (10, . . . , 10)′ and Σj , with j = 1, 2, generated
independently from a Wishart distribution Σj ∼ W20(ν, Id20) where ν is the
degrees of freedom parameter of the Wishart. In the experiments we set
ν = 21.

In the comparison we considered N = 20 chains and T = 100, 000 itera-
tions for the parallel MHs, with cross-over and N = 20 chains, T = 10, 000
iterations and M = 10 for the IMTM-TA algorithm. The proposal distri-

butions for the ith chain, T
(i)
j (y|x(i)

n ), is Gaussian with variance-covariance
matrix Λi = (0.1 + 5i)I20 for all j = 1, . . . ,M . For the proposals of chains
in the MH1 and MH2 populations we consider Gaussian random walk with
scales in the same range of the IMTM proposal scales.

The autocorrelation function of the chains (average over 20 dimensions
of each chain, the different chains of the population and the 10 different runs
of the population Monte Carlo algorithms) is given in Fig. 5. The values
of the ACF for the IMTM (see Fig. 5) are less than those for the MH with
cross-over. We conclude that in this example the population of MTM chains
outperforms, in terms of estimation efficiency, the populations of MHs with
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Figure 5: Autocorrelation function (ACF) for MH with cross-over and
IMTM classes of algorithms. The ACF result from an average over the 20
components of the multivariate chain, the different chains of the population
and over 10 replicates.

cross-over.

4.2 Stochastic Volatility

The estimation of the stochastic volatility (SV) model due to Taylor (1994)
still represents a challenging issue in both off-line (Celeux et al. (2006)) and
sequential (Casarin and Marin (2009)) inference contexts. The first chal-
lenging issue in inference for SV models is related to the nonlinear structure
of the model which makes parameter estimation difficult. Another main
difficulty is due to the high dimension of the sampling space which hinders
the use of the data-augmentation and prevents a reliable joint estimation
of the parameters and the latent variables. As highlighted in Casarin et al.
(2009) using multiple chains with a chain interaction mechanism could lead
to a substantial improvement in the MCMC method for this kind of model.
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We consider the SV model given in Celeux et al. (2006)

yt|ht ∼ N
(

0, eht
)

ht|ht−1,θ ∼ N
(
α+ φht−1, σ

2
)

h0|θ ∼ N
(
0, σ2/(1− φ2)

)
with t = 1, . . . , T and θ = (α, φ, σ2). For the parameters we assume the
noninformative prior (see Celeux et al., 2006)

π(θ) ∝ 1/(σβ)I(−1,1)(φ)

where β2 = exp(α). In order to simulate from the posterior we consider
the full conditional distributions and apply a Gibbs algorithm. If we define
y = (y1, . . . , yT ) and h = (h0, . . . , hT ) then the full conditionals for β and φ
are the inverse gamma distributions

β2|h,y ∼ IG

(
(T − 1)/2,

T∑
t=1

y2t exp(−ht)/2

)

σ2|φ,h,y ∼ IG

(
(T − 1)/2,

T∑
t=2

(ht − φht−1)2/2 + h21(1− φ2)

)
and φ and the latent variables have non-standard full conditionals

π(φ|σ2,h,y) ∝ (1− φ2)1/2 exp

(
− φ2

2σ2

T−1∑
t=2

h2t −
φ

σ2

T∑
t=2

htht−1

)
I(−1,+1)(φ)

π(ht|α, φ, σ2,h,y) ∝ exp

(
− 1

2σ2
(
(ht − α− φht−1)2−

(ht+1 − α− φht)2
)
− 1

2

(
ht + y2t exp(−ht)

))
.

In order to sample from the posterior we use the IMTM-IS within Gibbs
algorithm. More specifically, in the IMTM step for φ, we follow Celeux et al.
(2006), and use as proposal, a truncated normal distribution on (−1, 1) with
mean and variance

T∑
t=2

htht−1

/ T−1∑
t=2

h2t and σ2
/ T−1∑

t=1

y2t

One of the most difficult issues is related to the choice of the proposal
distribution for ht. In this paper we follow a standard approach based
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on the second-order Taylor approximation of the term exp{ht}, in the full
conditional of ht, around the mean µt of the distribution of ht|ht−1, φ, σ2.
The approach has been introduced by Shephard and Pitt (1997) and has
been adapted to the context of iterated importance sampling by Celeux et al.
(2006). The proposal distribution for h1 is a normal with mean

φh2σ
−2 + 0.5 exp(−φh2)y21(1 + φh2)β

−2 − 0.5

σ−2 + 0.5 exp(−φh2)y21β−2

and variance (σ−2 + 0.5 exp(−φh2)y21β−2)−1. The proposal for ht with t =
2, . . . , T − 1 is a normal with mean

(1 + φ2)µtσ
−2 + 0.5 exp(−µt)y2t (1 + µt)β

−2 − 0.5

(1 + φ2)σ−2 + 0.5 exp(−µt)y2t β−2

and variance ((1 + φ2)σ−2 + 0.5 exp(−µt)y2t β−2)−1. The proposal for hT is
a normal with mean

φhT−1σ
−2 + 0.5 exp(−φhT−1)y2T (1 + φhT−1)β

−2 − 0.5

σ−2 + 0.5 exp(−φhT−1)y2Tβ−2

and variance (σ−2 + 0.5 exp(−φhT−1)y2Tβ−2)−1.
The single-move Gibbs sampler updates sequentially the latent variables

and this makes the classic hybrid Metropolis within Gibbs algorithm ineffi-
cient. A possible remedy (see Shephard and Pitt , 1997) consists in simulat-
ing jointly some blocks of the latent variables (blocking). Our IMTM algo-
rithms can be extended to consider blocking procedure. In our experiments
we did not find efficiency improvements in applying blocking techniques to
our simulated datasets. Moreover, the main goal of our simulation study is
to demonstrate the IMTM algorithm’s ability to break down the dependence
in the single-move sampler and thus to improve the efficiency of the Monte
Carlo sample.

In the simulation experiments we consider the two parameter settings
(α,φ,σ2) = (0, 0.99, 0.01) and (α,φ,σ2) = (0, 0.9, 0.1) which correspond,
in a financial stock market context, to daily and weekly frequency data
respectively. Note that as reported in Casarin and Marin (2009) inference
in the daily example is more difficult. We compare the the IMTM within
Gibbs algorithms with a population of MH within Gibbs in terms of Mean
Square Error (MSE) for the parameters and of cumulative RMSE for the
latent variables. We carry out the comparison through the MSE and the
SD by running the algorithms on 20 independent simulated datasets of 200
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observations. In the comparison we take into account the computational cost
and for the population of MH we consider N = 20 chains and T = 50, 000
iterations and for the IMTM-IS within Gibbs we use N = 20 interacting
chains, each with M = 5 proposals, and T = 10, 000 iterations.

The results for the parameter estimation when applying IMTM-IS are
presented in Table 3 and show an effective improvement in the estimates,
both for weekly and daily data, when compared to the results of a MH
algorithm with an equivalent computational load.

Daily Data Weekly Data

θ Value MSE θ Value MSE
IMTM-IS MH IMTM-IS MH

α 0 0.03018 0.07392 α 0 0.00202 0.00597
(0.00583) (0.00201) (0.00179) (0.00139)

φ 0.99 0.19853 0.29871 φ 0.9 0.01512 0.08183
(0.02038) (0.04423) (0.03920) (0.04011)

σ2 0.01 0.00204 0.01373 σ2 0.1 0.00892 0.07405
(0.00241) (0.00191) (0.00201) (0.00293)

Table 3: Mean square error (MSE) and standard deviation (in parenthesis)
for the parameter estimation with IMTM-IS and MH within Gibbs algo-
rithms. Left panel: daily datasets. Right panel: weekly dataset.

We show here that an approach based on the use of multiple-try inter-
acting chains can also break-down the dependence structure in the output
of the sampler thus improving the efficiency of the posterior simulation for
the latent variables.

More specifically Figure 6 exhibit the estimated ACFs for the MH (black
lines) and MTM (gray lines) class of algorithms, for the 200 components
associated to the latent process {ht}t=1,...,T with T = 200. The ACF for
each latent variable ht results from the average over the chains of the MH
and MTM populations and over 10 independent run of each algorithm on
the same set of simulated data. In Figure 6, the top panel shows the results
for the daily dataset and the bottom panel for the weekly dataset. In both
daily and weekly setups the IMTM-IS overperforms in terms of estimation
efficiency the population of parallel MH.

Note that these results is similar to the results obtained for SV models
in Celeux et al. (2006), Casarin and Marin (2009) and Casarin et al. (2009)
for population Monte Carlo algorithms. We can conclude that the IMTM
shares similar properties of other population Monte Carlo algorithms with
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the advantage that the convergence of the algorithm relies upon the detail
balance condition and no further theoretical results are needed. We com-
pare our IMTM with MH and left for future research a comparison with
importance sampling based methods such as the Popopulation Monte Carlo
methods or Sequential Monte Carlo methods described in Jasra et al. (2007).

Figure 7 show the HPD region at the 90% (gray areas) and the mean
(black lines) of the cumulative RMSE of each algorithm for the weekly (top)
and daily data (bottom panel). The statistics have been estimated from 20
independent experiments. The average RMSE shows that, in both parame-
ter settings considered here, the IMTM (dashed black line) is more efficient
than the standard MH algorithm (solid black line).

4.3 Loss of Heterozigosity Application

We consider here the problem of the genetic instability of esophageal can-
cers. During a neoplastic progression the cancer cells undergo a number of
genetic changes and possibly lose entire chromosome sections. The loss of
a chromosome section containing one allele by abnormal cells is called Loss
of Heterozygosity (LOH). The LOH can be detected using laboratory assays
on patients with two different alleles for a particular gene. Chromosome re-
gions containing genes which regulate cell behavior, are hypothesized to have
a high rates of LOH. Consequently the loss of these chromosome sections
disables important cellular controls.

Chromosome regions with high rates of LOH are hypothesized to contain
Tumor Suppressor Genes (TSGs), whose deactivation contributes to the
development of esophageal cancer. Moreover the neoplastic progression is
thought to produce a high level of background LOH in all chromosome
regions.

In order to discriminate between ”background” and TSGs LOH, the
Seattle Barrett’s Esophagus research project (Barrett et al. (1996)) has col-
lected LOH rates from esophageal cancers for 40 regions, each on a distinct
chromosome arm. The labeling of the two groups is unknown so Desai (2000)
suggest to consider a mixture model for the frequency of LOH in both the
”background” and TSG groups.

We consider the hierarchical Beta-Binomial mixture model proposed in
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Figure 6: ACF of the population of MH and MTM chains for the 200 compo-
nents associated to the latent process {ht}t=1,...,T , for daily (top) and weekly
(bottom) datasets. The ACFs are averaged over the different chains of the
population.
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Figure 7: Cumulative RMSE for the IMTM (dashed line) and MH (solid
line) and the 90% HPD regions for the IMTM (light gray) and MH (dark
gray) estimated on 20 independent experiments for both the daily (top) and
weekly (bottom) datasets.
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Warnes (2001)

f(x, n|η, π1, π2, γ) = η

(
n

x

)
πx1 (1− π1)n−x + (7)

(1− η)

(
n

x

)
Γ(1/ω2)

Γ(π2/ω2)Γ((1− π2)/ω2)

Γ(x+ π2/ω2)Γ(n− x+ (1− π2)/ω2)

Γ(n+ 1/ω2)

with x number of LOH sections, n the number of examined sections, ω2 =
exp{γ}/(2(1 + exp{γ})). Let x = (x1, . . . , xm) and n = (n1, . . . , nm) be a
set of observations from f(x, n|η, π1, π2, γ) and let us assume the following
priors

η ∼ U [0, 1], π1 ∼ U [0, 1], π2 ∼ U [0, 1] and γ ∼ U [−30, 30] (8)

with U the uniform distribution on [a, b]. Then the posterior distribution is

π(η, π1, π2, γ|x,n) ∝
m∏
j=1

f(xj , nj |η, π1, π2, γ) (9)

The parametric space is of dimension four: (η, π1, π2, γ) ∈ [0, 1]3 × [−30, 30]
and the posterior distribution has two well-separated modes making it dif-
ficult to sample using generic methods.

We apply the IMTM-IS algorithm M = 4 proposal functions selected
between a population of N = 100 chains. The values of the population
of chains (dots) at the last iteration on the subspace (π1,π2) is given in
Figure 8. The IMTM-IS is able to visit both regions of the parameter space
confirming the analysis of Craiu et al. (2009) and Warnes (2001).

5 Conclusions

In this paper we propose a new class of interacting multiple-try Metropolis
algorithms that extends the existing literature in two directions. First ,
the multiple try transition has been extended to allow the use of different
proposal distribution and second, we propose a new interacting Monte Carlo
algorithm for increasing the efficiency of MTM. We give a proof of validity
of the algorithm and show on real and simulated examples the effective
improvement in the mixing property and exploration ability of the resulting
interacting chains. We note here that the use of antithetic and stratified
sampling discussed by Craiu and Lemieux (2007) can be extended naturally
to the IMTM sampler. Future work will focus on building stronger ties
between IMTM and the emerging area of adaptive MCMC.
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Figure 8: Values of the population of chains (dots) at the last iteration on
the subspace (π1,π2). The interaction is given by M = 4 proposal functions
randomly selected between the population of N = 100 chains.
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Appendix A

Proof

Without loss of generality, we can set Mi = N , ∀i and x
(i)
n = x. Fixed

the i-th chain, the conditional detailed balance is proved. This ensures the
ergodicity of the chain.

Following the notations in Algorithm 3, let us define the following quan-
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tities

w̄(i)(y1:N |x) =

N∑
j=1

w
(i)
j (yj , x), w̄

(i)
−k(y1:N |x) =

N∑
j 6=k

w
(i)
j (yj , x)

and

SN (J) =
1

w̄(i)(y1:N |x)

N∑
j=1

δj(J)w
(i)
j (yj , x)

with J ∈ J = {1, . . . , N} the empirical measure generated by different pro-
posals and by the normalized selection weights.

Let T (i)(dy1:N | x) =
⊗N

j=1 T
(i)
j (dyj | f̃ (i)n (x)) the joint proposal for

the multiple try and define T
(i)
−k(dy1:N | x) =

⊗N
j 6=k T

(i)
j (dyj | f̃ (i)n (x)). Let

A(x, y) be the actual transition probability for moving from x to y in the
IMTM (Algorithm 3). Suppose that x 6= y, then the transition is a results
two steps. The first step is a selection step which can be written as y = yJ
and x∗J = x with the random index J sampled from the empirical measure
SN (J). The second step is a accept/reject step based on the generalized MH
ratio which involves the generation of the auxiliary values x∗j for j 6= J .
Then

π(x)A(x, y) =

= π(x)

∫
YN

T (i)(dy1:N | x)

∫
J
SN (dJ)

∫
YN−1×Y2

T
(i)
−J(dx∗1:N | y)×

×δx(dx∗J)δyJ (dy) min

{
1,
w̄(i)(y1:N |x)

w̄(i)(x∗1:N |y)

}

= π(x)

N∑
j=1

∫
YN−1

T
(i)
−j (dy1:N | x)T

(i)
j (y | f̃ (i)n (x))

∫
YN−1

T
(i)
−j (dx

∗
1:N | y)×

×
w

(i)
j (y, x)

w
(i)
j (y, x) + w̄

(i)
−j(y1:N |x)

min

{
1,
w

(i)
j (y, x) + w̄

(i)
−j(y1:N |x)

w
(i)
j (x, y) + w̄

(i)
−j(x

∗
1:N |y)

}

=
N∑
j=1

w
(i)
j (x, y)w

(i)
j (y, x)

λ
(i)
j (y, x)

∫
Y2(N−1)

T
(i)
−j (dy1:N | x)×

×T (i)
−j (dx

∗
1:N | y) min

{
1

w
(i)
j (y, x) + w̄

(i)
−j(y1:N |x)

,
1

w
(i)
j (x, y) + w̄

(i)
−j(x

∗
1:N |y)

}

which is symmetric in x and y.
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