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ABSTRACT

This paper studies the ability of a general class of habit-based asset pricing models to match the conditional
moment restrictions implied by asset pricing theory. We treat the functional form of the habit as unknown,
and to estimate it along with the rest of the model's finite dimensional parameters. Using quarterly
data on consumption growth, assets returns and instruments, our empirical results indicate that the
estimated habit function is nonlinear, the habit formation is better described as internal rather than
external, and the estimated time-preference parameter and the power utility parameter are sensible.
In addition, the estimated habit function generates a positive stochastic discount factor (SDF) proxy
and performs well in explaining cross-sectional stock return data . We find that an internal habit SDF
proxy can explain a cross-section of size and book-market sorted portfolio equity returns better than
(i) the Fama and French (1993) three-factor model, (ii) Lettau and Ludvigson (2001) scaled consumption
CAPM model, (iii) an external habit SDF proxy, (iv) the classic CAPM, and (v) the classic consumption
CAPM.
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1 Introduction

A prominent explanation of aggregate stock market behavior says that assets are priced as if there

were a representative investor whose utility is a power function of the di¤erence between aggregate

consumption and a habit level.1 In these theories, the habit function is the central part of the

asset pricing model. With few exceptions (discussed below), these models have been empirically

evaluated by engaging in calibration and simulation exercises, in which a chosen set of moments

computed from model-simulated data are informally compared to those computed from historical

data. Although such calibration exercises are undoubtedly important as an initial step, a complete

assessment of the habit-based paradigm requires moving beyond calibration, to formal estimation,

hypothesis testing, and model comparison.

Formal estimation, testing, and model comparison present some signi�cant challenges. Among

the most important is that theory does not provide precise guidelines about the functional form of

the habit. Consider the range of habit-based asset pricing models cited in footnote 1. All models

assume that the habit stock is a function of past and (possibly) contemporaneous consumption.

But there is substantial divergence across models in how the habit stock is speci�ed to vary with

aggregate consumption. Some work speci�es the habit stock as a linear function of past consump-

tion (e.g., Sundaresan (1989); Constantinides (1990); Heaton (1995); Jermann (1998); Boldrin,

Christiano, and Fisher (2001)). More recent theoretical work often takes as a starting point the

particular nonlinear habit speci�cation that includes current consumption developed in Campbell

and Cochrane (1999) (e.g., Campbell and Cochrane (2000); Li (2001); Wachter (2006); and Menzly,

Santos, and Veronesi (2004)). Moreover, there is no theoretical reason why other forms of nonlin-

earities could not be entertained. These considerations imply that the functional form of the habit

should be treated, not as a given, but as part and parcel of any empirical investigation.

This study econometrically evaluates a general class of habit-based asset pricing models, placing

as few restrictions as possible on the speci�cation of the habit and no parametric restrictions on

the law of motion for consumption. The empirical model we explore follows the existing theoretical

literature and presumes that investor utility is a power function of the di¤erence between aggregate

consumption and a habit level, but we allow the habit to be an unknown function of lagged and

contemporaneous consumption. The resulting speci�cation for investor utility is semiparametric in

the sense that it contains both the �nite dimensional set of unknown parameters that are part of

the power function and time-preference, as well as the in�nite dimensional unknown habit function

that must be estimated nonparametrically.

1See Sundaresan (1989), Constantinides (1990), Ferson and Harvey (1992), Heaton (1995), Jermann (1998), Camp-

bell and Cochrane (1999), Campbell and Cochrane (2000); Boldrin, Christiano, and Fisher (2001), Li (2001), Shore

and White (2002); Dai (2003); Menzly, Santos, and Veronesi (2004); Wachter (2006). We discuss these papers further

below.
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We estimate all the unknown parameters of this semiparametric asset pricing model, and con-

duct statistical tests of hypotheses regarding the functional form of the unknown habit as well as

statistical tests for whether an internal habit vs external habit speci�cation better describes the

data. We then compare the estimated habit model�s ability to �t a cross-section of equity returns

with that of other asset pricing models, both quantitatively and in formal statistical terms.

Estimation and testing are conducted by applying a Sieve Minimum Distance (SMD) procedure

to a set of Euler equations corresponding to the habit-based framework we study. The SMD method

is a distribution-free minimum distance method, where the conditional moments associated with

the Euler equations are directly estimated nonparametrically as functions of conditioning variables.

The �sieve� part of the SMD procedure requires that the unknown function embedded in the

Euler equations (here the habit function) be approximated by a sequence of �exible parametric

functions, with the number of parameters expanding as the sample size grows (Grenander (1981)).

The unknown parameters of the stochastic discount factor, including the sieve parameters of the

habit function and the �nite-dimensional parameters that are part of the power function and time-

preference, may then be estimated by minimizing a weighted quadratic distance from zero of the

nonparametrically estimated conditional moments.

Using stationary quarterly data on consumption growth, assets returns and instruments, we

apply the SMD procedure to directly estimate all the unknown parameters of interest in the Euler

equations underlying the optimal consumption choice of an investor with access to N asset payo¤s.

The SMD procedure is especially appealing for this application because it can be implemented

as an instance of Generalized Method of Moments (GMM, Hansen (1982)), an approach that is

familiar from prior work in estimating fully parametric, consumption-based asset pricing models

(e.g., Hansen and Singleton (1982)). In addition to being robust to misspeci�cation of the functional

form of the habit and the law of motion for the underlying fundamentals, the SMD procedure

estimates the unknown habit function consistently at some nonparametric rate. The procedure

also provides estimates of the �nite dimensional parameters, such as the curvature of the power

utility function and the subjective time-discount factor; these estimates converge at rate
p
T (where

T is the sample size) and are asymptotically normally distributed. See the Appendix for details.

Using this methodology, we empirically investigate a number of hypotheses about the speci�ca-

tion of habit-based asset pricing models that have not been previously investigated. One hypothesis

concerns whether the habit is better described as a linear or nonlinear function. We develop a sta-

tistical test of the hypothesis of linearity and �nd that the functional form of the habit is better

described as nonlinear rather than linear.

A second hypothesis concerns the distinction between �internal� and �external�habit forma-

tion. About half of the theoretical papers cited in footnote 1 investigate models of internal habit

formation, in which the habit is a function of the agent�s own past consumption. The rest investi-
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gate models of external habit formation, in which the habit depends on the consumption of some

exterior reference group, typically per capita aggregate consumption. Abel (1990) calls external

habit formation �catching up with the Joneses.� Determining which form of habit formation is

more empirically plausible is important because the two speci�cations can have dramatically dif-

ferent implications for optimal tax policy and welfare analysis (Ljungqvist and Uhlig (2000)), and

for whether habit models can explain long-standing asset-allocation puzzles in the international

�nance literature (Shore and White (2002)). To address this issue, we derive a conditional moment

restriction that nests the internal and external nonlinear habit function, under the assumption that

both functions are speci�ed over current and lagged consumption with the same �nite lag length.

Our empirical results indicate that the data are better described by internal habit formation than

external habit formation.

The SMD approach also allows us to assess the quantitative importance of the habit in the power

utility speci�cation. Our empirical results suggest that the habit is a substantial fraction of current

consumption�about 97 percent on average�echoing the speci�cation of Campbell and Cochrane

(1999) in which the steady-state habit-consumption ratio exceeds 94 percent. The SMD estimated

habit function is concave and generates positive intertemporal marginal rate of substitution in

consumption. The SMD estimated subjective time-discount factor is around 0.99 and the estimated

power utility curvature parameter is about 0.80 for three di¤erent combinations of instruments and

asset returns.

Finally, we undertake a statistical model comparison analysis. Because our habit-based asset

pricing model makes some parametric assumptions that may not be fully accurate (e.g., it maintains

the power utility speci�cation), and because the SMD-estimated nonparametric habit function con-

tains lagged consumption of only �nite lag length, the implied Stochastic Discount Factor (SDF)

should be best viewed as a proxy to the true unknown SDF. Thus, we evaluate the SMD-estimated

habit model and several competing asset pricing models by employing the model comparison dis-

tance metrics recommended in Hansen and Jagannathan (1997) (the so-called HJ distance and the

HJ+ distance), where all the models are treated as SDF proxies to the unknown truth. In particu-

lar, the SMD-estimated internal habit model is compared to (i) the SMD-estimated external habit

model, (ii) the three-factor asset pricing model of Fama and French (1993), (iii) the �scaled�con-

sumption Capital Asset Pricing Model (CAPM) of Lettau and Ludvigson (2001b), (iv) the classic

CAPM of Sharpe (1964) and Lintner (1965), and (v) the classic consumption CAPM of Breeden

(1979) and Breeden and Litzenberger (1978). Doing so, we �nd that a SMD-estimated internal

habit model can better explain a cross-section of size and book-market sorted equity returns, both

economically and in a statistically signi�cant way, than the other �ve competing models. These

results are particularly encouraging for the internal habit speci�cation, since the Fama and French

(1993) three-factor model and the Lettau and Ludvigson (2001b) scaled consumption CAPM have
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previously displayed relative success in explaining the cross-section of stock market portfolio re-

turns.

The rest of this paper is organized as follows. In the next section we discuss related literature

not discussed above. Section 3 presents the habit-based asset pricing framework to be estimated

and tested. In Section 4 we explain the estimation technique and its implementation. Section

5 describes the data. Section 6 presents the results of estimation and hypothesis testing about

linearity of the habit function. Section 7 presents the results of speci�cation tests for internal

versus external habit formation, and conducts statistical model comparison when all the competing

models are treated as potentially misspeci�ed. Section 8 concludes. In the Appendix we discuss

the identi�cation of model parameters, and the large sample properties of the SMD estimators, and

the related test statistics.

2 Related Literature

Our work builds o¤ and extends a preexisting empirical literature investigating the possible role of

non-separabilities in preferences. Habit- and durability-based asset pricing models, where the habit

is restricted to have a linear functional form, have been empirically investigated by Ferson and

Constantinides (1991) and Heaton (1995). We discuss these papers further below. Dynan (2000)

estimates a linear model of habit formation using household level data on food consumption. We

add to this literature by relaxing the functional form of the habit and by testing internal vs external

habit formation.

Our work also relates to a previous asset pricing literature that approximates the entire SDF

nonparametrically. Gallant and Tauchen (1989) were among the �rst to nonparametrically estimate

a consumption-based asset pricing model using the so-called SNP (semi-nonparametric) method.

Their SNP procedure is a constrained sieve maximum likelihood method, where the conditional

density function is approximated by a truncated Hermite polynomial sieve, and where all the

unknown parameters, including the Hermite polynomial sieve coe¢ cients and the parameters of

the stochastic discount factor, are estimated by maximizing the approximate likelihood subject to

the conditional moment restriction constraints implied by an asset pricing theory. Gallant, Hansen,

and Tauchen (1990) employ the same SNP method to estimate the conditional density of a vector

of monthly asset payo¤s. Subsequently, Bansal and Viswanathan (1993) and Bansal, Hsieh, and

Viswanathan (1993) apply semi-nonparametric techniques to estimate nonlinear arbitrage-pricing

models, while Chapman (1997) approximates an asset pricing kernel using orthonormal polynomials

in state variables implied by a real business cycle model.

Our asset pricing model is closest to that of Gallant and Tauchen (1989), but our work still

di¤ers from theirs and previous work in several respects. First, we introduce the SMD procedure as
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a particularly useful approach in asset pricing studies of larger cross-sections of returns. The SNP

procedure of Gallant and Tauchen (1989) requires nonparametric estimation by constrained sieve

maximum likelihood of the entire joint conditional density of the consumption and return series,

which involves nonlinear numerical optimization of a likelihood function whose dimensionality grows

with the number of return series. For the application studied here, the SMD procedure is much

easier to implement, for two reasons: (i) it does not require nonparametric estimation of the

entire likelihood function; this is important because when the number of return series is large, the

dimensionality of the joint density to be estimated becomes prohibitive. (ii) the SMD procedure

works directly on the Euler equations implied by asset pricing theory and delivers closed-form

expressions for the estimated conditional moments (see Section 4).

Second, while both the SMD and the SNP procedures have the advantage of avoiding any

parametric speci�cation of the law of motion of consumption growth, there is currently no large

sample theory on asymptotic properties such as convergence rates and limiting distributions of the

SNP estimator that could be applied to undertake statistical inference. Here we extend existing

large sample theories on the SMD estimator for I.I.D. data (see e.g., Newey and Powell (2003),

Ai and Chen (2003), Ai and Chen (2005)), to our asset pricing setting with stationary but not

necessarily serially uncorrelated data.

Third, we investigate a number of interesting hypotheses speci�c to the habit-based theoretical

framework (such as internal vs external habit formation) that have not been investigated elsewhere.

To do so, we place more structure on the empirical asset pricing model than in previous work by

embedding the unknown habit function in the familiar power-utility framework. By contrast,

Gallant and Tauchen (1989) treat the entire period-by-period utility function as unknown and

approximate it using a polynomial sieve.

Finally, we study the cross-sectional asset pricing properties of our estimated habit models using

a large number (e.g., N = 7; 17 or 26) of return series (including the especially challenging book-

market sorted portfolios of Fama and French 1992, 1993), and undertake an extensive statistical

model comparison analysis. Gallant and Tauchen (1989) instead focus on the time series asset

pricing properties of their SNP estimated model using a small number (N = 2) of asset return

series, and do not undertake any model comparison.

The results in this paper may also be related to recent evidence on long-run consumption

correlations with asset returns. For example, Parker and Julliard (2004) �nd that the covariance

between stock returns and consumption growth over a horizon of three years explains a much larger

fraction of the cross-sectional variation in size and book-market portfolio returns than does the

covariance between stock returns and contemporaneous, one-period, consumption growth. Internal

habit formation provides one possible explanation for these �ndings, since in this case agents take

into account the a¤ect of today�s consumption on all future habit levels. This interpretation of
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the data is supported by our empirical results. We �nd that the internal habit SDF performs as

well or better than other popular models in the literature and better than a purely external habit

SDF that omits forward-looking terms governing the a¤ect of today�s consumption on future habit

levels. The �ndings in this paper may therefore provide a structural interpretation of the results

in Parker and Julliard (2004).2 We discuss this further below.

3 The Model

In this section we present a model of investor behavior in which utility is a power function of the

di¤erence between aggregate consumption and the habit. We do not consider models in which

utility is a power function of the ratio of consumption to the habit stock, as in Abel (1990) and

Abel (1999). Ratio models of external habit formation imply that relative risk-aversion is constant,

hence they have di¢ culty accounting for the predictability of excess stock returns documented in the

empirical asset pricing literature.3 By contrast, di¤erence models can generate time-variation in the

equilibrium risk-premium because relative risk aversion varies countercyclically. Di¤erence models

are also far more common in the asset pricing literature; for example, the di¤erence speci�cation

is used in all the habit-based asset pricing models referenced in footnote 1 above.

Throughout this paper we assume that identical agents maximize the utility function

U = E
1X
t=0

�t
(Ct �Xt)1�
 � 1

1� 
 : (1)

Here Xt is the level of the habit, and � is the subjective time discount factor. Xt is assumed to be a

function (known to the agent but unknown to the econometrician) of current and past consumption

Xt = f (Ct; Ct�1; :::; Ct�L) ;

such that Xt < Ct; Xt � 0: Note that we allow the habit to potentially depend on contemporaneous
as well as past consumption, a modeling choice that is a feature of several habit models in the recent

theoretical literature (e.g., Campbell and Cochrane (1999)).4

When the habit is internal, the agent takes into account the impact of today�s consumption

decisions on future habit levels. In this case the intertemporal marginal rate of substitution in

2Hansen, Heaton, and Li (2005) provide an alternative interpretation based on recursive preferences and long-run

consumption risk.
3A large literature �nds that excess stock returns are forecastable; see Shiller (1981), Fama and French (1988),

Campbell and Shiller (1989), Campbell (1991), Harvey (1991) Hodrick (1992), Lamont (1998) Lettau and Ludvigson

(2001a).
4 In the conclusion we discuss a possible alternative speci�cation (a signi�cant extension of the empirical approach

developed here), in which the habit is a function of an in�nite number of lags and speci�ed as a recursive functional

of unknown form e.g., Xt = r (Ct; Ct�1; Xt�1) :
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consumption is given by

Mt+1 = �
MUt+1
MUt

; (2)

where

MUt =
@U

@Ct
= (Ct �Xt)�
 � Et

24 LX
j=0

�j (Ct+j �Xt+j)�

@Xt+j
@Ct

35 ; (3)

and where Et is the expectation operator conditional on information available at time t. When the

habit is external, agents maximize (1) but ignore the impact of today�s consumption on tomorrow�s

habits, since the habit in this speci�cation merely plays the role of an externality. In this case,

only the �rst term on the right-hand-side of (3), (Ct �Xt)�
 , is part of marginal utility. In

equilibrium, identical individuals choose the same consumption, so that regardless of whether the

habit is external or internal, individual consumption, Ct, is equal to aggregate consumption, Cat ,

which we denote Ct from now on.

Although we have motivated the time-nonseparable model above with the notion of habit-

formation, the framework itself is suitable for studying more general forms of nonseparabilities.

For example, if an increase in past consumption raises Xt, then Xt is interpreted as a habit because

current consumption must now be higher to deliver the same utility. By contrast, if an increase in

past consumption decreases Xt, then Xt is consistent with durability, since increases in the stock

of durable goods add to current utility. In our empirical estimation we do not restrict the unknown

Xt to impose either speci�cation. Instead, we follow Gallant and Tauchen (1989), Ferson and

Constantinides (1991) and Heaton (1995) and freely estimate the function, letting the data dictate

the appropriate framework as pertains to habit-formation or durability. The results (discussed

below) are that Xt increases with past consumption (at all lags), favoring the habit interpretation

over the durability interpretation.

The asset pricing model comes from the �rst-order conditions for optimal consumption choice

for an investor with access to N asset returns. The �rst-order conditions place restrictions on

the joint distribution of the intertemporal marginal rate of substitution in consumption and asset

returns and imply that, for any traded asset indexed by i, with a gross return at time t + 1 of

Ri;t+1; the following equation holds:

Et [Mt+1Ri;t+1] = 1; i = 1; :::; N: (4)

Equation (4) shows that the intertemporal marginal rate of substitution in consumption, Mt, is

the stochastic discount factor (SDF), which in this setting depends on the unknown habit function.

The resulting N equations yield a set of conditional moment restrictions containing a vector of

unknown parameters, (�; 
)0, and a single unknown habit function Xt = f (Ct; Ct�1; :::; Ct�L).
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4 Empirical Implementation

This section presents the details of our estimation procedure. The model to be estimated in (4)

is semiparametric in the sense that it contains both �nite dimensional and in�nite dimensional

unknown parameters. Estimation in this setting may be undertaken using the SMD procedure �rst

developed in Newey and Powell (2003) and Ai and Chen (2003) for independent and identically

distributed (I.I.D.) data. In the Appendix we show that the SMD procedure and its large sample

properties can be extended to stationary ergodic time series data.

4.1 Transformation of the model

Since consumption is trending over time, it is necessary to transform the model to use stationary

observations on consumption growth. We address this problem by assuming that the unknown

habit function Xt = f (Ct; Ct�1; :::; Ct�L) can be written as

Xt = Ctg

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
; (5)

where g : RL ! R is an unknown function of the gross growth rates of consumption, with domain

space reduced by one dimension relative to f . Note that g now replaces f as the unknown function

to be estimated along with (�; 
) using the Euler equations (4) and the SMD procedure. As shown

below, this assumption allows us to express the stochastic discount factor, Mt+1, as a function of

gross growth rates in consumption, which are plausibly stationary. One way to motivate (5) is to

presume that the original function Xt = f (Ct; Ct�1; :::; Ct�L) is homogeneous of degree one, which

allows the function to be re-written as

Xt = Ctf

�
1;
Ct�1
Ct

; :::;
Ct�L
Ct

�
; (6)

and rede�ned as in (5). The homogeneous of degree one assumption is consistent with the habit

models studied in the asset pricing literature cited above, including the nonlinear habit speci�cation

investigated in Campbell and Cochrane (1999).

When the habit stock is a homogeneous of degree one function of current and past consumption,

marginal utility, MUt, takes the form

MUt = C�
t

�
1� g

�
Ct�1
Ct

; :::;
Ct�L
Ct

���

(7)

�C�
t Et

24 LX
j=0

�j
�
Ct+j
Ct

��
 �
1� g

�
Ct+j�1
Ct+j

; :::;
Ct+j�L
Ct+j

���
 @Xt+j
@Ct

35 ;
where,

@Xt+j
@Ct

=

8>><>>:
gj

�
Ct+j�1
Ct+j

; :::;
Ct+j�L
Ct+j

�
8j 6= 0

g
�
Ct�1
Ct

; :::;
Ct�L
Ct

�
�
PL
i=1 gi

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
Ct�i
Ct

j = 0

(8)
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In the expression directly above, gi denotes the derivative of g with respect to its i�th argument.
To obtain an estimable expression for the unknown parameters of interest � = (�; 
; g)0, the

Euler equations (4) must be rearranged so that the conditional expectation Et(�) appears only
on the outside of the conditional moment restrictions. The Appendix presents several equivalent

expressions of this form; here we present one. Denote the true values of the parameters with an

�o�subscript: �o = (�o; 
o; go)
0. Combining (2), (7) and (4), and rearranging terms, we �nd a set

of N conditional moment conditions:

Et

( 
�o

�
Ct+1
Ct

��
o
zt+1Ri;t+1 � 1

!
�t+1

)
= 0; i = 1; :::; N; (9)

where

zt+1 �

0B@
�
1� go

�
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

���
o
�
�PL

j=0 �
j
o

�
Ct+1+j
Ct+1

��
o �
1� go

�
Ct+j
Ct+1+j

; :::;
Ct+j+1�L
Ct+1+j

���
o @Xt+1+j
@Ct+1

�
1CA =�t+1;

�t+1 �

0B@
�
1� go

�
Ct�1
Ct

; :::;
Ct�L
Ct

���
o
�
�PL

j=0 �
j
o

�
Ct+j
Ct

��
o �
1� go

�
Ct+j�1
Ct+j

; :::;
Ct+j�L
Ct+j

���
o @Xt+j
@Ct

�
1CA :

We may write (9) more compactly as

E f�i(zt+1; �o; 
o; go)jw�t g = 0; i = 1; :::; N; (10)

where zt+1 is a vector containing all observations used to estimate the conditional moment (9) at

time t, �i is de�ned as

�i(zt+1; �o; 
o; go) �
 
�o

�
Ct+1
Ct

��
o
zt+1Ri;t+1 � 1

!
�t+1;

and the conditional expectation in (10) is taken with respect to agents�information set at time t,

denoted w�t .

Let wt be a dw � 1 observable subset of w�t that does not contain a constant. Equation (10)
implies

E f�i(zt+1; �o; 
o; go)jwtg = 0; i = 1; :::; N: (11)

We assume that the econometricians� information set wt is informative enough, such that if

E f�i(zt+1; �; 
; g)jwtg = 0, i = 1; :::; N for any � > 0; 
 > 0; 0 � g < 1; g(0; :::; 0) = 0, g 6=constant,
then (�; 
; g)0 = (�o; 
o; go)

0. In the Appendix we discuss identi�cation of �o = (�o; 
o; go)
0 based

on the set of conditional moment restrictions (11) for the external habit model.

Given the theoretical restrictions implied by (11), the true parameter values must satisfy the

minimum distance relation

�o = (�o; 
o; go)
0 = argmin

�
E
�
m(wt;�)

0m(wt;�)
�
; (12)
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where m(wt;�) = Ef�(zt+1;�)jwtg, �(zt+1;�) = (�1(zt+1;�); :::; �N (zt+1;�))0 for any candidate
value � = (�; 
; g)0.

4.2 SMD estimation

We are now in a position to describe the SMD estimation of �o = (�o; 
o; go)
0 using the conditional

moment restrictions model (11). The idea behind the SMD procedure has three essential parts.

First, although the functional form of the conditional mean m(wt;�) = Ef�(zt+1;�)jwtg is un-
known, we may replace it with a consistent nonparametric estimator bm(w;�) for any candidate
parameter value � = (�; 
; g)0. Second, although the habit function g is an in�nite-dimensional

unknown parameter, we can approximate it by a sequence of �nite-dimensional unknown parame-

ters (sieves) denoted gKT
, where the approximation error decreases as the dimension KT increases

with the sample size T . Third, the function gKT
is estimated jointly with the �nite-dimensional

parameters (�; 
)0 by minimizing a (weighted) quadratic norm of estimated conditional expectation

functions:

b� = arg min
�;
;gKT

1

T

TX
t=1

bm(wt; �; 
; gKT
)0 bm(wt; �; 
; gKT

): (13)

Implementation of the SMD estimator requires a consistent estimate of the conditional mean

m(wt;�): Let fp0j(wt); j = 1; 2; :::; JT g be a sequence of known basis functions (including a con-
stant function) that map from Rdw into R. Denote pJT (�) � (p01 (�) ; :::; p0JT (�))

0 and the T � JT

matrix P �
�
pJT (w1) ; :::; p

JT (wT )
�0
. Then

bm(w;�) =  TX
t=1

�(zt+1;�)p
JT (wt)

0(P0P)�1

!
pJT (w) (14)

is a sieve Least Squares estimator of the conditional mean vectorm(w;�) = Ef�(zt+1;�)jwt = wg:
(Note that JT must grow with the sample size to ensure that m(wt;�) is estimated consistently).

We show in the Appendix that, under the assumption of stationary ergodic observations and

some additional regularity conditions, the SMD estimate of g is consistent and converges at a rate

faster than T 1=4, while the estimates of the �nite-dimensional parameters (�; 
)0 are
p
T consistent

and asymptotically normally distributed; hence the standard errors for b�; b
 can be computed.
Unfortunately, a general asymptotic distribution theory for SMD estimators of unknown functions,

such as the habit function g, has not been developed;5 hence it is not possible to compute con�dence

intervals for habit function itself. Nevertheless, it is possible to conduct hypothesis tests about some

aspects of the functional form of the habit, as discussed below.

5Some authors treat the sieve estimators of unknown functions as parametric ones and compute their standard

errors by applying standard root-T asymptotic normality theory. Such practices ignore the uncertainty of the unknown

functions and may in general lead to erroneous inference decisions.
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We emphasize that the SMD method is likely to be particularly useful in asset pricing studies

of larger cross-sections of returns. This is because the nonparametric estimate bmi(w;�) of the

conditional mean mi(w;�); i = 1; :::; N; has a closed-form expression (14). An attractive feature

of this SMD estimator is that it is easy to implement as an instance of GMM with a particular

weighting matrix. To see this, plug the sieve least squares estimator bm(w;�) into (13) to obtain:
b� = argmin

�

h
g(�;yT )

i0
fIN


�
P0P

��1g hg(�;yT )i ; (15)

where yT �
�
z0T+1; :::z

0
2;w

0
T ; :::w

0
1

�0 denotes the vector containing all observations in the sample of
size T and

gT (�;y
T ) � 1

T

TX
t=1

�(zt+1;�)p
JT (wt) (16)

are the sample moment conditions associated with the NJT �1 -vector of population unconditional
moment conditions:

E f�i(zt+1; �o; 
o; go)p0j(wt)g = 0; i = 1; :::; N; j = 1; :::; JT : (17)

Thus the GMM criterion is

QT (�) =
h
gT (�;y

T )
i0
W
h
gT (�;y

T )
i
; (18)

whereW = IN
 (P0P)�1.
It is important to note that the SMD estimation (13) collapses to a case of GMM only when

the speci�c weighting matrix W = IN
 (P0P)�1 is employed. This procedure is equivalent to

regressing each �i on the set of instruments p
JT (�) and taking the �tted values from this regression

as an estimate of the conditional mean, where the weighting matrix in (18) gives greater weight

to moments that are more highly correlated with the instruments pJT (�). In this speci�c case,
the GMM implementation preserves the desirable properties of the SMD estimator, which include

parameter consistency, reasonable rates of convergence, and asymptotic normality of the �nite

dimensional parameters. We cannot, however, presume that these properties would be preserved in

GMM estimation using an arbitrary weighting matrixW. The weighting scheme can be understood

intuitively by noting that variation in the conditional mean is what identi�es the unknown function.

4.3 Implementation

Before we can estimate the model, several implementation issues must be addressed. First, it is clear

that identi�cation of the unknown habit function using (4) requires ruling out the case Xt = KCt,

where K 2 [0; 1) is a constant. This is not a problem since any model of habit formation naturally

depends on past consumption. Second, estimation of Xt = f (Ct; Ct�1; :::; Ct�L) nonparametrically
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is not practical if L is too large, generating a �curse of dimensionality.�6 Thus, we have to assume

L is a reasonable �nite number relative to the sample size. Such lag limitations are less restrictive

than they might at �rst appear, since standard theoretical treatments of habit formation imply

that more recent values of consumption have the greatest in�uence on the habit stock. Thus, the

estimation procedure we propose may still do a good job of characterizing how the habit changes

with consumption, by estimating the habit stock as a function the current and most recent lags of

consumption.

Third, we need a sequence of sieves gKT
to approximate the unknown function g

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
:

We do so using an arti�cial neural network (ANN) sieve approximation, de�ned as

gKT

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
= �0 +

KTX
j=1

�j 

�

j;1

Ct�1
Ct

+ � � �+ 
j;L
Ct�L
Ct

+ �j

�
; (19)

where  (�) an activation function, which can be any known function except a polynomial function
of �xed �nite degree (see Hornik, Stinchcombe, and White (1989)). A common choice for  is the

logistic function,  (x) = (1 + e�x)
�1, a speci�cation we use here. To provide a nonparametric

estimate of the true unknown function, go (�), where �(�)�denotes its generic argument, it is nec-
essary to require KT to grow with the sample size to ensure consistency of the method.7 We use

the ANN sieve for several reasons: (i) it allows the use of more lags in the unknown function g

by delivering a relatively fast convergence rate when compared to other sieves (e.g., linear tensor

product Fourier sieves or spline sieves) (Chen and White (1999)); (ii) the use of a nonlinear sieve

such as (19) is often in practice better able than alternatives to allow for nonlinearities in the un-

known function and nonseparabilities between elements of g; (iii) as long as consumption is strictly

positive, the ANN sieve makes it possible to restrict coe¢ cients in (19) so that the habit Xt <

Ct, for all possible shocks to consumption, not just those observed in our sample. Imposing this

restriction is straightforward because the logistic function  (x) = (1 + e�x)
�1 lies between zero

and one, regardless of the values taken by its arguments. This insures that utility is always well de-

�ned, and avoids the danger that the model will break down out-of-sample. In previously speci�ed

habit-based asset pricing models, imposing this restriction is more di¢ cult even when the habit is

speci�ed parametrically (for example, as a linear or polynomial function of past consumption.)

Forth, as with any nonlinear estimation procedure, it is necessary to require the parameter space

6A curse of dimensionality in this context refers to the situation in which, �xing the smoothness of the function f

to be estimated, the rate of convergence of a nonparametric estimate approaches zero as the dimension of the domain

of the function f approaches in�nity.
7Hornik, Stinchcombe, and White (1989) show that any continuous function can be arbitrarily well approximated

asymptotically using a neural network sieve. Chen and White (1999) provide convergence rates for a large class of

single hidden layer feedforward arti�cial neural networks. Bansal and Viswanathan (1993) use a neural network to

approximate the SDF of an nonlinear arbitrage pricing model. See Campbell, Lo, and MacKinlay (1997) for additional

neural network sieve applications in �nance.
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to lie in a compact set. In practice, researchers use prior information to restrict the parameter

space. Restriction of the parameter space is particularly important for our application, since sieve

parameters which generate values for the ANN sieve logistic activation function  (x) = (1 + e�x)�1

that lie in the tails of the function imply that the habit g is constant. Thus, we restrict the sieve

parameters to a range that does not generate tail observations on  (�). We also restrict the rate
of time-preference, � 2 (0; 1:2], and the curvature parameter 
 2 [:1; 100].

A �nal implementation issue concerns the sampling interval of our data relative to the decision

interval of households. If consumption decisions occur more frequently than the data sampling

interval, aggregate consumption data are time-aggregated. Heaton (1993) studies the interaction

of time-aggregation and time-nonseparable preferences and concludes that it can in�uence the

evidence in favor of habit formation, at least when habits are of the linear variety. Unfortunately,

as Ferson and Constantinides (1991) and Heaton (1995) point out, it is not possible to model time-

aggregation in a fully nonlinear framework using minimum distance estimation, which our procedure

requires. To the extent that time-aggregation is a concern, this must be considered a limitation

of our approach. Nevertheless, there are at least two reasons to think that time-aggregation may

not unduly a¤ect inference. First, Ferson and Constantinides (1991) note that estimates of the

nonseparability parameter in Heaton (1993)� which uses a �rst-order linear approximation of the

Euler equation but allows for time-aggregation� are similar to their own estimates generated from

nonlinear GMM in which no time-aggregation is modeled. Second, Ferson and Constantinides also

note that the e¤ect of time-aggregation is to increase the order of the moving average process

followed by the GMM error, which is straightforward to address using a nonparametric correction

to the standard errors for serial correlation. Of course, the in�uence of time-aggregation may be

more complex for nonlinear speci�cations and moreover with nonlinearities it is not clear in which

direction time aggregation would in�uence the evidence on habit formation. We follow Ferson and

Constantinides (1991) and at least partly account for these e¤ects when computing the asymptotic

standard errors for � and 
, by using a higher order nonparametric correction for serial correlation

in �i(zt+1; �o; 
o; go).

5 The Data

A detailed description of the data and our sources is provided in the Appendix. Our data are

quarterly, and span the period from the fourth quarter of 1952 to the fourth quarter of 2001.

The focus of this paper is on testing and modeling cross-sections of asset returns, rather than

one or two aggregate asset returns. As explained in the Appendix, exploiting the cross-section

aids the empirical identi�cation of the unknown habit function. We study three cross-sections of

asset returns. All stock return data are taken from Kenneth French�s Dartmouth web page (URL
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provided in the appendix), created from stocks traded on the NYSE, AMEX and NASDAQ. The

�rst group (Group 1) contains the three-month Treasury bill rate, 10 industry portfolios of common

stocks based on 4-digit SIC codes, and six value-weighted portfolios of common stock sorted into two

size (market equity) quantiles and three book value-market value quantiles. Thus Group 1 consists

of 17 asset returns in total. The portfolios are created from all stocks traded on the NYSE, AMEX,

and NASDAQ, as detailed on Kenneth French�s web page. The second group of asset returns

(Group 2), is comprised of the three-month Treasury bill rate and the six value-weighted portfolios

of common stock sorted into two size quantiles and three book value-market value quantiles, for a

total of 7 asset returns. The third group (Group 3) is comprised of the three-month Treasury bill

rate plus 25 value-weighted returns for the intersections of 5 market equity quantiles and 5 book

equity-market equity quantiles, or 26 asset returns in total (Group 3).

Our measure of consumption is real, per-capita expenditures on nondurables and services. Since

consumption is real, our estimation uses real asset returns, which are the nominal returns described

above de�ated by the implicit chain-type price de�ator (1996=100) for our measure of consumption.

We use quarterly consumption data because it is known to contain less measurement error than

monthly consumption data.

The procedure requires computation of instruments, pJT (wt), which are known basis func-

tions (including a constant function) of conditioning variables, wt. We include lagged consumption

growth in wt, as well as three variables that have been shown elsewhere to have signi�cant forecast-

ing power for excess stock returns and consumption growth in quarterly data.8 Two variables that

have been found to display forecasting power for excess stock returns at a quarterly frequency are the

�relative T-bill rate�(which we measure as the three month Treasury-bill rate minus its 4-quarter

moving average), and the lagged value of the excess return on the Standard & Poor 500 stock mar-

ket index (S&P 500) over the three-month Treasury bill rate (see Campbell (1991), Hodrick (1992),

Lettau and Ludvigson (2001a)). We denote the relative bill rate RREL and the excess return on

the S&P 500 index, SPEX.9 We also use the proxy for the log consumption-wealth ratio studied in

(Lettau and Ludvigson (2001a)) to forecast returns.10 This proxy is measured as the cointegrating

8The importance of instrument relevance in a GMM setting (i.e., using instruments that are su¢ ciently correlated

with the included endogenous variables) is now well understood. See Stock, Wright, and Yogo (2002) for a survey of

this issue. No formal test of instrument relevance has been developed for estimation involving an unknown function.

Thus we we choose variables for wt that are known to be strong predictors of asset returns and consumption growth

in quarterly data.
9We focus on these variables rather than some others because, in samples that include recent data, they drive

out many of the other popular forecasting variables for stock returns, such as an aggregate dividend-price ratio,

earnings-price ratio, term spreads and default spreads (Lettau and Ludvigson (2001a)).
10This variable has strong forecasting power for stock returns over horizons ranging from one quarter to several

years. Lettau and Ludvigson (2001b) report that this variable also forecasts returns on portfolios sorted by size and

book-market ratios.
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residual between log consumption, log asset wealth, and log labor income and is denoted dcayt.11
Lettau and Ludvigson (2004) �nd that quarterly consumption growth is predictable by one lag of

wealth growth, a variable that is highly correlated with SPEX, and results (not reported) con�rm

that it is also predictable by one lag of SPEX. Thus, we use wt =
hdcayt; RRELt; SPEXt; Ct

Ct�1

i0
:

We note that consumption growth�often thought to be nearly unforecastable�displays a fair amount

of short-horizon predictability in the sample used here: a linear regression of consumption growth

on the one-period lagged value wt and a constant produces an F�statistic for the regression in
excess of 12.12

Since the error term �i(zt+1; �o; 
o; go) is orthogonal to the information set wt, any measurable

transformation of wt, pJT (wt), can be used as valid instruments. We use power series as instru-

ments, investigating three di¤erent speci�cations. Each speci�cation includes a constant (vector of

ones). The �rst speci�cation includes a constant, the linear terms plus the squared terms of each

variable in wt, creating nine instruments; we use these basis functions when studying the asset

returns in Group 1. The second set of instruments includes a constant, the linear terms, squared

terms and pair-wise cross products of each variable in wt, or 15 instruments in total; we use these

when studying the asset returns in Group 2. The third set of instruments utilizes just a constant

and the linear terms of each variable, or �ve instruments in total; we use these when studying the

asset returns in Group 3. This insures that the total number of moment conditions is about the

same across estimations.13

6 Empirical Estimates

All the tables and �gures are reported at the end of the Appendix. Table 1 and Figures 1-8 present

the estimation results of the semiparametric habit model presented above, using the instruments

and the three groups of assets described in the previous section.14 The results reported below were

very similar with L = 4 and L = 3: Thus, we opt for the more parsimonious speci�cation, and in

11See Lettau and Ludvigson (2001a) and Lettau and Ludvigson (2004) for further discussion of this variable and its

relation to the log consumption-wealth ratio. Note that standard errors do not need to be corrected for pre-estimation

of the cointegrating parameters in dcayt, since cointegrating coe¢ cients are �superconsistent,� converging at a rate
faster than the square root of the sample size.
12As recommended by Cochrane (2001), the conditioning variables in wt are normalized by standardizing and

adding one to each variable, so that they have roughly the same units as unscaled returns.
13The number of total moment conditions is not uniquely determined by the estimation theory. The theory merely

requires that there be more moment conditions than parameters to be estimated, NJT � dim (�), and that the

number of moments, NJT , increase with the sample size T , but at a slower rate than the sample size, so that

NJT =T ! 0 and NJT !1 as T !1.
14The results reported here are based on w0

t =
hdcayt; RRELt; SPEXt;

Ct
Ct�1

i
. Nevertheless, all the empirical results

remain virtually unchanged when we use [dcayt; RRELt; SPEXt] as wt. We have also tried wt, lagged wt and lagged

returns as instruments, again the empirical results change little with the additional lagged wt and lagged returns.

15



all cases reported below set L = 3.15 We emphasize that our use of three lags is a generalization of

what has been done previously in the estimation of time-nonseparable asset pricing models, most of

which have focused on speci�cations with L = 1 (e.g., Ferson and Constantinides (1991), Chapman

(1997)) and/or L = 2 (e.g., Gallant and Tauchen (1989)).16

For the dimensionality of the ANN sieve, g(x1; :::; xL) � �0 +
PKT
j=1 �j (�

L
l=1
j;lxl + �j), we

set KT = 3. Because asymptotic theory only provides guidance about the rate at which (L+2)KT

must increase with the sample size T , other considerations must be used to judge how best to set

this dimensionality. The bigger is (L + 2)KT , the greater is the number of parameters that must

be estimated, therefore the dimensionality of the sieve is naturally limited by the size of our data

set. With KT = 3, the dimension of the parameter vector, � = (�; 
; g)0, is 18, estimated using

a sample of size T = 200. In practice, we obtained very similar results setting KT = 4; thus we

present the results for the more parsimonious speci�cation using KT = 3 below.

Table 1 displays estimates of the �nite dimensional parameters, for three estimations. The the

estimates of � and 
 are very similar across these three estimations. In each case, the subjective rate

of time-preference is about 0:99, and the curvature parameter is between 
 = 0:76 and 
 = 0:81:

The standard errors indicate that these variables are estimated precisely, but the estimates for 


are e¤ectively estimates of unity, since the minimized value of the SMD criterion is very similar

when 
 is restricted to one. Boldrin, Christiano, and Fisher (2001) �nd that a business cycle model

with linear habit formation and 
 = 1 performs well in matching the mean equity premium and

Sharpe ratio.

To get a sense of how important the habit is in the power utility speci�cation, the top and bottom

panels of Figure 1 plot the habit-consumption ratio and an estimate of the stochastic discount factor,

respectively, over time, for the estimation on Group 1 assets, where the instruments are a constant,

the linear and squared values of the elements of wt. The corresponding �gures for the estimations

on Group 2 and Group 3 assets are very similar and are therefore omitted to conserve space.

The �gure demonstrates signi�cant evidence in favor of habit formation, conditional on the power

utility framework. The habit is about 97 percent of current consumption on average, reminiscent

15Notice that, because of the forward-looking terms in (11), �i(zt;�o) is not in the information set at time t. In

particular, E [�i(zt+s+1;�o)j�i(zt;�o)] 6= 0 for s � L: Taken literally, therefore, the choice of L = 3 implies that

the error term, f�i(zt+1;�o)g ; is correlated with its three-period lagged value. If this were known to be the true
lag structure of the error term, e¢ ciency gains could be made by imposing this structure in estimation. The choice

of lag length here, however, is largely dictated by our sample size. With no clear theoretical guidance on the value

for L, possible e¢ ciency gains are likely to be outweighed by the greater robustness a¤orded by foregoing e¢ cient

estimation in favor of consistent estimation. For this reason, we do not impose a third-order moving average (or

other) structure on the error term, and instead simply apply a nonparameteric adjustment for higher-order serial

correlation to the asymptotic standard errors of the �nite dimensional parameters.
16Using stationary monthly data on consumption growth and two return series, Gallant and Tauchen (1989) ex-

perimented with 1 and 2 lags and found the appropriate lag length is 1 for their subutility approximation.
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of the Campbell and Cochrane (1999) model, in which the steady state habit-consumption ratio

is in excess of 94%. Since the procedure is free to estimate a zero habit, this evidence implies

that habit formation signi�cantly improves the model�s ability to �t the data, and rejects the

notion that preferences are well described as time-separable in the power utility framework. The

habit-consumption ratio is stable, ranging only from 0.97 to 0.974.

The estimate of Mt is always positive, thus it is an arbitrage-free stochastic discount factor

suitable for pricing derivative claims, as discussed in Hansen and Jagannathan (1997) and Wang

and Zhang (2003).17 The relative stability of the habit-consumption ratio translates into a relatively

stable stochastic discount factor: the mean is slightly less than one (0.98), while the standard

deviation is about 0.02. Although the standard deviation is not large, it is nonetheless signi�cantly

larger than the standard deviation of quarterly consumption growth, equal to 0.0045 in this sample.

Still, it is evident that these speci�cations do not �t the unconditional volatility bounds for the

stochastic discount factor implied by the work of Hansen and Jagannathan (1991) when matched to

post-war data on aggregate stock returns. These bounds determine whether the model can match

the mean equity premium and Sharpe ratio. This �nding is not surprising, since the methodology

used here must place very high weight on conditional moments (and therefore relatively little weight

on unconditional moments) in order to nonparametrically estimate the unknown habit function with

accuracy.18

We can check whether our estimates of the habit imply that the partial �rst derivatives, @Xt+i@Ct
;

i = 1; 2; 3 are greater than zero, and decreasing in i. Such a structure is typical of linear habit models

speci�ed as a declining polynomial lag of past consumption. Of course, with a nonlinear habit, these

partial derivatives are not constant, but vary over time given our estimated X function. Figure 2

plots the derivatives over time as a function of lagged consumption growth, again for the model

estimated on Group 1 assets with a constant, the linear and squared terms of wt as instruments.

In each case, the partial derivative is positive everywhere; moreover, the partial derivative of the

habit one-step ahead is everywhere greater than that two-steps, which in turn is everywhere greater

than that three steps ahead. The estimated habit depends positively on lagged consumption, but

this positive dependence decreases as the consumption becomes more distant.

The shape of our estimated habit function can be illustrated by plotting Xt as a function of

lagged consumption, Ct�1; holding �xed current consumption, Ct, and the other lags of consump-

tion, Ct�2; :::; Ct�L. Figures 3 through 5 plot this relation for each estimation described above. For

these plots, one-period lagged consumption is allowed to vary, but Ct; Ct�2; :::; Ct�L are alternately

17A related point is made by Chapman (1998) who notes that requiring MUt itself to be positive places restrictions

on habit models. The �tted marginal utility values are never negative in the sample of data used here.
18The �nding is also similar to those in Ferson and Constantinides (1991), who concluded that habit persistence

improves the �t of the standard consumption-based model largely through its in�uence on moments other than the

mean equity premium and Sharpe ratio.
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held �xed at their median, 25th, and 75th percentile values in our sample.

We can draw several conclusions from Figures 3-5. First, the estimated habit looks nonlinear;

this is evident from the curved shape of the functions and from the �nding that the shape depends

on where in the domain space the function is evaluated. Second, the estimated habit is always

increasing in past consumption. This suggests that the time-nonseparability in utility that we

estimate is better interpreted as habit formation than durability in consumption, consistent with

previous studies that use consumption growth measured over longer horizons (Gallant and Tauchen

(1989), Ferson and Constantinides (1991), Heaton (1995)). Third, the estimated habit is increasing

at a decreasing rate in past consumption. The next section presents a formal test of the linearity

of the habit.

6.1 Is Habit Function Linear?

Figures 3 to 5 indicate that the estimated habit function looks nonlinear. In this section, we test for

nonlinearity more formally. Whether habits are linear is an interesting empirical question because

the functional form of the habit is often crucial in determining the asset pricing implications of

the model. To address this question, we make use of the partial derivatives of our estimated habit

function. Notice that linearity implies @Xt+i@Ct
is constant for all i � 0, and in particular

@2Xt+i
@C2t

= Ct+i
@2

@C2t
g

�
Ct+i�1
Ct+i

; :::;
Ct+i�L
Ct+i

�
� 0 8i � 1: (20)

Figures 7-9 plot the values of (20) based on our estimates for the cases above for i = 1. Notice

from (8) that @2Xt+i=@C2t will take the form (1=Ct+i) gii

�
Ct+i�1
Ct+i

; :::;
Ct+i�L
Ct+i

�
, where gii denotes the

second partial derivative of g with respect to its i�th argument. Obviously (1=Ct+i) gii cannot be
identically zero unless gii

�
Ct+i�1
Ct+i

; :::;
Ct+i�L
Ct+i

�
is a zero function, since consumption is everywhere

positive and �nite. Therefore, in order to rid (1=Ct+i) gii of its dependence on the arbitrary units

of Ct, we plot the �normalized�second derivative of Xt+i, which consists only of the term gii. To

conserve space, we plot only the values g11
�

Ct
Ct+1

; :::;
Ct+1�L
Ct+1

�
corresponding to @2Xt+1=@C2t .

Figure 6 plots the time series of g11 for the model estimated on Group 1 assets with a constant,

the linear and squared terms of wt as instruments; Figure 7 plots the same for the model estimated

on Group 2 assets and a constant, the linear, squared and cross terms of wt as instruments; Figure

8 plots the same for the model estimated on Group 3 assets with a constant, the linear terms of

wt as instruments. In each �gure, the second partial derivatives are everywhere negative; taken

together with the estimates of the �rst partial derivatives (e.g., Figure 2), this implies that the

habit is increasing in lagged consumption, but at a decreasing rate. Moreover, all three �gures

indicate that the second derivative of Xt is nonzero.

We could construct a consistent test of whether the second derivatives of the habit are identically

zero functions. However, for simplicity, we provide a test based on smooth functionals of unknown
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functions, as discussed in Chen and Shen (1998). Such smooth functionals converge at the standard

parametric rate,
p
T , and have standard asymptotic distributions.

One such smooth functional is the unconditional mean of the second derivative

� � E

�
@2Xt+i
@C2t

�
: (21)

Clearly if (20) is everywhere identically equal to zero, its mean (21) must be zero, although the

converse need not hold. Nevertheless, if we �nd that the mean (21) is statistically di¤erent from

zero, we may conclude that (20) is not true, and the habit function is nonlinear. We present

the results of such a test now, focusing, as discussed above, on the normalized second derivative

corresponding to @2Xt+1=@C2t , which is g11
�

Ct
Ct+1

; :::;
Ct+1�L
Ct+1

�
.

Let

�g � E

�
g11

�
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

��
;

and let bg() denote the SMD estimate of g() and bg11() be the second partial derivative of bg() with
respect to its �rst argument. Then �g can be estimated by

b�g = 1

T

TX
t=L

bg11� Ct
Ct+1

; :::;
Ct+1�L
Ct+1

�
:

By extending the theoretical result of Ai and Chen (2005) for I.I.D. data to stationary beta-mixing

data, under some regularity conditions, we obtain that
p
T (b�g � �g) is asymptotically normally

distributed with mean zero and variance �211 > 0. Let b�211 be some consistent estimator of �211. We
may use

p
Tb�g=b�11 as a test statistic, which has a standard normal limiting distribution under the

null hypothesis �g = 0.
19

The mean of the second derivative is estimated very precisely with tight con�dence intervals,

indicating strong rejections of �g = 0. For the estimation on Group 1 assets with a constant, and

the linear and squared terms of wt as instruments, the estimated 95 percent con�dence region for

�g is [�0:052151;�0:051435]. Since the estimated habit function is very similar across estimations,
the con�dence intervals for estimation on Group 2 assets using a constant, the linear, squared and

cross-term of wt as instruments, and on Group 3 assets with a constant and the linear terms of wt

as instruments, are almost identical to that reported above. In every case, zero is well outside the

95% con�dence region. Thus, we reject the hypothesis that �g � E[g11] is zero, implying that (20)

is not true and the habit function estimated is nonlinear.
19The asymptotic variance �211 takes a complicated form and the calculation of any consistent estimator b�211 is

complicated. For this reason, we use a bootstrap procedure to directly compute an empirical, 95% con�dence region

for �g. The bootstrap sample is obtained by sampling blocks of the raw data randomly with replacement and laying

them end-to-end in the order sampled. To choose the block length, we follow the recommendation of Hall, Horowitz,

and Jing (1995) who show that the asymptotically optimal block length for estimating a symmetrical distribution

function is l _ T 1=5; also see Horowitz (2003).We then conduct SMD estimation on 500 bootstrap samples so formed,

which delivers 500 estimates of �g.
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7 Speci�cation and Model Comparison

7.1 Is Habit Formation Internal or External?

An interesting hypothesis concerns the distinction between �internal� and �external� habit for-

mation. Much of our intuition about this distinction is based on simple linear models of habit

formation. For example, Cochrane (2001) (Chapter 21, page 484) considers an example in which

the habit is a distributed lag of past consumption. Under the additional assumptions of an I.I.D.

endowment sequence and a constant risk-free rate Rf equal the inverse of the subjective rate of

time preference, Cochrane (2001) shows that the asset pricing implications of internal and external

habits are equivalent.

This equivalency breaks down if habits are nonlinear in past consumption or if the risk-free

rate is not constant. With nonlinear habits, the partial derivatives @Xt+j
@Ct

in (3) vary with lagged

consumption, implying that marginal utility under internal habit formation will not be proportional

to that under external habit formation. The asset pricing implications of internal and external habit

speci�cations will in general di¤er.

One way to assess which speci�cation better describes the data is simply to compare the value

of the minimized SMD criterion function when habit formation is restricted to be external (i.e.,

imposing the restriction that MUt = (Ct �Xt)�
) with that of the internal habit cases estimated
above. Doing so for each estimation described above, we �nd that the minimized SMD criterion is

several orders of magnitude larger under external habit formation. For example, for estimation on

Group 3 asset returns (using a constant and the linear terms of wt as instruments), we �nd that the

external habit model produces a minimized criterion equal to 1.2177e-04, compared to 1.3424e-07

for the internal habit case, or about 1000 times larger. The estimations using Group 1 and Group

2 assets produced similar results.

Such �ndings do not provide a statistical comparison of external and internal habit. Thus, we

pursue an alternative way to address the issue by directly testing the Euler equation restrictions

corresponding to the external habit formation:

E

 
�

�
Ct+1 �Xex

t+1

Ct �Xex
t

��

Ri;t+1 � 1 j wt

!
= 0; i = 1; :::; N: (22)

In the appendix we show that the conditional moment restrictions for the internal habit asset

pricing model can be written as:

E

 
�

�
Ct+1 �Xin

t+1

Ct �Xin
t

��

Ri;t+1 eFi;t+1 � 1 j wt! = 0; i = 1; :::; N; (23)

where

eFi;t+1 � 1� LX
j=0

�j

 
Ct+1+j �Xin

t+1+j

Ct+1 �Xin
t+1

!�

@X in

t+1+j

@Ct+1
+

LX
j=0

�j�1

 
Ct+j �Xin

t+j

Ct+1 �Xin
t+1

!�

@X in

t+j

@Ct

1

Ri;t+1
:
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We assume that the internal and external habit functions are both homogeneous of degree

one functions of current and lagged consumptions with the same �nite lag length L. Under this

assumption, the two habit functions may be distinguished. To see this, write the habit function

generically as Xt = Ctg
�
Ct�1
Ct

; :::;
Ct�L
Ct

�
: The external and the internal habit conditional moment

restrictions are then nested into

E

 
�

�
Ct+1 �Xt+1
Ct �Xt

��

Ri;t+1 eFi;t+1(�; �; 
; g)� 1 j wt! = 0; i = 1; :::; N; (24)

with

eFi;t+1(�; �; 
; g) (25)

� 1� �
LX
j=0

�j
�
Ct+1+j �Xt+1+j
Ct+1 �Xt+1

��
 @Xt+1+j
@Ct+1

+ �

LX
j=0

�j�1
�
Ct+j �Xt+j
Ct+1 �Xt+1

��
 @Xt+j
@Ct

1

Ri;t+1
.

The external habit corresponds to (24) with � = 0; the internal habit corresponds to (24) with

� = 1.

We estimate all the unknown parameters (�; 
; �; g(�)) corresponding to the generalized condi-
tional moment restrictions (24) by the SMD method employed before, using the same ANN sieve

(19) to approximate the unknown g(�), the same three asset groups with the associated sets of
instruments. The estimation procedure is therefore free to choose one set of parameter values

(�ex; 
ex; gex(�)) satisfying the external habit conditional moment restrictions (22) with � = 0, just
as it is to choose another set of parameter values (�in; 
in; gin(�)) satisfying the internal habit con-
ditional moment restrictions (23) with � = 1. It follows that a test of the hypothesis that � = 0

or � = 1 provides a test of the hypothesis of external versus internal habit. As before, the SMD

estimates of (�; 
; �; g(�)) converge in probability to their true values and the SMD estimates of

�nite-dimensional parameters �; 
; � are root-T consistent and asymptotically normally distributed.

Let b�2� be a consistent estimator of the asymptotic variance of the SMD estimate of �. Using the
result that

p
T (b����)=b�� is asymptotically standard normal, we can then apply a sequential Wald

test of the null hypothesis of � = 0 for external habit; and the null hypothesis of � = 1 for internal

habit.

For all the three asset groups and the corresponding instruments, the SMD estimates of �, 


and their standard errors are quite similar to those in Table 1;20 the estimates of � are found to be

extremely close to unity, ranging between 1.0272 (for Group 1), 1.0876 (for Group 2) and 1.0275

(for Group 3), with small standard errors. In all cases, the hypothesis of � = 0 (external habit

formation) is strongly rejected. For example, using the estimation result for Group 2 assets with

the constant, the linear, squared and cross terms of wt as instruments, b� = 1:0876 and b�� = 0:057,
20For example, for Group 2 assets with the constant, the linear, squared and cross terms of wt as instruments, the

estimates of �; 
 are 0.9805 and 0.7991 with standard errors 0.018 and 0.014 respectively.
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we can easily reject the null hypothesis of � = 0 but fail to reject the null hypothesis of � = 1.

Thus we �nd that the stochastic discount factor is much better approximated by internal habit

formation than external habit formation.

7.2 Model Comparison

How well habit-based models explain asset pricing data relative to other models that have been

explored in the literature? We use the methodology provided by Hansen and Jagannathan (1997),

who develop a way to compare asset pricing models when all Stochastic Discount Factor (SDF)

models are treated as misspeci�ed proxies for the true unknown SDF, and the relevant question is

which model contains the least speci�cation error.

Hansen and Jagannathan suggest that we compare the pricing errors of various candidate

SDF models by choosing each model�s parameters, �, to minimize the quadratic form gHJT (�) �
w0T (�)G

�1
T wT (�), where wT (�) = (w1T (�); :::; wNT (�))

0 is the vector of the sample average of

pricing errors (i.e., wiT (�) = 1
T

PT
t=1Mt(�)Ri;t � 1 for i = 1; :::; N), and GT is the sample second

moment matrix of the N asset returns upon which the models are evaluated (i.e., the (i; j)-the

element of GT is 1
T

PT
t=1Ri;tRj;t for i; j = 1; :::; N). The measure of model misspeci�cation is then

the square root of this minimized quadratic form, dT �
q
gHJT (b�), which gives the maximum pric-

ing error per unit norm on any portfolio of the N assets studied, and delivers a metric suitable for

model comparison. We refer to the square root of this minimized quadratic form, dT �
q
gHJT (b�),

as the Hansen-Jagannathan distance, or HJ distance for short.

An important advantage of this procedure is that the second moment matrix of returns delivers

an objective function that is invariant to the initial choice of asset returns. The identity and other

�xed weighting matrices do not share this property. Kandel and Stambaugh (1995) have suggested

that asset pricing tests using these other �xed weighting matrices can be highly sensitive to the

choice of test assets. Using the second moment matrix helps to avert this problem.

We compare the speci�cation errors of the habit-based model to several alternative asset pricing

models that have been studied in the literature. First, we compare the SMD-estimated habit model

to two empirical asset pricing models that have displayed relative success in explaining the cross-

section of stock market portfolio returns: the three-factor, portfolio-based asset pricing model of

Fama and French (1993), and the approximately linear, conditional, or �scaled�consumption-based

capital asset pricing model explored in Lettau and Ludvigson (2001b). These models are both linear

stochastic discount factor models taking the form

Mt+1 = �0 +
kX
i=1

�iFi;t+1; (26)

where Fi;t+1 are variable factors, and the coe¢ cients �0 and �i are treated as free parameters to be

estimated. Fama and French develop an empirical three-factor model (k = 3), with variable factors

22



related to �rm size (market capitalization), book equity-to-market equity, and the aggregate stock

market. These factors are the �small-minus-big�(SMBt+1) portfolio return, the �high-minus-low�

(HMLt+1) portfolio return, and the market return, Rm;t+1, respectively.21 The Fama-French model

has displayed unusual success in explaining the cross section of mean equity returns (Fama and

French (1993), Fama and French (1996)). The model explored by Lettau and Ludvigson (2001b)

can be interpreted as a �scaled�or conditional consumption CAPM (�scaled CCAPM�hereafter)

and also has three variable factors (k = 3), dcayt; dcayt � � logCt+1, and � logCt+1: Lettau and
Ludvigson (2001b) show that such a model can be thought of as a linear approximation to any

consumption-based CAPM (CCAPM) in which risk-premia vary over time.

We also compare speci�cation errors of these models to those of a linearized version of the

standard CCAPM (with consumption growth the single variable factor in (26), k = 1) (Breeden

(1979); Breeden and Litzenberger (1978)), and to those of the classic CAPM, where the market

return Rm is the single variable factor in (26), k = 1.

For all the non-habit asset pricing models, all the unknown parameters � = (�0; �1; :::; �k)
0

are chosen to minimize the squared HJ distance, gHJT (�), for that model. Because the fully

parametric non-habit asset pricing models have fewer parameters than the nonparametric habit

models, when computing the HJ distance for the habit models we deliberately restrict the num-

ber of parameters that are chosen to minimize the HJ distance. In particular, we choose only

the �nite-dimensional parameters � = (�; 
)0 of our habit-based models to minimize the HJ

distance�the parameters of the nonparametric habit function are restricted to be those that min-

imize the SMD criterion. The procedure is as follows. For any candidate � = (�; 
)0 value in

the habit-based asset pricing models, we �rst estimate the habit function by the SMD estima-

tor bg(�; �; 
) = argmingKT 1
T

PT
t=1 bm(wt; �; 
; gKT

)0 bm(wt; �; 
; gKT
), where bm(wt; �; 
; gKT

) is given

in (14), using, say, Group 2 assets (six size and book-market returns plus the T-bill rate). We

then construct the SMD-estimated internal habit and external habit SDF proxies by replacing the

unknown habit function go(�; �; 
) with the SMD-estimated bg(�; �; 
). Finally, given bg(�; �; 
); we
choose the parameters � = (�; 
)0 of the habit asset pricing models to minimize the corresponding

HJ distances. Note that this places the habit models at a disadvantage because the habit para-

meters are not chosen to minimize the HJ criterion, the measure of model misspeci�cation. By

contrast all of the comparison models�parameters are chosen to minimize the HJ criterion.22

21SMB is the di¤erence between the returns on small and big stock portfolios with the same weight-average book-

to-market equity. HML is the di¤erence between returns on high and low book-to-market equity portfolios with the

same weighted-average size. Further details on these variables can be found in Fama and French (1993). We follow

Fama and French and use the CRSP value-weighted return as a proxy for the market portfolio, Rm. The data are

taken from Kenneth French�s Dartmouth web page (see the Appendix).
22Recall that the SMD minimization gives greater weight to moments that are more highly correlated with the

instruments pJT (wt), while the HJ minimization matches unconditional moments.
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We evaluate the speci�cation errors of the competing asset pricing models using a time-series

on two alternative sets of quarterly asset returns: (i) the six equity returns on portfolios double-

sorted on size and book-to-market characteristics provided by Fama and French, (N = 6), and

(ii) these six equity portfolio returns plus the three-month Treasury bill rate, (N = 7). We use

equity returns on size and book-to-market sorted portfolios because Fama and French (1992) show

that these two characteristics provide a �simple and powerful characterization�of the cross-section

of average stock returns, and absorb the roles of leverage, earnings-to-price ratio and many other

factors governing average stock return di¤erentials.

Before discussing how each model fares according to speci�cation error, we note that the esti-

mates of � generated from minimizing gHJT (�) for the general internal habit model are similar to

those estimated using the SMD procedure but generally smaller, equal to 0.70 when the model is

evaluated on the equity portfolios alone, and 0.73 when the Treasury bill is included. Estimates of

� in the external habit case are similar to the internal habit case, equal to 0:9 when the Treasury

bill is included and 0:6 when it is omitted. The estimates of the curvature parameter 
, when

freely estimated to minimize the HJ distance, are substantially larger than those estimated using

the SMD procedure. For the internal habit case, they equal to 26 when the model is evaluated

on the equity portfolios alone, and 25 when the Treasury bill is included. For the external habit

model, the resulting estimates of the curvature parameter 
 are equal to 37 when the Treasury bill

is included, and 62 when it is excluded. The larger values for 
 are not surprising because the HJ

procedure places emphasis on unconditional mean returns whereas the SMD procedure emphasizes

conditional moments. Fitting unconditional moments requires a more volatile SDF (Hansen and

Jagannathan (1991)), which can be generated by a higher value for 
.

Table 2 reports the measure of speci�cation error given by the HJ distance (�HJ Dist�), dT �q
gHJT (b�), for all the models discussed above. Regardless of whether the Treasury bill rate is

included in the set of test assets, the smallest speci�cation error is generated by the SMD-estimated

internal habit model. The HJ distance for this model is equal to 0.18 on the set of stock returns

and Treasury bill, and 0.17 on the set of size and book-market sorted equity returns alone. These

numbers are substantially lower than those for all the other models; for example, when the T-

bill is included, the next lowest pricing error is given by the Fama-French model, equal to 0.28.

When the T-bill is excluded, the scaled CCAPM delivers the second lowest speci�cation error,

equal to 0.21, while the third lowest speci�cation error is generated by the Fama-French model and

the external habit model, which have almost identical values of the HJ distance, equal to 0.262

and 0.261, respectively. The scaled CCAPM performs much worse once the T-bill is included.

Finally, the classic CCAPM and CAPM have errors substantially larger than those of most other

models, regardless of the set of test assets upon which they are evaluated. The one exception is the

external habit model which performs worst of all models when the T-bill is included, generating
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a speci�cation error of 0.43. These results are particularly encouraging for the internal habit

framework.

Table 3 also reports an alternate distance metric, denoted �HJ+ Dist,� for all the models

discussed above. This metric restricts the set of admissible stochastic discount factors to be positive.

The SMD-estimated internal habit model continues to beat all the other models by a wide margin,

according to this metric. The only models for which HJ+ is substantially di¤erent from HJ, are

the scaled CCAPM and the classic CCAPM. The distance metric for the scaled CCAPM increases

by a factor of four in pricing the equity returns when the set of admissible stochastic discount

factors is restricted to be positive. Although this model does a relatively good job of assigning the

right prices to size and book-market sorted equity returns, its linearity implies that it can assign

negative prices to some positive derivative payo¤s on those assets. This is not altogether surprising,

since linear models�typically implemented as approximations of nonlinear models for use in speci�c

applications�are not designed to price derivative claims.

7.2.1 Statistical Comparison of Competing Models

Table 2 reports the point estimates of the HJ distances for the six competing asset pricing models

without taking into account the statistical uncertainty associated with those estimates. To our

knowledge, no broadly applicable procedure has been developed for comparing HJ distances sta-

tistically.23 Here we provide a new methodology for statistical model comparison of HJ distances

based on the �reality check�method of White (2000). Given that the HJ distance is found to be

smallest for the internal habit model, we make this our null hypothesis for model comparison.

Let j = 1; 2; :::; 6 index the six asset pricing models reported in Table 2, with j = 1 being

the internal habit model. Let E[wjT (�j)] denote the vector of population average of pricing errors

associated with model j and the candidate parameter value �j . Let

gHJj (�j) � E[wjT (�j)]
0fE[GT ]g�1E[wjT (�j)]

and ��j � argmingHJj (�j). Denote the population squared HJ distance associated with model j

d2j � gHJj
�
��j
�
. The null hypothesis is:

H0 : max
j=2;:::;6

fd21 � d2jg � 0;

meaning that, among the six competing models, model 1 (the internal habit model) has the smallest

23Wang and Zhang (2003) provide a way to compare HJ distance measures across models using Bayesian methods,

under the assumption that the data follow linear, Gaussian processes. Their procedure is not directly applicable here,

since our methodology requires no speci�cation of the law of motion and permits the data to be stationary ergodic,

allowing a wide variety of nonlinear time-series processes such as di¤usion models, stochastic volatility, nonlinear

ARCH, GARCH, Markov switching, and many more.
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pricing error according to the squared HJ distance. The alternative hypothesis is:

H1 : max
j=2;:::;6

fd21 � d2jg > 0;

meaning that there is at least one competing model has smaller pricing error in the squared HJ

distance than model 1 (the internal habit model).

Let d2T;j � gHJT;j (
b�j) denote the sample estimate of the squared HJ distance for model j. To

apply White�s reality check test, we employ the following test statistics, T W , based on (White
(2000)) and Hansen�s modi�ed reality check test statistic, T H , based on (Hansen (2003)):24

T W � max
j=2;:::;6

p
Tfd2T;1 � d2T;jg and T H � max

�
max
j=2;:::;6

p
Tfd2T;1 � d2T;jg ; 0

�
:

Both tests have complicated null limiting distributions. Therefore, to implement the reality check

test, we follow the suggestion of White (2000), Hansen (2003) and Corradi and Swanson (2003)

and compute block bootstrap estimates of their �nite sample distributions. Let White�s original

bootstrap test statistic and Hansen�s modi�ed bootstrap test statistic be denoted T W;b and T H;b,
respectively. By repeated sampling, we compute bootstrap estimates of the p� values

bpW � 1

B

BX
b=1

1fT W;b > T W g; bpH � 1

B

BX
b=1

1fT H;b > T Hg;

where B is the number of bootstrap samples. To account for the �rst-stage estimation of the un-

known habit function, in each bootstrap sample the parameters of the habit function are reestimated

using the SMD procedure.

Since this is a one-sided test, at a 5% level of signi�cance, the critical value is the value at the

95th percentile of the bootstrap test statistics. We do not reject the null if the historical value of

the tests statistic (T W or T H) is not unusually high, i.e., is not greater than the value at the 95th
percentile. Therefore, the tests T W and T H reject the null hypothesis if bpW or bpH are close to zero,
and do not reject the null if bpW or bpH are close to one. At a 5% level of signi�cance, we reject the

null if bpW or bpH are less than 0:05, but do not reject otherwise. The results of these tests in our

data are as follows. For the six return case bpW = 0:9731 and bpH = 0:9275, while for the six return
plus T-bill case bpW = 0:9838 and bpH = 0:9358. Thus, both tests imply that model 1 (the internal
habit model) is the best according to the squared HJ distance measure.

24Using results in Hansen, Heaton, and Luttmer (1995) and Ai and Chen (2005), it can be shown, under mild

regularity conditions,

p
T
�
d2T;1 � d2T;2 � [d21 � d22]; :::; d2T;1 � d2T;6 � [d21 � d26]

�0 D�! (Z2; :::; Z6)
0

(Z2; :::; Z6)
0 � N (0;
) ;

where 
 is a positive semi-de�nite matrix. This justi�es our applications of White�s reality check test (White (2000)),

T W , and Hansen�s modi�ed reality check test (Hansen (2003)), T H .
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7.2.2 Comparing Internal and External Habit Speci�cations

What explains the superior econometric performance of the internal habit model compared to the

external habit speci�cation? Certainly the SDFs of the two models behave di¤erently over time: the

internal habit model is more volatile and more autocorrelated (quarterly standard deviation equals

to 2.8% and �rst-order autocorrelation equals to 0.21), than the external habit model (quarterly

standard deviation equals to 1.05% and �rst-order autocorrelation equals to 0.04).25 But such

time-series properties are likely to be more important determinants of how well each speci�cation

rationalizes variation over time in returns rather than across assets.

Here, models are evaluated on their ability to explain cross-sectional moment restrictions. These

moment restrictions imply that the unconditional mean excess return of any asset must be propor-

tional to the covariance of the SDF with that asset�s return.26 Thus the relative performance of the

two models can be intuitively understood by examining how the SDFs of each model covaries with

the set of test asset returns. Table 4 shows sample estimates of these covariances, for the SDFs

of the internal habit model and external habit model, with each of the six size and book-market

sorted portfolio returns we use as test assets. For reference, the top panel of Table 4 shows the

unconditional mean quarterly excess return on each portfolio over the three-month Treasury bill

rate.

Notice that the average excess returns on these portfolios are large, ranging from 1.8 percent to

3.2 percent per quarter (top panel, Table 4). Explaining such a large mean excess returns requires

the covariance of the SDF with the asset�s return to be high. The bottom panel of Table 4 shows

that an important reason for the superior performance of the internal habit model is that the

absolute value of its covariance with each return is considerably larger (in many cases by an order

of magnitude) than that of the external model.27 The internal habit model also gets the cross-

sectional patterns right. For example, the largest cross-sectional spread in returns occurs between

the return on S1B3, the �value�portfolio in the smallest size category, and the return on S1B1, the

�growth�portfolio in the same size category. The former has an average excess return of 3.2%, the

latter just 1.8%. This di¤erence captures the well-known value-premium in these data, which is

especially pronounced for small capitalization �rms. The internal habit model covaries more with

S1B3 than it does with S1B1, thereby explaining the higher excess return on the former relative to

25These numbers are for the SDFs estimated when computing the HJ distances with � and 
 are reestimated to

minimize gHJT (�).
26Start with 1 = E [MtRj;t] and rearrange to �nd

E (Rj;t)� 1=E (Mt) =
�Cov (Mt; Rj;t)

E (Mt)
:

27We expect this covariance to be negative. Positive excess returns are associated with positive covariance with

consumption growth, and therefore a negative covariance with marginal utility growth.
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the latter. This is not the case for the external habit model, where these two covariances are about

the same.

From (23) and (22), it is clear that the key di¤erence between external and internal habit

formation is that the internal habit speci�cation contains forward looking terms in marginal utility

not present in the external habit speci�cation. Empirically, these forward-looking terms are modeled

as projections onto instruments that have predictive power for the endogenous variables in the

model. To evaluate the quantitative importance of these forward looking terms, we re-computed the

HJ distance for the internal model using instead the ex-post values of the future terms in (3), rather

than their ex-ante predicted values, as dictated by theory. In this case we �nd that the performance

of the internal habit model is much closer to that of the external habit model. Thus, a key feature

of the empirical success of the internal habit model compared to the external habit speci�cation

lies with the forward-looking nature of marginal utility. These �ndings may be related to recent

work by Parker and Julliard (2004), who �nd that the covariance of size and book-market sorted

asset returns with long-horizon consumption growth explains a large fraction of the cross-sectional

variation in average returns on these portfolios. They refer to this as �ultimate consumption risk.�

To the extent that such long-horizon measures of consumption growth are correlated with the

forward-looking terms in marginal utility arising from internal habit formation, the �ndings here

provide a structural interpretation of why ultimate consumption risk better explains the cross-

section of average returns than one-period consumption risk.

8 Conclusion

A large and growing body of theoretical work in �nancial economics derives its most salient asset

pricing implications from the presence of habit formation in investor preferences. The importance

of this work in recent literature calls out for formal empirical evaluation, but such an evaluation is

complicated by the lack of theoretical agreement over the functional form of the habit. In this article,

we empirically evaluate a general class of representative-agent habit-based asset pricing models.

Rather than restricting the functional form of the habit, we pursue a semiparametric approach,

treating the habit speci�cation as unknown and estimating it along with the �nite dimensional

parameters of the power utility function.

This semiparametric approach allows us to empirically evaluate a number of hypotheses about

habit-based asset pricing models that have not been previously evaluated. First, our results suggest

that, conditional on the power utility framework, preferences are far from time separable: the

estimated habit is found to be a quantitatively important part of the power utility speci�cation

and is a large fraction of current consumption. Second, we �nd that the habit speci�cation is better

described as a nonlinear function of current and past consumption, rather than as a linear function.
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Several authors have argued that nonlinearities in the habit function are crucial for allowing the

model to account for the joint behavior of aggregate consumption and asset returns (e.g., Campbell

and Cochrane (1999)). Third, when the habits are estimated as nonlinear functions of current and

lagged consumption with the same �nite lag length, we strongly reject the hypothesis that habits

are a pure externality governed by the consumption of everyone else in the economy; internal habit

models based on own-consumption better describe the asset pricing data studied here.

Finally, we assess how well the habit-based paradigm explains asset pricing data compared to

other asset pricing models. We �nd that an estimated internal habit model explains a cross-section

of size and book-market sorted equity returns better than (i) the Fama and French (1993) three-

factor model, (ii) the scaled consumption CAPM explored by Lettau and Ludvigson (2001b), (iii)

a SMD-estimated external habit model, (iv) the classic CAPM, and (v) the classic consumption

CAPM. The internal habit model performs better on statistical grounds as well as economic grounds.

In this paper we have restricted our analysis to habit speci�cations that depend on a �nite num-

ber of consumption lags. Ideally, one would like to allow for an in�nite number of lags by modeling

the habit as a recursive function of past habits, e.g., Xt = r (Ct; Ct�1; Xt�1). The econometric

di¢ culty with this type of model is that it involves an unknown recursive functional that has as

one of its arguments an unknown function, both of which must be estimated nonparametrically.

Any procedure that succeeds in identifying r separately from X is likely to be slow to converge. As

such, the econometric results required to execute such an estimation have yet to be developed. We

argue that the empirical work in this paper is a natural starting place for such an investigation,

since the estimation of Xt nonparametrically is likely to comprise one step in the larger recursive

procedure.
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9 Appendix

This appendices consist of several parts: Appendix 1 describes the data. Appendix 2 presents

alternative expressions of the conditional moment models, and also provides su¢ cient conditions

for identi�cation in the external habit case. Appendix 3 describes the general SMD procedure.

Appendix 4 presents large sample properties of the SMD estimator. Appendix 5 provide limiting

distributions of the test statistics for testing linear habit and testing internal vs external habit.

1. Data Description

The sources and description of each data series we use are listed below.

CONSUMPTION

Consumption is measured as expenditures on nondurables and services, excluding shoes and cloth-

ing. The quarterly data are seasonally adjusted at annual rates, in billions of chain- weighted 1996

dollars. The components are chain-weighted together, and this series is scaled up so that the sample

mean matches the sample mean of total personal consumption expenditures. Our source is the U.S.

Department of Commerce, Bureau of Economic Analysis.

POPULATION

A measure of population is created by dividing real total disposable income by real per capita

disposable income. Consumption, wealth, labor income, and dividends are in per capita terms.

Our source is the Bureau of Economic Analysis.

PRICE DEFLATOR

Real asset returns are de�ated by the implicit chain-type price de�ator (1996=100) given for the

consumption measure described above. Our source is the U.S. Department of Commerce, Bureau

of Economic Analysis.

ASSET RETURNS

� 3-Month Treasury Bill Rate: secondary market, averages of business days, discount basis
percent; Source: H.15 Release �Federal Reserve Board of Governors.

� 25 size/book-market value weighted returns for NYSE, AMEX, NASDAQ; Returns were cre-
ated using 200112 CRSP database. It contains value-weighted returns for the intersections

of 5 market equity categories and 5 book equity-market equity categories. The portfolios are

constructed at the end of June. Source: Kenneth French�s homepage,

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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� 6 size/book-market returns: Six portfolios, monthly returns from July 1926-December 2001.

The portfolios, which are constructed at the end of each June, are the intersections of 2 portfo-

lios formed on size (market equity, ME) and 3 portfolios formed on the ratio of book equity to

market equity (BE/ME). The size breakpoint for year t is the median NYSE market equity at

the end of June of year t. BE/ME for June of year t is the book equity for the last �scal year

end in t-1 divided by ME for December of t-1. The BE/ME breakpoints are the 30th and 70th

NYSE percentiles. Source: Kenneth French�s homepage, http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.

� 10 Industry Portfolios: The process assigns each NYSE, AMEX, and NASDAQ stock to an

industry portfolio at the end of June of year t based on its four-digit SIC code at that time.

Return data was created by CMPT_IND_RETS using the 200112 CRSP database. Returns

are computed from July of t to June of t+1. Source: Kenneth French�s homepage,

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

PROXY FOR LOG CONSUMPTION-WEALTH RATIO,dcay
The proxy for the log consumption-wealth ratio is computed as described in Lettau and Ludvigson

(2001a) using data from 1952:4-2001:4.

RELATIVE BILL RATE, RREL

The relative bill rate is the 3-month treasury bill yield less its four-quarter moving average. Our

source is the Board of Governors of the Federal Reserve System.

LOG EXCESS RETURNS ON S&P 500 INDEX: SPEX

SPEX is the log di¤erence in the Standard and Poor 500 stock market index, less the log 3-month

treasury bill yield. Our source is the Board of Governors of the Federal Reserve System.

Rm, SMB, HML

The Fama/French benchmark factors, Rm, SMB, and HML, are constructed from six size/book-to-

market benchmark portfolios that do not include hold ranges and do not incur transaction costs.

Rm, the return on the market, is the value-weighted return on all NYSE, AMEX, and NASDAQ

stocks. Source: Kenneth French�s homepage,

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

2. Conditional Moment Restrictions and Identi�cation

Alternative expressions of the conditional moment restrictions:

Et (Mt+1Ri;t+1 � 1) = 0 i = 1; :::; N;
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where
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This can be expressed three di¤erent ways:
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Now if we specialize to the speci�cation Xt = aoCt�1 with a unknown constant ao, as in Ferson

and Constantinides (1991) with no durable consumption, we have @Xt
@Ct

= 0, @Xt+1@Ct
= ao,

@Xt+j
@Ct

= 0

for all j � 2 and

Et

 
�o

�
Ct+1 �Xt+1
Ct �Xt

��
o
[Ri;t+1 + ao]� �2o

�
Ct+2 �Xt+2
Ct �Xt

��
o
aoRi;t+1 � 1

!
= 0

which coincides with their expression.

Alternatively we can write the conditional moment restrictions as:
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We note that eFi;t+1 = 1 for external habit.
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Identi�cation:

In this section, we provide su¢ cient conditions so that the conditional moment restrictions

(11) identi�es the parameters of interest �o = (�o; 
o; go)
0 in the external habit case, when L = 1.

While we do not provide a formal proof of identi�cation for the more complex internal habit case,

the results for external habit are strongly suggestive for that case, since the presence of a time-

varying component eFi;t+1 under internal habit formation (a nonlinear function of (�o; 
o; go)) should
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make identi�cation easier than under external habit formation where eFi;t+1 = 1. Thus we study

identi�cation of the unknown true parameters (�o; 
o; go) satisfying the conditional moment (28)

under the special case of external habit with L = 1. We note that, in practice, all of the parameters

of our model seem to be well identi�ed, since (as shown above) the estimation results are remarkably

similar across a variety speci�cations with di¤erent instruments and di¤erent asset returns.

The conditional moment restrictions for this case are:

E

�
ho
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;
Ct�1
Ct

�
Ri;t+1 � 1 j wt

�
= 0; i = 1; :::; N; (29)
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i0
and
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�
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���
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�
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���
o (30)

with 0 � go < 1; go 6= const:, 
o > 0; �o > 0:

We note that the conditional moment restriction (29) is treating the stochastic discount factor

Mt+1 � �MUt+1
MUt

as a totally unknown function Mt+1 = ho

�
Ct
Ct+1

; Ct�1Ct

�
. We �rst provide su¢ cient

conditions to identify the totally unknown ho() using the conditional moment restriction (29),

and we then use the semiparametric speci�cation (30) and the identi�ed ho() function to identify

(�o; 
o; go).

The conditional moment restriction (29) is very similar to the equation (2.3) in Newey and Powell

(1988). In the following, we denote fi( Ct
Ct+1

; Ri;t+1jwt), i = 1; :::; N , as the conditional density of

( Ct
Ct+1

; Ri;t+1) given wt, and f( Ct
Ct+1

jwt) as the conditional density of Ct
Ct+1

given wt =
h
w0�c;t;

Ct�1
Ct

i0
,

where w�c;t � [dcayt; RRELt; SPEXt]0. Following the result in Newey and Powell (1988), we have
that the identi�cation of Mt+1 = ho

�
Ct
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; Ct�1Ct

�
using the restriction (29) is equivalent to:
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for all i = 1; :::; N , implies �(yt+1; yt) = 0 almost surely.

Thus, the identi�cation condition for Mt+1 = ho

�
Ct
Ct+1

; Ct�1Ct

�
becomes:

(*) for each yt � Ct�1
Ct

; and for all i = 1; :::; N , the � i-th return adjusted� conditional density,
E[Ri;t+1jyt+1;w�c;t;yt]
E[Ri;t+1jw�c;t;yt] f(yt+1jw�c;t; yt), of yt+1 � Ct

Ct+1
given w�c;t is complete.

See Newey and Powell (1988) for additional su¢ cient condition for the �completeness�in terms

of exponential families.
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Next we show that (�o; 
o; go) is identi�ed given the identi�ed ho() function and the speci�cation

(30). In the following we let g0() denote the derivative of g, h0k(�; �) denote the partial derivative of
h with respect to its k�th element for k = 1; 2. Then the semiparametric speci�cation (30) implies
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After taking expectations on both sides of equations (32) and (33), we obtain:
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hence 
 is identi�ed. We now take log on both sides of the equation (30):
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hence � is identi�ed.

Denote �(x) � 1� g(x), which should only take values in (0; 1). Then equation (32) becomes:
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which can be solved for log�(x) up to a scaling constant log�(x) for a �xed x in the support of

the distribution of Ct�1Ct
:
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hence 1� g(x) is identi�ed up to a scaling constant [1� g(x)]:

1� g(x) = [1� g(x)] exp
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We maintain the assumptions (i) Xt � 0; and (ii) Xt < Ct for Ct positive. It follows that if Ct = 0,

Xt = 0. Hence, we have g(0) = 0 and

1� g(x) = exp
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3. Sieve Minimum Distance (SMD) Procedure

The sieve minimum distance (SMD) procedure has been proposed respectively in Newey and

Powell (2003) for nonparametric IV regression, and in Ai and Chen (2003) for semiparametric

conditional moment restrictions. Here we describe the SMD procedure in the estimation of �o =

(�o; 
o; go) for the habit formation consumption-based asset pricing model (11). We assume that

�o 2 [�; �] � [
; 
] � G, where [�; �] � [
; 
] denotes the compact parameter space for the �nite
dimensional parameters (�; 
), and G denotes the parameter space for the in�nite dimensional

unknown function g. In the application we assume [�; �]� [
; 
] � (0; 1:2]� [0:1; 100] for simplicity),
and go 2 G where

G �
�
g 2 L2(X ) :

Z
RL

jwjjeg(w)jdw <1; 0 � g < 1

�
;

here X is a convex open bounded set in RL. This means g 2 G if and only if it is square integrable
and its Fourier transform eg has �nite �rst moment, where eg(w) � R exp(�iw0x)g(x)dx is the Fourier
transform of g.

First we approximate a function g 2 G by gT 2 GT , where GT is the ANN sieve:

GT �

8<:g (x1; :::; xL) = �0 +

KTX
j=1

�j 
�
�Ll=1
j;lxl + �j

�
; 0 � g < 1

9=; ; (34)

which becomes dense in G as sample size T ! 1. Then for arbitrarily �xed candidate value
� = (�; 
; gT ) 2 [�; �]� [
; 
]� GT , we estimate the population conditional moment function:

mi(wt;�) � E f�i(zt+1; �; 
; gT )jwtg ; i = 1; :::; N

nonparametrically by bmi(wt;�) and denote bm(wt;�)0 = (bm1(wt;�); :::; bmN (wt;�)). Finally we

estimate the �; 
 and the unknown ANN sieve coe¢ cients jointly by a generalized version of minimal

distance estimation procedure:

min
�2[�;�]�[
;
]�GT

1

T

TX
t=1

bm(wt;�)0b�(wt)bm(wt;�); (35)
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where b�(wt) is a positive de�nite weighting matrix that is used to take care of heteroskedasticity and
serial dependence. We denote the resulting SMD estimator as b�T = (b�T ; b
T ; bgT ) 2 [�; �]�[
; 
]�GT .

There are many nonparametric procedures such as kernel, local linear regression, nearest neigh-

bor and various sieve methods that can be used to estimate mi(wt;�); i = 1; :::; N . In our appli-

cation we again consider the sieve estimator. For each �xed (wt;�), we approximate mi(wt;�)

by

mi(wt;�) �
JTX
j=1

aj(�)p0j(wt); i = 1; :::; N;

where p0j some known �xed basis functions, and JT !1 slowly as T !1: We then estimate the
sieve coe¢ cients fajg simply by OLS regression:

min
fajg

1

T

TX
t=1

[�i(zt+1;�)�
JTX
j=1

aj(�)p0j(wt)]
0[�i(zt+1;�)�

JTX
j=1

aj(�)p0j(wt)]

and the resulting estimator is denoted as: bmi(w;�) =
PJT
j=1 baj(�)p0j(wt). In the following we

denote: pJT (w) = (p01(w); :::; p0JT (w))
0 and P = (pJT (w1); :::; pJT (wT ))0, then:

bmi(w;�) =
TX
t=1

�i(zt+1;�)p
JT (wt)

0(P0P)�1pJT (w); i = 1; :::; N: (36)

Again many known sieve bases could be used as fp0jg. In our application we take the power
series and Fourier series as the pJT (w). The empirical �ndings are not sensitive to the di¤erent

choice of sieve bases, and we only report the results based on power series due to the length of the

paper.

In general, the SMD criterion (35) can not be expressed as a GMM criterion. However, when

the weighting matrix is the identity matrix b�(wt) = IN and when the nonparametric estimatorbmi(w;�) is the linear sieve estimator (36), the SMD criterion (35) becomes the GMM criterion

(15).

4. Asymptotic Properties of the SMD Estimator b�T = (b�T ; b
T ; bgT )
Beta-mixing:

We �rst introduce the concept of beta-mixing as a measure of temporal dependence for a time

series. Let fyt = (z0t;dcayt; RRELt; SPEXt)0g1t=�1 denote the vector time series. Let It�1 and

I1t+j be sigma-�elds generated respectively by (y�1; � � � ;yt) and (yt+j ; � � � ;y1). De�ne

�(j) � sup
t
E supfjP (BjIt�1)� P (B)j : B 2 I1t+jg:

fytg1t=�1 is called beta-mixing if �(j)! 0 as j !1. For a stationary Markov process fYtg with in-
variant measure F , the beta-mixing coe¢ cients are also given by: �(j) =

R
sup0���1 jE[�(Yj)jY0 =
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y] � E[�(Yj)]jdF (y). Beta-mixing is one popular measure of temporal dependence for nonlinear
time series�see the Appendix for the formal de�nition. It is satis�ed by many widely used �nancial

time series models including nonlinear ARX(p,q), ARCH, GARCH, stochastic volatility and di¤u-

sion models; see e.g., Doukhan (1994), Chen, Hansen, and Carrasco (2001) and Carrasco and Chen

(2002). Thus, our SMD procedure requires stationary ergodic observations but does not restrict to

linear time series speci�cations or speci�c parametric laws of motions of the data.

Consistency:

The consistency of the SMD estimator b�T = (b�T ; b
T ; bgT ) can be easily obtained by applying
Lemma A1 of Newey and Powell (2003), with their criterion function bQ(�) = 1

T

PT
t=1 bm(wt;�)0 bm(wt;�),

their Q(�) = Efm(wt;�)0m(wt;�)g, their parameter space � is our [�; �] � [
; 
] � G, and their
sieve space b� is our [�; �]� [
; 
]�GT . Their assumption i) is satis�ed with our identi�cation result
in Appendix 2. Note that our bQ(�) and Q(�) are continuous in all the unknown parameters. To
satisfy their assumption of compact parameter spaces � and b�, we can take the following function
space G and the ANN sieve space GT :

G �
�
g 2 L2(X ) :

Z
RL

jwjjeg(w)jdw � K <1; 0 � g � 0:999
�
;

for some known big constant K > 0, and

GT �

8<:g 2 G : g(x1; :::; xL) = �0 +

KTX
j=1

�j
exp

�
�Ll=1
j;lxl + �j

�
exp

�
�Ll=1
j;lxl + �j

�
+ 1

9=; :

Then by applying the ANN denseness result of Hornik, Stinchcombe, and White (1989), the as-

sumption iii) of Lemma A1 in Newey and Powell (2003) is satis�ed with the sup-norm:

k���oks = j� � �oj+ j
 � 
oj+ sup
x2X

jg(x)� go(x)j.

It remains to verify their uniform convergence assumption ii), which is

sup
[�;�]�[
;
]�G

����� 1T
TX
t=1

bm(wt;�)0 bm(wt;�)� Efm(wt;�)0m(wt;�)g
����� = op(1): (37)

This uniform convergence can be established either by applying Lemma A2 in Newey and Powell,

or by showing the following two results hold:

(1) sup
wt;�

jbm(wt;�)�m(wt;�)j = op(1);

and

(2) sup
[�;�]�[
;
]�G

����� 1T
TX
t=1

m(wt;�)
0m(wt;�)� Efm(wt;�)0m(wt;�)g

����� = op(1):
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Result (1) can be established by modifying Lemma A.1 in Ai and Chen (2003) to allow for stationary

beta-mixing data. In particular, we replace the Bernstein inequality for I.I.D. data in their proof

by Lemma 1 in Chen and Shen (1998) for stationary beta-mixing data. Result (2) can be obtained

by applying Lemma 1 in Chen and Shen (1998) (or any other uniform laws of large numbers) for

stationary beta-mixing data.

Now by Lemma A1 in Newey and Powell (2003), we obtain: kb�T ��oks = op(1).

Convergence rate:

For any � 2 [�; �] � [
; 
] � G, let f�(�) : � 2 [0; 1]g be a continuous path in [�; �] � [
; 
] � G
such that �(0) = �o and �(1) = �. Suppose that for almost all zt+1, �(zt+1;�(�)) is continuously

di¤erentiable at � = 0. Denote the �rst pathwise derivative at the direction [���o] evaluated at
�o by:

d�(zt+1;�o)

d�
[���o] �

d(zt+1;�(�))

d�
j�=0 a:s: zt+1

and denote dm(wt;�o)d� [���o] � Efd�(zt+1;�o)d� [���o] j wtg: For any � 2 [�; �]� [
; 
]�G we de�ne
the following pseudo metric:

jj���ojj �

s
E

�
fdm(wt;�o)

d�
[���o]g0f

dm(wt;�o)

d�
[���o]g

�
:

Then under assumptions similar to those for Theorem 3.1 in Ai and Chen (2003), we have:

jjb�T ��ojj = op(T
�1=4).

This rate result can be proved by slightly modifying the proof of Theorem 3.1 in Ai and Chen

(2003), that is, we simply replace several parts in their proof that rely on I.I.D. data by the

corresponding ones for stationary beta-mixing data. In particular, their key Lemma A.1 can be

established for stationary beta-mixing data by using Lemma 1 in Chen and Shen (1998).

Root-T asymptotic normality of b�, b
:
De�ne !� = (!�� ; !

�

) with

!�� = arg min
!�2G

E

��
dm(wt;�o)

d�
� dm(wt;�o)

dg
[!�]

�0�dm(wt;�o)
d�

� dm(wt;�o)

dg
[!�]

��
;

!�
 = arg min
!
2G

E

��
dm(wt;�o)

d

� dm(wt;�o)

dg
[!
 ]

�0�dm(wt;�o)
d


� dm(wt;�o)

dg
[!
 ]

��
:

Denote

D!�(wt) =

�
dm(wt;�o)

d�
;
dm(wt;�o)

d


�
�
�
dm(wt;�o)

dg
[!�� ];

dm(wt;�o)

dg
[!�
 ]

�
:
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Assumption N. (i) E[D!�(wt)0D!�(wt)] is positive-de�nite; (ii) �o 2 (�; �) and 
o 2 (
; 
); (iii)

o(w) � V ar[�(zt+1;�o)jwt = w] is positive de�nite for all w in the support of wt; (iv) jjb�T �
�ojj = op(T

�1=4):

Under Assumption N and other regularity conditions similar to those for Theorem 4.1 in Ai

and Chen (2003), we obtain
p
T
�b� � �o; b
 � 
o�0 �!D N (0; V �1) with

V = E[D!�(wt)
0D!�(wt)]fE[D!�(wt)0
o(wt)D!�(wt)]g�1EfD!�(wt)0D!�(wt)g:

This result can be proved by slightly modifying the proof of Theorem 4.1 in Ai and Chen (2003),

that is, we simply replace several parts in their proof that rely on I.I.D. data by the corresponding

ones for stationary beta-mixing data.

5. Limiting Distributions of the Test Statistics

Root-T asymptotic normality of b� for testing internal vs. external habit
Recall that the pseudo-true value �� = (��; 
�; ��; g�(�))0 solves the following conditional mo-

ment restrictions:

E

0B@��
0@Ct+1

Ct

1� g�
�

Ct
Ct+1

; :::;
Ct+1�L
Ct+1

�
1� g�

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
1A�


�

Ri;t+1 eFi;t+1(��; ��; 
�; g�)� 1 j wt
1CA = 0; i = 1; :::; N;

with eFi;t+1(�; �; 
; g) de�ned in (25).
These unknown pseudo-true values (��; 
�; ��; g�(�)) can again be estimated by the SMD method

using the same ANN sieve (19) to approximate the unknown g�(�), the same three asset groups
with the associated sets of instruments. All we need to do is to rede�ne � = (�; 
; �; g(�))0 and
�(zt+1;�) = (�1(zt+1;�); :::; �N (zt+1;�))

0 with

�i(zt+1;�) = �

0@Ct+1
Ct

1� g
�

Ct
Ct+1

; :::;
Ct+1�L
Ct+1

�
1� g

�
Ct�1
Ct

; :::;
Ct�L
Ct

�
1A�
 Ri;t+1 eFi;t+1(�; �; 
; g)� 1

in the sieve LS estimation (14) of mi(wt;�) and m(wt;�) = (m1(wt;�); :::;mN (wt;�))
0.

Denote �� = (��; 
�; ��; g�(�))0 and let b�T = (b�T ; b
T ; b�T ; bgT ) be the solution to
min

�2[�;�]�[
;
]�[�;�]�GT

1

T

TX
t=1

bm(wt;�)0 bm(wt;�):
Let !� = (!�� ; !

�

 ; !

�
�) with

!�� = arg min
!�2G

E

��
dm(wt;�

�)

d�
� dm(wt;�

�)

dg
[!�]

�0�dm(wt;��)
d�

� dm(wt;�
�)

dg
[!� ]

��
;
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and !�� , !
�

 de�ned similarly as those in Appendix 4 (above) except replacing �o by �

�. Denote
dm(wt;��)

dg [!�] = (dm(wt;�
�)

dg [!�� ];
dm(wt;��)

dg [!�
 ];
dm(wt;��)

dg [!�� ]),

D!�(wt) =

�
dm(wt;�

�)

d�
;
dm(wt;�

�)

d

;
dm(wt;�

�)

d�

�
� dm(wt;�

�)

dg
[!�];

and 
�(wt) = V ar[�(zt+1;�
�)jwt]. Finally let

V� = E[D!�(wt)
0D!�(wt)]fE[D!�(wt)0
�(wt)D!�(wt)]g�1EfD!�(wt)0D!�(wt)g:

Then under assumptions similar to those suggested in Appendix 4, we obtain:

p
T
�b� � ��; b
 � 
�; b� � ���0 �!D N (0; V �1� ):

Root-T asymptotic normality of b�g for testing linear habit
Recall that

b�g = 1

T

TX
t=L

bg11( Ct
Ct+1

; :::;
Ct+1�L
Ct+1

),

where bg11() is the second partial derivative of the SMD estimator bg() with respect to its �rst
argument. Let f() denote the true unknown probability density of

�
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

�
and go11()

denote the second partial derivative of the true go() with respect to its �rst argument. Then

�g =

Z
go11(z1; z2; :::; zL)f(z1; z2; :::; zL)dz:

Suppose that f() is at least twice continuously di¤erentiable with respect to its �rst argument,

where f1() and f11() denote the �rst and second partial derivatives of f() with respect to its �rst

argument. Also assume that f() and f1() go to zero smoothly as their �rst argument goes to the

boundaries. Under some mild additional conditions and using a slight modi�cation of Example 2.2

in Ai and Chen (2005), we obtain:

p
T
�b�g � �g�

=
1p
T

TX
t=L

�
go11(

Ct
Ct+1

; :::;
Ct+1�L
Ct+1

)� Efgo11(
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

)g
�

+E

24�bg( Ct
Ct+1

; :::;
Ct+1�L
Ct+1

)� go(
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

)

� f11(
Ct
Ct+1

; :::;
Ct+1�L
Ct+1

)

f( Ct
Ct+1

; :::;
Ct+1�L
Ct+1

)

35+ op(1);
and

p
T
�b�g � �g� �!D N (0; �211). Unfortunately, the limiting variance �211 is of a complicated

form, which motivates our use of bootstrap approximation of the asymptotic distribution of
p
T
�b�g � �g�.
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10 Tables

Table 1

SMD Estimates of � and 


Assets Instruments � 


Group 1 1, wt, squared terms 0.9850 0.757

(0.005) (0.107)

Group 2 1, wt, squared, cross terms 0.9875 0.789

(0.005) (0.077)

Group 3 1, wt 0.9847 0.811

(0.006) (0.149)

Notes: The table reports SMD parameter estimates and asymptotic standard errors

in parentheses.
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Table 2

Speci�cation Errors for Alternative Models: HJ

6 size/BM 6 + T-bill

Model HJ Dist HJ Dist

(1) (2) (3)

Internal Habit 0.172 0.179

External Habit 0.261 0.425

Fama-French 0.262 0.282

Scaled CCAPM 0.208 0.352

CCAPM 0.307 0.403

CAPM 0.339 0.416

Notes: For each model labeled in column 1, the table reports the Hansen-Jagannathan

distance (�HJ Dist�) evaluated on equity returns alone (column 2) or equity returns

plus Treasury bill rate (column 3).

Table 3

Speci�cation Errors for Alternative Models: HJ+

6 size/BM 6 + T-bill

Model HJ+ Dist HJ+ Dist

(1) (2) (3)

Internal Habit 0.177 0.180

External Habit 0.289 0.455

Fama-French 0.262 0.287

Scaled CCAPM 0.810 0.601

CCAPM 0.372 0.618

CAPM 0.340 0.418

Notes: For each model in column 1, "HJ+ Dist" is the distance between the model proxy

and the family of admissible nonnegative stochastic discount factors. In column

2, test assets are equity returns; in 3, test assets are equity returns plus T-bill rate.
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Table 4

Covariances of SDFs with Returns

Average Excess Return Average Return

Tbill 1.0035

S1B1 0.0177 1.0213

S1B2 0.0274 1.0309

S1B3 0.0322 1.0357

S2B1 0.0185 1.0221

S2B2 0.0195 1.0230

S2B3 0.0260 1.0295

SDF internal habit SDF external habit

Covariance

S1B1 -0.0189 -0.0103

S1B2 -0.0248 -0.0096

S1B3 -0.0292 -0.0100

S2B1 -0.0200 -0.0074

S2B2 -0.0182 -0.0039

S2B3 -0.0272 -0.0083

Notes : This table reports average returns for the portfolios

in the left column, and covariance of the stochastic discount

factors of internal and external habit models with each excess

return. The sample spans the period 1952:Q4 -2001:Q2.
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Table 5

Pricing Errors for 6 Size/BM Returns

Return Fama-French Internal Habit

HJ Dist = 0.26 HJ Dist = 0.172

S1B1 -0.0031 -0.0052

S1B2 0.0005 -0.0001

S1B3 0.0009 -0.0005

S2B1 0.0026 -0.0041

S2B2 -0.0029 -0.0008

S2B3 -0.0015 -0.0027

Notes: This Table reports pricing errors from the Hansen-Jagannathan minimization

using six size/book-market portfolio equity returns. Errors for the Fama-French

model and internal habit model are reported. The internal habit model uses

SMD estimates on Group 2 assets for g.
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Figure 1 
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Notes: This figure plots the estimated habit-consumption ratio (top panel) and estimated 
stochastic discount factor (bottom panel) using Group 1 assets, linear and squared 
instruments.  
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Notes: Estimates use Group 1 assets, linear and squared instruments.  
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Notes: ( )tX is the estimated habit, ( )tC  is consumption. Estimates use Group 1 assets, 
linear and squared instruments.  
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Notes: ( )tX is the estimated habit, ( )tC  is consumption. Estimates use Group 2 assets, 
linear, squared and cross term instruments.  
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Notes: ( )tX is the estimated habit, ( )tC  is consumption. Estimates use Group 3 assets, 
linear instruments.  
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Notes: Estimates using Group 1 assets, linear and squared instruments.  
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Notes: Estimates using Group 2 assets, linear, squared and cross term instruments.  
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Notes: Estimates using Group 3 assets, linear instruments.  
 
 




