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Summary. We ask whether communication can directly substitute for memory in
dynastic repeated games in which short lived individuals care about the utility of
their offspring who replace them in an infinitely repeated game. Each individual is
unable to observe what happens before his entry in the game. Past information is
therefore conveyed from one cohort to the next by means of communication.

When communication is costless and messages are sent simultaneously, com-
munication mechanisms or protocols exist that sustain the same set of equilibrium
payoffs as in the standard repeated game. When communication is costless but
sequential, the incentives to “whitewash” the unobservable past history of play
become pervasive. These incentives to whitewash can only be countered if some
player serves as a “neutral historian” who verifies the truthfulness of others’ reports
while remaining indifferent in the process. By contrast, when communication is
sequential and (lexicographically) costly, all protocols admit only equilibria that
sustain stage Nash equilibrium payoffs.

We also analyze a centralized communication protocol in which history leaves
a “footprint” that can only hidden by the current cohort by a unanimous “coverup.”
We show that in this case the set of payoffs that are sustainable in equilibrium
coincides with the weakly renegotiation proof payoffs of the standard repeated
game.
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“History is a pack of lies about events that never happened told by people
who weren’t there.” – George Santayana

1 Introduction

1.1 Motivation

In any longstanding strategic relationship, history matters. The ability of the “play-
ers” to construct effective deterrents against “bad” behavior typically relies on
accurate monitoring and recall of the history of play.

One chief interpretation of a long-term relationship is that of a stage game being
repeated between “dynastic players” rather than between infinitely lived individu-
als. An infinitely repeated game is interpreted as an ongoing society populated by
short lived individuals who care about the utility of their successors who replace
them. Each successor then faces the same “types” of opponents as his predecessor.

Examples of repeated strategic interaction that would be modelled as dynastic
repeated games abound. For example, in longstanding disputes between groups with
competing claims (e.g., Catholics versus Protestants in Northern Ireland, Israelis
versus Palestinians), the conflicts typically outlive any particular individual. Though
the names of individuals involved change with time, the issues (payoffs) often
remain the same. Other examples include electoral competition between political
parties (e.g., Democrats versus Republicans) and strategic competition between
firms. Firms, like political parties, are long lived organizations populated by short-
lived managers, each of whom are periodically replaced. Putting agency issues
aside, incentives may be structured so that each current manager acts in the long
run interest of the firm, despite his relatively short tenure.

Since it seems unappealing to assume that any living individual observes some-
thing that takes place before he is “born,” a natural problem arises with dynastic
games. It is well known that if the players do not have the means to condition their
current actions on the history of play, equilibrium behavior changes dramatically. In
the extreme case in which players have no knowledge of the past, strategic behavior
can only depend on payoff relevant information (i.e., players must use so-called
Markov strategies). When this happens and when the environment is stationary,
then only repetitions of the stage game Nash equilibria are possible, even in an
infinitely repeated game.1

In a dynastic game, each new entrant cannot condition his behavior on history
unless his “knowledge” of that history comes, directly or indirectly, from past par-
ticipants. Often, that means that current players must rely on the historical accounts
directly communicated by their predecessors.2 This paper examines the properties
of dynastic repeated games when participants do not observe history prior to their
entry in to the game, and must therefore rely on accounts communicated by their
predecessors.

1 Hence, Santayana’s other famous dictum: “Those who cannot remember the past are condemned
to repeat it,” is quite literally true.

2 For a useful perspective on the ways in which history is transmitted and collective memories are
formed, see Pennebaker, Paez, and Rime (1997).
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For simplicity, we examine a model in which each member of a dynasty only
lives one period. At the end of each period, individuals in the current cohort die,
and are replaced by their successors in each dynasty. Each dynastic individual cares
about his successor’s utility as if it was his own discounted utility. Successors inherit
the same preferences, but cannot observe prior behavior.

Since prior behavior is not directly observed, we assume that the only way
current behavior can be linked to the past is through the reports of the previous
cohort. We therefore augment the model to allow for messages to be sent at the
end of each period from the current generation to the next. Communication is
assumed to be publicly observed. Because the veracity of reports cannot be verified
by neutral parties, the messages can also be manipulated. To see why incentives for
manipulation may exist, suppose, for example, that two dynasties face off to play the
Prisoners’ Dilemma in Figure 1 below. Consider the Subgame Perfect equilibrium
(SPE) which, for patient enough players, sustains perpetual mutual cooperation,
(C, C) using “grim trigger” strategies. In this equilibrium, the dynastic players
revert permanently to (D, D) if any defection is ever observed.

Dynasty 2

Dynasty 1

C D
C 2, 2 −2, 3
D 3, −2 0, 0

Figure 1. Prisoners’ dilemma

Now suppose that at some date t, the date t member of Dynasty 1 defects
by choosing “D.” Despite the fact that the individual in Dynasty 1 defected in
the PD game, both individuals at date t may have an incentive to whitewash the
defection by falsely reporting action (C, C) to the next generation. By lying, the
current generation can insulate the next generation against the mutually destructive
punishment phase. However, because lying precludes punishment, incentives for
good behavior in the current stage are destroyed.

Unlike in standard communication (cheap talk) games,3 individuals within a
dynasty value future payoffs in the same way. The potential incentive to misreport
exists not because of payoff differences, but rather from a desire to protect future
generations from the consequences of past deviations. By whitewashing deviations,
the current generation has the chance to give their successors a clean slate to start
the game. In this sense, the environment we analyze is reminiscent of repeated
game models with renegotiation.4

Our interest, therefore, is in the extent to which history is accurately conveyed
from one generation to another. How does potential manipulation of informa-
tion across generations distinguish dynastic repeated play from the “full memory”

3 See Crawford and Sobel (1982) for a classic reference.
4 See Farrell and Maskin (1989), Abreu, Pearce, and Stacchetti (1993), and Benoit and Krishna

(1993).
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model? To sensibly address this question, we adopt an implementation approach.
We examine whether there exist useful communication protocols, i.e., mechanisms
in which communication directly substitutes for memory.

We examine two models. The first is a model of potential whitewashing. In-
formation transmission constitutes cheap talk. Each individual may misrepresent
the information unobservable to the next generation. Misrepresentation is typically
costless to the sender. We examine whether or to what extent members of the current
generation may whitewash the past in equilibrium. The second model examines the
potential for coverups: The aggregation mechanism utilizes, to some extent, ob-
servable information. Consequently, members of the current cohort may attempt
to hide information which might otherwise be observable to the next generation.
Hiding information is difficult, and may require widespread agreement among the
senders.

Despite the incentive to whitewash or to coverup detrimental histories, protocols
that support full and honest communication exist. In the whitewashing model, if the
communication protocol is decentralized and if messages are sent simultaneously
then standard Nash implementation logic can be used to show that Perfect Bayesian
equilibria (PBE) exist in which no whitewashing takes place. The idea is familiar:
since reports contain redundant information, each individual’s report can be used to
screen the veracity of others. Hence, if there are at least three players and all but one
players’ messages agree, then the next generation uses the agreed upon message as
the “official version” of history.5 If there are only two players, then the absence of
an agreed upon message is treated as if a defection occurred. Hence, for any stage
game the set of possible equilibrium strategies and payoffs is equivalent to that of
the standard repeated game.

Ironically, the simultaneous moves protocol disciplines the players by instituting
a coordination failure. For example, in our Prisoners’ Dilemma example above,
under the grim trigger strategy, both individuals in the present cohort would be
better off by whitewashing a deviation, but neither can do it given the anticipated
truthful message of the other. Clearly, if given the opportunity, one of the players
would prefer to signal his intent to lie by moving first.6 Indeed, suppose that the
messages are sent sequentially, and that members of Dynasty 1 communicate first.
If the date t player 1 whitewashes his own defection, then it is clearly a best response
for the date t player 2 to confirm the lie. Sequential moves therefore allow the players
to break the “coordination failure” that prevented whitewashing in the simultaneous
case. But since whitewashing will occur, the mutual cooperation equilibrium using
grim trigger strategies cannot be sustained in the first place.

We characterize the PBE payoff set in any game when messages are sequential
rather than simultaneous.A necessary condition for play to differ from the repetition

5 Of course, the original “cross-checking” argument goes back to Maskin (1999). Baliga, Corchon,
and Sjostrom (1997) use a similar type of mechanism in another model of cheap talk communication
when there are three or more players. Similar types of mechanisms have also been used in repeated
games with private monitoring and communication. See Ben-Porath and Kahneman (1996), Compte
(1998), and Kandori and Matsushima (1998).

6 Lagunoff and Matsui (1997) analyze repeated coordination games in which the players move
sequentially.
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of stage Nash actions in any PBE is that some player serves as “a neutral historian.”
The neutral historian is an individual who screens and verifies the truthfulness of
reports of others, while remaining indifferent in the process. This necessity of a
neutral historian rules out some types of equilibria. Nevertheless, a wide array
of payoffs approximating the original payoffs of the repeated game are shown
to be sustainable. It turns out that rectangular, “self generating” subsets of the
equilibrium payoff set are sustainable when communication is sequential.7 The
analysis of the sequential communication protocol is important as a robustness
check. If individuals are unable to commit themselves to the timing structure of
the protocol, then some individual may break the simultaneous communication
structure by attempting to “speak first.”

Hence, on the one hand, our results are reassuring. Rectangular self generation
is broad enough to include many if not most payoffs of interest in the full memory
(non-dynastic) repeated game. On the other hand, it turns out that protocols with
“neutral historians” are fragile. We show that these constructs fail when commu-
nication is no longer costless. When individuals weigh the complexity costs of the
reporting strategies they use, then for any sequential protocol, only the Nash equi-
libria of the stage game are sustainable in the dynastic game. This is the case even
when the actual payoffs from the stage game are lexicographically more important
than the costs associated with a more complex reporting strategy.

In many instances, the assumption that the past history of play cannot be verified
at all by the current cohort may be too extreme. It is easy to think of situations in
which the past should be, at least in part observable, unless a concerted effort to
hide it is made. The remnants of the Jewish Holocaust and the Stalin Purges all
too quickly come to mind. To begin to address this type of set-up, we analyze a
model of dynastic repeated games with a different set of assumptions about the
communication protocol between one cohort and the next.

We assume history leaves a marker or “footprint” for the new generation. Efforts
to manipulate information now entail effort to hide or coverup these footprints. We
examine a protocol in which the truth can only be hidden by the current cohort when
all individuals agree to the coverup. Somewhat counterintuitively, the difficulty in
achieving consensus to unanimously coverup the truth may actually increase the
incentive to hide it. We are able to show that, when communication is sequential,
the set of sustainable payoffs coincides with the set of weakly renegotiation proof
payoffs of the standard repeated game.8 The conclusion is that when the potential
for coverup exists and when messages are sequenced, equilibria with strictly Pareto-
ranked continuation payoffs cannot occur.

7 Self generating payoff sets were first defined by Abreu, Pearce, and Stacchetti (1986) and Abreu,
Pearce, and Stacchetti (1990) who used dynamic programming methods to characterize the equilibrium
payoff set in a repeated game. Note also that we are somewhat abusing the meaning of the word
“rectangular” here. What is required is that the lower contour of the self generating set is that of a
rectangle. See the statement of Theorem 3 below.

8 In the sense of Farrell and Maskin (1989).
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1.2 Outline

The material in the paper is divided into 4 further sections. In Section 2 we describe
the model in detail. This includes briefly setting up the standard repeated game
notation and a complete description of the dynastic repeated game with communi-
cation. Section 3 is devoted to the analysis of our “whitewashing” model. We first
analyze simultaneous and then sequential messages. We then move on to the case
of lexicographic costs of more complex reporting strategies and show that only the
stage game Nash equilibrium payoffs survive in this case. Section 4 is concerned
with our model of “coverups.” After describing the model, we go on to show that
only weakly renegotiation-proof equilibria are viable in this case. Section 5 con-
cludes the paper with a brief discussion putting our results in the context of existing
literature.

For ease of exposition, all proofs are confined to an appendix. In the numbering
of equations, Lemmas, Theorems etc. a prefix of “A” means that the corresponding
item is located in the Appendix.

2 The model

2.1 A standard repeated game

We first describe a standard, n-player repeated game. We will then augment this
structure to describe the dynastic repeated game with communication from one
cohort to the next. The standard repeated game structure is of course familiar. We
set it up below simply to establish the basic notation.

The stage game is described by the array G = (S, u; I) where I = {1, . . . , n}
is the set of players, indexed by i. The n-fold cartesian product S = ×i∈ISi is
the set of pure action profiles s = (s1, . . . , sn) ∈ S, assumed to be finite. Stage
game payoffs are defined by u = (ui)i∈I where ui : S → IR for each i ∈ I . Let
σ ∈ ∆(S) denote a mixed action profile.9 The corresponding payoff to player i,
denoted by Ui, is defined in the usual way: Ui(σ) =

∑
s σ(s)ui(s). Dropping the

i subscript and writing U(σ) gives the entire profile of payoffs. Finally, we let N
denote the set of Nash equilibria of the stage game.

In the repeated game, denote the behavior profile at time t by σ(t) =
(σ1(t), . . . , σn(t)). For t ≥ 1, a period t behavior history (of length t) is an
array ht ≡ (σ(0), σ(1), . . . , σ(t − 1)) of action profiles observed by time t. The
null history is h0 = ∅. Let Ui(σ(t)) denote the expected payoff at date t. The set of
period t behavior histories is denoted by Ht = ∆(S)t. Let H = ∪∞

t=0H
t denoting

the collection of all (finite) behavior histories.10

The players’ (for simplicity) common discount factor is denoted by δ ∈ (0, 1),
so that for a given infinite history h∞ = (σ(0), σ(1), . . . ), player i’s payoff in the

9 At the expense of some extra notation and further manipulations we could consider correlated
action profiles in the stage game without altering the nature of our results below.

10 Therefore we are assuming that actual mixed strategies are observed. This simplifies our framework,
and particularly notation, considerably. However, we later argue that none of the results in the paper
depend on the assumption that mixed strategies are observed.
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repeated game is given by

Vi(h∞) = (1 − δ)
∞∑

t=0

δt Ui(σ(t)) (1)

A behavior strategy in the repeated game is a map fi : H → ∆(Si). Let f =
(f1, . . . , fn) denote the profile of strategies in the repeated game. Given any finite
history ht, the mixed action at date t is given by f(ht) = (f1(ht), . . . , fn(ht)).

Given (1) the continuation payoff to i given strategy profile f after any history
ht follows the recursive equation

Vi(f | ht) = (1 − δ) Ui(f(ht)) + δ Vi(f | ht, f(ht)) (2)

where (ht, f(ht)) denotes the period t + 1 history given by the concatenation of
history ht and period t+1 behavior profile f(ht). Dropping the player subscript in
equations (1) and (2) will denote the corresponding payoff profiles in the repeated
game.

A subgame perfect equilibrium (SPE), f∗, for the repeated game is defined in
the usual way: for each i, and each finite history ht, and each strategy fi for i, we
require that Vi(f∗| ht) ≥ Vi(fi, f

∗
−i| ht).11

We denote respectively by F(δ) the set of SPE strategy profiles and by E(δ) the
set of SPE payoff profiles of the repeated game when the common discount factor
is δ.

The standard model of repeated play we have just sketched out may be found
in a myriad of sources. See, for example, Fudenberg and Maskin (1986) and the
references contained therein. Hereafter, we refer to the standard repeated game
model above as the full memory repeated game.

2.2 The dynastic repeated game

Now assume that each i ∈ I indexes an entire progeny of individuals. We refer
to each of these as a dynasty. Individuals in each dynasty are assumed to live one
period. At the end of each period t (the beginning of period t+1), a new individual
from each dynasty — the date (t + 1)-lived individual — is born and replaces the
date t lived individual in the same dynasty. Hence, Ui(σ(t)) now refers to the payoff
received by the t-th individual in dynasty i. Each date t individual is altruistic in
the sense that his payoff includes, as an additively separable argument, the utility
of the t + 1-th individual from the same dynasty. The weight given to his own
payoff is 1 − δ, while the weight given to his offspring (the (t + 1)-th individual)
is δ. Therefore, in the dynastic repeated game, the long-run payoffs retain the same
recursive structure given in equation (2). This observation is of course sufficient to
show that, if all individuals in each dynasty can observe the past history of play, then
the dynastic repeated game is in fact identical to the full memory repeated game
described in Subsection 2.1. In fact, this full information dynastic repeated game

11 As is standard, here, and throughout the rest of the paper, a subscript of “−i” indicates an array
with the i-th element taken out.
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is one extremely appealing interpretation/justification of the standard full memory
repeated game model.

2.3 Communication

If the t-th individuals in each dynasty cannot observe the history of play that took
place before they are born, then their behavior cannot vary across distinct histories
ht. It follows immediately that, in the absence of communication from one cohort
to the next, if all individuals in all dynasties are ignorant in this way, in each period
of the dynastic repeated game only those payoffs that are Nash equilibria of the
stage game can be attained.

The question then becomes: can communication substitute for memory? As-
sume that at each time t a cohort can observe the action profile that takes place at t.
Assume also that they have the chance to communicate with the next cohort. Can
they credibly convey sufficient information to the t + 1-th cohort to attain payoffs
beyond the Nash equilibria of the stage game?

Of course, communication can take place in a variety of different ways. For
instance, as we anticipated above, whether messages are sent simultaneously or
sequentially will have an impact on the outcome of the game. We begin by defining
a model of the communication between one cohort and the next in which the indi-
viduals in each dynasty speak simultaneously to the individuals in the next cohort.
This will be modified in Subsection 3.2 to allow for sequential communication.

Let Ai denote a set of payoff-irrelevant communication actions for dynasty i,
with A = ×iAi being the set of profiles of such actions. These need not be related
to the stage game itself, but are choices that collectively determine a message sent
from one generation to the next. The messages that can possibly be sent to the
next cohort is given by the set M . We assume that both A and M are invariant
across time.12 At each date t, let a(t) = (a1(t), . . . , an(t)) denote the profile
of communication actions, and let m(t) ∈ M denote the message (or profile of
messages) sent in period t.

Unless otherwise noted, we will assume that any message(s) transmitted to
the next cohort is commonly observed by all members of the next cohort.13 A
communication protocol in the dynastic repeated game is a list C ≡ (A, M, Φ)
where Φ : A → M . For a = (a1, . . . , an) ∈ A, Φ(a) is the message sent to
the next generation, after the payoff-relevant behavior occurs in that period. Some
“natural” examples of features that communication protocols may satisfy are:

12 It is worth emphasizing here that this assumption implies that “calendar time” cannot be “verified”
by any cohort. For instance, the time t and the time 2t individuals could generate exactly the same
message to be transmitted to the next cohort. In this case, calendar time would clearly “look the same”
to the individuals in cohort t+1 and in cohort 2t+1. A rather strong feature of this assumption, which
may seem unappealing to some, is that any date t individuals could in fact generate a message for the
next cohort which matches the null history ∅. In effect they would be telling their offspring that “the
game has just started, you are the first to play.”
The qualitative nature of our results below would remain unaffected if somehow these “re-starting”
messages were forbidden. In some cases (for instance Theorem 5 below), period t = 0 would have to
be excluded from our characterization of equilibria which would only apply to periods t ≥ 1.

13 See our discussion of this assumption in the concluding section of the paper.
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C1 Babbling: Φ(a) = m for all a ∈ A. Clearly, the message m is uninformative.
C2 Dictatorial: There exists a dynasty i ∈ I such that Φ(a) = ai.
C3 Unanimity: Ai = M = H, ∀i, and

Φ(a) =
{

h if ai = h, ∀i
h∗ otherwise.

Here, a single version of history is sent if everyone agrees. Otherwise, a default
history is reported.

C4 Decentralized Communication: M = ×i∈IAi, H ⊆ Ai, ∀i, and Φ(m) =
m. In a decentralized communication protocol, everyone separately reports
history to next generation.

While the first three examples fulfill an expository function, the last is a useful
benchmark. It describes the least restrictive communication, and so it provides the
most attractive environment for accurate transmission. We examine the case of
decentralized communication protocols in detail below.

Every communication protocol identifies a dynastic repeated game with com-
munication. A strategy for an individual in a dynasty is a pair consisting of an
“action” strategy and a “communication” strategy. The former processes the mes-
sages received from the prior generation and determines current behavior in the
stage game. The latter determines the individual’s communication action, which,
via the communication protocol, determines the message conveyed to the next co-
hort of individuals.

We begin by defining action strategies. For simplicity, we examine action strate-
gies that can be written as a single repeated game strategy describing the plans of
all individuals within a dynasty. When H ⊆ M , there is little loss of generality
with this assumption since an individual from, say, the t-th cohort, need only use
that part of the repeated game strategy which follows histories ht of length t. Let
gi : M → ∆(Si) denote an action strategy for dynasty i. Let g = (g1, . . . gn).

A communication strategy is a map µi from the prior generation’s messages
and current (observed) actions to current messages. Formally, µi(m, σ) denotes
a communication action ai ∈ Ai by an individual from dynasty i given that the
prior generation’s message profile is m and that the current action profile is σ. The
profile (µ1(m, σ), . . . , µn(m, σ)) then maps to a message m′ via Φ. This message
m′ is sent to the next generation. Let µ = (µ1, . . . , µn). To summarize, date t
individuals choose action profile σ(t) = g(m(t − 1)) and take communication
actions a(t) = µ( m(t − 1), σ(t)).

As with the full memory repeated game, something to start off play is needed.
(In the full memory repeated game this is the empty history h0 = ∅.) In the dynastic
repeated game with communication we need to define which message the first (born
at t = 0) cohort observes. Let this initial message be denoted by m(−1) = h0 = ∅.

The pair (g, µ) describes all behavior in the dynastic repeated game with com-
munication.An individual’s dynamic payoff after receiving message m is expressed
as Vi(g, µ| m). An individual’s dynamic payoff after receiving message m and
after action profile σ is expressed as Vi(g, µ| m, σ). In either case, an individ-
ual’s payoff still follows the recursive form in (2). We can now define a Per-
fect Bayesian equilibrium (PBE) pair (g∗, µ∗) in the usual way: for each i, any
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µi and gi, and for any m and any σ, Vi(g∗, µ∗| m) ≥ Vi(g∗
−i, gi, µ

∗| m) and
Vi(g∗, µ∗| m, σ) ≥ Vi(g∗, µ∗

−i, µi| m, σ).14

Given a communication protocol C and a common discount factor δ, we denote
by FC(δ) the set of PBE, and by EC(δ) the set of PBE payoff profiles. Let C1

denote the babbling protocol described above with m = ∅, and recall that C4

denotes the decentralized protocol. Then it is easy to see that

EC1
(δ) ⊆ EC(δ) ⊆ EC4

(δ) (3)

for all δ and all C. Moreover, EC1
(δ) coincides with Nash equilibrium payoffs of

the stage game. Clearly, if there is no communication, or when communication is
uninformative, there is no hope of attaining anything beyond payoffs of the stage
game. Conversely, if there are no restrictions on communication, then the largest
possible payoff set can be sustained.

3 Whitewashing

In this section we focus on the case in which the current cohort has no access at all
to any direct information about the past history of play. We examine first the case
of simultaneous messages. Then we move on to the case in which the members
of the current cohort speak sequentially to the next cohort. Finally, we turn to the
case of sequential communication in which a more complex reporting strategy is
lexicographically more costly than a simpler one.

3.1 Decentralized communication

We now proceed to examine equilibrium behavior under the decentralized com-
munication protocol defined in Section 2.3 above. Recall that in the decentralized
communication protocol, all individuals in each cohort effectively report separately
and simultaneously a history of play to the next generation, and all reports are com-
monly observed by all individuals in the next cohort. The messages are unrestricted
in the sense that any finite history (of any length) can be conveyed by any individual
(in other words H ⊆ Ai for every i). Intuitively, a decentralized protocol corre-
sponds to a world in which there is no attempt to collectively limit information,
nor is there any direct trace left by the actual history of play. This is of course in
contrast with the model of coverups that we will analyze in Section 4 below.

Our first characterization of the equilibrium set of dynastic games with commu-
nication tells us that in the case of decentralized simultaneous communication from
one cohort to the next, the equilibrium set is the same as in the full memory standard
repeated game. In other words, in this case communication can indeed substitute

14 While there are no proper subgames beginning each date, all individuals have common knowledge
regarding messages they receive. Hence, all Perfect Bayesian equilibria are Perfect Public equilibria of
the dynastic game. Consequently, the definitions above make (partial) use of the “One-Shot Deviation
Principle.”
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for memory in the dynastic repeated game. Those familiar with standard implemen-
tation logic will not find the following Theorem and its immediate Corollary very
surprising.

It should be made clear at the outset that we are setting up Theorem 1 below as
a benchmark case. Our task in the rest of this Section and in Section 4 will then be
to show that this equivalence between the full memory standard repeated game and
the dynastic repeated game is in fact not robust in more senses than one. Indeed
Theorem 1 fails in a rather dramatic way when communication carries arbitrarily
small costs and when the actual past history of play does leave a detectable trace.15

Theorem 1. Assume that the number of players n is at least 3. Fix any common
discount factor δ and any SPE f∗ ∈ F(δ) of the full memory game.

Then, for any decentralized communication protocol C, there exists a PBE
(g∗, µ∗) ∈ FC(δ) of the dynastic game with communication protocol C that is
equivalent to f∗ in the following sense.

For each m such that m = (h, . . . , h) for some h ∈ H and for every σ ∈ ∆(s)

g∗
i (m) = f∗

i (h) and µ∗
i (m, σ) = (h, σ) ∀ i (4)

In other words, provided that the messages sent by the previous cohort are all
the same (equal to h), then the PBE (g∗, µ∗) prescribes the same actual behavior
as the SPE f∗ after h. Moreover, again provided that the messages sent by the
previous cohort are all the same (equal to h), then in the PBE (g∗, µ∗), any profile
of current behavior (equilibrium or not) is truthfully reported to the next cohort by
all i.

Finally, notice that (4) since the first cohort all receive the same (empty) mes-
sage, obviously implies that the outcome path generated by (g∗, µ∗) is the same as
the outcome path generated by f∗.

The proof of Theorem 1 is in theAppendix.As we mentioned above, it runs along
familiar lines. The argument requires building into the equilibrium of the dynastic
repeated game the correct incentives for truthful reporting by all individuals in
each cohort.16 In turn, this of course requires a mechanism to detect and punish
lies. Unilateral deviations from truthful reporting are easily identified when there

15 Note also that we state Theorem 1 for the case of 3 or more players, ignoring the two-player
case. This result can be generalized to the case of two players (a slightly weaker statement holds) for
discount factors arbitrarily close to 1. Proceeding in this way saves a non-negligible amount of space.
The proof of the result for the two-player case involves mimicking the “mutual minmax” argument used
to prove Folk Theorems in two-player standard repeated games, and thus a substantial modification of
the “cross-checking” argument that we outline below.
Since, as we just said, Theorem 1 largely plays the role of a straw man in what follows, we take the
view that stating it only for the case of three or more players carries little or no cost for the sharpness
of the overall message we are trying to convey.

16 Notice that all the equilibria that we construct in the paper are “truthful” in the sense that, without
loss of generality, provided that H ⊆ Ai for every i (so that the space of message actions is rich enough),
we can take it to be the case that, in equilibrium, the members of each cohort report truthfully to the next
generation. Truthfully, of course, can only mean that a given one-to-one map of action messages into
histories is used throughout. This is a weak version of the so-called “revelation principle” that obviously
holds in our model.
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are three dynasties or more. Since only single-player deviations from equilibrium
ever need to be considered this is enough to induce truth-telling as required. Finally,
since the argument constructs incentives for truthful reporting, taking as given the
corresponding (action) incentives in the full memory game, Theorem 1 does not
depend on our assumption that mixed strategies are observable.17 Indeed, we require
only that whatever is observable in the full memory game can be observed (period-
by-period) and reported in the dynastic game.

It is trivial that any equilibrium of the dynastic game with communication is
also an equilibrium of the full memory game. Therefore, an immediate corollary
of Theorem 1 is that the sets of equilibrium payoff profiles are the same in the two
cases.

Corollary 1. Assume that n ≥ 3 and let any decentralized communication protocol
C and any common discount factor δ be given. Then EC(δ) = E(δ).

Before we turn to sequential communication, some remarks about Theorem 1
and Corollary 1 are in order. First, the “cross-checking” aspect of the mechanism
we construct for three or more players in the proof is by no means new. Baliga,
Corchon, and Sjostrom (1997) use this type of mechanism in a (static) model of
communication. It is also reminiscent of communication mechanisms in repeated
games with private monitoring. For example, Ben-Porath and Kahneman (1996)
prove a Folk Theorem when public communication is admissible in a repeated game
with private monitoring.18 Specifically, they show that the Folk Theorem applies in
any private monitoring game in which individuals’ behavior is (perfectly) observed
by at least two others. Like ours, their proof also exploits a procedure whereby the
deviator is identified as the one whose report fails to correspond to identical reports
of at least two others.

Secondly, if we allow players in the dynastic game to (independently) random-
ize their communication actions, then Theorem 1 and Corollary 1 would have to be
modified to take into account the fact that messages now become a potential coor-
dination device. In particular, it is not hard to see that using random messages the
players could achieve a randomization across different Nash equilibria of the stage
game in a given period. This, of course, would alter (enlarge) the set of achievable
long-run payoffs when δ is bounded away from 1.19 However the effect of ran-
domized messages would become negligible as the discount factor approaches 1
since playing the different Nash equilibria in sequence through time would have
the same effect on long-run payoffs. For simplicity, and because our main question
here is whether the messages can substitute for memory, we focus on pure message
strategies throughout the paper.

17 For exactly the same reasons this is also true in all our other results below. See also footnote 10
above.

18 See also the papers by Compte (1998), and Kandori and Matsushima (1998).
19 We are grateful to Dino Gerardi for pointing out this fact.
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3.2 Coordination failure and sequential communication

Clearly, equilibria in the full memory game represent the outer bound of what is
possible in the dynastic repeated game. As we know from Theorem 1 and Corol-
lary 1 decentralized communication with simultaneous choice of message actions
achieves this bound. In a sense, this equivalence relies on a dependence on the
simultaneity of messages, which is unsettling for at least two reasons. First of all,
simultaneous messages may be simply not feasible.

Secondly, there may be incentives for the players to depart from any simultane-
ous communication protocol. Consider for instance the repeated PD game in Figure
1.A standard way of supporting mutual cooperation utilizes a joint punishment (e.g.,
permanent reversion to the unique equilibrium of the stage game) as a way to de-
ter deviations from the path of perpetual cooperation. However, once a defection
in behavior takes place, everyone, including the “injured party,” would prefer to
whitewash the history of defection. It is clear that the simultaneous structure of the
communication protocol prevents any agent from signaling his intent to falsify the
truth. If communication were sequential then the intent to “whitewash” could be
relayed by one member of the current cohort to the other. Consequently, incentives
to sequence messages may arise, especially if the timing of communication is not
observed by subsequent cohorts.

In this Section we explore the consequences of assuming that message actions
are taken sequentially by individuals in a given cohort.

To keep matters simple, we examine the simplest class of protocols with sequen-
tial choice of action messages. We consider the class of communication protocols
that are decentralized in the sense that we specified above, but modified so that the
individuals in each cohort choose their message actions one after the other.

Definition 1. We say that a communication protocol is a sequential decentralized
communication protocol if it can be obtained as the following simple modification
of a (simultaneous) communication protocol that is decentralized in the sense of
protocol C4 described above.

There exists a permutation mapping θ : {1, . . . , n} → {1, . . . , n} that de-
scribes the order in which the message actions are chosen.20 In other words, first
individual θ(1) chooses a message action aθ(1) ∈ Aθ(1). Immediately after, all other
individuals in the cohort observe aθ(1). Then individual θ(2) chooses a message
action aθ(2) ∈ Aθ(2) which is then observed by all other individuals in the same
cohort. The choice of action messages then continues in this fashion until individual
θ(n) makes his choice.

The rest of the details of a sequential decentralized communication protocol
are as in Example C4 above.

With a sequential decentralized communication protocol, Theorem 1 no longer
holds. Some equilibria of the full memory game are destroyed by the incentives to
whitewash the past. For example, consider the stage game in Figure 2.

20 The actual permutation mapping θ is irrelevant for all our results below. Unless we specify otherwise
in what follows we assume that θ is in fact the natural order so that θ(i) = i.
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Dynasty 2

Dynasty 1

L M R
T 2, 2 0, 3 0, 0
M 3, 0 1, 1 0, 0
B 0, 0 0, 0 0, 0

Figure 2. A 3 × 3 stage game

In the full memory game, every payoff profile in the strictly individually rational
set {(v1, v2) : vi > 0, ∀i = 1, 2} is sustainable as an SPE if δ is close enough to
one.21

Now suppose that two dynasties play this game with sequential decentralized
communication. We assert that any equilibrium in which a deviation is countered
with permanent reversion to the worst Nash equilibrium (B, R) cannot be sustained.
Consider the perpetual repetition of (T, L) each period. Suppose further that at some
date t, the date t member of Dynasty 1 chooses to “cheat” by deviating to M . Now
both members of generation t communicate sequentially to date t + 1 individuals.
Dynasty 1 communicates first. If the date t player 1 whitewashes by lying about his
defection then player 2 will confirm the lie unless player 2 can be made at least as
well off by telling the truth about (M, L) taken in the current period. This means
that in the continuation, player 2 must receive a payoff of at least 2 for telling the
truth. However, if he receives a payoff of more than 2, then player 2 will always
report “(M, L)” even when “(T, L)” was the true action taken.

Notice that since communication is cheap talk, the structure of the reporting
“subgame” remains the same after every history.22 Hence, the set of continua-
tion equilibria after the reporting stage must remain the same. Yet, the reporting
“subgame” will typically have multiple “subgame perfect” equilibria, one for each
possible history in the game. In this particular game, this means that player 2 must
be indifferent between truthful reporting and whitewashing. Therefore, player 2’s
continuation payoff in the putative continuation is 2 regardless of whether he reports
“(T, L)” or “(M, L).”

Moreover, since in the putative equilibrium, “(0, 0)” is the hypothesized con-
tinuation after a deviation, player 1 must have an incentive to truthfully report
“(M, L),” after his own deviation. But since player 2 will truthfully report “(M, L),”
should player 1 attempt to lie, the continuation payoff profile after the sequence of
reports “( (T, L), (M, L) )” must be (0, 2). That is, if player 1 attempts to lie, and
player 2 reports the truth, then player 2 must be indifferent between his reports,
and player 1 must no better off than if he told the truth. In the latter case, player 1
cannot be strictly worse off since his lowest feasible payoff is 0, and so he too is
indifferent between his reports.

21 Notice that, as is often the case, the (lower) boundary of the individually rational set is not sustain-
able, except of course for the origin (0, 0) which is a Nash equilibrium of the stage game.

22 We put “subgame” in quotes since the reporting stage is not literally a proper subgame of the
dynastic game. Nevertheless one can refer to the subgame perfect equilibria of the extensive form
reporting game, whose terminal payoffs are equilibrium continuations.
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Figure 3

The problem, however, is that (0, 2) is not a feasible SPE continuation payoff
in the game. Hence, the mutual cooperation equilibrium using these particular
punishments cannot be sustained. The relevant portion of the game tree in the
message phase is represented in a schematic way in Figure 3.23

3.3 Sequential communication: the necessity of a “neutral historian”

The above example demonstrates that the potential for sequential moves to break
the “coordination failure” that prevented whitewashing in the simultaneous case,
is enough for whitewashing to occur in some cases. The example also demon-
strates a general property of perfect equilibria when communication is sequential.
To characterize this property, some further notation is required.

We will denote by ai−1 the (i−1)-tuple of message actions chosen by individu-
als 1, . . . , i−1 (by convention, set a0 = ∅). In this way we can then write the strategy
of individual i in the communication round as determining ai = µi(m, σ, ai−1).
In other words, i chooses his message action as a function of the message m =
(m1, . . . , mn) sent by the previous cohort, the current action profile σ, and the mes-
sage actions ai−1 chosen by individuals 1 through to i − 1 in the current cohort. In
this way µ determines an entire path a of message actions that can be written as

a1 = µ1(m, σ, a0), a2 = µ2(m, σ, a1), . . . ,

ai = µi(m, σ, ai−1), . . . , an = µn(m, σ, an−1)

In any sequential decentralized protocol, the choice of profile (g, µ) determines
a reporting “subgame” in the communication round. This “subgame” can be viewed
as an extensive form game of perfect information. The “terminal nodes” of this
extensive form game are the equilibrium continuations that begin with the next
generation’s play of the game. Since communication is cheap talk, the terminal
nodes of this game do not vary with past reports and play. We write v = V (g, µ| a)

23 Clearly, each player has 9 choices at each node in the complete version of the tree drawn in Figure
3 — one for each possible outcome of play at t − 1. We have only represented the two relevant ones
purely for the sake of visual clarity.
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to denote the payoff vector associated with the terminal node reached by path a
given that the continuation of play is determined by (g, µ). When the path has
only been determined up to, say, player j’s report, i.e., when the path is aj =
(a1, . . . , aj−1), then players’ strategies µj+1, . . . , µn are used to determine the
terminal node. Since these strategies depend, in turn, on prior history (m, σ), we
must write V (g, µ| m, σ, aj) to denote the terminal node reached by path aj given
history (m, σ) and strategies (g, µ). In the result below, the reporting subgame
refers to the induced extensive form game in the message phase whose terminal
payoffs are equilibrium continuation payoffs.

Theorem 2. (Necessity of a “Neutral Historian”) Fix a sequential, decentralized
protocol C, and fix a PBE, (g, µ) ∈ FC . Let (m′, σ′) and (m′′, σ′′) denote two
prior histories of message and action profiles, respectively, each of which generate
distinct message paths. Then, there is a path a, a player j, and a pair of distinct
action messages, a′

j and a′′
j , for that player such that µj(m′, σ′, aj−1) = a′

j and
µj(m′′, σ′′, aj−1) = a′′

j and

Vj(g, µ| m′, σ′, aj−1, a′
j) = Vj(g, µ| m′′, σ′′, aj−1, a′′

j )

In words, there exists some path a and some player (a “neutral historian”) who
distinguishes between (m′, σ′) and (m′′, σ′′) by using two action messages that
generate payoff equivalent continuations.

The result gives necessary conditions for the existence of multiple equilibria
of the message game. This is of crucial importance since the message game must
have multiple equilibria in order to successfully punish deviations. That is, since
the next generation has no independent verification of the actual history, both the
continuation from prescribed play and the continuations after deviations must all
be equilibrium continuations of the reporting game. The older generation must
be able to coordinate either on the original equilibrium path continuation, or on
the punishment continuation. Generally, there will be at least n + 1 equilibria of
the message game. One for the equilibrium prescription, and one each for each
individual’s deviation from equilibrium.

However, because the reporting game cannot vary with prior history, the mul-
tiplicity of equilibria in the reporting game implies that subgame is nongeneric.
Somewhere, there must be “ties,” in someone’s payoff, and these ties must have the
structure described in Theorem 2. This structure implies that in every PBE (g∗, µ∗),
the reporting subgame must utilize a “neutral historian.”

Specifically, in any pair of equilibrium paths, there exists someone whose poten-
tial veto of one of the paths is governed by the later choice of a “neutral historian,”
player j. The neutral historian is one who uses his indifference between two ter-
minal payoffs (i.e., his “neutrality”) to influence the earlier messages of others. In
essence, the neutral historian screens and verifies the truthfulness of others’ reports,
while remaining indifferent in the process. An explicit construction that identifies
the behavior of this neutral historian is given in the proof of Theorem 3 in the next
Section.
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3.4 Self generation

Using a, by now standard, notion of self generating sets (Abreu 1988,Abreu, Pearce,
and Stacchetti 1986, Abreu, Pearce, and Stacchetti 1990), one can construct equi-
librium payoff sets for sequential protocols. Formally, a set V is self-generating
if for each v ∈ V there exists a σ ∈ ∆(S) and a map w : ∆(S) → V such that
(i) v = (1 − δ)U(σ) + δw(σ), and (ii) vi ≥ (1 − δ)U(σ′

i, σ−i) + δwi(σ′
i, σ−i)

for each i and each σ′
i. It is not difficult to show that all bounded self generating

sets are contained in the SPE profiles, E(δ), of the standard repeated game. Indeed,
E(δ) itself, as well as any stage Nash payoff vector are self generating sets. The
following Theorem justifies our interest in a special type of self generating sets:
those that have the lower boundary of a rectangle in IRn. It asserts that any such self
generating subset is sustainable in any sequential, decentralized protocol provided
that the protocol allows each individual to report histories and continuation payoffs
to the next generation of players.

Theorem 3. Fix any 0 < δ < 1, and in the full memory game let V be a compact,
self-generating set with the following property. For any i, and any v̂ ∈ V , let vi =
min vi such that (vi, v−i) ∈ V for some v−i. Then for every v̂ ∈ V we have that

(v∗
i , v̂−i) ∈ V (5)

Then, for any sequential, decentralized communication protocol, C, in which H ⊆
Ai for each i,

V ⊆ EC(δ)

The proof in the Appendix gives an explicit account of how the “neutral histo-
rian” is used to sustain payoffs in the self generating set. Roughly speaking, given
any point in V , a protocol is constructed in which player 2 (who speaks second),
serves as the neutral historian. After player 1’s (who speaks first) report, player 2
is asked to “confirm” it or not. (The messages of all other players are ignored.) If
player 2 confirms 1’s report, then play unfolds as dictated by a particular SPE of
the full memory game. If on the other hand player 1 deviates from reporting the
truth, this is treated as if he had behaviorally deviated from equilibrium play, and
he is punished by being awarded the lowest possible payoff in V . The equilibrium
is also constructed so that player 2 is always indifferent between confirming 1’s re-
port or not. Thus, exploiting the properties of V , both 1 and 2 are given the correct
incentives to report the truth and to serve as the “neutral historian” respectively.

The question of whether any particular subset of the equilibrium payoff set E(δ)
that has the lower boundary of a rectangle is self generating is open. However, par-
ticular examples of such self generating sets are not difficult to construct. Clearly,
individual Nash equilibrium payoff profiles are degenerate self-generating rectan-
gles. To see that more interesting self generating sets that have the lower boundary
of a rectangle are common, consider once again the Prisoner’s Dilemma game in
Figure 1 in the Introduction.

We claim that for δ ≥ 4/7 the rectangle {v : (1, 1) ≤ v ≤ (2, 2)} is self
generating. Notice that this includes mutual cooperation. While we don’t verify the
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property for all profiles in the set, we can easily do so for the extremal ones. First
consider (2, 2). Consider the following is simple penal code. Any deviation from
(2, 2) by, say, a player 1, is followed by a one period punishment in which they
play: σ1(C) = 4/5, σ2(C) = 1/3. Following this, the players revert to mutual
cooperation. Further deviations by player 1 restart the punishment; deviations by
player 2 are countered by the same punishments (switching the players’ roles).

We now verify that this is a SPE penal code when δ = 4/7. In fact, by extending
the length of the punishment, this type of penal code also works for discount factors
greater than 4/7 as well.24

While the one shot punishment gives player 1 a stage payoff of −1/3, his
dynamic payoff in the punishment phase is 1 since 1 = (1 − δ)(−1/3) + δ2 when
δ = 4/7. The payoff to player 2 in player 1’s punishment phase is (1− δ)2+ δ2 =
2. Note that player 1 obtains a payoff of unity from perpetual deviation. Hence,
a (weak) best response is to submit to punishment in order to obtain 2 in the
continuation. This penal code simultaneously verifies that the profiles (2, 2), (1, 2),
and (2, 1) are all SPE profiles (since punishment continuations are obviously SPE
outcomes as well). To see that (1, 1) is also a SPE profile, we construct a penal code
which supports (7/4, 7/4) as follows: play σi(C) = .914 (approximately) each
period. Any deviation is met with one period reversion to the Nash equilibrium,
after which time play resumes as before. This can be verified to be a SPE penal code.
Since the value of the punishment profile is (1, 1), it constitutes a SPE continuation.
Other payoffs in the rectangle may be shown to be sustained more easily since the
punishment will generally be more severe, and the one shot gain to deviation will
generally be lower.25

3.5 Costly communication

Our discussion so far of sequential decentralized communication has yielded two
insights. First of all the potential to whitewash does have an impact on the structure
of equilibria of the repeated game. Theorem 1 no longer holds in this case. Some
equilibria of the full memory game are not viable under sequential decentralized
communication because they would leave one or more individuals with an incentive
to whitewash the past after certain histories of play.

On the other hand, the logic of Theorem 3 demonstrates that whitewashing can
be prevented, even if it makes all current and future generations better off, and even
when individuals can signal their intentions to coordinate on the whitewashing of
previous deviations. Since our examples suggest that most payoffs of interest (e.g.,
mutual cooperation in Prisoner’s Dilemma) can be sustained by rectangular self
generation if players are sufficiently patient, these payoffs are also sustainable by
equilibria of sequential protocols. Our next step is to show that such equilibria are
fragile.

24 Notice that we only establish δ = 4/7 as a lower bound for self-generation when Nash reversion
is the punishment.

25 The same logic that sustains (7/4, 7/4) can be applied to verify the self generating property for
other interior points in the rectangle.
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We modify the dynastic game with sequential decentralized communication
in the following way. We assume that an “infinitesimal” cost is associated with
communication strategies that are more “complex”. In other words, we assume that
there are costs attached to more complex communication strategies, but that they
matter in the comparison between the payoffs that two strategies yield only if these
two strategies yield actual payoffs (from actual play that is) that are the same. Using
a standard term, we call these lexicographic costs of more complex communication
strategies.

Once the model is modified to allow for lexicographic costs of more complex
communication strategies, it behaves in a dramatically different way. Theorem 4
asserts that once complexity costs are taken into account the set of PBE of the
dynastic game shrinks to N – the set of Nash equilibria of the stage game.

We begin with a definition of what it means for a strategy to be more complex
than another at the communication stage. We want to deem a communication strat-
egy to be more complex than another if it prescribes communication actions that
depend “more finely” on the history of play. To describe formally what we mean
by more finely some extra notation is required.

Recall that with sequential decentralized communication the message action of
individual i is denoted by ai = µi(m, σ, ai−1), where m = (m1, . . . , mn) is the
message sent by the previous cohort, σ is the current action profile, and ai−1 is the
profile of message actions chosen by individuals 1 through to i − 1 in the current
cohort. Let Mi be the set of all possible tuples (m, σ, ai−1).26

Given a communication strategy µi we can of course identify the way in which
µi partitions Mi. We let this partition be denoted by Pi(µi). The “cell” of Pi(µi)
that contains any given (m, σ, ai−1) ∈ Mi is denoted by λi(m, σ, ai−1) and is
defined as follows.

λi(m, σ, ai−1) =
{
(m′, σ′, ai−1′) ∈ Mi | µi(m′, σ′, ai−1′)

= µi(m, σ, ai−1)
}

(6)

Lastly, as is standard, if the partition Pi(µi) is coarser than the partition Pi(µ′
i) we

write Pi(µi) 
 Pi(µ′
i).

27

We can now proceed with a formal definition of the assertion that a communi-
cation strategy is more complex than another.28

26 So, to be precise we have that Mi = M × ∆(S) × Ai−1, where Ai−1 = A1 × . . . × Ai−1 if
i ≥ 2, and Ai−1 = ∅ if i = 1.

27 Of course in this case we may also say that Pi(µ′
i) is finer than Pi(µi).

28 The notion of complexity embodied in Definition 2 below is related to the definition of complexity
based on the number of states in an automaton needed to implement a strategy (Rubinstein 1986, Abreu
and Rubinstein 1988,Aumann and Sorin 1989, Piccione 1992, Rubinstein and Piccione 1993, Chatterjee
and Sabourian 2000, among others). However, it should be noted that the two are not the same. The
reasons are two-fold. First of all, we do not restrict attention to strategies that are at all implementable
by a finite automaton. In this sense the “domain” of Definition 2 is broader than the ones based on
counting states in a finite automaton. Secondly, our definition below is “weaker” than the automaton
based ones in the following sense. Given two communication strategies that are implementable by a
finite automaton, it is possible that one be less complex than the other in the sense that it requires fewer
states, but that the two are not comparable in the sense of Definition 2 below. On the other hand, it is
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Definition 2. We say that communication strategy µ′
i is more complex than com-

munication strategy µi if and only if Pi(µi) 
 Pi(µ′
i).

29

As we anticipated above, we assume that whenever the payoffs stemming from
the (repeated) stage-game are equal, communication strategies that are less complex
in the sense of Definition 2 are preferred. The easiest way to include our assump-
tion of lexicographic costs of more complex reporting strategies is to modify the
definition of an PBE for the dynastic repeated game with sequential decentralized
communication.

Definition 3. Consider an PBE (g∗, µ∗) for the dynastic repeated game with se-
quential decentralized communication. We say that (g∗, µ∗) is robust to lexico-
graphic complexity costs of communication if and only if for every dynasty i and
every (m, σ, ai−1) ∈ Mi, there does not exist a communication strategy µ′

i such
that

Vi(g∗, µ′
i, µ

∗
−i| m, σ, ai−1) = Vi(g∗, µ∗| m, σ, ai−1) (7)

and µ∗
i is more complex than µ′

i in the sense of Definition 2.
Given a sequential decentralized communication protocol C and a common

discount factor δ, the set of PBE that are robust to lexicographic complexity costs
of communication will be denoted by F̃C(δ), while the corresponding set of payoffs
will be denoted by ẼC(δ) throughout the rest of the paper.

Notice once again that Definition 3 embodies the idea that complexity costs
of communication only matter if the payoffs from the (repeated) stage game are
the same. A PBE is robust to lexicographic complexity costs of communication
if, given the strategies of the others, no individual can choose a communication
strategy that leaves his basic payoff unaffected but which has a lower degree of
complexity than the equilibrium one.

The idea is that players will not distinguish histories that have equal payoffs in
the equilibrium continuation. Indeed, why would they expend energy to do other-
wise? But if a player does not make fine distinctions between otherwise identical
histories, then he must play the same way after each such history of play.

Notice that the way we have incorporated the role of complexity costs into the
equilibrium notion for our model is in some strong sense the weakest possible one. If
we modelled the complexity costs of communication to be even small but positive,
their impact on the equilibrium set could not be smaller than in the lexicographic
case we are considering here. In this sense, Theorem 4 below refers to the limit case
in which complexity costs of communication have been shrunk to zero.

easy to check that in this case, if one strategy is less complex than the other in the sense used here, then
it necessarily is less complex than the other in the sense of requiring fewer states. While counting states
provides a complete order of strategies that are implementable by a finite automaton, Definition 2 only
defines a partial order on this set. See also footnote 29 below.

29 Notice that the complexity of a communication strategy only defines a partial order on the set of
communication strategies in the sense that clearly there exist pairs µi and µ′

i such that both Pi(µi) ��
Pi(µ′

i) and Pi(µ′
i) �� Pi(µi) hold.
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Theorem 4. Let any sequential decentralized communication protocol C and any
common discount factor δ be given. Then any PBE (g∗, µ∗) that is robust to lexico-
graphic complexity costs of communication has the following features. The action
profile taken in any subgame σ = g∗(m) is a Nash equilibrium of the stage game
(in other words g∗(m) ∈ N for every m ∈ M ). Moreover the action profile σ is
the same in every period along the equilibrium path — except possibly in the first
period.30

The proof of Theorem 4 is in the Appendix. A brief outline of the argument is
as follows.31 We know from Theorem 2 that in order to generate distinct message
paths in any PBE with sequential communication in the dynastic game it must be
the case that at least one player is indifferent between two distinct action messages
in terms of the continuation payoffs they generate. This immediately implies that
at least one player can unilaterally deviate from this putative equilibrium and use
a communication strategy that is less complex in the sense of Definition 2 and
obtain the same continuation payoff. Hence, in any PBE of the dynastic game
with sequential communication that is robust to lexicographic complexity costs
according to Definition 3, the action messages of all players must be the same in
every period.

Since the action messages chosen in equilibrium must be the same in every
communication subgame, regardless of history, it now follows that the continuation
payoffs to every individual cannot depend either on the current action profile or
on the message received from the previous cohort. But then it follows immediately
that the action profile σ chosen in every period cannot be anything other than a
Nash equilibrium of the stage game.

The potential to whitewash is quite devastating when communication is se-
quential and decentralized and complexity costs of communication have even a
lexicographic impact on payoffs. All deviations will be whitewashed by the current
cohort. Continuation payoffs are therefore independent of current behavior, and
only behavior that is equilibrium in a static sense will survive in any equilibrium
of the dynastic game.

4 Coverups

So far we have analyzed the dynastic repeated game with communication protocols
that ensured that all the information available to the current cohort is the result of
message actions taken by the previous cohort. Of course, this is an extreme assump-
tion. A more “realistic” view is that the information available to the current cohort
is a mixture of the true history of play and of the communication behavior of the
previous cohorts. The purpose of this section is to characterize equilibrium behav-

30 Recall that each cohort cannot verify “calendar time” (see footnote 12 above). If, instead, we
allowed calendar time to be verifiable it is relatively easy to see that different Nash equilibria of the
stage game could be played in different periods in a PBE.

31 We are grateful to an associate editor of this journal for pointing out that the proof of Theorem 4
could be shortened considerably by appealing to Theorem 2 in the way we do below.
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ior in the dynastic repeated game under one such possible “mixed” communication
protocol.

As we mentioned in Section 1 we examine a communication protocol in which
the past history of play leaves a “footprint.” This footprint will be enough to reveal
the true behavior of the previous cohort, unless the individuals in the current co-
hort unanimously agree to report a different history to the next generation. As we
anticipated in Section 2 we call this a model of “coverups”.

To describe in detail the communication protocol with unanimous conspiracy
to coverup, it is convenient to refer back to Example C3 of Section 2.3 above.
Essentially, we need to fill out the details of C3 above: we need to specify the
history h∗ that is reported to the next generation in case of disagreement.

As in Example C3, let Ai = M = H . Now define Φ : M × ∆(S) × A → M as

Φ(m, σ, a) =
{

h if ∃ h such that h = ai ∀ i
(m, σ) otherwise (8)

Using (8) we can now proceed to define our communication protocol with
unanimous conspiracy to coverup.

Definition 4. The dynastic repeated game with unanimous conspiracy to coverup
is defined as follows.

Individuals in each cohort choose their message actions sequentially as de-
scribed in Section 3.2 above.

Consider a cohort that has received message m from the previous cohort. As-
sume that the individuals in the current cohort have chosen action profile σ. Let a
be the profile of action messages chosen by individuals in the current cohort. Then
the message received by the next cohort is given by m = Φ(m, σ, a), where Φ is as
in (8).

In other words, the message sent to the next cohort is equal to (m, σ) where m
is the message of the previous cohort and σ is the true current action profile, unless
all individuals in the current cohort choose identical action messages a1 = . . . an

= h. In the latter case the message passed on to the next generation is h.
It turns out that the set of equilibrium payoffs of the dynastic repeated game

with unanimous conspiracy to coverup is the same as the set of payoffs generated
by equilibria of the full memory game that satisfy a restriction that has been ana-
lyzed before — namely those equilibria of the full memory game that are Weakly
Renegotiation Proof (henceforth WRP) in the sense of Farrell and Maskin (1989).
This is of independent interest since it tells us that Theorem 5 can be viewed as
providing non-cooperative foundations for restricting attention to the set of WRP
equilibria in a repeated game.

Before we proceed any further, for completeness we give a definition of those
SPE that are WRP in the full memory game.

Definition 5 (Farell and Maskin, 1989). Consider the full memory game of Sec-
tion 2. Let f∗ denote an SPE of this game.

We say that f∗ is Weakly Renegotiation Proof if and only if it has the property
that no continuation equilibrium is strictly Pareto-dominated by another continu-
ation equilibrium.
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In other words, an SPE f∗ of the full memory game is WRP if and only if there
exist no pair of finite histories h and h′ such that

Vi(f∗|h) > Vi(f∗|h′) ∀ i = 1, . . . , n (9)

Throughout the rest of the paper, given a common discount factor δ the set of SPE
strategy profiles of the full memory game that are WRP is denoted by FR(δ), while
the corresponding set of payoff vectors is denoted by ER(δ).

We are now ready to state our last result.32

Theorem 5. Let a communication protocol C with unanimous conspiracy to
coverup and a common discount factor δ be given. Then EC(δ) = ER(δ). In other
words, the set of PBE payoffs in the dynastic repeated game with unanimous con-
spiracy to coverup is the same as the set of SPE payoffs of the full memory game
that are WRP.

The proof of Theorem 5 is in the Appendix. Intuitively, the argument that makes
it hold runs along the following lines.

Start with EC(δ) ⊆ ER(δ). Consider a reporting subgame of the dynastic re-
peated game, in which the players choose their actions sequentially, from 1 to n.
Suppose that the equilibrium prescribes that all individuals report the action profile
σ, but that the continuation payoffs associated with these reports are strictly Pareto-
dominated by the continuation payoffs associated with another profile of message
actions that are different from the “true” σ. Then using backwards induction (on
the set of individuals, within the reporting “subgame” ) it is possible to show that
the true reporting behavior could not be an equilibrium in the first place. Since
every individual can unilaterally trigger the true σ to be communicated to the next
cohort, it is also possible to show that it cannot be the case that equilibrium behavior
prescribes unanimous reporting of a “false” σ that is associated with continuation
payoffs that are strictly dominated by the continuation payoffs associated with the
true profile σ. In this way, it is possible to show that the equilibrium behavior in the
reporting subgame cannot be associated with a profile of continuation payoffs that
are dominated by the continuation payoffs associated with another profile of mes-
sage actions. Hence no continuation equilibrium can be strictly Pareto-dominated
by another continuation equilibrium.

To see that EC(δ) ⊇ ER(δ) consider a reporting subgame of the dynastic re-
peated game and the following communication strategy profile which serves to
implement any WRP equilibrium of the full memory game.33

Player 1 starts by reporting the true history of play, and provided that there have
been no deviations, all subsequent players also report the true history of play. If any
deviations from truthful reporting have occurred (so that the true history is revealed
through its “footprint”) then every subsequent player reports the true history of

32 We are grateful to an Associate Editor of this journal for suggesting that a previous version of
Theorem 5 could be strengthened to yield the result that we now report below. See footnote 33 below.

33 This part of the statement and proof of Theorem 5 was suggested to us by an Associate Editor of
this journal.
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play. Now consider the possibility that, through a sequence of deviations, all players
report some false history instead. Then, since the corresponding equilibrium of the
full memory game is WRP there must be at least one player who (at least weakly)
prefers the continuation payoffs associated with the true history of play. Since a
single player disagreeing with the attempt to cover up the true history is sufficient
to reveal it, this is enough to show that true reporting will in fact take place in
equilibrium. Hence EC(δ) ⊇ ER(δ).

5 Concluding remarks

This paper examines play in dynastic repeated games.34 Since each new generation
cannot (perfectly) observe prior play, they must rely on messages of the prior gen-
eration. When these messages constitute cheap talk, then communication protocols
must guard against whitewashing. When some prior information is available, then
protocols must deter coverups.

Our results show that standard mechanism designs in the protocol can easily
sustain all outcomes that were available in the full memory repeated game. Even
when reports in the communication phase are sequenced, protocols which neces-
sarily utilize some “neutral historian” exist to sustain most if not all outcomes of
the full memory game.

However, our results also suggest that these equilibria are fragile. If individuals’
reports in any communication phase are sequenced, and if complexity matters even
lexicographically, then only stage Nash equilibria can appear along the equilibrium
path. In this world, the messages conveyed from one generation to the next are
devoid of any real content.

Despite some similarities, the present model examines a very different type of
communication than in typical sender-receiver, cheap talk models such as Crawford
and Sobel (1982) and, more recently Krishna and Morgan (2001). The latter is
representative of a more recent variety which, as in our model, features multiple
senders of information. Yet, in all these models, difficulties in reporting incentives
are due to different payoff functions between the sender and receiver. By contrast,
in our model there are no payoff differences, at least between sender and receiver
of the same dynasty. The incentive problems arise because of the requirement that
the equilibria coordinate behavior on intertemporal sanctions. Sometimes these
sanctions punish many or all individuals for the sins of one. This coordination
on sanctions drives the necessary wedge between the senders and receivers of the
hidden information.

Though no one in a cohort observes past history, the assumption of public mes-
sages means that all individuals of a given generation inherit the same “memory”
from their predecessors. For this reason, the present model also bears some re-
semblance to repeated games with public monitoring. (Green and Porter (1984),
Abreu, Pearce, and Stacchetti (1986), Abreu, Pearce, and Stacchetti (1990), and
Fudenberg, Levine, and Maskin (1994), among others).

34 Related issues arise in two recent papers (Kobayashi 2003, Lagunoff and Matsui 2002) that model
organizations populated by dynastic overlapping generations of players.
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The public observation assumption is motivated by our desire to bias things as
much as possible against whitewashing. Public observation allows the adoption of
standard techniques from Nash implementation (see, for example, Jackson (1999) or
Maskin and Sjöström (2002) and the references contained therein). For this reason,
the sensitivity of such mechanisms to sequencing and complexity is somewhat
unexpected.

Nevertheless, one could imagine dropping the assumption of public observabil-
ity. In that event, we do not yet know what happens. With private, intra-dynastic
communication and with only two dynasties, it is possible that folk theorem-like
results similar to those reported in Kobayashi (2003) could be proved. However,
with more than two dynasties, this is less clear.

With private communication, the model would bear closer resemblance to re-
peated games with private monitoring since each member of each cohort would
possess a private version of the history of play that is not common knowledge
across players.35

One the one hand allowing private communication in the present set-up dimin-
ishes the scope for the use of “cross-checking” mechanisms to punish deviators. On
the other hand, with private messages there seems to be a large degree of flexibility
in defining out-of-equilibrium beliefs, which in turn suggests that a larger set of
equilibrium outcomes may be sustainable.36 It may well turn out to be the case that
the role of out-of-equilibrium beliefs is, in fact, a key difference between dynastic
games with private messages and repeated games with private monitoring.

The field of repeated games with private monitoring is an extremely important
and currently active area of research in which general results have, by and large,
eluded the best efforts of a formidable line-up of investigators. Though desirable,
extending the model we have analyzed here to the general private-message case is
evidently beyond the scope of the present paper.

Appendix

Proof of Theorem 1. Let f∗ denote any SPE in the full memory game.
We now define (g∗, µ∗) as follows. For each profile m = (m1, . . . , mn), and

each i,

g∗
i (m) =

{
f∗

i (h) if∃h such that mj=h, ∀j∈J ⊆ I, with|J | ≥ n−1

f∗
i (h0) otherwise

(A.1)

35 See, for instance, Ben-Porath and Kahneman (1996), Sekiguchi (1997), Compte (1998), Kandori
and Matsushima (1998), Mailath and Morris (1998), Bhaskar and van Damme (2002), Compte (2002a),
Compte (2002b), Ely and Valimaki (2002), Kandori (2002), Mailath and Morris (2002), Matsushima
(2002), and Piccione (2002). With few exceptions, this literature tends to examine outcomes of games
that are “close” to those with public monitoring.

36 We are grateful to Dino Gerardi for pointing out a two-player example of out-of-equilibrium beliefs
in which each player believes that the other player has received the same message with probability one.
These out-of-equilibrium beliefs, when available, are helpful in sustaining many of the same equilibrium
outcomes of the dynastic game with public communication.
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and for each m, each σ, and each i,

µ∗
i (m, σ) =

{
(h, σ) if∃h such that mj=h, ∀j∈J ⊆ I, with|J | ≥ n−1

(h0, σ) otherwise
(A.2)

It is now straightforward to verify that (g∗, µ∗) is a PBE for the dynastic repeated
game. The details are therefore omitted. Since the profile f∗ was taken to be an
arbitrary SPE of the full memory game, this is clearly enough to prove our claim.


�
Proof of Corollary 1. It is immediate to check that EC(δ) ⊆ E(δ). The details of
this claim are omitted. Since Theorem 1 obviously implies that E(δ) ⊆ EC(δ) the
claim is proved. 
�
Proof of Theorem 2. Let (g, µ) denote any PBE. As hypothesized in the Theorem,
let (m′, σ′) and (m′′, σ′′), denote the prior histories of message and action profiles,
respectively.

Now suppose that the Theorem is false. Then, for any path, a, and for every
player j, we must have

EITHER

µj(m′, σ′, aj−1) = µj(m′′, σ′′, aj−1) (A.3)

OR

µj(m′, σ′, aj−1) �= µj(m′′, σ′′, aj−1), and

Vj(g, µ| m′, σ′, aj−1, µj(m′, σ′, aj−1) ) �= Vj(g, µ| m′′, σ′′, aj−1,

µj(m′′, σ′′, aj−1) )

(A.4)

We use the following backward induction argument. Suppose, first, that either
(A.3) or (A.4) holds for all paths and for player n. We now argue that (A.4) cannot
hold for player n. To see this, observe that if (A.4) did indeed hold then, without
loss of generality, we have

v̂n ≡ Vn(g, µ| m′, σ′, an−1, µn(m′, σ′, an−1) ) >

Vn(g, µ| m′′, σ′′, an−1, µn(m′′, σ′′, an−1) ) ≡ vn

(A.5)

But since player n is the last mover to report, then at any node an−1, his preferences
for v̂n over vn cannot depend on prior histories (m′, σ′) and (m′′, σ′′). That is, we
can drop the notational dependence of Vn on (m′, σ′) and (m′′, σ′′) and rewrite
(A.5) as

v̂n ≡ Vn(g, µ|an−1, µn(m′, σ′, an−1))>Vn(g, µ|an−1, µn(m′′, σ′′, an−1)) ≡ vn

(A.6)
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From (A.6), it is easy to see that µn(m′′, σ′′, an−1) is not a best response,
violating the equilibrium property of µ. Therefore, for player n, (A.3) must hold,
i.e.,

µn(m′, σ′, an−1) = µn(m′′, σ′′, an−1) (A.7)

Notice that (A.7) implies that player n must play the same way on every path a,
regardless of which prior history, (m′, σ′) or (m′′, σ′′), occurred.

Now suppose that (A.3) holds for players i+1, . . . , n. As was true for player n,
these players must play exactly the same way on every path. Said another way, along
any path all subsequent players fail to distinguish between (m′, σ′) and (m′′, σ′′) in
their reporting behavior. But if strategies µi+1, . . . , µn fail to distinguish between
(m′, σ′) and (m′′, σ′′) in these subgames, then this must also be true for player i.
For if, instead, (A.4) held, i.e., if

Vi(g, µ|m′, σ′, ai−1, µi(m′, σ′, ai−1))�=Vi(g, µ|m′′, σ′′, ai−1, µi(m′′, σ′′, ai−1))

then either µi(m′, σ′, ai−1) or µi(m′′, σ′′, ai−1) can no longer be a best response.
Hence, player i must satisfy (A.3).

But now consider the incentives of player i = 1. Observe that, as hypothesized,
(m′, σ′) and (m′′, σ′′) each generate distinct paths. Let a′ denote the path following
(m′, σ′) and let a′′ denote the path following (m′′, σ′′). Since equation (A.3) holds
for all other players, 2, . . . , n, it must be true that player 1 plays differently after
each of (m′, σ′) and (m′′, σ′′) in order to distinguish a′ from a′′. Specifically,

µ1(m′, σ′, a0) �= µ1(m′′, σ′′, a0) (A.8)

That is, player 1 must have distinct choices after (m′, σ′) and (m′′, σ′′) since no
other player distinguishes between the two histories. But (A.8) contradicts (A.3)
for player 1. Since we have already established that player 1, as well as all other
players cannot satisfy (A.4), it must be the case that player 1 violates both (A.3) and
(A.4), and so we have obtained our contradiction. This concludes the proof. 
�

The following Lemma will be used for the proof of Theorem 3.

Lemma A. 1. Let V be a self-generating closed set of long-run payoffs for the full
memory game that satisfies (5).

For any vector v ∈ V , we let Z(v) be the set of strategy profiles that sustain the
vector of long-run payoffs v as an SPE of the full memory game, with continuation
payoffs that lie entirely in V . For any vector v ∈ V , we let fv denote a generic
element of Z(v). Also, for any vector v ∈ V we let Pi(v) be the projection of v on
the lower boundary of V for player i. In other words, Pi(v) = (v1, . . . , vi−1, vi,
vi+1 . . . , vn).

Now consider an arbitrary v∗ ∈ V . Then there exists an f∗ ∈ Z(v∗) with the
following properties.

For any history ht, let σ∗(ht) be the mixed profile of actions prescribed by f∗ at
time t + 1, conditional on history ht taking place. Let also σi be any mixed action
profile that agrees with σ∗(ht) on all components except for player i. That is σi

satisfies σi
j = σ∗

j (ht) for every j �= i and σi
i �= σ∗

i (ht).



292 L. Anderlini and R. Lagunoff

Then, for any history ht and for any i,

V (f∗|ht, σi) = Pi[V (f∗|ht, σ∗(ht)] (A.9)

Moreover, let σ̂ be any mixed action profile that differs from σ∗(ht) on two or
more components. Let D be the set of players for which σ̂ and σ∗(ht) differ. Then,
for any history ht

Vi(f∗|ht, σ̂) =

{
vi if i ∈ D
Vi(f∗|ht, σ∗(ht)) otherwise

(A.10)

In other words, without loss of generality, we can take f∗ to have the property
that any unilateral deviation by player i is punished by giving i a continuation
payoff of vi and leaving the continuation payoffs of all other players unchanged.
Moreover, again without loss of generality, we can take f∗ to have the property
that any deviation by two or more players yields “bad” continuation payoffs for
the deviating players only as in the right-hand side of (A.10).

Proof. Let any f̃ ∈ Z(v∗) be given. We now construct f∗ with the desired property
as a modification of f̃ . The construction is recursive.

On h0 = ∅, f∗ prescribes the same behavior as f̃ . So long as no player deviates
from the outcome path prescribed by f̃ , the prescriptions of f∗ are the same as
those of f̃ .

Suppose now that some history ht (on the equilibrium path of f̃ ) has taken place
and that a deviation by player i only has occurred at time t (we ignore deviations by
more than one player for the time being). Let σi be the mixed action profile played
at t which includes i’s deviation. Let also σ̃(ht) be the equilibrium prescription
of f̃ after history ht, and let v = V (f̃ |ht, σ̃(ht)) be the associated continuation
payoff. Then, after i’s deviation at t the prescriptions of f∗ are the same as those
of fPi(v)|h0 (recall that, according to our notation, fPi(v) denotes a strategy profile
that sustains the vector of long-run payoffs Pi(v), with continuation payoffs that lie
entirely in V). Notice that this implies that the continuation payoff vector implied
by f∗ after (ht, σi) is Pi(v).

So long as the prescriptions of fPi(v)|h0 are observed after time t, the pre-
scriptions of f∗ remain as we have just described. Suppose now that a history
hm = (ht, σi, hm−t) (with m > t and hm−t on the equilibrium path of fPi(v))
has occurred and that at time m a deviation by player j takes place. Let σj

be the mixed action profile played at m which includes j’s deviation. Let also
σi(hm−t) be the equilibrium prescription of fPi(v) after history hm−t, and let bi =
V (fPi(v)|hm, σi(hm−t)) be the associated continuation payoff vector. Then, after
j’s deviation at m the prescriptions of f∗ are the same as those of fPj(bi)|h0. Notice
that this implies that the continuation payoff vector implied by f∗ after (hm, σj)
is Pj(bi).

So long as the prescriptions of fPj(bi) are observed after time m, the prescrip-
tions of f∗ remain as we have just described. If a further deviation occurs then the
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players “switch” to a new “phase” in which the deviating player is pushed down
to the lowest payoff available for him in V by playing the appropriate SPE from
then on, in a way completely analogous to the one we have just described. Thus the
description of f∗ can be completed by recursing forward the construction we have
given. The rest of the details are omitted.

Clearly, the profile of strategies f∗ that we have constructed has the property
described in (A.9) by construction. Evidently it is also the case that, by construction,
all continuation payoff vectors of f∗ lie in V , as required.

We now show that f∗ is an SPE strategy profile of the full memory repeated
game. This is relatively straightforward to check since only one-shot single-player
deviations need ever be considered. To verify that no such profitable deviations are
possible, suppose that some history hs has taken place, and let vi be i’s continuation
payoff according to f∗ after hs. Thus, if i at time s adheres to the prescription of
f∗ he receives a payoff of vi. Notice that vi is also i’s continuation payoff in the
particular SPE that is being played in the “phase” that follows history hs. If on the
other hand he deviates in any way from what f∗ prescribes he receives a payoff of
vi. Since vi is the lowest continuation payoff that i can get in any of the SPE that
are used in the construction of f∗ above, it is clear that this must be sufficient to
deter i from deviating from the prescriptions of f∗ after hs has taken place.

Hence, we have shown that an SPE f∗ satisfying (A.9) exists as required. It
remains to show that f∗ can be made to satisfy (A.10) as well. However, this is
completely straightforward once we know that an SPE satisfying (A.9) exists since
deviations by two or more players can always be ignored when checking if a given
strategy profile is an SPE. The details are omitted for the sake of brevity. 
�

Proof of Theorem 3. Fix a set V satisfying the hypothesis of the Theorem. Now
fix v∗ ∈ V . We must show that v∗ ∈ EC(δ) for any sequential protocol C with
H ⊆ Ai. Without loss of generality, we consider the sequential protocol with the
natural order: player 1 speaks first, player 2 speaks second, and so forth.

Let f∗ be an SPE of the full memory game that sustains v∗ as vector of long-run
payoffs. Using Lemma A.1. we can assume without loss of generality that f∗ has
the properties described in (A.9) and (A.10), and that all its continuation payoffs
lie in V .

We now construct the pair (g∗, µ∗) that sustains the arbitrary payoff vector
v∗ ∈ V as a PBE. Loosely speaking our construction of (g∗, µ∗) runs along the
following lines. Only the messages of players 1 and 2 are ever taken into account.
Player 1 is asked to report the history of play, then player 2 is asked to “confirm”
1’s report. If player 1 reports the truth, then player 2 confirms 1’s report and play
unfolds according to f∗. If, on the other hand 1 ever issues a false report, then
player 2 does not confirm and reports 1’s deviation from the truth. In this case the
continuation of play unfolds as if player 1 had behaviorally deviated from f∗, using
the punishments prescribed by f∗. Since for player 1’s deviations, f∗ punishes 1
in a way that leaves 2 indifferent, player 2 always has the correct incentives to
report 1’s deviation from truthful reporting. Given the punishment for behavioral
deviations built into f∗, 1 now also has the correct incentives to always report the
true history of play.
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Recall that we set m(−1) = h0 = ∅. To set the system in motion, let g∗(h0) =
f∗|h0.The rest of the equilibrium is constructed recursively forward in the following
way. In every period t ≥ 0, player 1 reports the truth in the sense that µ∗

1 = (ht−1, σ)
where ht−1 is the history reported by player 2 in period t − 1 and σ is the true
mixed profile that was played by the current cohort.

In every period t ≥ 0, player 2’s message depends on the veracity of the report
of player 1 in the following way. If player 1’s report is truthful (as defined above)
then player 2 issues an identical report (ht−1, σ) where ht−1 is the history reported
by player 2 in period t − 1 (h0 if t = 0) and σ is the true mixed profile that was
played by the current cohort. If on the other hand player 1’s report is not truthful,
player 2 issues a report (ht−1, σ′) where ht−1 is the history reported by player 2 at
t − 1, and σ′ is a mixed action profile that is different from that reported by player
1, and that records a behavioral deviation by player 1 only in period t. In other
words, σ′

1 �= f∗
1 |ht−1 and σ′

i = f∗
i |ht−1 for every i = 2, . . . , n. Notice that these

two conditions can clearly always be satisfied simultaneously.
The reports of all players i with i ≥ 3 (if n ≥ 3) are ignored. Therefore we

simply set them equal to a fixed message mi regardless of the history of play.
The g∗ component of the equilibrium is easy to describe. In period t, if the

reports of players 1 and 2 are the same, then all players behave according to f∗,
conditional on the reported (ht−1, σ). If, on the other hand, the reports of players 1
and 2 differ, then all players behave according to f∗ conditional on ĥt = (ĥt−1, σ̂)
defined as follows. We set ĥt−1 equal to the t − 1 history reported by player 1.
Moreover, we set σ̂1 – the first component of σ̂ – equal to the report of player 2,
and all other components (σ̂2, . . . , σ̂n) equal to the report of player 1.

Clearly the proposed equilibrium yields a vector of long-run payoffs v∗ as
required. Of course, it remains to show that f∗ is indeed a PBE of the repeated
game with decentralized communication protocol C. We need to verify that no
player ever has an incentive to unilaterally deviate in any period, either at the
communication stage or at the behavior stage.

All players i ≥ 3 (if any) clearly have no incentive to deviate in any period.
Their messages are ignored, and hence they cannot gain by deviating at the commu-
nication stage. At the behavior stage, since f∗ is an SPE of the full memory game,
and histories are reported truthfully, no individual deviation can be profitable.

Consider now player 1, at the reporting stage after some history ht−1 has been
reported by player 2 of the previous cohort, and the mixed profile σ has taken
place in the current period. If he reports the truth (ht−1, σ) as required, he receives
a continuation payoff of corresponding to f∗, conditional on (ht−1, σ). If on the
other hand he reports anything else, he receives a payoff of vi. Since all continuation
payoffs of f∗ lie in V , this cannot be a profitable deviation by player 1. Of course,
at the behavior stage player 1 has no incentive to deviate simply because f∗ is an
SPE of the full memory game and histories are reported truthfully.

Lastly, consider player 2 at the reporting stage after some history ht−1 has been
reported by player 2 of the previous cohort, the mixed profile σ has taken place
in the current period, and player 1 has reported some (possibly false) (h̃t−1, σ̃).
Clearly, using (A.9) and (A.10) and because of the way we have defined σ̂ above,
the continuation payoff of player 2 is the same regardless of his report. Hence he
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cannot profitably deviate at this stage. Again, at the behavior stage player 2 has
no incentive to deviate simply because f∗ is an SPE of the full memory game and
histories are reported truthfully. This is clearly enough to conclude the proof. 
�
Proof of Theorem 4. Consider an PBE (g∗, µ∗) of the dynastic repeated game with
sequential decentralized communication protocol C, and assume that (g∗, µ∗) is
robust to lexicographic complexity costs of communication.

By Definition 3, of course (g∗, µ∗) must be a PBE of the dynastic repeated
game with sequential decentralized communication protocol C. Hence Theorem 2
applies to tell us that if a′ �= a′′ are two distinct action paths following any (m′, σ′)
and (m′′, σ′′) respectively, then for some player i we must have that

Vi(g∗, µ∗| m′, σ′, ai−1′
, a′

i) = Vi(g∗, µ∗| m′′, σ′′, ai−1′′
, a′′

i ) (A.11)

Then, using (A.11) it is clear that we could find a strategy µi �= µ∗
i such that

µ(m′, σ′, ai−1′
) = µ(m′′, σ′′, ai−1′′

) and

Vi(g∗, µ∗| m′, σ, ai−1′
, µ(m′, σ′, ai−1′

))

= Vi(g∗, µ∗| m′′, σ′′, ai−1′′
, µ(m′′, σ′′, ai−1′′

)) (A.12)

and P(µ∗) 
 P(µ). Therefore, using Definitions 2 and 3 we conclude if (g∗, µ∗)
is robust to lexicographic complexity costs of communication we must have that

µ∗
i (m

′, σ′, ai−1′
) = µ∗

i (m
′′, σ′′, ai−1′′

) ∀m′, m′′, σ′, σ′′, ai−1′
, ai−1′′

(A.13)

Using (A.13) we can now define the sequence of message actions that every
individual in every cohort (except possibly the first one) will take. Recursively
forward from individual 1 we set

a∗
1 = µ∗

i (m, σ, ∅) ∀m, σ (A.14)

and (letting ai−1∗ = (a∗
1, . . . , a∗

i−1), for i = 2, . . . , n)

a∗
i = µ∗

i (m, σ, ai−1∗) ∀m, σ (A.15)

Lastly, we let m∗ = (a∗
1, . . . , a∗

n). This is the message that every cohort will receive
in any subgame of the PBE (g∗, µ∗), except of course for the first cohort that will,
by assumption, receive a message m = ∅.

It now follows from (A.14) and (A.15) that the continuation payoff to individual
i after any message m has been received from the previous cohort can be written
as a function of his choice σi as

(1 − δ)Ui(σi, g
∗
−i(m)) + δVi(g∗, µ∗|m∗) (A.16)

Since all cohorts, except for the first one, receive message m∗ from the previous
cohort, the statement of the theorem now follows immediately from (A.16). The
rest of the details are omitted. 
�



296 L. Anderlini and R. Lagunoff

Lemma A. 2. Let a communication protocol C with unanimous conspiracy to
coverup and a common discount factor δ be given. Let also ER(δ) be as in Definition
5. Then EC(δ) ⊆ ER(δ).

Proof. Fix δ. Suppose, by contradiction, that v∗ ∈ EC(δ) while v∗ /∈ ER(δ). Since
v∗ /∈ ER(δ) then for all f∗ that sustain v∗ in the full memory repeated game, there
exists some pair of histories, h′, h′′, such that

v′ ≡ V (f∗| h′) >> V (f∗| h′′) ≡ v′′ (A.17)

Now let (g∗, µ∗) sustain v∗ under protocol C with unanimous conspiracy to
coverup. Clearly, since (A.17) must hold for every SPE of the full memory game that
sustains v∗, we must have that for some pair (m′, σ′) and (m′′, σ′′), corresponding
to h′ and h′′ respectively, the following holds

v′ = V (g∗, µ∗| m′, σ′) >> V (g∗, µ∗| m′′, σ′′) = v′′ (A.18)

To derive the contradiction, suppose now that (m′′, σ′′) has in fact occurred.
We proceed to show that v′′ cannot be the equilibrium continuation of the commu-
nication phase. To verify this, we proceed by induction. Consider the incentives of
player n, when all others have reported a′

i = (m′, σ′), ∀i �= n. That is, all others
have (falsely) reported prior path (m′, σ′).According to the protocol for unanimous
conspiracy to coverup, if n also reports a′

n = (m′, σ′) then v′ is attained. However,
if player n vetoes v′ by reporting any other an, then the true history (m′′, σ′′) is
revealed, and so continuation v′′ occurs. But then (A.18) immediately implies that
n’s best response is to in fact report a′

n.
Proceeding by induction, using the same argument as for player n, it is now

easy to show that every player i’s (i > 1) best response to all preceding players
j = 1, . . . , i−1 having chosen a′

j is in fact to report a′
i. Finally, consider the choice

of player 1. Clearly, if he reports a′
1 (given the best responses of all other players)

he achieves a payoff of v′
1 while if he reports a′′

1 he gets a payoff of v′′
1 . Hence,

using (A.18) again, reporting a′′
1 cannot be player 1’s equilibrium behavior in the

reporting subgame. Moreover, given the equilibrium strategies of the other players
in the reporting subgame, it is clear that player 1 (by choosing a′

1) can achieve a
continuation payoff of v′

1. Hence, v′′ cannot be a continuation equilibrium payoff
vector of the reporting subgame, as is in fact required. This contradiction is clearly
enough to establish the result. 
�

Lemma A. 3. Let a communication protocol C with unanimous conspiracy to
coverup and a common discount factor δ be given. Let also ER(δ) be as in Definition
5. Then EC(δ) ⊇ ER(δ).

Proof. Fix δ and any v∗ ∈ ER(δ). Let f∗ be any WRP SPE strategy profile that
sustains v∗ in the full memory game.
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Notice that since f∗ is a WRP SPE we know that there is no pair of finite
histories h′ and h′′ for which (A.17) holds. In other words, for any pair h′ and h′′

∃i such that Vi(f∗|h′) > Vi(f∗|h′′) ⇒ ∃j such that Vj(f∗|h′) ≤ Vj(f∗|h′′)
(A.19)

We now specify a pair (g∗, µ∗) that sustains v∗ as a PBE payoff in the dynastic
game with unanimous conspiracy to coverup. The action strategy profile g∗ is the
same as f∗ in the full memory game. The communication strategy profile is as
follows. Player 1 always reports the true history of play. That is µ∗

1 prescribes a1
= (m, σ) for every possible (m, σ).

For each i = 2, . . . , n we let µ∗
i be defined as

µ∗
i (m, σ) =




h if ∃h such that aj = h, ∀j < i

andVi(g∗, µ∗| m, σ) < Vi(g∗, µ∗| h)

(m, σ) otherwise

(A.20)

In other words, i reports the true history of play unless all players before him have
agreed on a particular report which induces a continuation payoff that he prefers to
the continuation payoff following the true history of play.

It is easy to verify that the profile µ∗ we have just defined yields an equilibrium
path in which all players report the true history of play. Hence (g∗, µ∗) yields
payoffs v∗ in the dynastic game. Of course, we still need to verify that it constitutes
a PBE of the dynastic game.

We need to check that no player has an incentive to deviate from µ∗
i in the

communication stage. Consider first players i = 2, . . . , n. If we are in the case in
which (A.20) prescribes the report (m, σ), then either two players before i have
made conflicting reports, or all players before i have reported a history h that
induces a continuation payoff which gives leaves i no better off than the continuation
following the true history of play. By sticking to the prescription of µ∗

i player i
obtains a continuation payoff of Vi(g∗, µ∗| m, σ). Any deviation will yield either a
payoff of Vi(g∗, µ∗| m, σ) or of Vi(g∗, µ∗|h) (depending on whether the deviation
is to h or to some other history, and on whether all subsequent players agree to
h or not). Hence no profitable deviation is possible in this case. If we are in the
case described by the top line of (A.20), then any deviation leads to a continuation
payoff of Vi(g∗, µ∗| m, σ). On the other hand abiding by the prescription of µ∗

i

leads to a payoff of Vi(g∗, µ∗|h) if all subsequent players agree to h, ad to a payoff
of Vi(g∗, µ∗| m, σ) otherwise. Hence no profitable deviation is possible in this
case.

It then remains to check that player 1 cannot profitably deviate from µ∗
1. Of

course, this is only possible if he can report a false history that all subsequent players
agree upon. However, because (A.19) holds this is impossible. Some subsequent
player must prefer (at least weakly) the continuation payoff that follows the true
history of play. Hence, according to the bottom line of (A.20) he will report the
true history of play. This is clearly sufficient to prove the claim. 
�
Proof of Theorem 5. The claim is a direct consequence of Lemma A.2 and Lemma
A.3. 
�
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Maskin, E., Sjöström, J.T.: Implementation theory. In: Handbook of Social Choice and Welfare. North-
Holland: Amsterdam 2002

Maskin, E.S.: Nash equilibrium and welfare optimality. Review of Economic Studies, 66, 23–38 (1999)
Matsushima, H.: The folk theorem with private monitoring. Mimeo (2002)
Pennebaker, J., Paez, D., Rime, B. (eds.): Collective memory of political events. New Jersey: Lawrence

Erlbaum Associates 1997
Piccione, M.: Finite automata equilibria with discounting. Journal of Economic Theory 56, 180–193

(1992)
Piccione, M.: The repeated prisoners dilemma with imperfect private monitoring. Journal of Economic

Theory 102, 70–83 (2002)
Rubinstein, A.: Finite automata play the repeated prisoner’s dilemma. Journal of Economic Theory 39,

83–96 (1986)
Rubinstein, A., Piccione, M.: Finite automata play a repeated extensive game. Journal of Economic

Theory 61, 160–168 (1993)
Sekiguchi, T.: Efficiency in repeated prisoners dilemma with private monitoring. Journal of Economic

Theory 76, 345–361 (1997)


