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empirical fit of the New Keynesian Phillips Curve (NKPC) and the hybrid

Phillips Curve (HPC). Their estimation method is now widely used to assess

the importance of firms that act in a backward-looking manner. Unfortunately,

the IV method is highly sensitive to the way the hybrid model is normalized.

Using Monte Carlo simulations, I find that one normalization used by Gali and

Gertler (and others) finds evidence of backward-looking firms even when there

is none by construction. In addition, the IV estimates are also sensitive to the

choice of normalization in a broader range of specifications. Using Monte Carlo

experiments, I identify which normalizations work better than others. Finally,

I find that the bootstrapped standard errors are, not surprisingly, bigger than
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1 Introduction

Recent empirical research on inflation dynamics has focused on the importance of

forward-looking price setting behavior. Sbordone’s (2002) calibration exercise pro-

vides considerable support for the (purely forward-looking) New Keynesian Phillips

Curve— henceforth, NKPC. In particular, even though the NKPC does not postulate

any structural inertia in the inflation process, it can generate a persistent time series

of inflation, given the apparent persistence of marginal cost in US data— as Good-

friend and King (2001) have emphasized. Gali and Gertler’s (1999) instrumental

variables regressions also suggest predominantly forward-looking behavior. More

precisely, Gali and Gertler find support for a hybrid Phillips Curve— henceforth,

HPC— with most firms following the NKPC, but a fraction following a backward-

looking rule of thumb. However, Gali and Gertler report that this fraction is im-

precisely estimated. Specifically, their estimate ranges from 27 to almost 50 percent

depending on the chosen normalization. In one case, the NKPC seems largely con-

sistent with a purely forward-looking model; in the other case, it does not.

The inability of the instrumental variables regression to determine whether US

inflation dynamics is consistent with a largely forward-looking model or not is po-

tentially cause for concern. In theory, the alternative models have very different

policy implications. The purely forward-looking model (NKPC) implies that a fully

credible disinflation has no output cost— i.e., has a sacrifice ratio equal to zero.

By contrast HPCs imply a positive sacrifice ratio that increases with the fraction

of backward looking firms. Moreover, as Goodfriend and King (2001) emphasize

the appropriate conduct of monetary policy hinges on whether inflation is purely

forward-looking or not.
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At the heart of the imprecision in the estimates of the fraction of backward-

looking agents is a seemingly inconsequential choice of how to normalize the HPC.

Specifically, Gali and Gertler consider two different normalizations: one “appears

to minimize the non-linearities, while the second normalizes the inflation coefficient

to unity” (Gali and Gertler, p. 207). Asymptotically, it should not matter which

normalizations is used but in small samples it can (see, for example, Fuhrer, Moore

and Schuh (1995) for a discussion). In Gali and Gertler’s case, it seems to matter

a lot. In this paper, I use Monte Carlo experiments to explore the sensitivity of

the estimates of the share of backward-looking firms to the choice of normalization

further.

My paper is similar in spirit to Guerreri (2001). However, this paper differs

from his in important aspects. First, I point out that the only error to the inflation

equation is an expectational error. That expectational error reflects innovations to

the real marginal cost innovation. Therefore, a Monte Carlo that samples only from

the innovations to inflation, like Guerreri does, seems inappropriate. By contrast, in

my Monte Carlo experiment, I sample both from the innovations to inflation and real

marginal cost. Despite our different approches, Guerreri and I share the same overall

conclusion: the normalization that normalizes the coefficient on current inflation to

unity overestimates the share of backward-looking firms. Moreover, I show that the

choice of normalization is an issue in a broader range of specifications than those

considered by Guerreri. For example, I show that results obtained by Gali and

Gertler (1999) and others under “reduced-form” and “present-value” estimation are

also sensitive to the choice of normalization.

In what follows, Section 2 presents the relevant theory I address. Section 3
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presents the empirical specifications and Gali and Gertler’s results. Section 4

presents my Monte Carlo experiment and results. To anticipate my results, I

find that one commonly used normalization overestimates the fraction of backward-

looking agents.1 Indeed, my results suggest that Gali and Gertler’s estimate of 27

percent seem more reliable than their estimate of 50 percent. My findings have im-

plications for a number of papers that report that the NKPC has to be augmented

by lags of inflation to fit the data. I conclude in Section 5 by noting areas for further

research.

2 Theory and Empirical Evidence

2.1 The New Keynesian Phillips Curve

Unlike the traditional Phillips curve, the new Keynesian Phillips curve is derived

from the pricing behavior of a monopolistic competitor that faces some price stick-

iness in the spirit of the seminal work of Taylor (1980). Most commonly, following

Calvo (1983), it is assumed in every time period a firm has a fixed probability, 1−α,
that it gets to reset its price. Using this convenient, albeit unrealistic, tool to model

price stickiness, a pricing equation of the following form can be derived:2

π̂t = λdmct + βEtπ̂t+1 (1)

1As I will show, the normalization that overestimates the fraction of backward-looking agents
coincide with the estimation method used in a number of recent papers. Examples of such papers
include Jondeau and Le Bihan (2001), Rudd and Whelan (2001), Benigno and López-Salido (2001),
and Gaĺi, Gertler and López-Salido (2001).

2See Woodford (2001) for a derivation. The NKPC can also be derived by assuming that firms
have price adjustment costs (Rotemberg, 1982, 1987). See Sbordone (1999) for a comparison of the
two methods.
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where π̂t is current inflation, cmct is real marginal cost, ˆ denotes the percentage
deviation of a variable from its steady-state value, β is the subjective discount

rate, λ is a function of the structural parameters of the model, λ = (1−α)(1−αβ)
α ,

and Etπ̂t+1 is the mathematical expectation of next period’s inflation (π̂t+1) given

information available in period t.

Under certain conditions, marginal cost is proportional to the output gap, xt,

and the pricing equation can be rewritten to get:

π̂t = λκxt + βEtπ̂t+1 (2)

where κ is the output elasticity of marginal cost. Work by Fuhrer and Moore (1995),

Fuhrer (1997) and Roberts (1998) examined equation (2), where marginal cost has

been replaced by a measure of the output gap. They find that the purely forward-

looking NKPC, relating inflation and a measure of the output gap, is unable to

generate the type of persistence observed in actual US data.

By contrast, two more recent papers by Gali and Gertler (1999) and Sbordone

(2002) find that U.S. data seem to be largely consistent with a pricing equation,

relating inflation and marginal cost, from a forward-looking model. Rather than

using the output gap as a proxy for real marginal cost, they use (log) real unit labor

cost or the (log) labor share in output (st). Both papers are widely quoted and

have triggered a number of papers that explore their findings further.3 In Gali and

3Gaĺi, Gertler and Lopez-Salido (2001) examine euro-area inflation, Benigno and Lopez-Salido
(2001) examine individual European countries and Jondeau and Le Bihan (2001) examine the
sensitivity of Gaĺi, Gertler and Lopez-Salido’s (2001) results. Rudd and Whelan (2001) argue that
Gaĺi and Gertler’s IV estimation procedure is sensitive to small specification errors. Lindé (2001)
argues that full information maximum likelihood (FIML) estimation may be more robust than
GMM. Finally, Gaĺi, Gertler and Lopez-Salido’s (2003) respond to Rudd and Whelan and Lindé’s
criticisms.
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Gertler’s paper, they develop a hybrid model that incorporates two types of firms:

firms that behave in the forward-looking manner described in the Calvo model, and

firms that behave according to a “rule of thumb”. The latter type set prices based

on the past evolution of prices, thereby incorporating structural inertia into the

model explicitly.

2.2 The hybrid model

Motivated largely by the empirical observation that inflation is persistent, a number

of studies have suggested alternative theories to explain the persistence in inflation.

For example, Fuhrer and Moore (1995) consider a hybrid version of the new and

old:

π̂t = δxt + (1− η)Etπ̂t+1 + ηπ̂t−1 (3)

with 0 < η < 1 and xt some measure of the cyclical movement of GDP. However,

Fuhrer and Moore (1995) had limited success fitting their specification to US data.

By contrast, motived by their finding that past failures were due to using the output

gap instead of real unit labor cost as a measure of real marginal cost, Gali and Gertler

derive an alternative hybrid version of the form:

π̂t = λ̃bst + γfEtπ̂t+1 + γbπ̂t−1 (4)

where
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λ̃ ≡ (1− ω) (1− α) (1− αβ)φ−1 (5)

γf ≡ αβφ−1

γb ≡ ωφ−1

with φ ≡ α + ω [1− α (1− β)] and ω measuring the share of backward-looking

firms, i.e., firms that behave simply by setting prices based on the recent history of

aggregate prices (see Gali and Gertler). One convenient feature of Gali and Gertler’s

specification is that the hybrid version collapses to the purely forward-looking model

when there are no backward-looking firms, i.e., when ω = 0.

3 Instrumental variables regressions

In this section, I will discuss the instrumental variables procedure used by Gali and

Gertler to estimate α,β and ω. Their estimates seem consistent with the underlying

theory: their estimate of α implies reasonable average price contracts (around 5

quarters), and β is estimated close to one. Finally, their estimate of the slope coeffi-

cient on real marginal cost is always positive and significant. However, they always

find the share of backward-looking firms to be positive and statistically significant.

Thus, they reject the purely forward-looking model.

Unfortunately, their estimate of ω is very sensitive to the chosen normalization

which I will now discuss in more details.
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3.1 Reduced-form estimation

Following Gali and Gertler, let Ωt−1 denote a vector of variables observed at time

t− 1 or earlier (in fact, Ωt−1 only need to be dated t or earlier to be orthogonal to
the inflation surprise in period t).4 Then, under rational expectations, equation (4)

can be used to write the set of orthogonality conditions as:

E
n³

π̂t − c− λ̃ŝt − γf π̂t+1 − γbπ̂t−1
´
Ωt−1

o
= 0 (6)

where λ̃, γf , and γb are defined as before, ŝt is the observable measure of real

marginal cost (i.e., the real unit labor cost) and c is a constant included for es-

timation purposes. Equation (6) lends itself to be estimated using instrumental

variables (i.e., one version of generalized method of moments (GMM)).

Indeed, this specification has been widely used. For example, Gali and Gertler

(1999) report estimates of the NKPC version of (6) (i.e., where γb = 0 and γf = β),

B̊ardsen, Jansen, and Nymoen (2002) explore Norwegian data using this specifi-

cation, and Jondeau and Le Bihan (2001) use the same equation to estimate a

restricted version where γb+γf = 1. However, as highlighted by Fuhrer, Moore and

Schuh (1995) GMM estimates are known to sensitive to “asymptotically irrelevant

aspects of the econometric specification, such as parameter normalization” (p. 116).

Alternatively, equation (6) can be re-written as

E

½µ
1

γf

h
π̂t − c− λ̃ŝt − γf π̂t+1 − γbπ̂t−1

i¶
Ωt−1

¾
= 0 (7)

4Following Gaĺi and Gertler, I use a constant, and four lags of the following variables as in-
struments: the labor share, inflation, wage inflation, commodity price inflation, and the long-short
interest spread.
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Asymptotically, it does not matter which normalization is used but in small

samples it may. As table 1 shows, the choice of normalization matters.5 Oddly,

this sensitivity is not raised by Gali and Gertler when estimating (6) and (7) which

they refer to the reduced form.6 However, they raise the issue when estimating the

structural parameters directly (see discussion that follows).

When using Gali and Gertler’s choice (i.e., equation (6)), lagged inflation appears

almost as important as future inflation. Indeed, this result suggest that the NKPC

has to be augmented by lags of inflation to fit the data. By contrast, when using

equation (7) as the basis for estimation, lagged inflation seems less important (see

table 1). Unfortunately, though, the slope coefficient on real marginal cost is not

significant when using the latter specification.7

3.2 Structural estimation

When substituting in the definitions of λ̃, γb, and γf into equation (7), it is clear

that there are several ways of normalizing the HPC. In their paper, Gali and Gertler

(1999) propose two different normalizations. Their first normalization minimize non-

linearities by multiplying through by φ to get:

5I thank Andrew Jackson for sending me a copy of Gaĺi and Gertler’s RATS program. This
paper uses a Matlab code by Mike Cliff, available at my website. My estimates coincide with those
reported by RATS (using the ”nlls” function with ”robust” errors). Specifically, in my Matlab
program, I use a two-step GMM estimator, the first iteration uses (Ω0Ω)−1 (where Ω is the matrix
of instruments) as a weighting matrix, and a 12-lags NW weighting matrix in the second iteration.
The standard errors for γb, γf , λ̃ and the average price duration (D) differ from those reported in

Gaĺi and Gertler’s table 2. I believe that Gaĺi and Gertler made a mistake when calculating the
standard errors based on the delta method.

6Once again, Gali and Gertler only estimates the NKPC in reduced-form, not the HPC. However,
the choice of normalization is an equally important issue in that case.

7Moreover, when using a similar normalization for the estimation of the NKPC, the estimate of
β exceeds one, and the estimate of λ is negative and insignificant.
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E {(φπ̂t − c− (1− ω) (1− α) (1− αβ) ŝt − αβπ̂t+1 − ωπ̂t−1)Ωt−1} = 0 (8)

while the other normalizes the coefficient on inflation to unity:

E

½µ
π̂t − c− (1− ω) (1− α) (1− αβ)

φ
ŝt − αβ

φ
π̂t+1 − ω

φ
π̂t−1

¶
Ωt−1

¾
= 0 (9)

where, as before, φ ≡ α+ ω [1− α (1− β)] . I will refer to equation (8) as “normal-

ization 1” and equation (9) as “normalization 2”.

In table 1, I replicate Gali and Gertler’s results for the two specifications. As

can be seen the choice of normalization makes a significant difference. In one case,

the estimate of α implies that the average duration of prices is close to 5 quarters

while the other normalization suggests that the average price duration is more than

6 quarters. Even more striking, the estimated share of backward-looking firms range

from 0.265 to 0.486 depending on the choice of normalization.

The implied estimates of γb, γf and λ̃ obtained using equation (9) (“normaliza-

tion 2”) coincide with those obtained using Gali and Gertler’s “reduced-form” esti-

mation (see table 1). Thus, there is no additional information gained by reporting

both Gali and Gertler’s choice of normalizing the “reduced-form” and “structural”

estimates based on normalization 2, as is commonly done in this literature.8

8In Benigno and López-Salido (2001) and Gali, Gertler and López-Salido (2001), it appears as if
the structural estimates from normalization 2 no longer imply an estimate of λ̃ that coincide with
the “reduced-form” estimate of λ̃. However, this is due to a mistake in both papers. In both papers,
they report their structural estimates (which are correct) but proceed to calculate the implied λ̃ as

(1−ω)(1−α)(1−αβ)
φ

. However, both papers augment the baseline model so that this definition of λ̃

is no longer the correct. In Gali, Gertler and López-Salido the new definition of λ̃ is
(1−ω)(1−α)(1−αβ)

φ
ξ where ξ ≡ 1−b

1+b(θ−1) with θ being the elasticity of substitution among differen-

tiated goods and b is the share of capital in the Cobb-Douglas production function. Once λ̃ has
been correctly calculated, the implied estimate of λ̃ (obtained from normalization 2) coincide with
the reduced-form estimate.
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Following Gali and Gertler, researchers generally try different normalizations

when estimating the structural parameters (α,β and ω). By contrast, the normal-

ization issue has been ignored when using other specifications. For example, Rudd

and Whelan (2001) propose estimating the hybrid model in its present-value repre-

sentation. In appendix C, I examine this estimation procedure in more details and

find that it is also sensitive to the choice of normalization.

4 Monte Carlo evidence

Given that the IV estimation results seem highly sensitivity to the choice of nor-

malization, it seems worthwhile to explore its small sample properties. To do so, I

use two different Monte Carlo experiments. First, I generate simulated data from

an unrestricted VAR to study the bootstrapped distribution of the point estimates

under different normalizations. These results confirm that the estimates of the share

of backward-looking firms vary largely across normalization. Moreover, this exercise

allows me to assess whether the asymptotic standard errors reported in Gali and

Gertler’s paper (and above) are appropriate.

However, this exercise does not provide any guidance in terms of which normal-

ization to use since I do not know what the true values of α,β and ω are. Therefore,

I simulate data under the null that the HPC (with my choice of values for α,β and

ω) is the data generating process. In that case, I know the true parameter values and

can examine if the IV estimation correctly retrieves these values. Equally impor-

tantly, I can explore which normalization (if either) is to be preferred. To anticipate

my results, I show that the IV estimates of α and β are somewhat robust across
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normalizations but only when using normalization 1, which multiplies through by

φ, do I correctly estimate ω for small values of ω.

Finally, having constructed data under the null that the NKPC is true (i.e., when

I impose that ω = 0), I can ask how likely it is that I mistakenly reject the null

that ω = 0 when it is true by construction. That is, I can calculate the empirical

rejection frequency.

4.1 Boostrapped standard errors

I simulate 10,000 artificial data sets for inflation, the labor share, and the additional

variables needed as instruments assuming that a simple unrestricted VAR is the true

data generated process (see details in Appendix A). For each of the 10,000 simulated

data sets, I estimate α,β and ω using both normalizations 1 and 2 and report their

median values and 95 percent confidence intervals. As can be seen in table 2, the

median value of the estimates of α and β and the 95 percent confidence intervals

are not very sensitive to the chosen normalization. By contrast, the estimates of

ω are very sensitive. In figure (2), I show the histograms of the estimates of ω

based on the two normalizations. As can be seen from the figure and table, when

using normalization 1, the median value of ω is 0.185 and the 95 percent confidence

interval is (0.003-0.366). When using normalization 2, the estimates are significantly

larger. The median value is 0.486 and the confidence interval is (0.342-0.613).9

Regardless of the chosen normalization, the bootstrapped standard errors are

larger than the asymptotic ones reported by Gali and Gertler (and in table 1).

9Surprisingly, the large differences in the estimate of ω do not seem to be due to the number
of observations. I simulated data that had up to 10,000 observations, and the sensitivity to the
chosen normalization persisted (see graphs in appendix).

11



Indeed, when using normalization 1, the 95 percent confidence interval nearly reaches

zero. Thus, although I can still reject the purely forward-looking NKPC at the 5

percent level, I cannot reject it at the 1 percent level. By contrast, when using

normalization 2, the rejection of the NKPC seems sounder. Still, I am unable to

conclude which of the two normalizations should be preferred since I do not know

the true value of ω. Therefore, in the next Monte Carlo experiment, I simulate data

under the null that the NKPC (or a version of the HPC) is the data generating

process (DGP). This experiment also allows me to ask how likely it is that the IV

regressions incorrectly reject the null when it is true.

4.2 Simulating data under the null that NKPC (or HPC) is the
DGP

In contrast to the previous section, I now simulate data under the null hypthesis

that the NKPC is the data generating process process for inflation. Then I generate

data under the null that the HPC is the data generating process with several values

for ω. Similar to above, I need to simulate data for all the variables I will be using

in my estimation: inflation, the labor share, and the other instruments.10

Ideally, I would have liked to have simulated data for inflation, the labor share,

and Gali and Gertler’s instrument set, which includes four additional variables.11

However, as discussed in Appendix B, when I include lags of all six variables as

instruments and impose the null that the NKPC is DGP, the resulting system is

10Again, this is where my paper differs fromGuerreri (2001). We both impose the same restriction
on the inflation equation but Guerreri keeps actual data for the labor share and the instruments
in his Monte Carlo experiment. That is, he generates 100 simulated inflation series where he has
imposed that the NKPC (or HPC) is the DGP. However, he does not simulate data for the other
variables needed in his estimation (see Appendix B for a more detailed discussion).
11The additional variables are wage inflation, commodity price inflation, the output gap and the

long-short interest spread.
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nonstationary. Instead, I re-ran Gali and Gertler’s estimation using a smaller in-

strument set: a constant and four lags of the labor share, inflation, wage inflation

and commodity price inflation.

As can be seen when comparing table 1 and 3, had Gali and Gertler chosen

to use only this smaller instrument set, they would have gotten almost identical

results. The NKPC is still resolutely rejected with ω estimated at 0.289 and with

a small standard error (using normalization 1). However, the rejection is not quite

as sound as before since the standard error is larger with the smaller instrument

set. While it is dissatisfying not being able to simulate data that would allow me to

directly assess Gali and Gertler’s results, given that the results do not seem to vary

across the two instrument sets, I believe my Monte Carlo results are nevertheless

informative.12

To simulate data under the null, I note that the NKPC (and HPC) only imposes

two restrictions: first, defining εt+1 ≡ π̂t+1 − Etπ̂t+1 and replacing cmct by ŝt,
equation (1) can be lagged and re-arranged to yield:

π̂t = −λ
β
ŝt−1 +

1

β
π̂t−1 + εt (10)

and, in the case where ω > 0,

π̂t = − λ̃

γf
ŝt−1 +

1

γf
π̂t−1 − γb

γf
π̂t−2 + εt (11)

12For details of the results reported in table 3, see notes under table 1. The instrument set
includes a constant, and four lags of inflation, the labor share, wage inflation, and commodity price
inflation.
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The second restriction is that π̂t Granger causes the labor share. Therefore, to

simulate data under the null, I proceed as follows: first, I estimate an unrestricted

VAR using four variables: the labor share, wage inflation, commodity price inflation,

and inflation.

Zt =
£
ŝt dwt dct π̂t

¤0
Second, I replace the unrestricted estimates in the inflation equation by the restric-

tions implied by equations (10) or (11), depending on whether I am interesting in

generating data under the null of ω = 0 or ω > 0. I choose α = 0.8 and β = 0.99

as the “true” parameters. For ω = 0, this implies the following reduced-form pa-

rameters: γb = 0, γf = β = 0.99, and λ̃ = 0.052. I leave the other equations in

the VAR, including the equation for ŝt, unrestricted. Since lags of inflation appear

with non-zero coefficients in the labor share equation, the second restriction appears

to be satisfied. Using this restricted VAR, I sample (with replacement) from the

residuals to construct i = 1, ...10, 000 artificial samples
©
Zit
ªT
t=1
.

On each of these samples, I use the IV estimation procedure under several differ-

ent specification: first, I use the two “reduced-form” normalizations discussed earlier

to estimate γb, γf and λ̃. Second, I estimate α,β and ω based on both normalization

1 and 2.13 For each of these four specifications, I report the median values and the

95 percent confidence intervals in table 4.

When I impose that ω = 0, I find the following: on the positive side, using

normalization 1 (equation (8) generally yields estimates of α and β that are close to

13Again, the implied values of γb, γf and λ̃ obtained under specification 2 will coincide with the
estimates obtained using Gali and Gertler’s proposed reduced-form estimates.
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the “true” parameters. The median estimate of ω is also close to the truth, ω = 0.

Moreover, the “reduced-form” estimates based on equation (7) are also quite good.

Surprisingly, normalization 2 (and, therefore, Gali and Gertler’s proposed nor-

malization of the “reduced form”) yields quite poor results. Although the median

estimates of α are β are close to target, a surprisingly high number of estimates

were very far from the “true” values, resulting in the large confidence intervals re-

ported in table 7.14 More troubling, though, is that the estimates of ω were far

from the “true” parameter. Specifically, the median estimate was 0.878 and the 95

percent confidence interval ranged from 0.356 to 1.597. Similarly, when using Gali

and Gertler’s proposed normalization of the “reduced form”, the median estimate

of γb is 0.481 when, by construction, is should be zero.

My Monte Carlo experiment also allows me to increase the sample size of my

simulated data. By increasing the sample sample and re-estimating the structural

parameters on this new longer data set, I confirm that the normalization issue is a

small-sample problem. In particular, for very large sample sizes, the estimates of ω

are virtually identical across the two choices of normalization.15

I also simulated data under the null hypothesis that the hybrid model is the

DGP. For example, I constructed data when ω = 0.25,ω = 0.5 and ω = 0.7. Similar

to the case when ω = 0, I report the median values of my estimates and their

95 percent confidence intervals in tables 5-7. Interestingly, normalization 2 does

equally poorly when ω = 0.25. For example, the median estimate of ω is 0.593,

whereas normalization 1 is almost right on target. By contrast, when simulating data

14Specifically, more than 4 and 5 percent of the estimates of β and α, respectively, were larger
than 1.5 with some estimates exceeding 100.
15The results are available upon request.
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from models with higher degrees of backward-lookingness (ω = 0.5 and ω = 0.7),

normalization 2 seems to do as well as (if not better than) normalization 1. Indeed,

when the true value of ω is 0.7, the median value estimated is 0.621 and 0.720 when

using normalization 1 and 2, respectively. The median estimates of both α and β

are closer to target when using normalization 2.

Still, the estimates obtained when using normalization 1 are never far from the

true values. Thus, a good strategy to adopt when estimating hybrid Phillips curves

seem to be the following: avoid normalization 2!

These results have implications for a number of recent papers, including Jondeau

and Le Bihan (2001), Rudd and Whelan (2001) and Benigno and López-Salido

(2001) who estimate the HPC in its reduced form.16 In most cases, the authors

soundly reject the NKPC in favor of a HPC with a large weight on lagged inflation.

For each of the 10,000 simulated data, I also ran my version of the present-

value estimation (see appendix C for more details).17 Not surprisingly, the same

overall conclusion holds true: the normalization that leaves the coefficient on current

inflation as unity, tends to overestimate the importance of backward-looking firms.

In light of this, there are good reasons to suspect that Rudd and Whelan’s (2001)

proposed “present-value” procedure suffers from the same problems. Specifically,

they ignore the issue of normalization altogether and decide to leave the coefficient

on current inflation as unity.

16In Benigno and Lopéz-Salido (2001), they use structural estimation but only use normalization
2. As discussed, this method yields estimates that are equivalent to Gali and Gertler’s “reduced-
form” estimation.
17That is, I used the following equations from appendix C: (13) and (14) to estimate γb,γf and

λ̃.
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Given the results in table 4, it seems plausible that the IV estimation method

could find evidence of backward-looking behavior (and, thus, reject the NKPC) even

when there is none by construction. To explore this possibility further, I simply

choose to focus on normalization 1 and calculate the empirical rejection frequency

as follows: first, for each of the 10,000 estimates reported in table 4, I calculate the

t-statistic

t(i)ω =
ω̂(i) − 0
std

³
ω̂(i)

´
where ω̂(i) is the i0th estimate of ω and std

³
ω̂(i)

´
is its asymptotically-based stan-

dard error. Second, I calculate

Pr (type I error) =
sum

³
t
(i)
ω > 1.96

´
#bootstrap samples

and find that the empirical rejection frequency is 17.8 percent when using normal-

ization 1. That is, even when using the most favorable normalization, Gali and

Gertler could mistakenly be rejecting the NKPC in 17.8 percent of the cases when

using the asymptotically-based t-distribution.

Still, Gali and Gertler not only rejected the null that ω = 0, they resolutely re-

jected it by finding ω̂ = 0.266 with a standard error of 0.032, implying a t−statistic
of 8.19 when using normalization 1. However, since I am using a different instru-

ment set, I cannot directly assess this result. However, focusing on their results

for normalization 1, I ask the related question of how likely they would be to get

the result reported in table 3, namely, a point estimate of ω̂ = 0.289, and a related

t−statistic of 6.54.
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To answer this, I ask how likely it is to get a t-statistic above 6.54 by calculating

Pr (t-stat > 6.54)
sum

³
t
(i)
ω > 6.54

´
#bootstrap samples

The answer is: not very likely. Although, approximately 13 percent of the

estimates of ω exceed 0.289, their standard errors are larger than the ones obtained

on actual data. Therefore, less than one percent of the estimates had a t-stat as

large as the one obtained by Gali and Gertler.

Several conclusions can be drawn from the Monte Carlo results: first, normal-

ization 2 tends to overestimate the share of backward-looking firms, and should be

avoided. Second, “reduced-form” estimation is as vulnerable to the choice of nor-

malization as “structural estimation.” On this note, I show that the normalization

chosen by Gali and Gertler is not to be preferred. Third, the empirical rejection

frequency of a test with a 5 percent nominal size is considerably larger than 5 per-

cent (i.e., when using t-stats based on asymptotic standard errors, the IV estimation

method incorrectly rejects the NKPC too often). Fourth, even when using the cor-

rect normalization, Gali and Gertler soundly rejected the NKPC (with a t-stat well

about 6). Examining data constructed from a purely forward looking model (i.e.,

when ω = 0), I was only able to reject the NKPC as soundly as Gali and Gertler

were in less than 1 percent of my simulations.
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5 Conclusion

Monetary theory models tell us that the appropriate conduct of monetary policy

hinges on the specification of inflation. Not surprisingly, empirical interest in testing

whether the NKPC — a key aspect of the theoretical literature —fits actual inflation

dynamics has recently flourished. Recently, Gali and Gertler developed a hybrid

model which nests the purely forward-looking NKPC. This model provides for a

convenient way of testing the NKPC against an alternative model that explictly

incorporates structural inertia. Specifically, their model allows for a share of firms

to act in a backward-looking (rule-of-thumb) manner. Unfortunately, as Gali and

Gertler note in their conclusion: “there is some imprecision in our estimates of the

importance of backward looking behavior” (p. 219).

In fact, when employing their IV estimation procedure, there is quite a lot of

imprecision in the estimated share of backward-looking firms. Unfortunately, the

imprecision hinges on an asymptotically irrelevant choice of how to normalize the

hybrid model. According to one normalization, the share of backward-looking firms

is small, and the NKPC seems like a reasonable approximation to reality. According

to another normalization, almost half the firms act in a rule-of-thumb manner.

The debate regarding the importance of backward-looking versus forward-looking

agents has flourished since Gali and Gertler’s paper. In my paper, find that one nor-

malization used by Gali and Gertler overestimates the share of backward-looking

firms. Moreover, I also point out that the IV estimates are also sensitive to the

choice of normalization when estimating the hybrid model in “reduced-form” or in

its “present value” form.18 Similarly, Gali, Gertler and López-Salido’s (2003) most

18The latter specification has recently been proposed by Rudd and Whelan (2001) as a superior
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recent paper, “Robustness of the Estimates of the Hybrid New Keynesian Phillips

Curve” also ignores the issue of normalization.

In conclusion, when using my preferred normalization and bootstrapped stan-

dard errors, I can still reject the NKPC (by finding evidence of backward-looking

firms) at the 5 percent but not at the 1 percent level. The sensitivity to the choice

of normalization documented in this paper can be seen as yet another example of

the types of problems that occur when using instrumental variables.

way of testing for the importance of backward-looking firms (see appendix C). Unfortunately, the
sensitivity to normalization plays as important a role in their estimation as it does in Gaĺi and
Gertler’s original work. And, unfortunately, their choice of normalization is likely to find evidence
of backward-looking behavior even in models where there is none, by construction.
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6 Appendix A - Boostrapped standard errors

1. Consider the estimated unrestricted VAR process Zt = ÂZt−1 + V̂t as the data

generating process (DGP) and save the residuals
n
V̂1, V̂2, ...V̂T

o
, where T is the

observed sample size (T = 146), with

Zt =



st
dwt
ygapt
sprt
dct
π̂t


where st is the labor share, dwt is wage inflation, ygapt is the output gap, sprt is

the long-short interest spread, dct is commodity price inflation, and π̂t is inflation.

2. Simulate i = 1, ...10, 000 artificial samples
©
Zit
ªT
t=1

by taking random draws

with replacement from the estimated residual vector and inserting them into the

assumed DGP.

3. Compute Gali and Gertler’s GMM coefficient estimates for α,β and ω for

each of the 10, 000 artificial samples.

4. Based on the 10,000 estimates for α,β and ω calculate the 95 percent confi-

dence interval.

.
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Figure 1: 5,000 estimates of ω with a sample size of 2000 (5.8 hours)

.
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7 Appendix B - The empirical rejection frequency

Simulating data under the null that the NKPC is the DGP for the inflation equation.

Step 1: Use actual data for Zt =


st
dwt
dct
π̂t

 to estimate the companion matrix,
A, of the system

Zt = AZt−1 + εt

Step 2: Throw out the equation corresponding to inflation and replace it by

π̂t = − λ̃
γf
st−1 + 1

γf
π̂t−1 − γb

γf
π̂t−2 (the restriction on the inflation equation implied

by the HPC). That is, I will get a restricted companion matrix, AR which will look

like (with two lag in the VAR):

AR =



a11 a12 a13 a14 a15 a16 a17 a18
a21 a22 a23 a24 a25 a26 a27 a28
a31 a32 a33 a34 a35 a36 a37 a38

− λ̃
γf

0 0 1
γf

0 0 0 − γb
γf

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


where λ̃, γb and γf are as defined in the text. Note that when ω = 0⇒ λ̃ = λ, γf = β

and γb = 0 which means that the only restrictions imposed by the (purely forward-

looking) NKPC are: a41 = −λ
β and a44 =

1
β . An additional restriction is that

inflation has to Granger cause real marginal cost. Thus, the coefficient on inflation

in the real marginal cost equation (a14) has to be non-zero. When estimating a14

using actual data, it is non-zero.
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It is not obvious that the resulting AR necessarily give rise to non-explosive paths

of the simulated series of inflation. In fact, I found that when I use an instrument

set that includes the output gap, AR always gave rise to explosive paths of inflation.

To create simulated data, I proceed as follows: I use the residuals from the VAR

from the first three equations (call them ε̂st , ε̂
dw
t and ε̂dct ) and construct residuals for

the inflation equation as implied by the restricted AR :19

ε̂πt = π̂t − (−0.0525) st−1 − 1.0101π̂t−1

Using these residuals, I proceed to step 3.

Step 3: Draw 10,000 random samples (with replacement) from ε̂t =


ε̂st
ε̂dwt
ε̂dct
ε̂πt


and use AR to construct simulated data,

©
ZRt
ª(rep)

Step 4: Estimate equations (8) and (9) using each of the 10, 000 simulated data

and get ω̂(rep) (and, also α̂(rep), β̂
(rep)

and the constant).

19With β = 0.99 and α = 0.8, the coefficients on st and πt−1 are as reported here.
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8 Appendix C - Present-value estimation

Given the recent popularity in using IV estimation to explore the importance of

lagged inflation, it seems worthwhile stressing that the estimated coefficient on

lagged inflation is always sensitive to the choice of normalization. Following Gali

and Gertler, researchers generally try different normalizations when estimating the

structural parameters (α,β and ω). By contrast, the normalization issue has been

ignored when using other specifications. For example, Rudd and Whelan (2001)

propose estimating the hybrid model in its present-value representation:20

E

(Ã
π̂t − c− λ̃

δ2γf

∞X
k=0

δ−k2 ŝt+k − δ1π̂t−1

!
Ωt−1

)
= 0 (12)

By truncating the infinite sum at, say 12, Gali, Gertler and Lopéz-Salido (2003)

show that they get virtually identical results to those reported in the first row table

1. However, the present-value representation is also sensitive to normalization. To

illustrate this point, consider simply iterating the HPC one period forward to get:

E
n³

π̂t − c− λ̃ŝt − γf λ̃ŝt+1 −
¡
γf
¢2
π̂t+1 − γfγbπ̂t − γbπ̂t−1

´
Ωt−1

o
= 0 (13)

The estimates based on equation (6) resemble very closely the results reported in

Gali, Gertler and López-Salido (2003). Moreover, as Gali, Gertler and López-Salido

(2003) point out, these results look very similar to the reduced-form estimates based

20Gali, Gertler and López-Salido (2003) point out a mistake in the way Rudd and Whelan (2001)
derive the present-value representation of the hybrid model. Therefore, the shown equation is Gali,
Gertler and López-Salido’s version.
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on equation (6). However, alternatively, I can estimate:

E

½µ
1

γf

h
π̂t − c− λ̃ŝt − γf λ̃ŝt+1 −

¡
γf
¢2
π̂t+1 − γfγbπ̂t − γbπ̂t−1

i¶
Ωt−1

¾
= 0

(14)

Again, estimates based on equation (14) resemble the estimates based on equa-

tion (7) rather than the ones based on equation (6). Since I am not estimating ω

directly, I cannot draw any direct implications between the choice of normalization

and the estimated share of backward-looking agents. However, it does seem to be

the case that whenever the coefficient on current inflation is normalized to unity, the

estimate of lagged inflation is larger.21 This result was confirmed when I eaxmined

the structural estimates.

21For a given value of α and β, this will imply that the share of backward-looking agents is larger.
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J-stat
α β ω γb γf Duration (p-value)

Reduced-form estimation

Gali and Gertler (GG) (eq. 6) 0.016 ** 0.379 ** 0.591 ** 9.75
(0.005) (0.021) (0.023) (0.982)

Dividing through by γf (eq. 7) 0.003 0.186 ** 0.837 ** 9.77
(0.006) (0.025) (0.029) (0.982)

Iterated one-step ahead (see appendix C)

Resembling GG (eq. 13) 0.011 ** 0.424 ** 0.553 ** 10.14

(0.004) (0.017) (0.019) (0.977) 33

Dividing through by γf (eq. 14) 0.005 0.296 ** 0.710 ** 10.27
(0.004) (0.019) (0.020) (0.975)

Structural estimation

Normalization 1 (eq. 8) 0.809 ** 0.885 ** 0.266 ** 0.038 ** 0.253 ** 0.682 ** 5.879 ** 9.84
(0.015) (0.031) (0.032) (0.008) (0.024) (0.026) (0.458) (0.981)

Normalization 2 (eq. 9) 0.834 ** 0.910 ** 0.486 ** 0.016 ** 0.379 ** 0.591 ** 8.635 ** 9.75
(0.021) (0.032) (0.041) (0.005) (0.021) (0.023) (1.501) (0.982)

Note: Asymptotic standard errors based on a Newey-West covariance matrix robust to serial correlation  up to 8 lags **, * and */ 
denotes significant at the 1, 5 and 10 percent level, respectively. Gali and Gertler's data run from 1960:1 to 1997:4 (152 observations) but in 
the process of constructing instruments (using four lags of all variables), and by constructing inflation as the log difference in prices, the 
first five observations are lost, and since πt+1 is used as a regressor the last observation is also lost. 
Therefore, the estimation is made on data from 1961:2-1997:3 (146 observations).

Table 1: IV estimates based on actual US data

λ
~



Figure 2: Monte Carlo results: 10,000 estimates of ω using normalization 1 and 2

Table 2: Median values and 95 percent bootstrapped CI
α β ω

(1) 0.785 0.862 0.185
(0.724-0.831) (0.648-0.976) (0.003-0.366)

(2) 0.809 0.864 0.486
(0.748-0.871) (0.705-0.962) (0.342-0.613)

Table 3: HPC estimates using a smaller instrument set

α β ω λ̃ γb γf D J-stat

(p-value)
(1) 0.812∗∗ 0.900∗∗ 0.289∗∗ 0.033∗∗ 0.268∗∗ 0.679∗∗ 5.325∗∗ 9.58

(0.019) (0.037) (0.044) (0.009) (0.032) (0.032) (0.544) (0.544)

(2) 0.834∗∗ 0.926∗∗ 0.459∗∗ 0.016∗∗ 0.363∗∗ 0.611∗∗ 6.041∗∗ 9.49
(0.026) (0.036) (0.047) (0.005) (0.025) (0.027) (0.939) (0.735)
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"True" parameters: = 0.052

Reduced-form estimation

GG
(-0.021- 0.026) (0.308- 0.646) (0.356- 0.692)

Dividing through by γf

(0.007- 0.182) (-1.009- 0.381) (0.621- 2.026) 35

Structural estimation

Normalization 1
(0.730- 0.832) (0.965- 1.061) (0.000- 0.445) (0.016- 0.202) (-1.706- 0.361) (0.638- 2.076) (3.702- 5.939)

Normalization 2
(0.449- 2.423) (0.331- 2.011) (0.356- 1.597) (-0.017- 0.026) (0.308- 0.652) (0.347- 0.692) (-13.103- 51.310)

Notes: 146 observations, 4 variables in instrument set (lags of: inflation, labor share, wage inflation and commodity price inflation), 
median of estimates based on 10,000 simulated data is reported. In parenthesis is the 95 percent confidence interval.

0.000

0.048 0.059

0.482 0.521

0.945

4.555

4.9500.521

0.9640.0360.058

0.000 0.481

0.0290.9960.780

0.847 0.999 0.878

Duration = 5γf =0.99γb =0ω=0β=0.99α=0.8

Table 4: IV estimates when null is NKPC (ω=0)

λ
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"True" parameters: = 0.030

Reduced-form estimation

GG
(-0.010- 0.038) (0.261- 0.529) (0.478- 0.744)

Dividing through by γf

(0.001- 0.097) (-1.009- 0.411) (0.596- 1.133) 36

Structural estimation

Normalization 1
(0.716- 0.833) (0.962- 1.065) (0.000- 0.513) (0.013- 0.109) (-1.706- 0.395) (0.607- 1.156) (3.520- 5.983)

Normalization 2
(0.381- 1.286) (0.950- 2.754) (0.275- 1.259) (-0.017- 0.038) (0.260- 0.529) (0.475- 0.744) (-13.103- 43.858)

Notes: 146 observations, 4 variables in instrument set (lags of: inflation, labor share, wage inflation and commodity price inflation), 
median of estimates based on 10,000 simulated data is reported. In parenthesis is the 95 percent confidence interval.

α=0.8 β=0.99 ω=0.25 γb =0.239 γf =0.756 Duration = 5

0.009 0.417 0.589

0.771 0.996 0.234 0.040 0.232 0.767 4.372

0.009

0.7540.031 0.249

0.417 0.589 5.0500.809 1.019 0.593

Table 5: IV estimates when null is HPC (ω=0.25)

λ
~



"True" parameters: = 0.016

Reduced-form estimation

GG
(-0.007- 0.036) (0.333- 0.475) (0.530- 0.667)

Dividing through by γf

(-0.005- 0.052) (-1.009- 0.450) (0.554- 0.734) 37

Structural estimation

Normalization 1
(0.710- 0.832) (0.961- 1.051) (0.000- 0.615) (0.008- 0.061) (-1.706- 0.436) (0.566- 0.746) (3.443- 5.941)

Normalization 2
(0.686- 1.044) (0.968- 1.531) (0.380- 0.993) (-0.017- 0.036) (0.333- 0.476) (0.528- 0.667) (-13.103- 53.358)

Notes: 146 observations, 4 variables in instrument set (lags of: inflation, labor share, wage inflation and commodity price inflation), 
median of estimates based on 10,000 simulated data is reported. In parenthesis is the 95 percent confidence interval.

α=0.8 β=0.99 ω=0.50 γb =0.386 γf =0.611 Duration = 5

0.011 0.420 0.583

0.763 0.991 0.445 0.026 0.369 0.629 4.226

0.011

0.6190.018 0.382

0.420 0.583 4.9130.800 1.009 0.588

Table 6: IV estimates when null is HPC (ω=0.5)

λ
~



"True" parameters: = 0.008

Reduced-form estimation

GG
(-0.005- 0.025) (0.420- 0.505) (0.499- 0.574)

Dividing through by γf

(-0.003- 0.031) (-1.009- 0.497) (0.505- 0.592) 38

Structural estimation

Normalization 1
(0.729- 0.831) (0.961- 1.015) (0.000- 0.765) (0.004- 0.036) (-1.706- 0.482) (0.518- 0.603) (3.686- 5.910)

Normalization 2
(0.654- 1.251) (0.957- 1.579) (0.537- 1.198) (-0.017- 0.025) (0.420- 0.504) (0.500- 0.574) (-13.103- 13.167)

Notes: 146 observations, 4 variables in instrument set (lags of: inflation, labor share, wage inflation and commodity price inflation), 
median of estimates based on 10,000 simulated data is reported. In parenthesis is the 95 percent confidence interval.

α=0.8 β=0.99 ω=0.70 γb =0.468 γf =0.530 Duration = 5

0.007 0.471 0.528

0.010 0.460

0.007

0.538

0.772 0.983 0.621 0.015 0.448 0.548 4.386

0.471 0.528 4.906

Table 7: IV estimates when null is HPC (ω=0.7)

0.803 0.995 0.720

λ
~




