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Abstract. We analyze dynastic repeated games. These are repeated games
in which the stage game is played by successive generations of finitely-lived players
with dynastic preferences. Each individual has preferences that replicate those of the
infinitely-lived players of a standard discounted infinitely-repeated game. Individuals
live one period and do not observe the history of play that takes place before their
birth, but instead create social memory through private messages received from their
immediate predecessors.

Under mild conditions, when players are sufficiently patient, all feasible payoff vec-
tors (including those below the minmax of the stage game) can be sustained by Sequen-
tial Equilibria of the dynastic repeated game with private communication. In particular,
the result applies to any stage game with n ≥ 4 players for which the standard Folk
Theorem yields a payoff set with a non-empty interior.

We are also able to characterize fully the conditions under which a Sequential Equi-
librium of the dynastic repeated game can yield a payoff vector not sustainable as a
Subgame Perfect Equilibrium of the standard repeated game. For this to be the case
it must be that the players’ equilibrium beliefs violate a condition that we term “Inter-
Generational Agreement.”
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1. Introduction

This paper establishes a “Super Folk Theorem” for dynastic repeated games. Dynastic re-
peated games are repeated games with periodic generational replacement. In these games,
society is inhabited by sequences of generationally linked individuals. In each sequence or
dynasty, a finitely lived decision maker is eventually replaced by a successor who has no di-
rect knowledge of the past before his entry into the game. The members of a dynasty are
linked by concerns for the future welfare of the group or organization. Examples include
tribes, families, ethnic groups, or firms.1 These ongoing organizations outlive any particular
individual who occupies decision authority in the group at a particular point in time.

If all individuals in all dynasties could perfectly observe the past history of play, then the
dynastic game and the standard repeated game are equivalent (in Subgame Perfect equilibria).
However, because no individual person in a dynasty can directly observe events that occurred
before his “birth,” he must rely on a private messages from his predecessor to form beliefs
about the past history of play. This intergenerational communication forms a significant part
of a society’s “social memory” at any given point in time.

Our main result indicates a stark difference between the dynastic repeated games and the
standard repeated game model. Specifically, we find that in a broad class of games (which
includes every n ≥ 4-player game for which the standard Folk Theorem yields a payoff set
with a non-empty interior), as individuals become more and more altruistic (patient), every
interior payoff vector in the convex hull of the payoffs of the stage game can be sustained
by a Sequential Equilibrium (henceforth SE) of the dynastic repeated game with private
communication.

The logic of this “Super Folk Theorem” relies on the possibility that individuals system-
atically misinterpret their predecessors’ messages indicating past deviations from within the
dynasty. These individuals therefore remain unaware of the ensuing punishment phase, and
hence are unable to protect themselves against it.

Even though our main result applies to infinite repetitions of a stage game with four
players or more, we begin with an illustrative example involving a two-player game played
twice. This is deliberately designed to be as simple as possible while still allowing the basic
phenomenon underlying our main results to take place.

1In the cases of firms, one may not think of managers in firms as “altruistic.” However, stock options and
other incentive contracts help to align the manager’s interests with those of the firm’s.
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Consider the following game played twice.

Dynasty II

Dynasty I

sA sB sC

sA 4, 4 −5, 6 1, 3

sB 6,−5 3, 3 −10, 2

sC 3, 1 2,−10 0, 0

At the end of the first period, the two individuals who play the game in the first round are
replaced by their successors, who play in the second period. There is no discounting: Each
first period “father” cares about his “son’s” payoff as if it were his own. The second period
players only care about their own payoffs.

Consider only pure strategies for now. It is clear that if the sons could observe the first
period actions, then the only Subgame Perfect Equilibrium (henceforth SPE) is one in which
(sB, sB) is played twice. Suppose, however, that a son cannot observe play in t = 1, but
instead receives a private message from his father. We claim that there exists an SE in which
(sA, sA) is played in the first round. In other words, a non-Nash profile is sustainable in the
first period. This is so despite the fact that in the standard model the unique stage Nash
equilibrium leaves no room for punishment in the second period.

The argument is as follows. Consider an SE in which two messages are used: m∗ indicates
a message of “no deviation,” while mD indicates “someone’s father deviated.” The equilib-
rium prescribes that in the first period each father plays “sA.” He then sends m∗ to his son
if (sA, sA) was played, and sends mD otherwise. Each son, upon observing the message from
his father, plays sB in the second round if he observes m∗ and plays sC if instead he sees mD.

But how can each son justify playing “sC” after observing the off-path message mD? For
this to be the case, each son’s beliefs must be mismatched to the other son’s actions. In any
SE, off-path beliefs must satisfy a well known consistency criterion. Namely, they must be
the limit of a sequence of beliefs derived from a commonly shared theory of mistakes or errors
(“trembles”). Hence, consider the following error structure in the first period actions of the
fathers. Each father is believed to have erred in the action stage by playing sB or sC with
probability ε/4 each. He is also believed to have sent the wrong message with probability ε.
Given these error likelihoods, if a son receives message mD he will believe that his opponent
has received mD or m∗ with probability 1/2 each. His best response in this case is “sC .” Since
(sC , sC) provides an effective deterrent in the second period against deviation from (sA, sA),
each father will choose the prescribed action sA in the first period.

The fact that sC is a best response to “wrong” beliefs highlights how different the model
is from standard cheap talk games. Messages are not simply “babbled” or garbled. Instead,
the “mismatch” of beliefs to actions depends critically on the way the consistency criterion
of SE actually works out. This criterion is much more than a technical artifact of SE. As
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the example illustrates, the consistency criterion provides an important social theory of belief
formation. Namely, it requires that all individuals have a complete and shared theory of the
mistakes that might have caused deviations from equilibrium — a society’s outlook governing
how “surprises” should be interpreted.

As in the example, the Super Folk Theorem utilizes this shared theory of mistakes. When
an individual in the guilty dynasty receives an off-path message, he must weigh the possibility
of a message error by his father against the possibility of his father’s truthful report of an
earlier action deviation by the father or some other ancestor in the dynasty.

Another result establishes that the type of mismatch in beliefs in the Super Folk theorem
is equivalent to saying that an SE violates Inter-Generational Agreement, a notion that relates
end-of-period beliefs of the fathers to beginning-of-period beliefs of the sons. We are able
to show that any SPE of the standard repeated game can be replicated as an SE of the
dynastic repeated game that displays Inter-Generational Agreement. Conversely any SE of
the dynastic repeated game that yields a payoff vector that is not sustainable as an SPE of
the standard repeated game must violate Inter-Generational Agreement.

The outline of the rest of the paper is as follows. In Section 2 we lay down the notation
and details of the canonical dynastic repeated game in which each cohort of individuals live
only one period. The Theorems are proved for this canonical case, but we later discuss in our
conclusions (Section 7) how they generalize to games with arbitrary (bounded) demographics.
In Section 3 we define what constitutes an SE for the Dynastic Repeated Game. In Sections
4 and 5 we present our “Super” Folk Theorems and other results. Section 6 reviews some
related literature, and Section 7 concludes.

For ease of exposition, and for reasons of space, no formal proofs appear in the main
body of the paper. The main ingredients (public randomization devices, strategies, beliefs,
and trembles) for the proof of our extended Folk Theorem (Theorem 1) appear in Appendix
A. The complete proof of Theorem 3 appears in Appendix B. A technical addendum to the
paper contains the rest of the formal proofs.2

2. The Model

The stage game is described by the array G = (A, u, I) where I = {1, . . . , n} is the set of
players, indexed by i. The n-fold cartesian product A = ×i∈IAi is the set of pure action
profiles a = (a1, . . . , an) ∈ A, assumed to be finite. Stage game payoffs are defined by
u = (u1, . . . , un) where ui : A → IR for each i ∈ I. Let σi ∈ ∆(Ai) denote a mixed strategy
for i, with σ denoting the profile (σ1, . . . , σn).3 We extend the use of ui(·) to mixed strategies
in the usual way and hence we write ui(σ) for i’s expected payoff given the profile σ. Dropping
the i subscript and writing u(σ) gives the entire profile of expected payoffs.

2The technical addendum is available at http://www.georgetown.edu/faculty/la2/FolkAddendum.pdf.
In the numbering of equations, Lemmas etc. a prefix of “A” or “B” means that the item is located in the
corresponding Appendix.

3As is standard, here and throughout the rest, given any finite set Z, we let ∆(Z) be the set of all
probability distributions over Z.

http://www.georgetown.edu/faculty/la2/FolkAddendum.pdf


A “Super” Folk Theorem for Dynastic Repeated Games 4

Throughout the rest of the paper, we denote by V the convex hull of the set of payoff
vectors from pure strategy profiles in G. We let intV denote the (relative) interior of V .

Time is discrete and indexed by t = 0, 1, 2, . . . In the dynastic repeated game, each i ∈ I
indexes an entire progeny of individuals. We refer to each of these as a dynasty. Individuals
in each dynasty are assumed to live one period. At the end of each period t (the beginning
of period t + 1), a new individual from each dynasty — the date (t + 1)-lived individual —
is born and replaces the date t lived individual in the same dynasty. We refer to each date
t-lived individual in dynasty i simply as player 〈i, t〉.

The realized action profile at time t is denoted by at. The stage game payoff ui(a
t) now

refers to the time t component of the payoff of player 〈i, t〉. Each player 〈i, t〉 is altruistic
in the sense that his payoff includes the discounted sum of the direct payoffs of all future
individuals in the same dynasty. The players’ (common for simplicity) discount factor is
δ ∈ (0, 1). Player 〈i, t〉 gives weight 1− δ to ui(a

t), and weight (1− δ)δτ to ui(a
t+τ ) for every

τ ≥ 1. So, the (dynastic) payoff to player 〈i, t〉 is (1− δ)
∑∞

τ=0 δτui(a
t+τ ).

At the beginning of period t, player 〈i, t〉 receives a private message mt
i from player 〈i, t−1〉.

He does not directly observe anything about the previous history of play. The finite set of
possible messages mt

i is denoted by M t
i . We will return to the latter shortly. It should also

be noted at this point that our results would survive intact if we allowed public messages as
well as private ones. The equilibria we construct below would still be viable, with the public
messages ignored.4

In each period, all players observe the realizations xt and yt of two public randomization
devices x̃t and ỹt. The realization xt is observed at the action stage, immediately after each
player 〈i, t〉 observes mt

i. The realization yt is observed at the message stage, immediately
before each player 〈i, t〉 sends message mt+1

i .5 These devices are independent and i.i.d. across
periods; we write x̃ and ỹ to indicate the random variables of which all the x̃ts and ỹts are
independent “copies.” We refer to x̃ and ỹ respectively as the action-stage correlation device
and the message-stage correlation device. The random variables x̃ and ỹ have full support
and take values in the finite sets X and Y respectively, so that their distributions are points
in ∆(X) and ∆(Y ) respectively.

To summarize, at the beginning of each period t, player 〈i, t〉 receives a private message
mt

i from player 〈i, t− 1〉. He then observes xt and subsequently chooses a (mixed) action to
play in G. After observing the realized action profile at, he observes yt and then chooses a
(mixed) message mt+1

i to send to player 〈i, t + 1〉.

4Dealing explicitly with both private and public messages would be cumbersome, and make our results
considerably less transparent. Analyzing the model with private messages only is the most economical way
to put our main point across, and hence this is how we proceed.

5 We return to the role of correlation devices in Section 7. Working with two separate correlation devices
simplifies our arguments and, in our view, facilitates an intuitive understanding of our results. However,
it should be noted that our main result and its proof survives literally unchanged if we assume that both
correlation devices are simultaneously observable to all players in each cohort at the action stage. In this
case, clearly a single correlation device would suffice.
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The action strategy of player 〈i, t〉 is denoted by gt
i . This determines the mixed strategy

that player 〈i, t〉 plays in the stage game at time t. In particular gt
i takes as input a message

mt
i ∈ M t

i and a value xt ∈ X and returns a mixed strategy σt
i ∈ ∆(Ai).

6 We write gt
i(m

t
i, x

t)
to indicate the mixed strategy σt

i ∈ ∆(Ai) that player 〈i, t〉 plays after observing the pair
(mt

i, x
t).

The message strategy of player 〈i, t〉 is denoted by µt
i. It takes as inputs a message mt

i, the
realization xt, the realized action profile at, the realized value yt, and returns the probability
distribution φt

i over messages mt+1
i ∈ M t+1

i . We write µt
i(m

t
i, x

t, at, yt) to indicate the (mixed)
message φt

i ∈ ∆(M t+1
i ) that player 〈i, t〉 sends player 〈i, t + 1〉 after observing the quadruple

(mt
i, x

t, at, yt).

It is convenient to specify fully the finite message sets M t
i at this point. The choice of

message spaces is to a large extent arbitrary since enlarging message spaces does not shrink
the set of SE payoffs, as Lemma T.3.1 demonstrates.7 We proceed in a way that allows
comparability with the standard repeated game model. Define ht = (x0, a0, . . . , xt−1, at−1),
with h0 = ∅ and the set of all possible hts denoted by H t. From now on we take set of
messages M t+1

i available to each player 〈i, t〉 to send to player 〈i, t + 1〉 to be equal to H t+1.8

Because of our choice of message spaces M t
i = H t, formally the array (g0

i , g
1
i , . . . , g

t
i , . . .)

is exactly the same object that defines a strategy for player i in the standard model where
G is played infinitely many times by n infinitely lived players who in each period t observe
the past history of play ht = (x0, a0, . . . , xt−1, at−1). This is immediate since each gt

i takes as
input an element of H t and a value xt ∈ X, and returns a mixed strategy σt

i ∈ ∆(Ai).

In denoting profiles and sub-profiles of strategies we use standard notational conventions.
We let gi denote the i-th dynasty profile (g0

i , g
1
i , . . . , g

t
i , . . .), while gt indicates the time t

profile (gt
1, . . . , g

t
n) and g the entire profile of action strategies (g1, . . . , gn). Similarly, we set

µi = (µ0
i , µ

1
i , . . . , µ

t
i, . . .), as well as µt = (µt

1, . . . , µ
t
n) and µ = (µ1, . . . , µn). Therefore, the

pair (g, µ) entirely describes the behavior of all players in our model.

6It should emphasized at this stage that nowhere in the paper we assume that mixed strategies are
observable. Whatever (mutually independent) devices the players use to achieve a desired randomization
among pure actions in G given mt

i and a realization of x̃t, remain unobservable to other players.
7This is because we can “replicate” any SE of the dynastic repeated game with smaller message spaces

as an SE of the dynastic repeated game with larger message spaces by mapping each message in the smaller
set to a finite set of messages in the larger message space. A choice of message in the smaller message space
corresponds to a (uniform) randomization over the entire corresponding set in the larger message space. A
player receiving one of the randomized messages in the larger message space acts just like the player who
receives the corresponding message in the smaller message set.

8Observe that our choice of message spaces implies that at t = 0 all players 〈i ∈ I, 0〉 receive the “null”
message m0

i = ∅.
Notice also that we are excluding the relevant realized values yτ from the message space of player 〈i, t〉.

This is without loss of generality because, as we noted above, enlarging the message spaces does not shrink
the set of SE payoffs.
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3. Sequential Equilibrium

Our focus is the set of SE of the model. The notion of SE is a widely accepted benchmark.
It is particularly well suited to dynastic games because it imposes a strong discipline on
how memory gets transmitted through time. This is because information transmission in a
dynastic game with private messages depends critically on the “interpretation” of off path
events; and how they may be due to message “mistakes” or action ones. In an SE, a society
must have a common outlook on the relative orders of magnitude of such mistakes.

While the original definition of SE in Kreps and Wilson (1982) does not readily apply
to games with infinitely many players, only a minor adaptation of the concept is needed to
apply it to our set-up.

To spell it out, we begin with the observation that the beliefs of player 〈i, t〉 can in fact be
boiled down to a simpler object than one might expect at first sight, because of the structure
of the dynastic repeated game. Upon receiving message mt

i, in principle, we would have to
define the beliefs of player 〈i, t〉 over the entire set of possible past histories of play. However,
when player 〈i, t〉 is born, an entire cohort of new players replaces the t−1-th one, and hence
the real history leaves no trace other than the messages (mt

1, . . . ,m
t
n) that have been sent

to cohort t. It follows that, without loss of generality, after player 〈i, t〉 receives message
mt

i we can restrict attention to his beliefs over the n − 1-tuple mt
−i of messages received by

other players in cohort t.9 This probability distribution, specifying the beginning-of-period
beliefs of player 〈i, t〉, will be denoted by ΦtB

i (mt
i) throughout. When the dependence of this

distribution on mt
i can be omitted from the notation without causing any ambiguity we will

write it as ΦtB
i . The notation ΦtB

i (·) will indicate the entire array of possible probability
distributions ΦtB

i (mt
i) as mt

i ∈ M t
i varies.

Consider now the two classes of information sets at which player 〈i, t〉 is called upon to
play: the first defined by a pair (mt

i, x
t) when he has to select a mixed strategy σt

i , and the
second defined by a quadruple (mt

i, x
t, at, yt) when he has to select a probability distribution

φt
i over the set of messages H t+1.

The same argument as above now suffices to show that at the (mt
i, x

t) information set we
can again restrict attention to the beliefs of player 〈i, t〉 over the n− 1-tuple mt

−i of messages
received by other players in cohort t. Moreover, since all players observe the same xt and this
realization is independent of what happened in the past, player 〈i, t〉 beliefs over mt

−i must
be the same as when he originally received message mt

i.

Finally, at the information set identified by the quadruple (mt
i, x

t, at, yt), we can restrict
attention to the beliefs of player 〈i, t〉 over the n − 1-tuple mt+1

−i of messages that the other
players in cohort t are about to send to cohort t + 1. Just as before, since all players are re-
placed by a new cohort and time-t payoffs have already been realized, this is all that could ever

9It should be made clear that the beliefs of player 〈i, t〉 over mt
−i will in fact depend on the relative

likelihoods of the actual histories of play that could generate different n − 1-tuples mt
−i. What we are

asserting here is simply that once we know the player’s beliefs over mt
−i, we have all that is necessary to

check that his behavior is optimal given his beliefs.
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matter for the payoff to player 〈i, t〉 from this point on. This probability distribution, specify-
ing the end-of-period beliefs of player 〈i, t〉, will be denoted by ΦtE

i (mt
i, x

t, at, yt) throughout
the rest of the paper and the technical addendum. When the dependence of this distribution
on (mt

i, x
t, at, yt) can be omitted from the notation without causing any ambiguity we will

write it as ΦtE
i . The notation ΦtE

i (·) will indicate the entire array of possible probability
distributions ΦtE

i (mt
i, x

t, at, yt) as the quadruple (mt
i, x

t, at, yt) varies.

In the proofs of our results, we will also need to refer to the (revised) end-of-period beliefs
of player 〈i, t〉 on the n − 1-tuple of messages mt

−i after he observes not only mt
i, but also

(xt, at, yt). These will be indicated by ΦtR
i (mt

i, x
t, at, yt), with the arguments omitted when

this does not cause any ambiguity. The notation ΦtR
i (·) will indicate the entire array of

possible probability distributions ΦtR
i (mt

i, x
t, at, yt) as the quadruple (mt

i, x
t, at, yt) varies.

Throughout the rest of the paper we refer to the array Φ = {ΦtB
i (·), ΦtE

i (·)}t≥0,i∈I as a
system of beliefs. Following standard terminology we will also refer to a triple (g, µ, Φ), a
strategy profile and a system of beliefs, as an assessment. Also following standard terminol-
ogy, we will say that an assessment (g, µ, Φ) is consistent if the system of beliefs Φ can be
obtained (in the limit) using Bayes’ rule from a sequence of completely mixed strategies that
converges to (g, µ). Since this is completely standard, for reasons of space we do not specify
any further details here.

Definition 1. Sequential Equilibrium: An assessment (g, µ, Φ) constitutes an SE for the dy-

nastic repeated game if and only if (g, µ, Φ) is consistent, and for every i ∈ I and t ≥ 0

strategy gt
i is optimal for player 〈i, t〉 given beliefs ΦtB

i (·), and strategy µt
i is optimal for the

same player given beliefs ΦtE
i (·).

4. A “Super” Folk Theorem

We anticipated that our “Super” Folk Theorem applies to a class of stage games that includes
all games with n ≥ 4 players for which the standard Folk Theorem yields a payoff set with a
non-empty interior.

The class of stage games to which Theorem 1 below applies is larger — in a significant
sense — than the one we just mentioned again. In essence, our result encompasses all stage
games that locally satisfy the conditions we have outlined.

Before any formal definitions, an example will help bring out the point. Consider the
following simple 4-player version of the Prisoners’ Dilemma, which we will refer to as GPD.
Each player has two strategies labeled C and D. The payoffs to player i are ui(D, D, D, D)
= 0, ui(C, C,C, C) = 2, ui(D, C−i) = 3, ui(C, D−i) = −1, ui(D, Z−i) = 3 and ui(C, Z−i) =
−1, where Z−i is any string of length 3 that contains at least one C and one D. Clearly D
is a dominant strategy for every player in GPD, and the minmax payoff vector is (0, 0, 0, 0).
Moreover, the payoff vector (2, 2, 2, 2) strictly Pareto-dominates (0, 0, 0, 0) and the convex hull
of payoff vectors VPD has dimension 4. So, all the hypotheses of the standard Folk Theorem
are satisfied, and as a consequence our “Super” Folk Theorem applies to the dynastic repeated
game when the stage game is GPD.
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Next, consider a new “augmented” version of GPD, which we refer to as GA, which is
derived from GPD by adding a third strategy H for each of the four players. The payoffs in
GA are as in GPD whenever all players play either C or D, and all players get a payoff of 4
whenever one or more players play H. Clearly, the standard Folk Theorem does not yield
any equilibrium payoff multiplicity in GA. This is because each player’s minmax payoff in
GA is 4 — obtained by playing the dominant strategy H — and no vector of payoffs in V A

Pareto-dominates (4, 4, 4, 4).

Our “Super” Folk Theorem does apply to the dynastic repeated game when the stage
game is GA. The reason is that, if we restrict attention to a subset of pure strategies for each
player (those yielding GPD), the hypotheses of the standard Folk Theorem apply and a payoff
vector that strictly dominates the vector of minmax payoffs is in fact available. In short the
conditions necessary for the standard Folk Theorem to yield a payoff set with a non-empty
interior apply “locally” to the stage game GA.

We now formalize these ideas in order to state formally our first result. Given a stage
game G = (A, u, I), we indicate by Ã ⊆ A a typical set of pure action profiles with a product
structure. In other words, we require that there exist an array (Ã1, . . . , Ãn), with each Ãi

containing at least two pure strategies, and with Ã = ×i∈IÃi. Given a product set Ã, we
denote by GÃ the normal form game in which each player’s pure strategy set is given by Ãi.
Throughout, we refer to GÃ as a component game of G, and we denote the convex hull of
payoffs in GÃ by V (Ã).

We are now ready to state our “Super” Folk Theorem.

Theorem 1. Dynastic Folk Theorem: Let a stage game G with four or more players be given.

Assume that G has a component game GÃ with the following two properties.10 First, there

exists a payoff vector in V (Ã) that strictly Pareto-dominates the vector of minmax payoffs

of GÃ. Second, V (Ã) has dimension n. Then for every v ∈ intV there exists a δ ∈ (0, 1) such

that δ > δ implies v is sustained by a SE with discount factor δ.

The proof of Theorem 1 is constructive. In Appendix A we formally describe the random-
ization devices, the equilibrium strategies and the trembles that yield the equilibrium beliefs.
The rest of the argument, deriving equilibrium beliefs from the trembles via Bayes’ rule and
verifying sequential rationality, is available in Appendix A and in full detail in sections T.4
through T.7 of the technical addendum to the paper.11

10Since Ã ⊆ A, the component game GÃ may be taken to be G itself.
11It should also be noted that the actual statement that we prove is stronger than Theorem 1 above. This

is reported below as Theorem A.1 in Appendix A. The statement of Theorem A.1 is stronger than that
of Theorem 1 in two respects. First, it does not not make explicit reference to the dimensionality of the
payoff space of the component game GÃ, but refers to the existence of certain vectors of payoffs in it. This
makes explicit the fact that the dimensionality condition in the statement of Theorem 1 could be replaced
by a weaker “Non-Equivalent Utilities” condition (Abreu, Dutta, and Smith, 1994) on the payoff space of
GÃ. Note the dimensionality restrictions can also be loosened in repeated games in continuous time — see
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In certain respects, the SE that we construct to prove Theorem 1, mirrors the intuition of
the Introductory Example. As in the example, a player 〈i, t− 1〉 may want to communicate
to his successor 〈i, t〉 that dynasty i is being punished for having deviated, but will be unable
to do so in an effective way. This is not due to an inability to communicate due to a shortage
of possible messages, even if the message space we use in the proof is smaller than the set of
histories (see Footnote 7). Rather, the correct interpretation is that in equilibrium there is
no message that player 〈i, t〉 might possibly interpret in the way that 〈i, t− 1〉 would like.12

We now sketch the proof of our “Super” Folk Theorem. Consider a stage game G =
(A, u, I) and a product set Ã ⊆ A yielding a component game GÃ satisfying the hypotheses
of Theorem 1. Denote by ωi(Ã) the minmax payoff to player i in the component game GÃ.
Since V (Ã) has dimension n, we can find a v̂ ∈ intV (Ã) and an array of n payoffs vectors
v1, . . . , vn in V (Ã) with the following properties. First, ωi(Ã) < vi

i < vj
i , and second vi

i < v̂i

for every i ∈ I and every j 6= i.

For simplicity, assume that the payoff vectors v1, . . . , vn can all be obtained from pure
profiles of actions in Ã. Also for simplicity, assume that each of the payoffs ωi(Ã) can be
obtained from some pure profile of actions in Ã.

The argument can be divided into two parts. First, we will argue that if δ is close to
one, it is possible to sustain the payoff vector v̂ ∈ V (Ã) as an SE of the dynastic repeated
game. Notice that v̂ ∈ V (Ã) could well already be below the minmax payoff in G for one
or more players. We call this the “local” part of the argument. Second, we will argue that
via a judicious use of the action-stage randomization device it is possible to go from the
local argument to a “global” one and sustain every feasible payoff vector as required by the
statement of the theorem.

The equilibrium path generated by the strategies we construct consists of n+1 phases. We
call the first one the standard equilibrium phase, the second one the diversionary-1 equilibrium
phase, through to the diversionary-n equilibrium phase.

If all players 〈i ∈ I, t〉 receive message m∗ then play is in the standard equilibrium phase.
For simplicity again we proceed with our outline of the construction assuming that the equi-
librium prescribes that the players 〈i ∈ I, t〉 play a pure action profile during the standard
equilibrium phase, denoted by a′. The associated payoff vector is v′.

If all players j 6= i in the t-th cohort receive message m̆i, and player 〈i, t〉 receives any
message mi,τ in a finite set M(i, t) = {mi,1, . . . ,mi,T} ⊂ M t

i , then play is in the diversionary-i

(Bergin, 2006). Second, in Theorem A.1 the vector of minmax payoffs for the component game GÃ is defined
with the following added twist (see Definition A.1). When minmaxing player i, the other players are allowed
to choose any correlated mixed strategies in GÃ, while player i is only allowed to choose a best reply in Ãi,
without being able to condition on the same correlation device. In both cases, the weakened conditions of
Theorem A.1 make it applicable to a wider class of stage games. We have refrained from including these
extensions to Theorem 1 in the main body of the paper for reasons of space and of expository simplicity.

12At this point it is legitimate to wonder whether the concept of “neologism-proof” equilibrium (Farrell,
1993) has any impact on what we are saying here. While neologism-proofness in its current form does not
apply to our model, we return to this point at some length in Section 7 below.
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phase.13 Let ai be the vector of actions (pure, for simplicity) for which i receives ωi(Ã) —
his minmax payoff in the component game GÃ. During the diversionary-i equilibrium phase
player 〈i, t〉 plays action ai

i. For all players j 6= i, let ăi
j be any action in Ãj that is not equal

to ai
j. Such action can always be found since, by assumption, each Ãj contains at least two

actions. During the diversionary-i equilibrium phase, any player j 6= i plays action ăi
j. The

(per-period) payoff vector associated with the diversionary-i equilibrium phase is denoted by
ŭi.

If in period t play is in any of the equilibrium phases we have just described, and no
deviation occurs at the action stage, at the end of period t all players use the realization yt

of the message-stage randomization device to select the message to send to their successors.
The possible realizations of ỹt are (y(0), y(1), . . . , y(n)). The probability that yt = y(0) is
1 − η and the probability that yt = y(i) is η/n for every i ∈ I. Consider now the end of
any period t in any equilibrium phase, and assume that no deviation has occurred. If yt =
y(0) then all players 〈i ∈ I, t〉 send message m∗ to their successors, so play in period t + 1 is
in the standard equilibrium phase. If yt = y(i), then all players j 6= i send message m̆i to
their successors and player 〈i, t〉 sends a (randomly selected) message mi,τ ∈ M(i, t) to player
〈i, t + 1〉. So, in this case in period t + 1 play is in the diversionary-i equilibrium phase.

The profiles to be played in each diversionary-i equilibrium phase may of course be entirely
determined by the need to differ from the component game minmax action profiles, so we have
no degrees of freedom there. However, we are free to choose the profile a′ in constructing
the standard equilibrium phase. Recall that we take a′ to be pure solely for expositional
simplicity. Using the action-stage randomization device, clearly we could select correlated
actions for the standard equilibrium phase that yield any payoff vector v′ in V (Ã). Since v̂
∈ intV (Ã) we can be sure that for some v′ ∈ V (Ã) and some η ∈ (0, 1)

v̂ = (1− η)v′ +
η

n

n∑
i=1

ŭi (1)

So that (modulo our expositional assumption that v′ = u(a′)) when play is in any equilibrium
phase the expected (across all possible realizations of ỹt) continuation payoff to any player
〈i, t〉 from the beginning of period t + 1 onward is v̂i.

The strategies we construct also define an off-path collection of n punishment phases
phases and n terminal phases, one of each type for each dynasty i. In the punishment-i
phase, in every period player i receives his component game minmax payoff ωi(Ã), and the
phase lasts T periods. In the terminal-i phase in every period the players receive the vector of
payoffs vi. The transition between any of the equilibrium phases and any of the punishment
or terminal phases is akin to the benchmark construction in Fudenberg and Maskin (1986).

13In the formal proof the set of messages M(i, t) actually does depend on the time index t because not
all messages are available for the first T periods of play. This is so in order to avoid any message space M t

i

having a cardinality that exceeds that of Ht.
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In other words, a deviation by dynasty i during any of the equilibrium, any of the punishment
phases or any of the terminal phases triggers the start (or re-start) of the punishment-i phase
(deviations by two players or more are ignored). The terminal-i phase begins after play
has been, without subsequent deviations, in the punishment-i phase for T periods. For an
appropriately chosen (large) T , as δ approaches 1, with one critical exception, the inequalities
in (iii) of the statement of Theorem 1 are used in much the same way as in Fudenberg and
Maskin (1986) to guarantee that no player deviates from the prescriptions of the equilibrium
strategies.

In Fudenberg and Maskin (1986), during the punishment-i phase player i plays a myopic
best response to the actions of other players. Critically, this is not the case here. During
the punishment-i phase dynasty i plays a best response to the strategy of others restricted
to the set of pure actions in Ãi. Clearly this could be very far away (in per-period payoff
terms) from an unconstrained best reply chosen at will within Ai. To understand how this
can happen in an SE we need to specify what message profiles mark the beginning of the
punishment-i phase and what the players’ beliefs are.

Suppose that player 〈i, t〉 deviates from the prescriptions of the equilibrium strategy and
triggers the start of the punishment-i phase as of the beginning of period t + 1. Then all
players 〈j ∈ I, t〉 send message mi,T to their successors. These messages are interpreted as
telling all players 〈j 6= i, t + 1〉 that the punishment-i phase has begun, and that there are
T periods remaining. We return to the beliefs of player 〈i, t + 1〉 from the guilty dynasty
shortly. In the following period of the punishment-i phase all players 〈j ∈ I, t + 1〉 send
message mi,T−1, then mi,T−2 and so on, so that the the index τ in a message mi,τ is effectively
interpreted (by dynasties j 6= i) as a “punishment clock,” counting down how many periods
remain in the punishment-i phase.

The players’ beliefs in the SE we construct are “correct” in all phases of play except for the
beliefs of player 〈i, t〉 whenever play is in the punishment-i phase at time t. Upon receiving
any message mi,τ ∈ M(i, t), player 〈i, t〉 believes that play is in the punishment-i phase with
probability zero. Instead he believes that play is in the i-diversionary equilibrium phase
with probability one. This is possible in an SE because player 〈i, t〉 conflates any message
that might indicate the off-path punishment-i phase with the message indicating the on-path
diversionary-i phase. It follows easily that player 〈i, t〉 does not want to deviate from the
equilibrium strategies we have described when play is in the punishment-i phase.

Notice moreover that if at time t play is in the punishment-i phase, after the profile at is
observed, player 〈i, t〉 will discover that play is in fact in the punishment-i phase, contrary to
his beginning-of-period beliefs, even if a new deviation occurs at the action stage of period
t. This is because, by construction, all players 〈j 6= i, t〉 play an action (namely ăi

j) in the
diversionary-i equilibrium phase that is different from what they play in the punishment-i
phase (namely ai

j). This, coupled with the assumption assumption that n ≥ 4 will ensure
that 〈i, t〉 will discover the truth, and the identity of any deviator.14

14Clearly, if 〈i, t〉 could not be guaranteed to discover that play is in the punishment-i phase, or the identity
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Therefore any player 〈i, t〉 who knows that in period t+1 play will be in the punishment-i
phase would like would like to “communicate effectively” to player 〈i, t + 1〉 that play is in
the punishment-i phase but is unable to do so, as in our discussion above concerning message
spaces. After receiving mi,τ and discovering that play is in the punishment-i phase, sending
any message to player 〈i, t + 1〉 that is not mi,τ−1 may cause him, or some of his successors,
to deviate and hence to re-start the punishment-i phase.15 Sending mi,τ−1 will cause player
〈i, t + 1〉 and his successors to play a best response among those that can be induced by any
available message. This is because ai

i is in fact a best response to the minmax (in Ãi) of the
other players within the set Ãi. Therefore, given the inequalities satisfied by v̂ and v1, . . . , vn,
since T is sufficiently large, and δ is close enough to one, no profitable deviation is available
to player 〈i, t〉.

The argument we have just outlined suffices to show that the payoff vector v̂ of the
statement of the theorem can be sustained as an SE of the dynastic repeated game. We now
argue that this fact can be used as a “local anchor” for our “global” argument that shows
that any interior payoff vector can be sustained as an SE.

Fix any v∗ ∈ intV to be sustained in equilibrium. Since v∗ is interior it is obvious that it
can be expressed as v∗ = qv̂ + (1 − q)z for some q ∈ (0, 1) and some z ∈ V . The “global”
argument then consists of using the action-stage randomization device so that in each period
with probability q play proceeds as in the construction above, while with probability 1 − q
the (expected) payoff vector is z. The latter is achieved with action-stage strategies that do
not depend on the messages received. A deviation by i from the (correlated) actions needed
to implement z triggers the punishment-i phase. With one proviso to be discussed shortly,
it is not hard to then verify that this is sufficient to keep all players from deviating at any
point, and hence that v∗ can be sustained as an SE payoff vector of the dynastic repeated
game for δ sufficiently close to one.

The difficulty with the global argument we have outlined that needs some attention is easy
to point out. The periods in which the action-stage randomization device tells the players to
implement the payoff vector z cannot be counted as real punishment periods. They in fact
stochastically interlace all phases of play, including any punishment-i phase. However, the
length of effective punishment T has to be sufficiently large to deter deviations. The solution
we adopt is to ensure that the punishment clock does not decrease in any period in which
(with probability 1− q) the payoff vector z is implemented at the action stage. In effect, this
makes the length of any punishment-i phase stochastic, governed by a punishment clock that
counts down only with probability q in every period.

Theorem 1 assumes four dynasties or more. This is clearly essential to the construction

of any deviator at time t, then we could not construct strategies that guarantee that if 〈j 6= i, t〉 deviates
during the punishment-i phase then play switches to the punishment-j phase, as required.

15Checking sequential rationality at the message stage takes a few more steps than may appear from our
intuitive outline of the argument given here. This is because a deviation at the message stage may trigger
multiple deviations; that is deviations at the action and/or message stage by more than one successor of any
given player. The core of the argument dealing with this case is Lemma T.5.4 in the technical addendum.
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we use in its proof. Is it essential to our results? One answer is that, under some conditions,
our results can be extended to the case of three dynasties or more. In Anderlini, Gerardi,
and Lagunoff (2004), Theorem 2, we prove

Theorem 2. Dynastic Folk Theorem: Three Dynasties or More: Let any stage game G with

three or more players be given. Assume that G is such that we can find two pure action profiles

a∗ and a′ in A with

ui(a
∗) > ui(a

′) > ui(a
∗
i , a

′
−i) ∀ i ∈ I (2)

Then for every v ∈ intV there exists a δ ∈ (0, 1) such that δ > δ implies v is sustained by a

SE with discount factor δ.

In the construction given in Anderlini, Gerardi, and Lagunoff (2004), the profile a′ is
used as a “common punishment.” The availability of a common punishment reduces the need
from four dynasties or more to three or more. Intuitively this is because only the fact that a
deviation has occurred needs to be discovered, as opposed to having to discover the identity
of the deviator to administer personalized punishments, as in the construction used here. The
construction used to prove a “Super” Folk Theorem for three dynasties or more also shows
that, in a dynastic repeated game like the one set out here, the structure of SE can be radically
different from the canonical one used to prove Folk Theorems in a standard repeated game
(Fudenberg and Maskin (1986)). In particular, we construct SE of the dynastic repeated
game in which some deviations trigger a permanent punishment phase in which a′ as above
is played (a′ need not be a Nash equilibrium of G). The path of play can become trapped in
a permanent punishment phase because of the mismatch in players’ beliefs to which we have
referred several times above.

5. Inter-Generational (Dis)Agreement

Some of the SE of the dynastic repeated game we have identified in Theorem 1 above clearly
do not correspond in any meaningful sense to any SPE of the standard repeated game. This
is obvious if we consider an SE of the dynastic repeated game in which one or more players
receive a payoff below their minmax value in the stage game G.

An obvious question to raise at this point is then the following. What is it that makes
these SE viable? To put it another way, can we identify any properties of an SE of the
dynastic repeated game which ensure that it must correspond in a meaningful sense to an
SPE of the standard repeated game? The answer is yes, and this is what this section of the
paper is devoted to.

The critical properties of an SE that we identify concern the players’ beliefs. These
properties characterize entirely the set of SE yielding payoffs outside the set of SPE of the
standard repeated game. Therefore, if one wanted to attempt to “refine away” the equilibria
yielding payoffs outside the set of SPE, our results in this section pin down precisely which
belief systems the proposed refinement would have to rule out.
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The first of the properties we identify is that a player’s (revised) beliefs at the end of the
period over the messages received by other players at the beginning of the period should be
the same as at the beginning of the period. This is equation (3) below. The second is that
the end-of-period beliefs of a player (over messages sent by his opponents) should be the same
as the beginning-of-period beliefs of his successor (over messages received by his opponents).
This is equation (4) below. In fact we are able to show that if this property holds for all
players (and all information sets) in an SE of the dynastic repeated game, then this SE must
be payoff-equivalent to some SPE of the standard repeated game. For want of a better term,
when an SE of the dynastic repeated game has the two properties (of beliefs) that we just
described informally, we will say that it displays Inter-Generational Agreement.

Definition 2. Inter-Generational Agreement: Let an SE triple (g, µ, Φ) of the dynastic re-

peated game be given.

We say that this SE displays Inter-Generational Agreement if and only if for every i ∈ I,

t ≥ 0, mt
i ∈ H t, xt ∈ X, at ∈ A and yt ∈ Y we have that

ΦtR
i (mt

i, x
t, at, yt) = ΦtB

i (mt
i) (3)

and for every mt+1
i in the support of µt

i(m
t
i, x

t, at, yt)

ΦtE
i (mt

i, x
t, at, yt) = Φt+1B

i (mt+1
i ) (4)

We are now ready to state our last result.

Theorem 3. SE of the Dynastic and SPE of the Standard Repeated Game: Fix a stage game

G, any δ ∈ (0, 1), and any x̃ and ỹ. Let (g, µ, Φ) be an SE of the dynastic repeated game.

Assume that this SE displays Inter-Generational Agreement as in Definition 2. Let v∗ be the

vector of (dynastic) payoffs for t = 0 players in this SE. Then v∗ is a SPE payoff profile of

the standard repeated game with the same discount factor δ.

The proof of Theorem 3 is in Appendix B. Before proceeding with an intuitive outline,
we state a remark on the implications of the theorem.

Clearly, Theorem 3 implies that if an SE payoff vector v is not sustainable as by a SPE,
then it must be the case that no SE which sustains v in the dynastic repeated game displays
Inter-Generational Agreement. Moreover, it is fairly straightforward to show that any SPE
payoff profile can be sustained by an SE that satisfies Intergenerational Agreement (see
Anderlini, Gerardi, and Lagunoff (2004), Theorem 1). Together with Theorem 3, this gives
us a complete characterization in payoff terms of the relationship between the SE of the
dynastic and the SPE of the standard repeated game as follows.

For any G and δ ∈ (0, 1), a payoff profile v is not sustained by a SPE if and only if any
SE that sustains v in the dynastic repeated game violates Inter-Generational Agreement.
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To streamline the exposition of the outline of the argument behind Theorem 3, make the
following two simplifying assumptions. First, assume that at the message stage the players do
not condition their behavior at the message-stage on the randomization device. The simplest
way to fix ideas here is to consider a message-stage randomization device with a singleton Y
(the set of possible realizations). Second, assume that all message-strategies µt

i are pure. In
other words, even though they may randomize at the action stage, all players at the message
stage send a single message, denoted µt

i(m
t
i, x

t, at), with probability one.16

Now consider an SE (g, µ, Φ) of the dynastic repeated game that satisfies Inter-Genera-
tional Agreement as in Definition 2. Fix any history of play ht = (x0, a0, . . . , xt−1, at−1).
For each dynasty i, using the message strategies of players 〈i, 0〉 through to 〈i, t− 1〉, we can
now determine the message mt

i that player 〈i, t − 1〉 will send to his successor, player (i, t).
Denote this message by mt

i(h
t). Notice that mt

i(h
t) can be determined simply by recursing

forward from period 0. Recall that at the beginning of period 0 all players 〈i ∈ I, 0〉 receive
message m0

i = ∅. Therefore, given h1 = (x0, a0), using µ0
i , we know m1

i (h
1). Now using µ1

i we
can compute m2

i (h
2) = µ1

i (m
1
i (h

1), x1, a1), and so recursing forward the value of mt
i(h

t) can
be worked out.

Because the SE (g, µ, Φ) satisfies Inter-Generational Agreement it must be the case that,
after any actual history of play (on or off the equilibrium path) ht, and therefore after receiving
message mt

i(h
t), player 〈i, t〉 believes that his opponents have received messages (mt

1(h
t), . . . ,

mt
i−1(h

t), mt
i+1(h

t), . . . , mt
n(ht)) with probability one.

To see why this is the case, we can recurse forward from period 0 again. Consider the end
of period 0. Since all players in the t = 0 cohort receive message ∅, after observing (x0, a0),
player 〈i, 0〉 knows that any player 〈j 6= i, 0〉 is sending message m1

j(x
0, a0) = µ0

j(∅, x0, a0) to
his successor player 〈j, 1〉.

Equation (4) of Definition 2 guarantees that the beginning-of-period beliefs of player 〈i, 1〉
must be the same as the end-of-period beliefs of player 〈i, 0〉. So, at the beginning of period
1, player 〈i, 1〉 believes with probability one that every player 〈j 6= i, 1〉 has received message
m1

j(x
0, a0) as above.

Equation (3) of Definition 2 guarantees that player 〈i, 1〉 will not revise his beginning-
of-period beliefs during period 1. Therefore, after observing any (x1, a1), player 〈i, 1〉 still
believes that every player 〈j 6= i, 1〉 has received message m1

j(x
0, a0) as above. But this,

via the message strategies µ1
j implies that player 〈i, 1〉 must believe with probability one

that every player 〈j, 1〉 sends message m2
j(h

2) = m2
j(x

0, a0, x1, a1) = µ1
j(m

1
j(h

1), x1, a1) to his
successor 〈j, 2〉. Continuing forward in this way until period t we can then see that the
beginning-of-period beliefs of player 〈i, t〉 are as we claimed above.

Before we proceed to close the argument for Theorem 3, notice that both conditions
of Definition 2 are necessary for our argument so far to be valid. Intuitively, the forward

16Abusing notation slightly, here and throughout, we will write gt
i(m

t
i, x

t) = ai to mean that the distribution
gt

i(m
t
i, x

t) assigns probability one to ai. Similarly, we will write µt
i(m

t
i, x

t, at, yt) = mt+1
i to mean that the

distribution µt
i(m

t
i, x

t, at, yt) assigns probability one to mt+1
i .
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recursion argument we have outlined essentially ensures that the “correct” (because all its
members receive a given message m0

i = ∅) beliefs of the first cohort “propagate forward” as
follows. At the beginning of period t = 1 each player 〈i ∈ I, 1〉 must have correct beliefs
since the end-of-period beliefs of all players in period 0 are trivially correct, and equation (4)
of Definition 2 tells us that the end-of-period beliefs must be the same as the beginning-of-
periods beliefs of the next cohort. Now some pair (x1, a1) is observed by all players 〈i ∈ I, 1〉.
If this pair is consistent with their beginning-of-period beliefs, then clearly no player 〈i ∈ I, 1〉
can possibly revise his beliefs on the messages received by others at the beginning of period
1. However, if (x1, a1) is not consistent with the beliefs of players 〈i ∈ I, 1〉 and their action
strategies, some players in the t = 1 cohort may be “tempted” to revise their beginning-of-
period beliefs. This is because an observed “deviation” from what they expect to observe
in period 1 can always be attributed to two distinct sources. It could be generated by
an actual deviation at action stage of period 1, or it could be the result of one (or more)
players in the t = 0 cohort having deviated at the message stage of period 0. Equation
(3) of Definition 2 essentially requires that the t = 1 players should always interpret an
“unexpected” pair (x1, a1) as an actual deviation at the action stage. The same applies to all
subsequent periods. So, while equation (4) of Definition 2 ensures that the initially correct
beliefs are passed on from one generation to the next, equation (3) of Definition 2 guarantees
that actual deviations will be treated as such in the beliefs of players who observe them.
The beliefs of players 〈i ∈ I, 0〉 are correct and the end-of-period beliefs of any cohort are
guaranteed to be the same as the beginning-of-period beliefs of the next cohort by equation
(4). However, without equation (3) following an action deviation from the equilibrium path
the end-of-periods beliefs of some players 〈i, t〉 could be incorrect, and be passed on to the
next cohort intact.

Now recall that the punch-line of the forward recursion argument we have outlined is that
if the SE (g, µ, Φ) satisfies Inter-Generational Agreement then we know that after any actual
history of play ht, player 〈i, t〉 believes that his opponents have received messages (mt

1(h
t), . . . ,

mt
i−1(h

t), mt
i+1(h

t), . . . , mt
n(ht)) with probability one. To see how we can construct an SPE of

the standard repeated game that is equivalent to the given SE, consider the strategies gt∗
i for

the standard repeated game defined as gt∗
i (ht, xt) = gt

i(mi(h
t), xt). Clearly, these strategies

implement the same payoff vector that is obtained in the given SE of the dynastic repeated
game. Now suppose that the strategy profile g∗ we have just constructed is not an SPE of
the standard repeated game. Then, by the one-shot deviation principle we know that some
player i in the standard repeated game would have an incentive do deviate in a single period
t after some history of play ht. However, given the property of beliefs in the SE (g, µ, Φ)
with Inter-Generational Agreement that we have shown above, this implies that player 〈i, t〉
would have an incentive to deviate at the action stage in the dynastic repeated game. This of
course contradicts the fact that (g, µ, Φ) is an SE of the dynastic repeated game. Hence the
argument is complete. The proof of Theorem 3 that appears in Appendix B of course does
not rely on the two simplifying assumptions we made here. However, modulo some additional
notation and technical issues, the argument presented there runs along the same lines as the
sketch we have given here.
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6. Relation to the Literature

We do not attempt here to review the vast literature on repeated games.17 Instead, we
point out three key ingredients of our model which, taken together, set this paper apart
from previous contributions. First, we break infinitely-lived players into sequences of finitely-
lived ones, each of whom has dynastic preferences. Second, the individual entrants have no
memory of past play, and the past history of play leaves no tangible trace — only messages
are available. Third, the messages within a dynasty from one generation of individuals to the
next are private.

Via the first ingredient, the results of this paper to can be related those of overlapping
generations games. Examples of the latter include Cremer (1986), Kandori (1992a), Salant
(1991) and Smith (1992). In these papers there is no dynastic component to the players’
payoffs and full memory (i.e., perfect observation of the past) is assumed.18 Consequently,
the Folk Theorems for OLG games relate only to payoff profiles above all players’ minmax
values.

The second and third ingredients, bring out the relationship with other recent papers
that study equilibria in dynastic environments when the full memory assumption is relaxed.
Examples include Anderlini and Lagunoff (2005), Kobayashi (2003), and Lagunoff and Matsui
(2004). Among these, Anderlini and Lagunoff (2005) is the closest and, in many ways,
the most direct predecessor of the current paper. Anderlini and Lagunoff (2005) examines
the same dynastic model when each player 〈i, t〉 receives a public messages from the player
〈j ∈ I, t − 1〉 about the previous history of play. If the public messages from all player in
the previous cohort are simultaneous, then a Folk Theorem in the sense of Fudenberg and
Maskin (1986) can be obtained. If there are three or more players, all individually rational
feasible payoffs can be sustained as an SE. Intuitively, this is because a version of a well known
“cross-checking” argument that goes back to Maskin (1999) can be applied in this case. By
contrast, the present paper studies the model in which private communication (within each
dynasty) may occur. We show that the difference between purely public and possible private
communication is potentially large. Equilibria that sustain payoffs below some dynasty’s
minmax exist, but they require inter-generational “disagreement.”

Kobayashi (2003) and Lagunoff and Matsui (2004) examine OLG games with a dynastic
payoff component. As in Anderlini and Lagunoff (2005), these models assume entrants have no
prior memory, and they also allow for communication across generations. Though substantive
differences exist between each of the models, they both prove standard (for OLG games) Folk
Theorems. Interestingly, both Folk Theorems make use of intra-generational disagreement of
beliefs in the equilibrium continuations following deviations. Nevertheless, the constructed

17Mailath and Samuelson (2006) is a comprehensive source that includes classic as well as more recent
developments.

18As he points out, the results in Kandori (1992a) generalize to less than full memory of the past, although
some direct memory is required. Bhaskar (1998) examines a related OLG model with no dynastic payoffs and
very little, albeit some, direct memory by entrants. He shows that very limited memory is enough to sustain
optimal transfers in a 2-period consumption-loan smoothing OLG game.
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equilibria in both papers leave no room for inter-generational disagreement at the message
stage.

The role of public messages has been studied in other repeated game contexts such as
in games with private monitoring. Models of Ben-Porath and Kahneman (1996), Compte
(1998), and Kandori and Matsushima (1998) all examine communication in repeated games
when players receive private signals of others’ past behavior. As in Anderlini and Lagunoff
(2005), these papers exploit cross-checking arguments to sustain the truthful revelation of
one’s private signal in each stage of the repeated game.

Recent works by Schotter and Sopher (2001a), Schotter and Sopher (2001b), and Chaud-
huri, Schotter, and Sopher (2001) examine the role of communication in an experimental
dynastic environment. These papers report on laboratory experiments designed to mimic the
dynastic game. The general conclusion seems to be that the presence of private communica-
tion has a significant (if puzzling) effect, even in the full memory game.

It is also worth noting the similarity between the present model and games with imperfect
recall.19 Each dynastic player could be viewed as an infinitely lived player with imperfect
recall (e.g., the “absent-minded driver” with “multiple selves” in Piccione and Rubinstein
(1997)) who can write messages to his future self at the end of each period.

By contrast, the present model is distinguishable from dynamic models that create mem-
ory from a tangible “piece” of history. For instance, Anderlini and Lagunoff (2005) and
Anderlini, Gerardi, and Lagunoff (2007) extend the analysis to the case where history may
leave a “footprint,” i.e, hard evidence of the past history of play. In particular, Anderlini,
Gerardi, and Lagunoff (2007) examines the role of social memory in a dynastic repeated game
with two dynasties when a (noisy) signal of the past history of play is available to the players.

Incomplete but hard evidence of the past history of play is also present in Johnson, Levine,
and Pesendorfer (2001) and Kandori (1992b). In another instance, memory may be created
from a tangible but intrinsically worthless asset such as fiat money. A number of contributions
in monetary theory (e.g., Kocherlakota (1998), Kocherlakota and Wallace (1998), Wallace
(2001), and Corbae, Temzelides, and Wright (2001)) have all shown, to varying degrees, the
substitutability of money for memory. In fact, the role of money in creating “memory” is
clarified by Aliprantis, Camera, and Puzzello (2007b) and Aliprantis, Camera, and Puzzello
(2007a) who show that money is not needed when trade is periodically centralized since
deviations can be deterred quickly without money. With sufficient lack of observability and
decentralized trade, tangible assets such as money may again become useful.

7. Concluding Remarks

We posit a dynastic repeated game populated by one-period-lived individuals who rely on
private messages from their predecessors to fathom the past. The set of equilibrium payoffs
expands dramatically relative to the corresponding standard repeated game. Under extremely

19See the Special Issue of Games and Economic Behavior (1997) on Games with Imperfect Recall for
extensive references.
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mild conditions, as the dynastic players care more and more about the payoffs of their suc-
cessors, all interior payoff vectors that are feasible in the stage game are sustainable in an SE
of the dynastic repeated game.

We are able to characterize entirely, via a property of the players’ beliefs, when an SE
of the dynastic repeated game can yield a payoff vector not sustainable as an SPE of the
standard repeated game: the SE in question must display a failure of what we have termed
Inter-Generational Agreement.

The consistency condition of SE provides a coherent societal outlook rooted in the like-
lihood of mistakes and how how such errors affect off-path beliefs. We find this discipline
particularly compelling in the dynastic context. For one thing, it provides an intuitive model
of how real world individuals might interpret off-path events. It also provides a natural lan-
guage for distinguishing between what people say (i.e., message errors) and what they do
(action errors). This paper shows how this dichotomy may give rise to systematically in-
correct beliefs after certain off-path events. In turn, these beliefs sustain SE payoff profiles
below a player’s minmax.

We certainly recognize that there are other constructs that theorists are used to. The
obvious one is that of “neologism-proofness” (Farrell, 1993, Mattehws, Okuno-Fujiwara, and
Postlewaite, 1991, among others). As we mentioned earlier, at least in its current form,
neologism-proofness does not apply to our framework. The reason is as follows. Roughly
speaking, neologism-proofness builds into the solution concept the idea that in a sender-
receiver game, provided the appropriate incentive-compatibility constraints are satisfied, a
player’s exogenous type (in the standard sense of a “payoff type”) will be able to create a
“neologism” (use an hitherto unused message) to distinguish himself from other types. The
point is that in our dynastic game there are no exogenous types for any of the players. It would
therefore be impossible to satisfy any standard form of incentive-compatibility constraints.
The different “types” of each player in our dynastic repeated game are only distinguished
by their beliefs, which in turn are determined by equilibrium strategies together with a
complete theory of mistakes as in any SE. To see that the logic of neologism-proofness can
be conceptually troublesome in our context, consider for instance the construction we use
to prove Theorem 1 above. Suppose that some player 〈i, t〉 deviates so as to trigger the
punishment-i phase. At the end of period t player 〈i, t〉 may want to communicate to player
〈i, t + 1〉 that play is in the punishment-i phase so that he can can play a best response
to the actions of others in period t + 1. For a “neologism” to work at this point player
〈i, t + 1〉 would have to believe it. He would have to believe what player 〈i, t〉 is saying: I
have made a mistake, therefore respond appropriately to the punishment that follows (there
are no exogenous types to which 〈i, t〉 can appeal in his “speech”). However, as always in
a dynastic game, whether 〈i, t + 1〉 believes or not what he is told, depends on the relative
likelihood that he assigns to mistaken actions and mistaken messages; both are possible after
all.20 So, for the neologism to work it would have to be “trusted” more as a message than the

20By contrast, in a sender-receiver game the sender communicates to the receiver his exogenous type, which
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one prescribed in equilibrium. But, since there are no exogenous types to which to appeal,
there do not seem to be compelling reasons for this to be the case. As with other possible
refinements, our characterization of the new equilibria that appear in the dynastic repeated
game in terms of Inter-Generational Agreement also seals the question of what bite a possible
adaptation of neologism-proofness could have at a more general level. The new equilibria of
the dynastic repeated game can be ruled out (without ruling out any of the traditional ones)
if and only if beliefs that violate Inter-Generational Agreement can be ruled out. Whether
this is the case or not is largely a matter of intuitive appeal.

While our results apply only to the actual formal model we have set forth, it is natural
to ask which ones are essential and which ones are not. We have several remarks to make.

As we noted already, the absence of public messages alongside private ones is completely
inessential to what we do here. Public messages could be added to our model without altering
our results. It is always possible to replicate the SE of this model in another model with public
messages as well; the public messages would be ignored by the players’ equilibrium strategies
and beliefs.

We make explicit use of public randomization devices both at the action and at the
message stage of the dynastic repeated game. While the use of two separate devices is not
essential for our results (see footnote 5 above), whether the use of some public randomization
device is necessary is a question for future research.21 In our constructions it is essential
that the players should be able to correlate the messages they send to the next cohort.
Without this it is hard to see how play could switch between the different phases on which
our constructions depend.

We have stipulated a very specific set of “demographics” for our dynastic repeated game:
all players live one period and are replaced by their successor at the end of their lives.
Although the demographic structure of the model greatly simplifies the analysis, our results
readily generalize in the following sense. Suppose that each dynasty is composed of a sequence
of finitely lived individuals, each of whom can live any finite number of periods provided
that there exists a uniform upper bound L on the length of each lifetime. Note that any
overlap across dynasties that conforms to the L-boundedness assumption is possible. Using
a technique known at least since Ellison (1994), one can show that our results extend to
any L-bounded demographics. The idea involves constructing L interleaved “copies” of the
equilibrium of the one-period lived demographics case.

To give an idea of how this works, consider the strategies and beliefs of individuals alive
in periods 0, L, 2L, 3L and so on. These individuals “match” the strategies of the individuals
alive in periods 0, 1, 2, 3 and so on in the model with full replacement every period. Matching
here means that when deciding how to play, the individuals alive at L will only consider

is chosen by Nature, and not by the sender himself.
21We have examples showing that even without any randomization devices it is possible to display SE that

push one or more dynasties below their minmax in the stage game. Whether a “Super” Folk Theorem is
available in this case is an open question at this point.
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information concerning period 0, individuals alive at 2L will only consider information con-
cerning periods 0 and L and so on, forward without bound. The same construction is used
to match the strategies and beliefs of individuals alive in periods 1, L + 1, 2L + 1, 3L + 1 and
so on with those of the individuals alive in periods 0, 1, 2, 3 and so on in the model with full
replacement every period.

In this paper, we examine dynastic repeated games with 3 or more dynasties. It is not hard
to construct examples of dynastic repeated games with two dynasties that admit SE in which
the players’ payoffs are below their minmax in the stage game. Thus, it seems that there is no
definite need to have more than two dynasties to generate SE payoffs in the dynastic repeated
game that are not sustainable as SPE of the corresponding standard repeated game. Whether
and under what conditions a Folk Theorem like the one presented here is available for the
case of two dynasties is an open question. We leave the characterization of the equilibrium
set in this case for future work.

Lastly, our Folk Theorems for the dynastic repeated game show that, as δ approaches one,
the set of SE payoffs includes “worse” vectors that push some (or even all) players below their
minmax payoffs in the stage game. We do not have a full characterization of the SE payoffs
for the dynastic repeated game when δ is bounded away from one. However, it is possible to
construct examples showing that the set of SE payoffs includes vectors that Pareto-dominate
those on the Pareto-frontier of the set of SPE payoffs in the standard repeated game when δ is
bounded away from one. Intuitively, this is because some “bad” payoff vectors (pushing some
players below the minmax) are sustainable in an SE when δ is bounded away from one. Thus,
“harsher” punishments are available as continuation payoffs in the dynastic repeated game
than in the standard repeated game. Using these punishments, higher payoffs are sustainable
in equilibrium in the dynastic repeated game.

Appendix A: Proof of Theorem 1

A.1. A Stronger Statement

As we anticipated in the text, we show that Theorem 1 holds by proving a stronger statement, which readily
implies it.

We begin with a definition. As we mentioned in footnote 11, this re-defines the benchmark payoffs as the
minmax payoffs in the component game, but allowing for correlation among the minmaxing players while not
allowing the player who is being minmaxed to take the correlation into account.

Definition A.1. Restricted Correlated Minmax: Consider a stage game G = (A, u, I). Let a product set Ã

⊆ A be given. Now let

ωi(Ã) = min
z−i∈∆(Ã−i)

max
ai∈Ãi

∑
a−i∈Ã−i

z−i(a−i) ui(ai, a−i) (A.1)

where z−i is any probability distribution over the finite set Ã−i (not necessarily the product of independent

marginals), and z−i(a−i) denotes the probability that z−i assigns to the profile a−i.

We then say that ωi(Ã) is the restricted (to Ã) correlated minmax for i in G.

The statement that we will actually prove can now be made precise.
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Theorem A.1. Stronger Dynastic Folk Theorem: Let a stage game G = (A, u, I) with four or more players

be given. Assume that G is such that we can find a product set Ã ⊆ A and an array of n + 1 payoffs vectors

v̂, v1, . . . , vn for which the following conditions hold.

(i) For every i ∈ I, the set Ãi contains at least two elements.

(ii) v̂ ∈ intV (Ã), and vi ∈ V (Ã) for every i ∈ I.

(iii) ωi(Ã) < vi
i < vj

i and vi
i < v̂i for every i ∈ I and every j 6= i.

Then for every v ∈ intV there exists a δ ∈ (0, 1) such that δ > δ implies v is sustained by SE for discount

factor δ.

A.2. A Roadmap of the Proof

Our proof is constructive. It runs along the following lines. Given a v∗ ∈ int(V ), we construct a randomization
device x̃, a randomization device ỹ, and an assessment (g, µ,Φ), which implements the vector of payoffs v∗,
and which for δ sufficiently large constitutes an SE of the dynastic repeated game. All the elements of
our construction are defined independently of δ. The sequential rationality of the strategy profile given the
postulated beliefs holds when δ is sufficiently close to one.

The basic logic follows along the familiar lines of other Folk Theorems. Namely, the equilibrium can be
described in terms of phases and transitions. The phases, described informally in the main body of the paper,
are given by the list

{In, S,D1, . . . , Dn, P 1, . . . , Pn, T 1, . . . , Tn, Z}.

where In is the initial phase, S is the standard equilibrium phase, Di, i = 1, . . . , n is diversionary-i phase,
P i is i’s punishment phase, T i is i’s terminal phase, and finally Z will be referred to as the global phase.
The action and message strategies and randomization devices jointly facilitate transitions from one phase to
another.

In what follows, v∗ ∈ int(V ) is the vector of payoffs to be sustained as an SE as in the statement of
Theorem A.1. Throughout the argument, Ã is a product set and v̂ and v1 through vn are vectors of payoffs
as in the statement of Theorem A.1. Of course, these are fixed throughout the proof.

In Section A.4, we define formally the players’ message spaces M t
i , the randomization devices x̃ and ỹ,

the strategy profile (g, µ), and the players’ beliefs. Throughout the argument, we assume that this message
space for any player 〈i, t − 1〉 consists of a set smaller than the set Ht. To work with “restricted” message
spaces is sufficient to prove our claim because of Lemma T.3.1.

In Section A.5 we define the completely mixed strategies that generate the SE beliefs Φ. We also briefly
outline the consistency and sequential rationality argument.

The rest of the details are relegated to the Technical Addendum. In Section T.4 of the Addendum
we define formally the system of beliefs Φ. In Section T.5 we check that the assessment (g, µ,Φ) satisfies
sequential rationality when δ is close to one. Finally in Section T.6 we verify the consistency of the equilibrium
beliefs.

A.3. Messages and Randomization Devices

Before proceeding with a description of strategies, message spaces, beliefs, and devices, we first define the
correlation probabilities and corresponding payoffs that each player will receive in each phases.

Definition A.2: Let (a(1), . . . , a(`), . . . , a(||A||)) be a list of all possible outcomes in G. Without loss of

generality, assume that the first ||Ã|| ≤ ||A|| elements in this enumeration are the strategy profiles in the

product set Ã. This enumeration will be taken as fixed throughout the rest of the argument.

To begin, we construct the correlation probabilities and the payoff profile that result in dynasty i’s
punishment phase, P i, for each i.
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Remark A.1: From Definition A.1, for each i ∈ I we can find a set of of profiles of actions Ãi ⊂ Ã

corresponding to a set of indices (i1, . . . , i`, . . . , i||Ãi||) in the enumeration of Definition A.2, and a set of

positive weights {pi(a(i`))}||Ã
i||

`=1 adding up to one and such that

ωi(Ã) = max
ai∈Ãi

||Ãi||∑
`=1

pi(a(i`))ui(ai, a−i(i`)) =
||Ãi||∑
`=1

pi(a(i`))ui(a(i`)) (A.2)

Without loss of generality, we can take it to be the case that for every i`, ai(i`) is the same action in Ãi. We

denote this by ai
i so that ai(i`) = ai

i for ` = 1, . . . , ||Ãi||.
For convenience, since Ã is fixed throughout the argument, in what follows we will use the following

notation for the payoffs of each i corresponding to the weights {pj(a(j`))}||Ã
j ||

`=1 .

ωj
i =

||Ãj ||∑
`=1

pj(a(j`))ui(a(j`)) (A.3)

The payoff ωj
i is what i receives in phase P j . Of course, we have that ωi

i = ωi(Ã).

Next, we define correlation probabilities and payoff profiles resulting from the diversionary-i phases, Di,
for each i.

Definition A.3: Let Ãi be as in Remark A.1. For each i ∈ I and for each element a(i`) of Ãi, construct a

new action profile ăi(i`) as follows. For all j 6= i, set ăi
j(i`) to satisfy ăi

j(i`) 6= aj(i`) and ăi
j(i`) ∈ Ãj . Notice

that this is always possible since, by assumption, Ãj contains at least two elements for every j ∈ I. Finally,

set ăi
i(i`) = ai(i`) = ai

i.

In what follows, for every i and j in I we will let

ŭj
i =

||Ãj ||∑
`=1

pj(a(j`))ui(ăj(j`)) (A.4)

Payoff ŭj
i is what i receives in diversionary-j phase, Dj .

The correlation probabilities and payoffs resulting from terminal phases, T i for each i, are as follows.

Remark A.2: Since each of the payoff vectors vj must only satisfy strong inequalities (see (iii) of the

statement of the theorem), without loss of generality we can take it to be the case that vj ∈ int(V (Ã)), for

each j ∈ I. It then follows that for every j ∈ I we can find a set of positive weights {pj(a(`))}||Ã||`=1 adding up

to one and such that for every i ∈ I

vj
i =

||Ã||∑
`=1

pj(a(`))ui(a(`)) (A.5)

Payoff vj
i is what i receives in terminal phase T j .
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Remark A.3: Since the payoff vector v̂ is in int(V (Ã)), we can find an η ∈ (0, 1) and a set of positive weights

{p̂ (a(`))}||Ã||`=1 adding up to one and such that for every i ∈ I

v̂i = (1− η)
||Ã||∑
`=1

p̂ (a(`))ui(a(`)) +
η

n

n∑
j=1

ŭj
i (A.6)

From the construction in Remark A.3, the correlation probabilities and payoffs in the standard phase, S,
are now defined.

Definition A.4: Let

ˆ̂v i =
||Ã||∑
`=1

p̂ (a(`))ui(a(`)) (A.7)

where the weights {p̂ (a(`))}||Ã||`=1 are as in Remark A.3. The payoff ˆ̂v i is what i receives in the standard phase

S.

The correlation probabilities and payoffs corresponding to the global phase Z is defined as follows.

Remark A.4: Since the payoff vector v∗ is in int(V ), we can find a q ∈ (0, 1) and a set of positive weights

{p∗(a(`))}||A||`=1 adding up to one and such that for every i ∈ I

v∗i = (1− q)
||A||∑
`=1

p∗(a(`))ui(a(`)) + q v̂i (A.8)

Of course, v∗ is the payoff profile we wish to implement with a sequential equilibrium. The part of v∗ that

defines the payoff in the global phase Z is given by

zi =
||A||∑
`=1

p∗(a(`))ui(a(`)). (A.9)

Finally, in the initial phase In, we have:

Remark A.5: Recall that by assumption the payoff vector v∗ is in int(V ). Therefore, we can find a set of

positive weights {p0(a(`))}||A||`=1 adding up to one and such that for every i ∈ I

v∗i =
||A||∑
`=1

p0(a(`))ui(a(`)) (A.10)

Hence, the payoff in the initial phase In is the profile v∗ that we wish to implement.

Definition A.5: Throughout the rest of the argument, we let T be an integer sufficiently large so as to

guarantee that the following inequality is satisfied for all i ∈ I.

T (vi
i − ωi

i) > ui − ui (A.11)

We now proceed to define message spaces and action randomization devices.



Luca Anderlini, Dino Gerardi, and Roger Lagunoff 25

Definition A.6. The Message Spaces: As with payoffs and correlation probabilities, we can associate certain

parts of the message space to each of four types of phases: S, P i, Di and T i (of course, we must later construct

equilibrium beliefs that correctly assign these messages to the various phases). There are no explicit messages

indicating the initial phase In which is played only in period 0. There are also no explicit messages that

indicate the global phase Z since the latter is exclusively signalled by the randomization devices. In particular,

the global phase is reached with probability (1− q) each period, independently of the message.

First, let m∗ denote the solitary message indicating the S phase.

Next, for each j ∈ I and each t = 1, . . . , T − 1 let

M(j, t) = {mj,T−t+1,mj,T−t+2, . . . ,mj,T } (A.12)

and for every t ≥ T let

M(j, t) = M(j, T ) = {mj,1, . . . ,mj,T } (A.13)

The set M(j, t) is the set of messages signalling to players i 6= j the various stages of the P j (punishment)

phase. It is also the subset of messages received by player j indicating his own diversionary-j phase.

Now define M = {m1, . . . ,mn}. These are messages indicating to all players the terminal T i phase for

all i.

Next, define for each i the set M̆−i = {m̆1, . . . , m̆i−1, m̆i+1, m̆n}. These are the messages indicating to

player i the various diversionary-j phases, for j 6= i.

Putting all these sets together, recall that M t
i denotes the set of messages that a player 〈i, t−1〉 can send

to player 〈i, t〉. For any t = 1, . . . , T let

M t
i = {m∗} ∪ M̆−i ∪M(1, t) ∪ . . . ∪M(n, t) (A.14)

For any t ≥ T + 1 let

M t
i = {m∗} ∪ M̆−i ∪M(1, t) ∪ . . . ∪M(n, t) ∪M (A.15)

Definition A.7. Action-stage Randomization Device: Earlier we defined the action-correlation probabilities

corresponding to each of the phases. Summarizing that information, we have:

p0 - initial phase In

p̂ - standard phase S

pi - diversionary-i phase Di and punishment phase P i

p̄i - terminal phase T i

p∗ - global phase Z

The action stage randomization device x̃ therefore serves to indicate which of the above correlation

probability distributions to use by the players. It is defined as follows.

The set X consists of ||A|| ||Ã||n+1
∏

i∈I ||Ãi|| + ||A||2 elements. Let (x(1), . . . , x(κ), . . . , x(||X||) be an

enumeration of the elements of X, and let κ = ||A|| ||Ã||n+1
∏

i∈I ||Ãi||.
Informally, the index κ separates the components of the action correlation device that define action play

in the local phases, S, Di, P i and T i from the global phase Z.

Formally, each of the first κ elements of X can be identified by a string of 1 + (n + 1) + n = 2n + 2
indices as follows. With a slight abuse of notation, for κ ≤ κ, we will write x(κ) = x(`0, ˆ̀, `1, . . . , `n, 1`, . . . ,

i`, . . . , n`) with `0 running from 1 to ||A||, ˆ̀ and each of the indices `1 through `n running from 1 to ||Ã||, and

each of the n indices i`, each with ` running from 1 to ||Ãi||. Obviously, the last ||X|| − κ elements of X can
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be identified by a pair of indices `00 and `∗ both running from 1 to ||A||. In this case, with a slight abuse of

notation again, we will write x(κ) = x(`00, `∗).

To summarize, these indices are used to denote the action profiles in the support of the various phase-

specific probability distributions. Hence, ˆ̀ indexes actions in the support of p̂ in the standard phase S,

`∗ indexes actions in the global phase Z, `i is used for the T i phase, and i` for both diversionary-i and

punishment-i (resp., Di and P i) phases. Finally, `0 and `00 are both used for the initial phase In.22

We are now ready to aggregate the information over all phases in order to define the probability distri-

bution governing the realization of x̃. For κ ≤ κ let

Pr(x̃ = x(`0, ˆ̀, `1, . . . , `n, 1`, . . . , i`, . . . , n`)) =

q
[
p0(a(`0)) p̂(a(ˆ̀)) p1(a(`1)) · · · pn(a(`n)) p1(a(1`)) · · · pi(a(i`)) · · · pn(a(n`))

] (A.16)

and for κ = κ + 1, . . . , ||X|| let

Pr(x̃ = x(`00, `∗)) = (1− q)
[
p0(a(`00))p∗(a(`∗))

]
(A.17)

Definition A.8. Message-Stage Randomization Device: The message stage randomization device ỹ is far

simpler. It is defined as follows. The set Y consists of n + 1 elements, which we denote (y(0), y(1), . . . , y(n)).
The random variable ỹ takes value y(0) with probability 1 − η, and each of the other possible values with

probability η/n (where η is defined in Remark A.3). The value y(0) is the realization associated with the

standard phase S and, for every i, y(i) is the realization associated with the diversionary-i phase.

A.4. Strategies and Beliefs

In this Section, we describe the equilibrium action strategies, message strategies, and beliefs of an individual
in each phase.

Henceforth, fix a dynasty i and a date t. We proceed to describe strategies and beliefs of individual 〈i, t〉
in each phase of the equilibrium. Also, we let k be any dynasty in I, and j be an element of I such that
j 6= i. We will use the mnemonic BB to describe the beginning of period beliefs of individual 〈i, t〉, and EB
to describe end of period beliefs of 〈i, t〉. Finally, we use the phrase “i believes” to mean “puts probability
one on the event...”

Definition A.9. The Initial Phase: The initial phase, In, only occurs in t = 0. Player 〈i, 0〉 inherits null

message ∅.

BB (beginning of period beliefs). His beliefs are trivial: 〈i, 0〉 believes (with probability one) that all others

received ∅.

Action strategy.

g0
i (m0

i , x
0) =

{
ai(`0) if x0 = x(`0, · · ·)
ai(`00) if x0 = x(`00, ·)

(A.18)

22Even though both indices `0 and `00 are used to index the initial phase, the probability distribution does not vary across
the local and global parts of x. The difference in `0 and `00 is merely a notational convenience that allows us to group all the
phase-specific randomization devices into one universal action randomization device.
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Message strategy. Let g0(m0, x0) = (g0
1(m0

1, x
0), . . . , g0

n(m0
n, x0)), and define g0

−k(m0, x0) in the obvious way.

Then

µ0
i (m

0
i , x

0, a0, y0) =


m̆j if a0 = g0(m0, x0) and y0 = y(j)
mi,T if a0 = g0(m0, x0) and y0 = y(i)
mk,T if a0

−k = g0
−k(m0, x0) and a0

k 6= g0
k(m0, x0)

m∗ otherwise

(A.19)

EB (end of period beliefs). If the realized profile is g0
i (m0

i , x
0) and y0 = y(k), then play proceeds to phase

Dk and 〈i, 0〉 believes that every 〈j, 0〉 with j 6= k sends m̆k and 〈k, 0〉 sends mk (of course 〈i, 0〉 ’s belief

about 〈k, 0〉 means effectively that k 6= i. This parenthetical remark applies to all the phases). In all other

cases, 〈i, 0〉 believes that others send the same message that he sends.23

We now describe the equilibrium in the remaining phases. In each phase, at the beginning of each period,
the players observe the message sent by their predecessors and the action correlation device xt = x(κ). Recall
from Definition A.7 that if κ ≤ κ̄, then the game is in one of the local phases, S, Dk, P k or T k. If κ > κ̄, then
the game is in the global phase Z.

Definition A.10. The Standard phase: In the standard phase, S, player 〈i, t〉 inherits the message m∗.

BB. Player 〈i, t〉 believes that all others received m∗.

Action strategy.

gt
i(m

∗, xt) = ai(ˆ̀) whenever xt = x(·, ˆ̀, · · ·) (A.20)

Message strategy. Let24

µt
i(m

∗, xt, at, yt)=


m̆j if xt = x(·, ˆ̀, · · ·), at = a(ˆ̀) and yt = y(j)
ν(M(i, t + 1)) if xt = x(·, ˆ̀, · · ·), at = a(ˆ̀) and yt = y(i)
mk,T if xt = x(·, ˆ̀, · · ·), at

−k = a−k(ˆ̀) and at
k 6= ak(ˆ̀)

m∗ otherwise

(A.21)

EB. If realized profile is gt(m∗, xt) and y0 = y(k), then play proceeds to phase Dk and 〈i, t〉 believes that

all individuals in all dynasties except k sends m̆k while 〈k, t〉 randomizes uniformly over all messages in

M(k, t + 1). In all other cases, 〈i, t〉 believes that others send the same message that he sends.

Definition A.11. The Diversionary-j phase (j 6= i): In the Diversionary-j phase, Dj , with j 6= i, player

〈i, t〉 inherits the message m̆j .

BB. Player 〈i, t〉 believes that the individual in dynasty j received a randomized message with support in

M(j, t), and that all others received m̆j .

Action strategy.

gt
i(m̆

j , xt) = ăj
i (j`) whenever xt = x(· · ·, j`, · · ·) (A.22)

23Our description of beliefs, while complete, leaves out some of the formal notation which we fully provide in the external
Technical Addendum.

24Throughout the paper we adopt the following notational convention. Given any finite set, we denote by by ν(·) the uniform
probability distribution over the set. So, if B is a finite set, ν(B) assigns probability 1/ ||B|| to every element of B.
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Message strategy. In the expression below, let j′ be any element of I not equal to i. Then

µt
i(m̆

j , xt, at, yt)=


m̆j′ if xt = x(· · ·, j`, · · ·), at = ăj(j`) and yt = y(j′)
ν(M(i, t + 1)) if xt = x(· · ·, j`, · · ·), at = ăj(j`) and yt = y(i)
mk,T if xt = x(· · ·, j`, · · ·), at

−k = ăj
−k(j`) and at

k 6= ăj
k(j`)

m∗ otherwise

(A.23)

EB. If the realized profile is (gt
−j(m̆

j , xt), aj
j) and y0 = y(k), then play proceeds to phase Dk and 〈i, t〉 believes

all individuals from dynasties j′ 6= k sends m̆k while the individual in dynasty k randomizes uniformly over

all messages in M(k, t + 1). In all other cases, 〈i, t〉 believes others send the same message that he sends.

Definition A.12. The Diversionary-i AND Punishment-i phases: Significantly, these phases Di and

P i are lumped together because 〈i, t〉 does not distinguish them in either his strategy or his beginning of

period beliefs. In these phases, player 〈i, t〉 inherits a message mi,τ ∈ M(i, t).

BB. Player 〈i, t〉 believes that all other dynasties received a m̆i.

Action strategy.

gt
i(m

i,τ , xt) = ai(i`) = ai
i for all xt (A.24)

Message strategy. Let

µt
i(m

i,τ , xt, at, yt)=



m̆j if xt = x(· · ·, i`, · · ·), at = ăi(i`) and yt = y(j)
ν(M(i, t + 1)) if xt = x(· · ·, i`, · · ·), at = ăi(i`) and yt = y(i)
mk,T if xt = x(· · ·, i`, · · ·), at

−k = ăi
−k(i`) and at

k 6= ăi
k(i`)

mk,T if xt = x(· · ·, i`, · · ·), at
−k = ai

−k(i`) and at
k 6= ai

k(i`)
mi,τ−1 if xt = x(· · ·, i`, · · ·) and at = a(i`)
m∗ otherwise

(A.25)

where we set mi,0 = mi. Notice that player 〈i, t〉 may need to distinguish between the third and fourth cases

of (A.25) since clearly they may be generated by different values of the index k ∈ I. To verify that this

distinction is always feasible, recall that, by construction (see Definition A.3), ă−i(i`) differs from a−i(i`) in

every component, and that of course n ≥ 4.

EB. If the realized profile is (gt
−i(m̆

i, xt), ai
i) and y0 = y(k), then play proceeds to phase Dk and 〈i, t〉 believes

that individuals in dynasties j 6= k send m̆k while the individual in dynasty k randomizes uniformly over all

messages in M(k, t+1). In all other cases, 〈i, t〉 believes that everyone sends the same message that he sends.

In particular, notice that if the realized profile is (gt
−i(m

i,τ , xt), ai
i) then 〈i, t〉 believes that others will send

either mi,τ−1 if τ > 1 or mi if τ = 1. In other words, he discovers (after the fact) in this case that the correct

phase was P i rather than Di.

Definition A.13. The Punishment-j phase, for all j 6= i: In the punishment-j phase, P j , player 〈i, t〉
inherits the message mj,τ ∈ M(j, t).

BB. Player 〈i, t〉 believes that all others received mj,τ .

Action strategy.

gt
i(m

j,τ , xt) = ai(j`) whenever xt = x(·, j`, · · ·) (A.26)
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Message strategy. Let

µt
i(m

j,τ , xt, at, yt) =


mj,τ−1 if xt = x(· · ·, j`, · · ·) and at = a(j`)
mk,T if xt = x(· · ·, j`, · · ·), at

−k = a−k(j`) and at
k 6= ak(j`)

m∗ otherwise
(A.27)

where we set mj,0 = mj .

EB. Individual 〈i, t〉 believes that all send the same message that he sends.

Definition A.14. The Terminal-k′ phase, for all k′ ∈ I: In the terminal-k′ phase, T k′ , player 〈i, t〉 in-

herits the message mk′ .

BB. Player 〈i, t〉 believes that all others received mk′ .

Action strategy.

gt
i(m

k′ , xt) = ai(`k′) whenever xt = x(·, `k′ , · · ·) (A.28)

Message strategy. Let

µt
i(m

k′ , xt, at, yt) =


mk′ if xt = x(· · ·, `k′ , · · ·) and at = a(`k′)
mk,T if xt = x(· · ·, `k′ , · · ·), at

−k = a−k(`k′) and at
k 6= ak(`k′)

m∗ otherwise
(A.29)

EB. Once again, 〈i, t〉 believes that all send the same message that he sends.

Definition A.15. The Global phase: In the global phase, Z, player 〈i, t〉 observes that xt = x(κ) with

κ > κ̄, and he inherits whatever message was sent to him by his predecessor.

BB. Player 〈i, t〉’s belief depends on what belief he would have had if the phase had been local instead of

global. This, in turn, depends on the message. So if he receives, for example, m∗, he inherits the beginning

of period beliefs he would have had in phase S.

Action strategies. For all mt
i, whenever xt = x(κ) with κ > κ,

gt
i(m

t
i, x

t) = ai(`∗) whenever xt = x(·, `∗) (A.30)

Message strategy. Let

µt
i(m

t
i, x

t, at, yt) =


mt

i if xt = x(·, `∗) and at = a(`∗)
mk,T if xt = x(·, `∗), at

−k = a−k(`∗) and at
k 6= ak(`∗)

m∗ otherwise
(A.31)

EB. If xt = x(·, `∗) and the realized profile is a(`∗) then 〈i, t〉 believes that others send the same messages

that they each received. In all other cases, 〈i, t〉 believes that others send the same message that he himself

sends.

A.5. Trembles, Consistency, and Sequential Rationality

In this Section we lay out the necessary structure of trembles that satisfy the consistency requirement of
Sequential equilibrium.
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Definition A.16: Throughout this section we let ε denote a small positive number, which parameterizes

the completely mixed strategies that we construct. It should be understood that our construction of beliefs

involves the limit ε → 0.

Definition A.17. Completely Mixed Action Strategies: Given ε, the completely mixed strategies for all play-

ers 〈i, t〉 at the action stage are denoted by gt
i,ε and are defined as follows.25

After receiving a message m ∈ {m∗} ∪ M̆−i ∪M(i, t) and observing the realization xt of the action-stage

randomization device, any player 〈i, t〉 plays the action prescribed by the action-stage strategy described in

Definition T.1.1 with probability 1− ε2(||A||i − 1) and plays all other actions in Ai with probability ε2 each.

After receiving any message m 6∈ {m∗}∪M̆−i∪M(i, t) and observing the realization xt of the action-stage

randomization device, any player 〈i, t〉 plays the action prescribed by the action-stage strategy described in

Definition T.1.1 with probability 1− ε(||A||i − 1) and plays all other actions in Ai with probability ε each.

Definition A.18. Completely Mixed Message Strategies: Given ε, the completely mixed strategies for all

players 〈i, t〉 at the message stage are denoted by µt
i,ε and are defined as follows.

Player 〈i, t〉 sends the message prescribed by the message-stage strategy described in Definition T.1.2

with probability 1− ε2n+1(||M t+1
i || − 1) and sends all other messages in M t+1

i with probability ε2n+1 each.

Remark A.6. Consistency: Notice that deviations in the message stage are much less likely than deviations

in the action stage. In particular, a single deviation in the message stage is infinitely less likely than n

deviations in the action stage, one for each player. A consequence of this is that each player assigns probability

one to the event that all other players receive messages that are matched to the same phase of the equilibrium

as his. See Section T.6 in the Technical Addendum for details.

Remark A.7. Sequential Rationality: Given the structure of beliefs, the equilibrium incentives in the action

stage are straightforward. For example, consider the action incentives of player 〈i, t〉 in phase S. If he keeps

his prescribed action, he receives a payoff that converges to v∗i as δ goes to one. Whereas if he deviates, he

receives some payoff that converges to qv̄i
i +(1−q)zi < v∗i as δ goes to one. Other incentive constraints follow

a similarly standard logic.

Incentives at the message stage are more complicated and cannot be summarized in a short period of

space. The key step is to show that player 〈i, t〉 sends his prescribed message in phase P i. The fact that

player 〈i, t + 1〉 assigns probability 0 in the action stage to the event that play is in phase P i is critical. The

full details are in Section T.5 in the Technical Addendum.

Appendix B: Proof of Theorem 3

B.1. Preliminaries

Definition B.1: Let a profile of message strategies µ be given. Fix an “augmented history” κt = (x0, a0, y0,

. . . , xt−1, at−1, yt−1). In other words, fix a history ht, together with a sequence of realizations of the message-

stage randomization device (y0, . . . , yt−1). In what follows, κ0 will denote the null history ∅, and for any

τ ≤ t, κτ will denote the appropriate subset of κt.

For every i ∈ I let M0
i (m

0
i |κ0, µi) = 1. Then, recursively forward, define

Mt
i(m

t
i|κt, µi) =

∑
mt−1

i ∈Ht−1

µt−1
i (mt

i|mt−1
i , xt−1, at−1, yt−1)Mt−1

i (mt−1
i |κt−1, µi) (B.1)

25In the interest of brevity, we avoid an explicit distinction between the t = 0 players and all others. What follows can be
interpreted as applying to all players re-defining m0

i to be equal to m∗ for players 〈i ∈ I, 0〉.
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So that Mt
i(m

t
i|κt, µi) is the probability that player 〈i, t − 1〉 sends message mt

i given κt and the profile µi.

We also let Mt
−i(m

t
−i|κt, µ−i) = Mt

−i((m
t
i, . . . ,m

t
i−1,m

t
i+1, . . . ,m

t
n)|κt, µ−i) = Πj 6=iMt

j(m
t
j |κt, µj).

Lemma B.1: Fix any δ ∈ (0, 1), any x̃ and any ỹ. Fix any SE of the dynastic repeated game (g, µ,Φ).
Assume that it displays Inter-Generational Agreement as in Definition 2.

Let any augmented history κt as in Definition B.1 be given. Let also any i ∈ I and any mt
i such that

Mt
i(m

t
i|κt, µi) > 0 be given.

Then for any mt
−i

ΦtB
i (mt

−i|mt
i) = Mt

−i(m
t
−i|κt, µ−i) (B.2)

Proof: We proceed by induction. Given the fixed κt, let κ0 = ∅ and κτ with τ = 1, . . . , t be the augmented
histories comprising the first three components (x0, a0, y0) of κt, the first six components (x0, a0, y0, x1, a1, y1)
of κt and so on. First of all notice that setting τ = 0 yields

Φ1B
i (m0

−i|m0
i ) = M1

−i(m
0
−i|κ0, µ−i) = 1 (B.3)

which is trivially true given that all players 〈i ∈ I, 0〉 receive the null message by construction.

Our working hypothesis is now that the claim is true for an arbitrary τ − 1 < t − 1, and our task is to
show that it holds for τ .

Consider any message mτ
i in Supp (Mτ

i (·|κτ , µi)).26 Then there must exist a message mτ−1
i such that

µτ−1
i (mτ

i |mτ−1
i , xτ−1, aτ−1, yτ−1)Mτ−1

i (mτ−1
i |κτ−1, µi) > 0 (B.4)

Therefore, using (4) we can write

ΦτB
i (mτ

−i|mτ
i ) = Φτ−1E

i (mτ
−i|mτ−1

i , xτ−1, aτ−1, yτ−1) (B.5)

Notice that in any SE it must be the case that the right-hand side of (B.5) is equal to

∑
mτ−1
−i

Φτ−1R
i (mτ−1

−i |mτ−1
i , xτ−1, aτ−1, yτ−1)

∏
j 6=i

µτ−1
j (mτ

j |mτ−1
j , xτ−1, aτ−1, yτ−1)

 (B.6)

Using (3), we know that (B.6) is equal to

∑
mτ−1
−i

Φτ−1B
i (mτ−1

−i |mτ−1
i )

∏
j 6=i

µτ−1
j (mτ

j |mτ−1
j , xτ−1, aτ−1, yτ−1)

 (B.7)

Our working hypothesis can now be used to assert that (B.7) is in turn equal to

∑
mτ−1
−i

Mτ−1
−i (mτ−1

−i |κτ−1, µ−i)

∏
j 6=i

µτ−1
j (mτ

j |mτ−1
j , xτ−1, aτ−1, yτ−1)

 (B.8)

26Supp (·) denotes the support of a probability distribution.
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Rearranging terms (B.8) we find that it can also be written as

∏
j 6=i

 ∑
mτ−1

j

Mτ−1
j (mτ−1

j |κτ−1, µj)µτ−1
j (mτ

j |mτ−1
j , xτ−1, aτ−1, yτ−1)

 (B.9)

Using now (B.1), it is immediate that (B.9) is equal to∏
j 6=i

Mτ
j (mτ

j |κτ , µj) = Mτ
−i(m

τ
−i|κτ , µ−i) (B.10)

and hence the claim is proved.

Definition B.2: Fix any δ ∈ (0, 1), any x̃ and any ỹ. Fix any strategy profile, (g, µ), for the dynastic

repeated game.

Consider the standard repeated game with the same common discount factor δ, and with the following

action-stage randomization device ˆ̃x. The random variable ˆ̃x takes values in the finite set Y × X (the sets

in which ỹ and x̃ take values respectively), and the probability that ˆ̃x is equal to x̂ = (y, x) is Pr(ỹ = y)
Pr(x̃ = x). For notational convenience we will denote the realization x̂t of ˆ̃x

t
by the pair (yt−1, xt).

Recall that a history in the standard repeated game with randomization device ˆ̃x is an object of the

type ht = (x̂0, a0, . . . , x̂t−1, at−1). Therefore, using our notational convention about time superscripts of the

realizations of ˆ̃x
t

we have that any pair (ht, x̂t) can be written as a triple (y−1, κt, xt), where κt corresponds

to ht in the obvious way.

We say that the strategy profile g∗ for the standard repeated game with randomization device ˆ̃x is derived

from the dynastic repeated game profile (g, µ) as above if and only if it is defined as follows.

gt∗
i (ht, x̂t) = gt∗

i (y−1, κt, xt) =
∑
mt

i

Mt
i(m

t
i|κt, µi)gt

i(m
t
i, x

t) (B.11)

Lemma B.2: Fix any δ ∈ (0, 1), any x̃ and any ỹ. Consider any SE, (g, µ), of the dynastic repeated game

that displays Inter-Generational Agreement as in Definition 2.

Now consider the strategy profile g∗ for the standard repeated game with randomization device ˆ̃x that is

derived from (g, µ) as in Definition B.2.

Given g∗, fix any pair (ht, x̂t) representing a history and realized randomization device for the standard

repeated game. For any at
−i ∈ A−i, let Pg∗|ht,x̂t(at

−i) be the probability that the realized action profile for

all players but i at time t is at
−i.

Given the pair (ht, x̂t), consider the corresponding triple (y−1, κt, xt) as in Definition B.2. Then

Pg∗|ht,x̂t(at
−i) =

∏
j 6=i

∑
mt

j

Mt
j(m

t
j |κt, µj) gt

j(a
t
j |mt

j , x
t)

 (B.12)



Luca Anderlini, Dino Gerardi, and Roger Lagunoff 33

Proof: The claim is a direct consequence of (B.11) of Definition B.2.

Lemma B.3: Fix any δ ∈ (0, 1), any x̃ and any ỹ. Consider any SE (g, µ,Φ) of the dynastic repeated game

that displays Inter-Generational Agreement as in Definition 2.

Fix any pair (ht, x̂t) representing a history and realized randomization device for the standard repeated

game. Given the pair (ht, x̂t), consider the corresponding triple (y−1, κt, xt) as in Definition B.2. Given the

last two elements of this triple (κt, xt), now use (B.1) to find a message mt
i such that Mt

i(m
t
i|κt, µi) > 0.

Finally, consider the following alternative action-stage and message-stage strategies (gt
i, µ

t
i) for player

〈i, t〉. Whenever mt
i 6= mt

i, set gt
i = gt

i and µt
i = µt

i. Then define

gt
i(m

t
i, x

t) =
∑
mt

i

Mt
i(m

t
i|κt, µi)gt

i(m
t
i, x

t) (B.13)

and

µt
i(m

t
i, x

t, at, yt) =
∑
mt

i

Mt
i(m

t
i|κt, µi)µt

i(m
t
i, x

t, at, yt) (B.14)

Here and throughout the rest of the paper and the technical addendum, we denote by vt
i(g, µ|mt

i, x
t,ΦtB

i )
the continuation payoff to player 〈i, t〉 given the profile (g, µ), after he has received message mt

i has observed

the realization xt, and given that his beliefs over the n− 1-tuple mt
−i are ΦtB

i . See also our Point of Notation

T.2.1. Then

vt
i(g, µ|mt

i, x
t,ΦtB

i ) = vt
i(g

t
i, g

−t
i , g−i, µ

t
i, µ

−t
i , µ−i|mt

i, x
t,ΦtB

i ) (B.15)

Proof: The claim is a direct consequence of Lemma B.1 and of (3) of Definition 2. The details are omitted
for the sake of brevity.

B.2. Proof of the Theorem

Fix any δ ∈ (0, 1), any x̃ and any ỹ. Consider any SE triple (g, µ,Φ) for the dynastic repeated game. Assume
that this SE displays Inter-Generational Agreement as in Definition 2.

Now consider the strategy profile g∗ for the standard repeated game with common discount δ and ran-
domization device ˆ̃x that is derived from (g, µ) as in Definition B.2.

Since (g, µ) and g∗ obviously give rise to the same payoff vector, to prove the claim it is enough to show
that g∗ is a SPE of the repeated game with δ and ˆ̃x. By way of contradiction, suppose that it is not.

By the one-shot deviation principle this implies that there exist an i, an ht, an x̂t and a σi such that

vi(σi, g
−t∗
i , g∗−i|ht, x̂t) > vi(g∗|ht, x̂t) (B.16)

Given the pair (ht, x̂t), consider the corresponding triple (y−1, κt, xt) as in Definition B.2. Given the last
two elements of this triple (κt, xt), now use (B.1) to find a message mt

i such that Mt
i(m

t
i|κt, µi) > 0.

Using Lemmas B.1 and B.2 we can now conclude that (B.16) implies that

vt
i(σi, g

−t
i , g−i, µ

t
i, µ

−t
i , µ−i|mt

i, x
t,ΦtB

i ) > vt
i(g

t
i, g

−t
i , g−i, µ

t
i, µ

−t
i , µ−i|mt

i, x
t,ΦtB

i ) (B.17)

where σi is the profitable deviation identified in (B.16) and gt
i and µt

i are the alternative action-stage and
message-stage strategies of Lemma B.3.
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However, using (B.15) of Lemma B.3, the inequality in (B.17) clearly implies that

vt
i(σi, g

−t
i , g−i, µ

t
i, µ

−t
i , µ−i|mt

i, x
t,ΦtB

i ) > vt
i(g, µ|mt

i, x
t,ΦtB

i ) (B.18)

But since (B.18) contradicts the fact that (g, µ,Φ) is an SE of the dynastic repeated game, the proof is now
complete.
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T.1. A Compact Description of Strategies

Definition T.1.1. Action-Stage Strategies: Let k be an element of I, and j be an element of I not equal to

i.

Let (a(1), . . . , a(||A||)) be the enumeration of the elements of A of Definition A.2 and consider the index-

ation of the elements of X in Definition A.7, according to whether x(κ) has κ ≤ κ or not.

Recall that at the beginning of period 0 all players 〈i ∈ I, 0〉 receive message m0
i = ∅. For all players

〈i ∈ I, 0〉 then define

g0
i (m0

i , x
0) =

{
ai(`0) if x0 = x(`0, · · ·)
ai(`00) if x0 = x(`00, ·)

(T.1.1)

Now consider any player 〈i, t〉 with t ≥ 1. It is convenient to distinguish between the two cases xt = x(κ)
with κ ≤ κ and with κ > κ.

For any i ∈ I and t ≥ 1 whenever xt = x(κ) with κ ≤ κ defineT.1

gt
i(m

t
i, x

t) =


ai(ˆ̀) if mt

i = m∗ and xt = x(·, ˆ̀, · · ·)
ăj

i (j`) if mt
i = m̆j and xt = x(· · ·, j`, · · ·)

ai(`k) if mt
i = mk and xt = x(· · ·, `k, · · ·)

ai(k`) if mt
i ∈ M(k, t) and xt = x(· · ·, k`, · · ·)

(T.1.2)

For any i ∈ I, t ≥ 1 and mt
i, whenever xt = x(κ) with κ > κ define

gt
i(m

t
i, x

t) = ai(`∗) if xt = x(·, `∗) (T.1.3)

Definition T.1.2. Message-Stage Strategies: Let k be any element of I, and j be any element of I not equal

to i.

We begin with period t = 0. Recall that m0
i = ∅ for all i ∈ I. Let also g0(m0, x0) = (g0

1(m0
1, x

0), . . . ,
g0

n(m0
n, x0)), and define g0

−k(m0, x0) in the obvious way.

We let

µ0
i (m

0
i , x

0, a0, y0) =


m̆j if a0 = g0(m0, x0) and y0 = y(j)
mi,T if a0 = g0(m0, x0) and y0 = y(i)
mk,T if a0

−k = g0
−k(m0, x0) and a0

k 6= g0
k(m0, x0)

m∗ otherwise

(T.1.4)

For the periods t ≥ 1 it is convenient to distinguish between several cases. Assume first that xt = xt(κ)
with κ > κ. Let

µt
i(m

t
i, x

t, at, yt) =


mt

i if xt = x(·, `∗) and at = a(`∗)
mk,T if xt = x(·, `∗), at

−k = a−k(`∗) and at
k 6= ak(`∗)

m∗ otherwise
(T.1.5)

T.1Notice that the third case in (T.1.2) can only possibly apply when t ≥ T + 1.
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Now consider the case xt = xt(κ) with κ ≤ κ. We divide this case into several subcases, according to

which message player 〈i, t〉 has received. We begin with mt
i = m∗. LetT.2

µt
i(m

∗, xt, at, yt)=


m̆j if xt = x(·, ˆ̀, · · ·), at = a(ˆ̀) and yt = y(j)
ν(M(i, t + 1)) if xt = x(·, ˆ̀, · · ·), at = a(ˆ̀) and yt = y(i)
mk,T if xt = x(·, ˆ̀, · · ·), at

−k = a−k(ˆ̀) and at
k 6= ak(ˆ̀)

m∗ otherwise

(T.1.6)

Our next subcase of κ ≤ κ is that of mt
i = m̆j . With the understanding that j′ is any element of I not equal

to i, we let

µt
i(m̆

j , xt, at, yt)=


m̆j′ if xt = x(· · ·, j`, · · ·), at = ăj(j`) and yt = y(j′)
ν(M(i, t + 1)) if xt = x(· · ·, j`, · · ·), at = ăj(j`) and yt = y(i)
mk,T if xt = x(· · ·, j`, · · ·), at

−k = ăj
−k(j`) and at

k 6= ăj
k(j`)

m∗ otherwise

(T.1.7)

Still assuming κ ≤ κ we now deal with the subcase mt
i ∈ M(i, t). For any mi,τ ∈ M(i, t), we let

µt
i(m

i,τ , xt, at, yt)=



m̆j if xt = x(· · ·, j`, · · ·), at = ăi(i`) and yt = y(j)
ν(M(i, t + 1)) if xt = x(· · ·, j`, · · ·), at = ăi(i`) and yt = y(i)
mk,T if xt = x(· · ·, j`, · · ·), at

−k = ăi
−k(i`) and at

k 6= ăi
k(i`)

mk,T if xt = x(· · ·, j`, · · ·), at
−k = ai

−k(i`) and at
k 6= ai

k(i`)
mi,τ−1 if xt = x(· · ·, j`, · · ·) and at = a(i`)
m∗ otherwise

(T.1.8)

where we set mi,0 = mi. Notice that player 〈i, t〉 may need to distinguish between the third and fourth cases

of (T.1.8) since clearly they may be generated by different values of the index k ∈ I. To verify that this

distinction is always feasible, recall that, by construction (see Definition A.3), ă−i(i`) differs from a−i(i`) in

every component, and that of course n ≥ 4.

The next subcase of κ ≤ κ we consider is that of mt
i ∈ M(j, t). For any mj,τ ∈ M(j, t), we let

µt
i(m

j,τ , xt, at, yt) =


mj,τ−1 if xt = x(· · ·, j`, · · ·) and at = a(j`)
mk,T if xt = x(· · ·, j`, · · ·), at

−k = a−k(j`) and at
k 6= ak(j`)

m∗ otherwise
(T.1.9)

where we set mj,0 = mj .

Finally, still assuming that κ ≤ κ, we consider the case in which mt
i = mk′ for some k′ ∈ I. We let

µt
i(m

k′ , xt, at, yt) =


mk′ if xt = x(· · ·, `k′ , · · ·) and at = a(`k′)
mk,T if xt = x(· · ·, `k′ , · · ·), at

−k = a−k(`k′) and at
k 6= ak(`k′)

m∗ otherwise
(T.1.10)

T.2. Notation

Point of Notation T.2.1: Abusing the notation we established for the standard repeated game, we adopt

the following notation for continuation payoffs in the dynastic repeated game. Let an assessment (g, µ,Φ) be

given.

T.2Throughout the paper we adopt the following notational convention. Given any finite set, we denote by by ν(·) the uniform
probability distribution over the set. So, if B is a finite set, ν(B) assigns probability 1/ ||B|| to every element of B.
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Recall that we denote by vt
i(g, µ|mt

i, x
t,ΦtB

i ) the continuation payoff to player 〈i, t〉 given the profile

(g, µ), after he has received message mt
i, has observed the realization xt, and given that his beliefs over the

n − 1-tuple mt
−i are ΦtB

i . In view of our discussion at the beginning of Section 3, it is clear that the only

component of the system of beliefs Φ that is relevant to define this continuation payoff is in fact ΦtB
i . Our

discussion there also implies that the argument mt
i is redundant once ΦtB

i has been specified. We keep it in

our notation since it helps streamline some of the arguments below.

We let vt
i(g, µ|mt

i, x
t, at, yt,ΦtE

i ) denote the continuation payoff (viewed from the beginning of period

t + 1) to player 〈i, t〉 given the profile (g, µ), after he has received message mt
i, has observed the triple

(xt, at, yt), and given that his beliefs over the n − 1-tuple mt+1
−i are given by ΦtE

i . In view of our discussion

at the beginning of Section 3, it is clear that once ΦtE
i has been specified, the arguments (mt

i, x
t, at, yt) are

redundant in determining the end-of-period continuation payoff to player 〈i, t〉. Whenever this does not cause

any ambiguity (about ΦtE
i ) we will write vt

i(g, µ|ΦtE
i ) instead of vt

i(g, µ|mt
i, x

t, at, yt,ΦtE
i ).

As we noted in the text all continuation payoffs clearly depend on δ as well. To keep notation down this

dependence will be omitted whenever possible.

Point of Notation T.2.2: We will abuse our notation for ΦtB
i (·), ΦtE

i (·) and ΦtR
i (·) slightly in the following

way. We will allow events of interest and conditioning events to appear as arguments of ΦtB
i , ΦtE

i and ΦtR
i ,

to indicate their probabilities under these distributions.

So, for instance when we write ΦtB
i (mt

−i = (z, . . . , z)|mt
i) = c we mean that according to the beginning-of-

period beliefs of player 〈i, t〉, after observing mt
i, the probability that mt

−i is equal to the n−1-tuple (z, . . . , z)
is equal to c.

Point of Notation T.2.3: Whenever the profile (g, µ) is a profile of completely mixed strategies, the beliefs

ΦtB
i (·), ΦtE

i (·) and ΦtR
i (·) are of course entirely determined by what player 〈i, t〉 observes and by (g, µ) using

Bayes’ rule. In this case, we will allow the pair (g, µ) to appear as a “conditioning event.”

So, for instance, ΦtB
i (mt

−i|mt
i, g, µ) is the probability of the n− 1-tuple mt

−i, after mt
i has been received,

obtained from the completely mixed profile (g, µ) via Bayes’ rule. Events may appear as arguments in this

case as well, consistently with our Point of Notation T.2.2 above.

Moreover, since the completely mixed pair (g, µ) determines the probabilities of all events, concerning

for instance histories, messages of previous cohorts and the like, we will use the notation Pr to indicate such

probabilities, using the pair (g, µ) as a conditioning event.

So, given any two events L and J , the notation Pr(L|J, g, µ) will indicate the probability of event L,

conditional on event J , as determined by the completely mixed pair (g, µ) via Bayes’ rule.

T.3. A Preliminary Result

As we mentioned before, we work with message spaces that are smaller than the set Ht. We now proceed to
show that this is without loss of generality.

Definition T.3.1: Consider the dynastic repeated game described in full in Section 2. Now consider the

dynastic repeated game obtained from this when we restrict the message space of player 〈i, t〉 to be M t+1
i ⊆

Ht+1, with all other details unchanged.

We call this the restricted dynastic repeated game with message spaces {M t
i }i∈I,t≥1. For any given

δ ∈ (0, 1), x̃ and ỹ, we denote by GD(δ, x̃, ỹ, {M t
i }i∈I,t≥1) the set of SE strategy profiles, while we write

ED(δ, x̃, ỹ, {M t
i }i∈I,t≥1) for the set of SE payoff profiles of this dynastic repeated game with restricted message

spaces.

Lemma T.3.1: Let any δ ∈ (0, 1), x̃ and ỹ be given. Consider now any restricted dynastic repeated game

with message spaces {M t
i }i∈I,t≥1. Then ED(δ, x̃, ỹ, {M t

i }i∈I,t≥1) ⊆ ED(δ, x̃, ỹ).
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Proof: Let a profile (g∗, µ∗) ∈ GD(δ, x̃, ỹ, {M t
i }i∈I,t≥1) with associated beliefs Φ∗ be given. To prove the

statement, we proceed to construct a new profile (g∗∗, µ∗∗) ∈ GD(δ, x̃, ỹ) and associated beliefs Φ∗∗ that are
consistent with (g∗∗, µ∗∗), and which gives every player the same payoff as (g∗, µ∗).

Denote a generic element of M t
i by zt

i . Since M t
i ⊆ Ht, we can partition Ht into ||M t

i || non-empty mutually
exclusive exhaustive subsets, and make each of these subsets correspond to an element zt

i of M t
i . In other

words, we can find a map ρt
i : M t

i → 2Ht

such that ρt
i(z

t
i) 6= ∅ for all zt

i ∈ M t
i , ρt

i(z
t′
i ) ∩ ρt

i(z
t′′
i ) = ∅ whenever

zt′
i 6= zt′′

i , and
⋃

zt
i∈Mt

i
ρ(zt

i) = Ht.

We can now describe how the profile (g∗∗, µ∗∗) is obtained from the given (g∗, µ∗). We deal first with the
action stage. For any player 〈i, t〉, and any zt

i ∈ M t
i , set

gt∗∗
i (mt

i, x) = gt∗
i (zt

i , x) ∀mt
i ∈ ρt

i(z
t
i) (T.3.1)

At the message stage, for any player 〈i, t〉, any (zt
i , x

t, at, yt), any mt
i ∈ ρt

i(z
t
i), and any zt+1

i ∈ Supp(µt∗
i (zt

i ,
xt, at, yt)), set

µt∗∗
i (mt+1

i |mt
i, x

t, at, yt) =
1∣∣∣∣ρt+1

i (zt+1
i )

∣∣∣∣µt∗
i (zt+1

i |zt
i , x

t, at, yt) ∀mt+1
i ∈ ρt+1

i (zt+1
i ) (T.3.2)

Next, we describe Φ∗∗, starting with the beginning-of-period beliefs. For any player 〈i, t〉, any zt
i ∈ M t

i

and any zt
−i ∈ M t

−i, set

ΦtB∗∗
i (mt

−i|mt
i) =

ΦtB∗
i (zt

−i|zt
i)

Πj 6=i

∣∣∣∣ρt
j(z

t
j)

∣∣∣∣ ∀mt
i ∈ ρt

i(z
t
i), ∀mt

−i ∈ Πj 6=iρ
t
j(z

t
j) (T.3.3)

Similarly, concerning the end-of-period beliefs, for any player 〈i, t〉, any (zt
i , x

t, at, yt) and any zt+1
−i ∈ M t+1

−i ,
set

ΦtE∗∗
i (mt+1

−i |mt
i, x

t, at, yt) =

ΦtE∗
i (zt+1

−i |zt
i , x

t, at, yt)
Πj 6=i

∣∣∣∣ρt+1
j (zt+1

j )
∣∣∣∣ ∀mt

i ∈ ρt
i(z

t
i), ∀mt+1

−i ∈ Πj 6=iρ
t+1
j (zt+1

j )
(T.3.4)

Since the profile (g∗, µ∗) is sequentially rational given Φ∗, it is immediate from (T.3.1), (T.3.2), (T.3.3)
and (T.3.4) that the profile (g∗∗, µ∗∗) is sequentially rational given Φ∗∗, and we omit further details of the
proof of this claim.

Of course, it remains to show that (g∗∗, µ∗∗,Φ∗∗) is a consistent assessment.
Let (g∗ε , µ∗ε) be parameterized completely mixed strategies which converge to (g∗, µ∗) and give rise, in the

limit as ε → 0, to beliefs Φ∗ via Bayes’ rule.
Given any ε > 0, let (g∗∗ε , µ∗∗ε ) be a profile of completely mixed strategies obtained from (g∗ε , µ∗ε) exactly

as in (T.3.1) and (T.3.2).
We start by verifying the consistency of the beginning-of-period beliefs. Observe that for any given zt =

(zt
i , z

t
−i), from (T.3.2) we know that whenever mt = (mt

i,m
t
−i) ∈ Πj∈Iρ

t
j(z

t
j)

Pr(mt
i,m

t
−i|g∗∗ε , µ∗∗ε ) =

Pr(zt
i , z

t
−i|g∗ε , µ∗ε)

Πj∈I

∣∣∣∣ρt
j(z

t
j)

∣∣∣∣ (T.3.5)

Similarly, using (T.3.2) again we know that whenever mt
i ∈ ρt

i(z
t
i)

Pr(mt
i|g∗∗ε , µ∗∗ε ) =

Pr(zt
i |g∗ε , µ∗ε)

||ρt
i(z

t
i)||

(T.3.6)
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Taking the ratio of (T.3.5) and (T.3.6) and taking the limit as ε → 0 now yields that for any any zt
i ∈ M t

i

and any zt
−i ∈ M t

−i

lim
ε→0

ΦtB∗∗
i (mt

−i|mt
i, g

∗∗
ε , µ∗∗ε ) =

ΦtB∗
i (zt

−i|zt
i)

Πj 6=i

∣∣∣∣ρt
j(z

t
j)

∣∣∣∣ ∀mt
i ∈ ρt

i(z
t
i), ∀mt

−i ∈ Πj 6=iρ
t
j(z

t
j) (T.3.7)

Hence we have shown that the beginning-of-period beliefs as in (T.3.3) are consistent with (g∗∗, µ∗∗).

The proof that the end-of-period beliefs as in (T.3.4) are consistent with (g∗∗, µ∗∗) runs along exactly the
same lines, and we omit the details.

T.4. Proof of Theorem A.1: Beliefs

Definition T.4.1. Beginning-of-Period Beliefs: Let k be any element of I, and j be any element of I not

equal to i.

The beginning-of-period beliefs of all players 〈i ∈ I, 0〉 are trivial. Of course, all players believe that all

other players have received the null message m0
i = ∅.

The beginning-of-period beliefs ΦtB
i (mt

i) of any other player 〈i, t〉, depending on the message he receives

from player 〈i, t− 1〉 are as followsT.3

if mt
i = m∗ then mt

−i = (m∗, . . . ,m∗) with probability 1

if mt
i = m̆j then


mt
−i−j= (m̆j , . . . , m̆j) with pr. 1

mt
j ∈ M(j, t) with pr. 1

Pr(mt
j = mj,τ ) > 0 ∀mj,τ ∈ M(j, t)

if mt
i = mj,τ then mt

−i = (mj,τ , . . . ,mj,τ ) with probability 1
if mt

i = mi,τ then mt
−i = (m̆i, . . . , m̆i) with probability 1

if mt
i = mk then mt

−i = (mk, . . . ,mk) with probability 1

(T.4.1)

Definition T.4.2. End-of-Period Beliefs: Let k be any element of I, and j be any element of I not equal

to i.

We begin with period t = 0. Recall that m0
i = ∅ for all i ∈ I. As before, let also g0(m0, x0) =

(g0
1(m0

1, x
0), . . . , g0

n(m0
n, x0)), and define g0

−k(m0, x0) in the obvious way.

Let Φ0E
i (m0

i , x
0, a0, y0) be as follows

if a0 = g0(m0, x0) and y0 = y(j) then m1
−i−j = (m̆j , . . . , m̆j),m1

j = mj,T with pr. 1
if a0 = g0(m0, x0) and y0 = y(i) then m1

−i = (m̆i, . . . , m̆i) with probability 1
if a0

−k = g0
−k(m0, x0) and a0

k 6= g0
k(m0

k, x0) then m1
−i = (mk,T , . . . ,mk,T ) with prob. 1

otherwise m1
−i = (m∗, . . . ,m∗) with probability 1

(T.4.2)

Our next case is t ≥ 1 and xt = x(κ) with κ > κ. Let x(`00, `∗) denote the realization of xt. For any

T.3Notice that the second line of (T.4.1) does not fully specify the probability distribution over the component mt
j of the beliefs

of player 〈i, t〉. For the rest of the argument, what matters is only that all elements of M(j, t) have positive probability, and that
no message outside this set has positive probability. The distribution can be computed using Bayes’ rule from the equilibrium
strategies described in Definitions T.1.1 and T.1.2 above. We omit the details for the sake of brevity.
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player 〈i, t〉, let ΦtE
i (mt

i, x(`00, `∗), at, yt) be as followsT.4

if at = a(`∗) and mt
i = m̆j then


mt+1
−i−j= (m̆j , . . . , m̆j) with pr. 1

mt+1
j ∈ M(j, t) with pr. 1

Pr(mt+1
j = mj,τ ) > 0 ∀mj,τ ∈ M(j, t)

if at = a(`∗) and mt
i = mj,τ then mt+1

−i = (mj,τ , . . . ,mj,τ ) with probability 1
if at = a(`∗) and mt

i = mi,τ then mt+1
−i = (m̆i, . . . , m̆i) with probability 1

if at = a(`∗) and mt
i = mk then mt+1

−i = (mk, . . . ,mk) with probability 1
if at

−k = a−k(`∗) and at
k 6= ak(`∗) then mt+1

−i = (mk,T , . . . ,mk,T ) with probability 1
otherwise mt+1

−i = (m∗, . . . ,m∗) with probability 1

(T.4.3)

We divide the case of t ≥ 1 and xt = x(κ) with κ ≤ κ into several subcases, according to which message

player 〈i, t〉 has received. We begin with mt
i = m∗. Let x(·, ˆ̀, · · ·) denote the realization of xt. For any player

〈i, t〉, with the understanding that mj,τ is a generic element of M(j, t + 1), let ΦtE
i (m∗, x(·, ˆ̀, · · ·), at, yt) be

as follows

if at = a(ˆ̀) and yt = y(j) then
{

mt+1
−i−j= (m̆j , . . . , m̆j)

mt+1
j = mj,τ with pr.

1
||M(j, t + 1)||

if at = a(ˆ̀) and yt = y(i) then mt+1
−i = (m̆i, . . . , m̆i) with probability 1

if at
−k = a−k(ˆ̀) and at

k 6= ak(ˆ̀) then mt+1
−i = (mk,T , . . . ,mk,T ) with probability 1

otherwise mt+1
−i = (m∗, . . . ,m∗) with probability 1

(T.4.4)

The next subcase is that of mt
i = m̆j . Let x(· · ·, j`, · · ·) denote the realization of xt. With the understanding

that j′ is an element of I not equal to i and that mj′,τ is a generic element of M(j′, t + 1), let ΦtE
i (m̆j , x(· ·

·, j`, · · ·), at, yt) be as follows

if at = ăj(j`) and yt = y(j′) then

{
mt+1
−i−j= (m̆j′ , . . . , m̆j′)

mt+1
j′ = mj′,τ with pr.

1
||M(j′, t + 1)||

if at = ăj(j`) and yt = y(i) then mt+1
−i = (m̆i, . . . , m̆i) with probability 1

if at
−k = ăj

−k(j`) and at
k 6= ăj

k(j`) then mt+1
−i = (mk,T , . . . ,mk,T ) with probability 1

otherwise mt+1
−i = (m∗, . . . ,m∗) with probability 1

(T.4.5)

The next subcase is that of mt
i = mi,τ ∈ M(i, t). Let x(· · ·, i`, · · ·) denote the realization of xt. With the

understanding that mj,τ is a generic element of M(j, t + 1), let ΦtE
i (mi,τ , x(· · ·, i`, · · ·), at, yt) be as follows

if at = ăi(i`) and yt = y(j) then
{

mt+1
−i−j= (m̆j , . . . , m̆j)

mt+1
j = mj,τ with pr.

1
||M(j, t + 1)||

if at = ăi(i`) and yt = y(i) then mt+1
−i = (m̆i, . . . , m̆i) with probability 1

if at
−k = ăi

−k(i`) and at
k 6= ăi

k(i`) then mt+1
−i = (mk,T , . . . ,mk,T ) with probability 1

if at
−k = a−k(i`) and at

k 6= ak(i`) then mt+1
−i = (mk,T , . . . ,mk,T ) with probability 1

if at = a(i`) then mt+1
−i = (mi,τ−1, . . . ,mi,τ−1) with probability 1

otherwise mt+1
−i = (m∗, . . . ,m∗) with probability 1

(T.4.6)

where we set mi,0 = mi.

The next subcase of t ≥ 1 and xt = x(κ) with κ ≤ κ that we consider is that of mt
i = mj,τ ∈ M(j, t).

T.4Similarly to (T.4.1), the first line of (T.4.3) does not fully specify the probability distribution over the component mt+1
j of

the beliefs of player 〈i, t〉. For the rest of the argument, what matters is only that all elements of M(j, t) have positive probability,
and that no message outside this set has positive probability. The distribution can be computed using Bayes’ rule from the
equilibrium strategies described in Definitions T.1.1 and T.1.2 above. We omit the details for the sake of brevity.
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Let x(· · ·, j`, · · ·) denote the realization of xt. Let ΦtE
i (mj,τ , x(· · ·, j`, · · ·), at, yt) be as follows

if at = a(j`) then mt+1
−i = (mj,τ−1, . . . ,mj,τ−1) with probability 1

if at
−k = a−k(j`) and at

k 6= ak(j`) then mt+1
−i = (mk,T , . . . ,mk,T ) with probability 1

otherwise mt+1
−i = (m∗, . . . ,m∗) with probability 1

(T.4.7)

where we set mj,0 = mj .

The final subcase to consider is that of mt
i = mk′ for some k′ ∈ I. Let x(· · ·, `k′ , · · ·) denote the realization

of xt. Let ΦtE
i (mk′ , x(· · ·, `k′ , · · ·), at, yt) be as follows

if at = a(`k′) then mt+1
−i = (mk′ , . . . mk′) with probability 1

if at
−k = a−k(`k′) and at

k 6= ak(`k′) then mt+1
−i = (mk,T , . . . ,mk,T ) with probability 1

otherwise mt+1
−i = (m∗, . . . ,m∗) with probability 1

(T.4.8)

T.5. Proof of Theorem A.1: Sequential Rationality

Definition T.5.1: Let IItE
i denote the end-of-period-t collection of information sets that belong to player

〈i, t〉, with typical element ItE
i .

It is convenient to partition IItE
i into mutually disjoint exhaustive subsets on the basis of the associated

beliefs of player 〈i, t〉. The fact that they exhaust IItE
i can be checked directly from Definition T.4.2 above.

Let IItE
i (∗) ⊂ IItE

i be the collection of information sets in which player 〈i, t〉 believes that mt+1
−i is equal

to (m∗, . . . ,m∗) with probability one. These beliefs will be denoted by ΦtE
i (∗).

Let IItE
i (˘i) ⊂ IItE

i be the collection of information sets in which player 〈i, t〉 believes that mt+1
−i is equal

to (m̆i, . . . , m̆i) with probability one. These beliefs will be denoted by ΦtE
i (˘i).

For every j ∈ I not equal to i, let IItE
i (˘ j, t) ⊂ IItE

i be the collection of information sets in which

player 〈i, t〉 believes that mt+1
−i−j is equal to (m̆j , . . . , m̆j) with probability one, that Pr(mt+1

j = mj,τ ) > 0 ∀
mj,τ ∈ M(j, t), and that Pr(mt+1

j ∈ M(j, t)) = 1.T.5 These beliefs will be denoted by ΦtE
i (˘j, t).

For every j ∈ I not equal to i, let IItE
i (˘j, t + 1) ⊂ IItE

i be the collection of information sets in which

player 〈i, t〉 believes that mt+1
−i−j is equal to (m̆j , . . . , m̆j) with probability one, that Pr(mt+1

j = mj,τ ) =
||M(j, t + 1)||−1 ∀ mj,τ ∈ M(j, t + 1). These beliefs will be denoted by ΦtE

i (˘j, t + 1).

For every k ∈ I, let IItE
i (k) ⊂ IItE

i be the collection of information sets in which player 〈i, t〉 believes that

mt+1
−i is equal to (mk, . . . ,mk) with probability one. These beliefs will be denoted by ΦtE

i (k).

For every k ∈ I, and every τ = max{T − t, 1}, . . . , T let IItE
i (k, τ) ⊂ IItE

i be the collection of information

sets in which player 〈i, t〉 believes that mt+1
−i is equal to (mk,τ , . . . ,mk,τ ) with probability one. These beliefs

will be denoted by ΦtE
i (k, τ).

Definition T.5.2: Let the strategy profile (g, µ) described in Definitions T.1.1 and T.1.2 be given. Fix a

period t and an n-tuple of messages mt+1 = (mt+1
1 , . . . ,mt+1

n ), with mt+1
k ∈ M t+1

k for every k ∈ I.

Clearly, the profile (g, µ) together with mt+1 uniquely determine a probability distribution over action

profiles over all future periods, beginning with t + 1.

Therefore, we can define the expected discounted (from the beginning of period t + 1) payoff to player

〈i, t〉, given (g, µ) and mt+1 in the obvious way. This will be denoted by v̈t
i(m

t+1). Moreover, since they play

a special role in some of the computations that follow, we reserve two pieces of notation for two particular

instances of mt+1. The expression v̈t
i(∗) stands for v̈t

i(m
t+1) when mt+1 = (m∗, . . . ,m∗). Moreover, for any

k ∈ I, the expression v̈t
i(k, τ) stands for v̈t

i(m
t+1) when mt+1

−k = (m̆k, . . . m̆k) and mt+1
k = mk,τ ∈ M(k, t+1).

T.5See footnote T.4 above.
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Lemma T.5.1: For any i ∈ I, any k ∈ I, any t, and any τ = max{T − t, 1}, . . . , T , we have that

v̈t
i(∗) =

(1− δ)
[
q ˆ̂v i + (1− q) zi

]
+ δ q v∗i

1 − δ (1 − q)
(T.5.1)

and

v̈t
i(k, τ) =

(1− δ)
[
q ŭk

i + (1− q) zi

]
+ δ q v∗i

1 − δ (1 − q)
(T.5.2)

where v̈t
i(∗) and v̈t

i(k, τ) are as in Definition T.5.2, ˆ̂v i is as in (A.7), zi is as in Remark A.4, v∗i is as in the

statement of the Theorem, and ŭk
i is as in (A.4).

Proof: Assume first that t ≥ T . Using Definitions T.1.1 and T.1.2 we can write v̈t
i(∗) and v̈t

i(k, τ) recursively
as

v̈t
i(∗) = q

{
(1− δ)ˆ̂v i + δ

[
(1− η)v̈t+1

i (∗) +
η

n

∑
k′∈I

T∑
τ=1

v̈t+1
i (k′, τ)

T

]}
+

(1− q)
[
(1− δ)zi + δv̈t+1

i (∗)
] (T.5.3)

and

v̈t
i(k, τ) = q

{
(1− δ)ŭk

i + δ

[
(1− η)v̈t+1

i (∗) +
η

n

∑
k′∈I

T∑
τ=1

v̈t+1
i (k′, τ)

T

]}
+

(1− q)
[
(1− δ)zi + δv̈t+1

i (k, τ)
] (T.5.4)

Since the strategy profile (g, µ) described in Definitions T.1.1 and T.1.2 is stationary for t ≥ T , we
immediately have that v̈t

i(∗) = v̈t+1
i (∗) and, for any k ∈ I and any τ = 1, . . . , T , v̈t

i(k, τ) = v̈t+1
i (k, τ). Hence

we can solve (T.5.3) and (T.5.4) simultaneously for the NT + 1 variables v̈t
i(∗) and v̈t

i(k, τ) (k ∈ I and τ =
1, . . . , T ). Using (A.8) this immediately gives (T.5.1) and (T.5.2), as required.

Proceeding by induction backwards from t = T , it is also immediate to verify that the statement holds
for any t < T . The details are omitted for the sake of brevity.

Lemma T.5.2: Let the strategy profile (g, µ) and system of beliefs Φ described in Definitions T.1.1, T.1.2,

T.4.1 and T.4.2 be given. Then the end-of-period continuation payoffs for any player 〈i, t〉 (discounted as of

the beginning of period t + 1) at any information set It
i ∈ IItE

i (as categorized in Definition T.5.1) are as

follows.T.6

vt
i(g, µ|ΦtE

i (∗)) =
(1− δ)

[
q ˆ̂v i + (1− q) zi

]
+ δ q v∗i

1 − δ (1 − q)
(T.5.5)

vt
i(g, µ|ΦtE

i (˘i)) =
(1− δ)

[
q ŭi

i + (1− q) zi

]
+ δ q v∗i

1 − δ (1 − q)
(T.5.6)

vt
i(g, µ|ΦtE

i (˘j, t)) = vt
i(g, µ|ΦtE

i (˘j, t + 1)) =
(1− δ)

[
q ŭj

i + (1− q) zi

]
+ δ q v∗i

1 − δ (1 − q)
∀j 6= i (T.5.7)

T.6See our Point of Notation T.2.1 above.
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vt
i(g, µ|ΦtE

i (k)) = q vk
i + (1− q)zi ∀ k ∈ I (T.5.8)

vt
i(g, µ|ΦtE

i (k, τ)) =
[
1−

(
δq

1− δ(1− q)

)τ] [
qωk

i + (1− q)zi

]
+(

δq

1− δ(1− q)

)τ [
qvk

i + (1− q)zi

]
∀ k ∈ I ∀ τ = max{T − t, 1}, . . . , T

(T.5.9)

where ˆ̂v i is as in (A.7), zi is as in Remark A.4, v∗i is as in the statement of the Theorem, ŭk
i is as in (A.4),

and ωk
i is as in (A.3).

Proof: Equations (T.5.5), (T.5.6) and (T.5.7) are a direct consequence of Definition T.5.1 and Lemma T.5.1.

Equation (T.5.8) follows directly from Definition T.5.1 and the description of the profile (g, µ) in Defini-
tions T.1.1 and T.1.2.

Using the notation established in Definition T.5.2, consider the quantity v̈t
i(m

k,τ , . . . ,mk,τ ). Given the
strategies described in Definitions T.1.1 and T.1.2 it is evident that this quantity does not depend on t.
Therefore, for any k ∈ I and τ = max{T − t, 1}, . . . , T , we can let v̈i(k, τ) = v̈t

i(m
k,τ , . . . ,mk,τ ), for all t.

Clearly, using Definition T.5.1, we have that for all k, τ and t, vt
i(g, µ|ΦtE

i (k, τ)) = v̈i(k, τ).

From the description of (g, µ) in Definitions T.1.1 and T.1.2, for any k ∈ I and for any τ = 2, . . . , T , the
quantity v̈i(k, τ) obeys a difference equation as follows.

v̈i(k, τ) = q
[
(1− δ)ωk

i + δv̈i(k, τ − 1)
]
+ (1− q) [(1− δ)zi + δv̈i(k, τ)] (T.5.10)

Using again Definitions T.1.1 and T.1.2, the terminal condition for (T.5.10) is

v̈i(k, 1) = q
[
(1− δ)ωk

i + δ[qvk
i + (1− q)zi]

]
+ (1− q) [(1− δ)zi + δv̈i(k, 1)] (T.5.11)

Solving (T.5.10) and imposing the terminal condition (T.5.11) now yields (T.5.9), as required.

Purely for expositional convenience, before completing the proof of sequential rationality at the message
stage, we now proceed with the argument that establishes sequential rationality at the action stage.

Definition T.5.3: Recall that at the action stage, player 〈i, t〉 chooses an action after having received a

message mt
i and having observed a realization xt of the randomization device x̃t.

Let IItB
i denote period-t action-stage collection of information sets that belong to player 〈i, t〉, with typical

element ItB
i . Clearly, each element of IItB

i is identified by a pair (mt
i, x

t).

It is convenient to partition IItB
i into mutually disjoint exhaustive subsets. The fact that they exhaust

IItB
i can be checked directly from Definition T.4.1 above.

Let IItB
i (∗) ⊂ IItB

i be the collection of information sets in which player 〈i, t〉 believes that mt
−i is equal

to (m∗, . . . ,m∗) with probability one.T.7 These beliefs will be denoted by ΦtB
i (∗).

Let IItB
i (˘i) ⊂ IItB

i be the collection of information sets in which player 〈i, t〉 believes that mt
−i is equal

to (m̆i, . . . , m̆i) with probability one. These beliefs will be denoted by ΦtB
i (˘i).

For every j ∈ I not equal to i, let IItB
i (˘j) ⊂ IItB

i be the collection of information sets in which player 〈i, t〉
believes that mt

−i−j is equal to (m̆j , . . . , m̆j) with probability one, that Pr(mt
j = mj,τ ) > 0 ∀ mj,τ ∈ M(j, t),

and that Pr(mt
j ∈ M(j, t)) = 1.T.8 These beliefs will be denoted by ΦtB

i (˘j).

T.7In the interest of brevity, we avoid an explicit distinction between the t = 0 players and all others. What follows can be
interpreted as applying to all players re-defining m0

i to be equal to m∗ for players 〈i ∈ I, 0〉.
T.8See footnote T.3.
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For every j ∈ I not equal to i, and every τ = max{T−t+1, 1}, . . . , T let IItB
i (j, τ) ⊂ IItB

i be the collection

of information sets in which player 〈i, t〉 believes that mt
−i is equal to (mj,τ , . . . ,mj,τ ) with probability one.

These beliefs will be denoted by ΦtB
i (j, τ).

For every k ∈ I, let IItB
i (k) ⊂ IItB

i be the collection of information sets in which player 〈i, t〉 believes that

mt
−i is equal to (mk, . . . ,mk) with probability one. These beliefs will be denoted by ΦtE

i (k).

Lemma T.5.3: There exists a δ ∈ (0, 1) such that whenever δ > δ the action-stage strategies described

in Definition T.1.1 are sequentially rational given the beliefs described in Definition T.4.1 for every player

〈i, t〉.T.9

Proof: Consider any information set ItB
i ∈ {IItB

i (∗) ∪ IItB
i (˘i) ∪ IItB

i (˘j)}.
T.10

Using Definition T.1.1, Lemma T.5.2 and Definition T.5.3, it is immediate to check that, as δ → 1,
the limit expected continuation payoff to player 〈i, t〉 from following the action-stage strategies described in
Definition T.1.1 at any of these information sets is

v∗i = qv̂i + (1− q)zi (T.5.12)

In the same way, it can be checked that, as δ → 1, the limit expected continuation payoff to player 〈i, t〉 from
deviating at any of these information sets is

qvi
i + (1− q)zi (T.5.13)

Since by assumption v̂i > vi
i this is of course sufficient to prove our claim for any information set ItB

i ∈
{IItB

i (∗) ∪ IItB
i (˘i) ∪ IItB

i (˘j)}.

Now consider any information set ItB
i either in IItB

i (j, τ) or in IItB
i (j) (with j 6= i).

Using Definition T.1.1, Lemma T.5.2 and Definition T.5.3, it is immediate to check that, as δ → 1,
the limit expected continuation payoff to player 〈i, t〉 from following the action-stage strategies described in
Definition T.1.1 at any of these information sets is

qvj
i + (1− q)zi (T.5.14)

In the same way, it can be checked that, as δ → 1, the limit expected continuation payoff to player 〈i, t〉 from
deviating at any of these information sets is exactly as in (T.5.13).

Since by assumption for any j 6= i we have that vj
i > vi

i this is of course sufficient to prove our claim for
any of these information sets.

To conclude the proof of the lemma, we now consider any information set ItB
i ∈ IItB

i (i). Using Definition
T.1.1, Lemma T.5.2 and Definition T.5.3, it can be checked that the expected continuation payoff to player
〈i, t〉 from following the action-stage strategies described in Definition T.1.1 at any of these information sets
is bounded below by

(1− δ)ui + δ
[
qvi

i + (1− q)zi

]
(T.5.15)

T.9It should be understood that we are, for now, taking it as given that each player 〈i, t〉 follows the prescriptions of the
message-stage strategies described in Definition T.1.2. Of course, we have not demonstrated yet that this is in fact sequentially
rational given the beliefs described in Definition T.4.2. We will come back to this immediately after the current lemma is proved.
T.10See Definition T.5.3.
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In the same way it can be readily seen that the expected continuation payoff to player 〈i, t〉 from deviating
at any of these information sets is bounded above by

(1− δ)ui + δ

{[
1−

(
δq

1− δ (1− q)

)T
] [

qωi
i + (1− q) zi

]
+(

δq

1− δ (1− q)

)T [
qvi

i + (1− q) zi

]} (T.5.16)

The difference given by (T.5.15) minus (T.5.16) can be written as

(1− δ)


δq

[
1−

(
δq

1− δ (1− q)

)T
] (

vi
i − ωi

i

)
(1− δ)

− (ui − ui)

 (T.5.17)

Consider now the term inside the curly brackets in (T.5.17). We have that

lim
δ→1

δq

[
1−

(
δq

1− δ (1− q)

)T
] (

vi
i − ωi

i

)
(1− δ)

− (ui − ui) = T (vi
i − ωi

i)− (ui − ui) (T.5.18)

Using (A.11), we know that the quantity on the right-hand side of (T.5.18) is strictly positive. Hence we can
conclude our claim is valid at any information set ItB

i ∈ IItB
i (i).

Lemma T.5.4: Consider the notation we established in Definition T.5.2. For any given t and τ = max{T −
t, 1}, . . . , T let v̈t

i(m,mi,τ ) denote v̈t
i(m

t+1) when the vector mt+1 has the i-th component equal to a generic

m ∈ M t+1
i and mt+1

−i = (mi,τ , . . . ,mi,τ ). As in the proof of Lemma T.5.2, let v̈i(i, τ) = v̈t
i(m

i,τ , . . . ,mi,τ ).

Then there exists a δ ∈ (0, 1) such that whenever δ > δ for every player 〈i, t〉, for every m ∈ M t+1
i , and

for every τ = max{T − t, 1}, . . . , T

v̈i(i, τ) ≥ v̈t
i(m,mi,τ ) (T.5.19)

Proof: We prove the claim for the case t ≥ T . The treatment of t < T has some completely non-essential
complications due to the fact that the players’ message spaces increase in size for the first T periods. The
details are are omitted for the sake of brevity.

We now introduce a new random random variable w̃, independent of x̃ and ỹ (see Definitions A.7 and
A.8), and uniformly distributed over the finite set {1, . . . , T}. This will be used in the rest of the proof of
the lemma to keep track of the “private” randomization across messages that members of dynasty i may
be required to perform (see Definition T.1.2). Just as we did for the action-stage and the message-stage
randomization devices, we consider countably many independent “copies” of w̃, one for each time period,
denoted by w̃t, with typical realization wt.

To keep track of all “future randomness” looking ahead for t′ = 1, 2, . . . periods from t, it will also be
convenient to define the random vectors s̃t,t′

s̃t,t′ = [(x̃t+1, ỹt+1, w̃t+1), . . . , (x̃t+t′ , ỹt+t′ , w̃t+t′)] (T.5.20)

A typical realization of s̃t,t′ will be denoted by st,t′ = [(xt+1, yt+1, wt+1), . . . , (xt+t′ , yt+t′ , wt+t′)]. The set of
all possible realizations of s̃t,t′ (which obviously does not depend on t) is denoted by St′ .
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Recall that the profile (g, µ) described in Definitions T.1.1 and T.1.2 is taken as given throughout. Now
suppose that in period t, player 〈i, t〉 sends a generic message m ∈ M t+1

i and that mt+1
−i = (mi,τ , . . . ,mi,τ ).

Then, given any realization st,t′ we can compute the actual action profile played by all players 〈k ∈ I, t + t′〉.
This will be denoted by at+t′(m,mi,τ , st,t′). Similarly, we can compute the profile of messages mt+t′

−i received
by all players 〈j 6= i, t + t′〉. This n− 1-tuple will be denoted by mt+t′(m,mi,τ , st,t′).

Recall that the messages received by all time-t + t′ players are the result of choices and random draws
that take place on or before period t + t′ − 1. Therefore it is clear that if we are given two realizations ŝt,t′

= [st,t′−1, (x̂t+t′ , ŷt+t′ , ŵt+t′)] and ˆ̂s
t,t′

= [st,t′−1, (ˆ̂x
t+t′

, ˆ̂y
t+t′

, ˆ̂w
t+t′

)], then it must be that

mt+t′(m,mi,τ , ŝt,t′) = mt+t′(m,mi,τ , ˆ̂s
t,t′

) (T.5.21)

Notice next that from the description of the profile (g, µ) in Definitions T.1.1 and T.1.2 it is also immediate
to check that for any t′, any m ∈ M t+1

i and any realization st,t′ the message profile mt+t′(m,mi,τ , st,t′) can
only take one out of two possible forms. Either we have mt+t′(m,mi,τ , st,t′) = (mi, . . . ,mi) or it must be
that mt+t′(m,mi,τ , st,t′) = (mi,τ ′ , . . . ,mi,τ ′) for some τ ′ = 1, . . . , T .

Lastly, notice that, given an arbitrary message m ∈ M t+1
i we can write

v̈t
i(m,mi,τ ) = (1− δ)

∞∑
t′=1

δt′−1
∑

st,t′∈St′

Pr(s̃t,t′ = st,t′)ui[at+t′(m,mi,τ , st,t′)] (T.5.22)

Since the strategies described in Definitions T.1.1 and T.1.2 are stationary for t ≥ T , and the distribution
of s̃t,t′ is independent of t, it is evident from (T.5.22) that v̈t

i(m,mi,τ ) does not depend on t. From now on
we drop the superscript and write v̈i(m,mi,τ ).

We now proceed with the proof of inequality (T.5.19) of the statement of the lemma. In order to do so,
from now on we fix a particular t = t̂, m = m̂ and τ = τ̂ , and we prove (T.5.19) for these fixed values of t, m
and τ . Since the lower bound on δ that we will find will clearly not depend on t, and since there are finitely
many values that m and τ can take, this will be sufficient to prove the claim.

Inequality (T.5.19) in the statement of the lemma is trivially satisfied (as an equality) if m = mi,τ . From
now on assume that m̂ and τ̂ are such that m̂ 6= mi,τ̂ .

Given any t′ = 1, 2, . . ., we now partition the set of realizations St′ into five disjoint exhaustive subsets;
St′

1 , St′

2 , St′

3 , St′

4 and St′

5 . This will allow us to decompose the right-hand side of (T.5.22) in a way that will
make possible the comparison with (a similar decomposition of) the left-hand side of (T.5.19) as required to
prove the lemma.

Let

St′

1 = {st̂,t′ | mt̂+t′(mi,τ̂ ,mi,τ̂ , st̂,t′) = (mi,τ ′ , . . . ,mi,τ ′) for some τ ′ = 1, . . . , τ̂} (T.5.23)

and notice that if t′ ≤ τ̂ then St′

1 = St′ .

Assume now that t′ > τ̂ and let

St′

2 = {st̂,t′ | mt̂+t′(m̂,mi,τ̂ , st̂,t′) = (mi, . . . ,mi) and
ui(at̂+t′(m̂,mi,τ̂ , st̂,t′)) ≤ ui(at̂+t′(mi,τ̂ ,mi,τ̂ , st̂,t′))}

(T.5.24)

and

St′

3 = {st̂,t′ | mt̂+t′(m̂,mi,τ̂ , st̂,t′) = (mi, . . . ,mi) and
ui(at̂+t′(m̂,mi,τ̂ , st̂,t′)) > ui(at̂+t′(mi,τ̂ ,mi,τ̂ , st̂,t′))}

(T.5.25)
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Notice that if the first condition in (T.5.24) holds, then mt̂+t′(mi,τ̂ ,mi,τ̂ , st̂,t′) = (mi, . . . , mi). Therefore,
St′

1 and St′

2 and St′

3 are disjoint.

Next, let any st̂,t′′ ∈ St′′

3 with t′′ < t′ be given and define

St′

4 (st̂,t′′) = {st̂,t′ | st̂,t′ = (st̂,t′′ , st′′,t′) for some st′′,t′ and
||{t ∈ (t′′ + 1, . . . , t′ − 1) | xt = x(κ) with κ ≤ κ}|| ≤ T − 1} (T.5.26)

Now let

St′

4 =
⋃

t′′<t′

st̂,t′′∈St′′
3

St′

4 (st̂,t′′) (T.5.27)

From the strategies described in Definitions T.1.1 and T.1.2 it can be checked that if st̂,t′ ∈ St′

4 then mt̂+t′(m̂,
mi,τ̂ , st̂,t′) = (mi,τ ′ , . . . , mi,τ ′) for some τ ′ and mt̂+t′(mi,τ̂ ,mi,τ̂ , st̂,t′) = (mi, . . . , mi). Therefore, it is clear
that St′

4 is disjoint from St′

1 , St′

2 and St′

3 .

The last set in the partition of St′ is defined as the residual of the previous four.

St′

5 = St′/{St′

1 ∪ St′

2 ∪ St′

3 ∪ St′

4 } (T.5.28)

Using (T.5.22), we can now proceed to compare the two sides of inequality (T.5.19) of the statement of
the lemma for the five distinct (conditional) cases st̂,t′ ∈ St′

1 through st̂,t′ ∈ St′

5 . Notice first of all that when
st̂,t′ ∈ St′

2 , we know immediately from (T.5.24) that there is nothing to prove.

We begin with st̂,t′ ∈ St′

1 . Notice first of all that if we fix any st̂,t′ ∈ St′

1 , then it follows from (T.5.21)
and (T.5.23) that any st̂,t′ of the form [st̂,t′−1, st′−1,t′ ] (where st̂,t′−1 are the first t′ − 1 triples of st̂,t′) is in
fact in St′

1 .

Using, (T.5.23) and Definitions A.1, T.1.1 and T.1.2 we get∑
st′−1,t′∈S1

Pr(s̃t′−1,t′ =st′−1,t′) ui(at̂+t′(mi,τ̂ ,mi,τ̂ , [st̂,t′−1, st′−1,t′ ])) = qωi
i + (1− q)zi ≥∑

st′−1,t′∈S1

Pr(s̃t′−1,t′ =st′−1,t′)ui(at̂+t′(m̂,mi,τ̂ , [st̂,t′−1, st′−1,t′ ]))
(T.5.29)

Therefore, since the st̂,t′ that we fixed is an arbitrary element of St′

1 , we can now conclude that∑
st̂,t′∈St′

1

Pr(s̃t̂,t′ = st̂,t′)ui(at̂,t′(mi,τ̂ ,mi,τ̂ , st̂,t′)) ≥
∑

st̂,t′∈St′
1

Pr(s̃t̂,t′ = st̂,t′) ui(at̂,t′(m̂,mi,τ̂ , st̂,t′)) (T.5.30)

Now fix any st̂,t′ ∈ St′

3 . Using, (T.5.25), (T.5.26) and (T.5.27), and Definitions T.1.1 and T.1.2 we get
that the difference given by

Pr(s̃t̂,t′ = st̂,t′)ui(at̂+t′(mi,τ̂ ,mi,τ̂ , st̂,t′))+
∞∑

t′′=t′+1

δ(t′′−t′)
∑

st̂,t′′∈St′′
4 (st̂,t′ )

Pr(s̃t̂,t′′ = st̂,t′′)ui(at̂+t′′(mi,τ̂ ,mi,τ̂ , st̂,t′′)) (T.5.31)
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minus

Pr(s̃t̂,t′ = st̂,t′)ui(at̂+t′(m̂,mi,τ̂ , st̂,t′))+
∞∑

t′′=t′+1

δ(t′′−t′)
∑

st̂,t′′∈St′′
4 (st̂,t′ )

Pr(s̃t̂,t′′ = st̂,t′′)ui(at̂+t′′(m̂,mi,τ̂ , st̂,t′′)) (T.5.32)

is greater or equal to

Pr(s̃t̂,t′ = st̂,t′)


δq

[
1−

(
δq

1− δ (1− q)

)T
] (

vi
i − ωi

i

)
(1− δ)

− (ui − ui)

 (T.5.33)

Notice now that we know that the quantity in (T.5.33) is in fact positive for δ sufficiently close to 1. This is
simply because the term in curly brackets in (T.5.33) is the same as the right-hand side of (T.5.18). Therefore,
we have dealt with any st̂,t′ ∈ St′

3 and with all its relevant “successors” of the form St′′

4 (st̂,t′). Since t′ is
arbitrary, by (T.5.27), this exhausts St′

3 and St′

4 for all possible values of t′.

Finally, we deal with st̂,t′ ∈ St′

5 . Notice first of all that if we fix any st̂,t′ ∈ St′

5 , then it follows from
(T.5.21) and (T.5.28) that any st̂,t′ of the form [st̂,t′−1, st′−1,t′ ] (where st̂,t′−1 are the first t′ − 1 triples of
st̂,t′) is in fact in St′

5 .

Using, (T.5.28) and Definitions T.1.1 and T.1.2 we get∑
st′−1,t′∈S1

Pr(s̃t′−1,t′ =st′−1,t′) ui(at̂+t′(mi,τ̂ ,mi,τ̂ , [st̂,t′−1, st′−1,t′ ])) = qvi
i + (1− q)zi >

qωi
i + (1− q)zi ≥

∑
st′−1,t′∈S1

Pr(s̃t′−1,t′ =st′−1,t′)ui(at̂+t′(m̂,mi,τ̂ , [st̂,t′−1, st′−1,t′ ]))
(T.5.34)

Therefore, since the st̂,t′ that we fixed is an arbitrary element of St′

5 , we can now conclude that∑
st̂,t′∈St′

5

Pr(s̃t̂,t′ = st̂,t′)ui(at̂,t′(mi,τ̂ ,mi,τ̂ , st̂,t′)) ≥
∑

st̂,t′∈St′
5

Pr(s̃t̂,t′ = st̂,t′) ui(at̂,t′(m̂,mi,τ̂ , st̂,t′)) (T.5.35)

Hence, the proof of the lemma is now complete.

Remark T.5.1: Let the strategy profile (g, µ) described in Definitions T.1.1 and T.1.2 be given. Consider

a player 〈i, t〉, and a realization of future uncertainty st,t′ as defined in the proof of Lemma T.5.4.

Let any message m ∈ M t+1
i be given, and fix any information set ItE

i and associated beliefs ΦtE
i (·).

It is then clear from Definitions T.1.1 and T.1.2 and T.5.1, that for any t′ the action that player 〈i, t〉
expects player 〈i, t + t′〉 to take is uniquely determined by m, st,t′ and ItE

i .

For the rest of the argument we will denote this by at+t′

i (m, st,t′ , ItE
i ).

Lemma T.5.5: There exists a δ ∈ (0, 1) such that whenever δ > δ the message-stage strategies described in

Definition T.1.2 are sequentially rational given the beliefs described in Definition T.4.2 for every player 〈i, t〉.
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Proof: Consider any information set ItE
i ∈ IItE

i (i, τ), where IItE
i (i, τ) is as in Definition T.5.1. It is then

evident from Lemma T.5.4 and from the beliefs ΦtE
i (i, τ) described in Definition T.5.1 that for δ sufficiently

close to 1, the message strategies described in Definition T.1.2 are sequentially rational at any such information
set.

From now on, consider any information set ItE
i 6∈ IItE

i (i, τ). Let m ∈ M t+1
i be the message that player

〈i, t〉 should send according to the strategy µt
i, and let m̂ be any other message in M t+1

i . Consider a particular
realization st,t′ , and for any t′′ ∈ {1, . . . , t′ − 1}, let st,t′′ denote the first t′′ triples of st,t′ .

Next, assume that at+t′

i (m, st,t′ , ItE
i ) 6= at+t′

i (m̂, st,t′ , ItE
i ), and that either t′ = 1, or alternatively that

at+t′′

i (m, st,t′′ , ItE
i ) = at+t′′

i (m̂, st,t′′ , ItE
i ) for every t′′ ∈ {1, . . . , t′ − 1}.

Clearly, in periods {t + 1, . . . , t′ − 1}, conditional on st,t′ , the payoff to player 〈i, t〉 is unaffected by the
deviation to m̂. Now consider the payoff to player 〈i, t〉, conditional on st,t′ , from the beginning of period t′

on, for simplicity discounted from the beginning of period t′. If player 〈i, t〉 sends message m as prescribed
by µt

i, and δ is close enough to 1, the payoff in question is bounded below by

(1− δ)ui + δ(qvi
i + (1− q)zi) (T.5.36)

Now consider the payoff to player 〈i, t〉 if he sends message m̂, conditional on st,t′ , from the beginning of
period t′ on, for simplicity discounted from the beginning of period t′. In period t′ the action played cannot
yield him more than ui. From Lemma T.5.4, we know that, for δ close enough to 1, from the beginning of
period t′ + 1 the payoff is bounded above by v̈i(i, T ). Hence, for δ close enough to 1, using (T.5.9) the payoff
in question is bounded above by

δui + (1− δ)

{[
1−

(
δq

1− δ(1− q)

)T
][

qωi
i + (1− q)zi

]
+

(
δq

1− δ(1− q)

)T[
qvi

i + (1− q)zi

]}
(T.5.37)

Notice now that the quantity in (T.5.36) is the same as the quantity in (T.5.15), and the quantity in (T.5.37)
is in fact the same as the quantity in (T.5.16). Hence, exactly as in the proof of Lemma T.5.3, we know that,
for δ sufficiently close to 1, the quantity in (T.5.36) is greater than the quantity in (T.5.37). This is clearly
enough to conclude the proof.

T.6. Proof of Theorem A.1: Consistency of Beliefs

Remark T.6.1: Let (gε, µε) be the completely mixed strategy profile of Definitions A.17 and A.18. It is

then straightforward to check that as ε → 0 the profile (gε, µε) converges pointwise (in fact uniformly) to the

equilibrium strategy profile described in Definitions T.1.1 and T.1.2, as required.

Lemma T.6.1: The strategy profile (g, µ) described in Definitions T.1.1 and T.1.2 and the beginning-of-

period beliefs described in Definition T.4.1 are consistent.

Proof: When t = 0, there is nothing to prove. Assume t ≥ 1. We consider two cases. First assume that
player 〈i, t〉 receives message m ∈ {m∗} ∪ M̆−i ∪ M(i, t). Clearly, this is on the equilibrium path generated
by the profile of strategies (g, µ) described in Definitions T.1.1 and T.1.2. Therefore, consistency in this case
simply requires checking that the beginning-of-period beliefs described in Definition T.4.1 are obtained via
Bayes’ rule from the profile (g, µ). This is a routine exercise, and we omit the details.

Now assume that player 〈i, t〉 receives message m 6∈ {m∗} ∪ M̆−i ∪ M(i, t). From Definition T.4.1 it is
immediate to check that in this case player 〈i, t〉 assigns probability one to the event that mt

−i = (m, . . . ,m).
Given (g, µ), this event may of course have been generated by several possible histories. Notice however, that
the profile (g, µ) is such that a single deviation by one player at the action stage is sufficient to generate the
message profile mt = (m, . . . ,m). Therefore, upon observing m 6∈ {m∗} ∪ M̆−i ∪M(i, t) the probability that
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mt
−i = (m, . . . ,m) is an infinitesimal in ε of order no higher than 2. This needs to be compared with the

probability that mt
−i 6= (m, . . . ,m) and mt

i = m. The latter event is impossible given the profile (g, µ) unless
a deviation at the message stage has occurred at some point. Therefore its probability is an infinitesimal in
ε of order no lower than 2n + 1. This is obviously enough to prove the claim.

Lemma T.6.2: The strategy profile (g, µ) described in Definitions T.1.1 and T.1.2 and the end-of-period

beliefs described in Definition T.4.2 are consistent.

Proof: The case t = 0 is trivial. Assume t ≥ 1, and consider any player 〈i, t〉 after having observed
(mt

i, x
t, at, yt).

We deal first with the case in which xt = x(κ) with κ > κ. Let x(`00, `∗) denote the realization xt.
In this case, the action-stage strategies described in Definition T.1.1 prescribe that every player 〈k ∈ I, t〉
should play at

k(`∗). Therefore, if the observed action profile at is equal to a(`∗), player 〈i, t〉 does not revise
his beginning-of-period beliefs during period t. Hence consistency in this case follows immediately from the
profile µ and from the consistency of beginning-of-period beliefs, which of course was proved in Lemma T.6.1.
Notice now that if at 6= a(`∗), then the message strategies described in Definition T.1.2 prescribe that each
player 〈k ∈ I, t〉 should send a message that does not depend on the message mt

k he received. Hence, in this
case consistency is immediate from Definition T.4.2 and the profile µ.

We now turn to the case in which xt = x(κ) with κ ≤ κ. Here, it is necessary to consider several subcases,
depending on the message m received by player 〈i, t〉. Assume first that m 6∈ M̆−i ∪ M(i, t). Then for any
possible triple (xt, at, yt) we have that

lim
ε→0

Pr(mt
−i = (m, . . . ,m) | mt

i = m,xt, at, gε, µε) = 1 (T.6.1)

To see this consider two sets of possibilities. First, m = m∗, xt = x(·, ˆ̀, · · ·), and at = (a1(ˆ̀), . . . , an(ˆ̀)).
Then play is as prescribed by the equilibrium path generated by the profile (g, µ), and from Definitions T.1.1
and T.1.2 there is nothing more to prove. For all other possibilities, notice that the event mt = (m, . . . ,m) is
consistent with any at together with n deviations at the action stage of the second type described in Definition
A.17. Therefore, for any at, the probability of mt = (m, . . . ,m) and at is an infinitesimal in ε of order no
higher than 2n. On the other hand, from Definition A.18 it is immediate that the probability that mt

−i 6=
(m, . . . ,m) (since it requires at least one deviation at the message stage) is an infinitesimal in ε of order no
lower than 2n + 1. Hence (T.6.1) follows. From (T.6.1) it is a matter of routine to check the consistency of
end-of-period beliefs from using the profile (g, µ). We omit the details.

Still assuming that xt = x(κ) with κ ≤ κ, now consider the case m = m̆j ∈ M̆−i. In this case we can
show that

lim
ε→0

Pr(mt
−i−j = (m̆j , . . . , m̆j) and mt

j ∈ M(j, t) | mt
i = m̆j , x

t, at, gε, µε) = 1 (T.6.2)

using an argument completely analogous to the one we used for (T.6.1). The details are omitted. As in the
previous case, from (T.6.2) it is a matter of routine to check the consistency of end-of-period beliefs from
using the profile (g, µ).

The last case remaining is xt = x(κ) with κ ≤ κ and m = mi,τ . In this case we have that

lim
ε→0

Pr(mt
−i = (m̆i, . . . , m̆i) | mt

i = mi,τ , xt, at, gε, µε)+

lim
ε→0

Pr(mt
−i = (mi,τ , . . . ,mi,τ ) | mt

i = mi,τ , xt, at, gε, µε) = 1
(T.6.3)

Again, the argument is completely analogous to the one used for (T.6.1) and (T.6.2), and the details are
omitted. Now take (T.6.3) as given and let xt = x(· · ·, i`, · · ·).
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Suppose next that at
−i = ăi

−i(i`). Then player 〈i, t〉 does not revise his beginning-of-period beliefs,
and hence, using the profile µ and Lemma T.6.1 it is immediate to check that his end-of-period beliefs are
consistent in this case.

Now suppose that for some j 6= i we have that at
j 6= ăi

j(i`) and at
−i−j = ăi

−i−j(i`). Consistency of beliefs
in this case requires showing that the first element in the sum in (T.6.3) is equal to 1. Of course given (T.6.3)
it suffices to compare the probabilities of the two events mt

−i = (m̆i, . . . , m̆i) and mt
−i = (mi,τ , . . . ,mi,τ ).

The first is compatible with a single deviation at the action stage on the part of player 〈j, t〉. Therefore its
probability is an infinitesimal in ε of order no higher than 2. The latter requires an action-stage deviation
in some period t′ < t (order 2 in ε), and n − 2 action-stage deviations in period t (order 1 each). Hence,
player 〈i, t〉 has consistent beliefs if he assigns probability 1 to mt

−i = (m̆i, . . . , m̆i). The consistency of his
end-of-period beliefs can then be checked from the profile µ.

Now suppose that for some j 6= i we have that at
j 6= ai

j(i`) and at
−i−j = ai

−i−j(i`). Consistency of beliefs in
this case requires showing that the second element in the sum in (T.6.3) is equal to 1. Of course given (T.6.3)
it suffices to compare the probabilities of the two events mt

−i = (m̆i, . . . , m̆i) and mt
−i = (mi,τ , . . . ,mi,τ ).

The first requires (n− 2) deviations at the action-stage of period t, each of order 2 in ε. Since n ≥ 4, this is
therefore an infinitesimal in ε of order no lower than 4. The second is consistent with a deviation of order 2
in ε at the action-stage of some period t′ < t, together with a deviation of order 1 in ε at the action stage of
period t. Therefore its probability is an infinitesimal in ε of order no higher than 3. Hence, player 〈i, t〉 has
consistent beliefs if he assigns probability 1 to mt

−i = (mi,τ , . . . ,mi,τ ). The consistency of his end-of-period
beliefs can then be checked from the profile µ. The same argument applies to show the consistency of his
end-of-period beliefs when at

−i = ai
−i(i`). We omit the details.

In all other possible cases for at, the messages sent by all players 〈j 6= i, t〉 do not in fact depend on at,
provided that mt

j is either m̆i or mi,τ . Given (T.6.3), the consistency of the end-of-period beliefs of player
〈i, t〉 can then be checked directly from the profile µ.

T.7. Proof of Theorem A.1

Given any v∗ ∈ int(V ) and any δ ∈ (0, 1), using (A.10), (A.8) and the strategies and randomization devices
described in Definitions A.7, A.8, T.1.1 and T.1.2 clearly implement the payoff vector v∗.

From Lemmas T.5.3 and T.5.5 we know that there exists a δ ∈ (0, 1) such that whenever δ > δ each
strategy in the profile described in Definitions T.1.1 and T.1.2 is sequentially rational given the beliefs
described in Definitions T.4.1 and T.4.2.

From Lemmas T.6.1 and T.6.2 we know that the strategy profile described in Definitions T.1.1 and T.1.2
and the beliefs described in Definitions T.4.1 and T.4.2 are consistent.

Hence, using Lemma T.3.1, the proof of Theorem A.1 is now complete.


