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ABSTRACT

Over 60% of US households with credit cards are currently borrowing -- i.e., paying interest --
on those cards. We attempt to reconcile the high rate of credit card borrowing with observed levels of
life cycle wealth accumulation. We simulate a lifecycle model with five properties that create demand
for credit card borrowing. First, the calibrated labor income path slopes upward early in life. Second,
income has transitory shocks. Third, consumers invest actively in an illiquid asset, which is sufficiently
illiquid that it can not be used to smooth transitory income shocks. Fourth, consumers may declare
bankruptcy, reducing the effective cost of credit card borrowing. Fifth, households have relatively more
dependents early in the life-cycle. Our calibrated model predicts that 20% of the population will
borrow on their credit card at any point in time, far less than the observed rate of over 60%. We
identify a resolution to this puzzle: hyperbolic time preferences. Simulated hyperbolic consumers
borrow actively in the revolving credit card market and accumulate relatively large stocks of illiquid

wealth, matching observed data.
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1. INTRODUCTION

At year-end 1998, the Federal Reserve reported that U.S. consumers held approximately $500
billion in credit card debt. This total only includes debt on which consumers pay interest — not the
“float”.! Dividing this debt over 102 million U.S. households?, yields average debt of approximately
$5,000 per household. Moreover, this average overlooks the fact that many households do not have
access to credit. If we restrict attention to the 80% of households with credit cards®, average debt
per household rises to over $6,000. Survey evidence implies that this debt is spread over a large
population of debtors. At any given point in time, at least 63% of all households with credit cards
are borrowing (i.e., paying interest) on those cards.* These publicly available credit card statistics
match the analysis of David Gross and Nicholas Souleles (1999a, 1999b, 2000), who have assembled
a propietary data set that contains a representative sample of several hundred thousand credit card
accounts from several different credit card issuers.

This borrowing comes at substantial cost. Despite the rise of teaser interest rates and the high
level of competition in the credit card industry, the average debt-weighted credit card interest rate
has been approximately 16% in the last five years, implying a real interest rate of 14%.> Within
the population of households with a credit card, average interest payments per year exceed $1,000.
This average includes households with no interest payments.

This paper attempts to explain credit card borrowing with a standard life-cycle model. Qur

model has five realistic properties that make credit card borrowing appealing to our simulated

6

consumers.” First, our calibrated labor income path follows a trajectory that is upward sloping

IThe actual total was 5586 billion, but this includes approximately $80 billion dollars in float. Board of Governors
of the Federal Reserve System.

*U.8. Census Bureau, 1998.

®SCF, 1995 cross-section.

“The SCF 1995 cross-section implies that 63% of households are horrowing at any point in time, but credit card
borrowing in the SCF suffers from dramatic underreporting, perhaps because credit card borrowing is stigmatized.

“Board of Governors of the Federal Reserve System. This is a debt-weighted interest rate that includes teaser
rates.

8Many of these motives for borrowing are elegantly theoretically analyzed by Brito and Hartley (1995). Like them,

we build a model that gives consumers a strong motive to borrow on credit cards to smooth intertemporal variation
in consumption.
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early in life. Second, our income path has transitory income shocks. Third, we introduce an
illiquid asset that attracts substantial investment, but is sufficiently illiquid that it can not be
used to smooth transitory income shocks. Fourth, we give consumers the opportunity to declare
bankrutpey, making credit card borrowing less costly. Fifth, our simulated households have rela-
tively more dependents early in the life-cycle. Despite these institutional features, we are unable
to match the actual frequency of credit card borrowing. At any point in time, less than 20% of
our simulated consumers hold eredit card debt,

The intuition for this result is straightforward. Our simulated model cannot simultaneously
match actual levels of credit card borrowing and actual levels of mid-life wealth accumulation.
Even if one ignores private and public defined-benefit penston wealth, the median U.8. household
enters retirement with assets roughly equal to three times annual pre-retirement labor income.
Restricting attention to households with heads between the ages of 50 and 59, actual median net
wealth per household is $149,401.7 To match this magnitude of retirement wealth accumulation,
we need to calibrate our simulations with low exponential discount rates (= .05). But, to match
actual household credit card borrowing, we need high exponential discount rates (= .18). Hence,
the paper identifies a life-cycle puzzle, which we call the Debt Puzzle. Consumers do not act
consistently, acting patiently when it comes to retirement accumulation, and impatiently in the
credit card market.

Our simulations show that hyperbolic time preferences may resolve the Debt Puzzle. Intuition
for this result comes from the Euler Equa’;ion for hyperbolic economies (Harris and Laibson, 2000).
This hyperbolic Euler Equation implies that consumers act as if they have endogenous time pref-
erences, acting when liquidity constrained like exponential consumers with a discount rate close

to .40. However, hyperbolic consumers act patiently when accumulating illiquid wealth, because

"June 1999 dollars. This number is the mean of the inflation-adjusted medians from the past four SCF surveys.
This net wealth calculation includes all real and financial wealth (e.g., home equity and money market account) as

well as all claims on defined contribution pension plans (e.g., 401(k)). The measure does not include Social Security
wealth and claims on defined benefit pension plans.
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illiquid wealth generates utility flows over long horizons. Hence, our hyperbolic model can explain
why the median household borrows aggressively on credit cards, but still manages to accumulate
substantial stocks of primarily illiquid wealth by retirement.?

The rest of the paper formalizes our analysis. In section 2, we present evidence on the proportion
of households borrowing on their credit cards. In section 3 we present our benchmark model,
which can accomodate either exponential or hyperbolic preferences. In section 4 we provide some
analytic approximations that help us evaluate the model’s predictions and provide intuition for the
simulations that follow. Insection 5 we calibrate the model. In section 6 we present our simulation

results. In section 7 we present additional simulation results which evaluate the robustness of our

conclusions. In section 8 we conclude.

2. CRrEDIT CARD BORROWING

Eighty percent of households surveyed in the 1995 Survey of Consumer Finances (SCF)? report
having a credit card. Of the households with a card, 63% report carrying over a balance the last
time that they paid their credit card bill.!® The average self-reported unpaid balance is $1,715.
The median is $343. Both this mean and median are calculated on the population of households
with credit cards, including households with zero balances. Table 1 reports these statistics for the
entire population and for sﬁbgroups conditioned on age and educational stafus.

An average balance of §1,715 may seem large, but it almost surely reflects dramatic underre-
porting among household respondents to the SCF. The Federal Reserve requires that banks report

information on their portfolios of revolving credit loans, excluding loans to businesses. At year-end

¥We do not explain another credit card puzzle which has recently been documented by Morrison (1998) and Gross
and Souleles (1999b). These authors show that a fraction of households (approximately 33%) simultaneously carry
credit card debt and hold liquid wealth which exceeds one month of income. QOur model predicts that consumers wilt
carry credit card debt and simultaneously hold illiquid wealth, but our model explicitly rules out the phenomenon that
Morrison (1998} and Gross and Souleles {2000} document. In addition, the model does not explain why consumers
carry credit card debt at high interest rates, rather than switching to low interest rate cards (Ausubel, 1991).

®Survey of Consumer Finances, Federal Reserve Board.

108 pecifically, respondents answer the following question: “After the last payment was made on this account,

roughly what was the balance still owed on this account?™ The answers to this question are used to determine the
incidence and level of credit card borrowing.
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1995, the total portfolio of loans was $464 billion. Once the float of approximately $80 billion is
removed, the total falls to approximately $384 billion. Dividing among the 81 million U.S. house-
holds with credit cards, implies average debt per card-holding household of over $4,500, roughly
three times as large as the self-reported average from the 1995 SCF. For vear-end 1998, the Federal
Reserve numbers imply average debt per card-holding household of over $6,000.

These numbers match values from a proprietary account-level data set assembled by David Gross
and Nicholas Souleles (1999a, 1999b, 2000). The Gross-Souleles data contains several hundred
thousand representative credit card account statments provided by several large banks. The
Federal Reserve figures and Gross-Soulelos figures are reported directly by banks and are hence
more reliable than household survey evidence which is the raw material for the SCF. Moreover,
the Federal Reserve and Gross-Souleles numbers match each other, reinforcing the conclusion that
average debt per card-holding household is approximately $6,000.

Because of the drastic SCF underreporting of the magnitude of revolving credit, we focus our
analysis on the fraction of households that report carrying over a balance the last time that they
paid their credit card bill (e.g., 63% in 1995).11 We believe that this fraction is probably downward
biased, but we believe that this bias is relatively minor when compared to the SCF bias for debt
magnitudes. The principal goal of this paper will be to determine if standard economic models
can match the observed 63% rate of credit card borrowing.

We also analyze the lifecycle pattern of the fraction of households borrowing. Figure 1 plots
the estimated age-contingent fraction of married households that carry revolving credit. We plot
profiles for household heads in three educational categories: no high school diploma (NHS), high
school graduate (HS), college graduate (COLL).}? To construct these profiles we have eliminated
cohort and business cycle effects by including cohort dummies and regional unemployment rates

as control variables. The profiles in Figure 1 are estimated using splines with knots at ages 35,

"'The 1998 SCF survey has recently become available, and reports eredit card borrowing behavior which is little
different from the behavior reported in the 1995 survey.

12The household’s educational status is determined by the educational attainment of the household head.
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50, 63, and 80. A full description of the estimation procedure is provided in the appendix. For
households in the HS group, we find that 72.5% borrow on their credit cards at age 20. The percent
borrowing peaks at age 35 at 81.5%. This rate is relatively flat between ages 35 and 50, and then
drops to 51.8% at age 80, and rises to 64.6% by age 90. Households in the NHS group borrow most
frequently and COLL households borrow least frequently, but all three groups borrow at roughly
similar rates. Indeed, the most striking property of the profiles in Figure 1 is the uniformly high
rate of borrowing,

The identification strategy described in the preceding paragraph attributes time trends to age
and cohort effects, and assumes that the unemployment rate captures cyclical fluctuations. The
estimated age profiles are quite sensifive to these identification assumptions. When we replace
the cohort dummies with time dummies, we find that the fraction of households borrowing tends
to fall over the lifecycle. This pattern is reflected in Table 1, which reports the raw data from
the 1995 SCF. The sensitivity in the estimated lifecycle profiles, leads us to be agnostic about the
appropriate identification approach. We believe that cohort effects exist -— reflecting habits of
behavior and social norms fixed at a relatively young age — and we believe that time effects exist
— reflecting society-wide changes in technology and borrowing norms. We can not simultaneously
include cohort, age, and time effects in our estimation because these three variables are collinear.
John Ameriks and Stephen Zeldes (2000) offer a particularly clear discussion of these identification
issues. We will consistently report our cohort-adjusted estimates, since we have greater faith in
these results, We urge readers who are skeptical about the identification of age effects to focus
on the raw, unadjusted lifecycle averages reported in Table 1. Specifically, 68%, 70%, and 53%
of households in the NHS, HS, and COLL groups reported that they were currently borrowing on
their credit cards (i.e., paying interest) at the time of the 1995 SCF.

Finally, we are also interested in the relationship between wealth-holding and borrowing. Table
2 reports borrowing frequencies in the 1995 SCF tabulated by age and educational status contingent

wealth quartiles. As expected, borrowing declines with wealth (holding age fixed), but this decline
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is surprisingly small among the younger cohorts. Consider the 40-49 year-old households in the
HS group: 86% of the households in the bottom wealth quartile report that they are borrowing
on their credit cards, compared to 50% of the households in the top quartile. By any measure,
borrowing is not confined to the bottom half of the wealth distribution.

Using the simulations that follow, we ask whether standard calibrated lifecycle models can

match these stylized facts on the frequency of credit card borrowing.

3. MODEL
We model the complex set of constraints and stochastic income events that consumers face. Our
framework is based on the simulation literature pioneered by Carroll (1992, 1997), Deaton (1991),
and Zeldes (1989) and extended by Hubbard, Skinner, and Zeldes (1994), Engen, Gale, and Scholz
(1994), Gourinchas and Parker (1999), and Laibson, Repetto and Tobacman (1998). We discuss
the conceptual features of our model in this section and calibrate the model in Section 5.

Our simulations adopt most of the features of previous lifecycle simulation models. We extend
the existing literature by enabling households to barrow on credit cards, including a time-varying
number of dependent adults and children in the household, allowing the household to invest in
a partially illiquid asset, and allowing the household to declare bankruptcy. We Ei/i_'\iide the pre-
sentation of the model into eight domains: 1) demographics, 2) income from transfers and wages,
3) liquid assets and non-collateralized debt, 4) illiquid assets and collateralized debt, 5) budget

constraints, 6) bankruptcy, 7) preferences, and 8) equilibrium.

3.1. Demographics. The economy is populated by households who face a time-varying, ex-
ogenous hazard rate of survival s;, where t indexes age. Households live for a maximum of T+ N
periods, where T and N are exogenous variables that represent respectively the maximum length of
pre-retirement life and the maximum length of retirement. If a household is alive at age 20 <t < T,
then the household is in the workforce. If a household is alive at age T' <t < T + N, then the

household is retired. We assume that economic life begins at age 20 and do not model consump-
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tion decisions before this date. We assume that household composition — number of adults and

non-adults — varies over the life-cycle. Households always contain a household head and a spouse,

but the number of adult dependents and non-adult dependents varies.

Our population is divided into three education categories: consumers with no high school
diploma, graduates of high school, and graduates of college. We assume education is ex0ogenous,
and assign a different working life (T'), retirement duration (¥), household composition, and labor

income process to each education category.

3.2. Income from transfers and wages. Let Y; represent all after-tax income from transfers
and wages. Hence, ¥; includes labor income, inheritances, private defined-benefit pensions, and all
government transfers. Since we assume labor is supplied inelastically, ¥; is exogenous. Let Y =

In(Y;). We refer to y; as “labor income,” to simplify exposition. During working life (20 < t < T):
ye= V() 4w+ 1" (1)

where fW(#) is a cubic polynomial in age, u; is a Markov-process, and v}V is iid and normally

distributed, N (0,02 y). During retirement (' <t < T + N}:
ye = f(t) +vf (2)

where fE(t) is linear in age, and v/f is iid and normally distributed, N (0, O‘E, r)- The parameters

of the labor income process vary across education categories.

3.3. Liquid assets and non-collateralized debt. Let X; represent liquid asset holdings at
the beginning of period t, excluding current labor income. So X; + ¥; represents total liquid asset
holdings at the beginning of period ¢. To model non-collateralized borrowing — i.e., credit card

borrowing — we permit X; to lie below zero, but we introduce a credit limit equal to some fraction
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of current (average) income

X;>-\Y
where ¥; is average income at age ¢ for the appropriate education group.

3.4. Illiquid assets and collateralized debt. Let Z; represent illiquid asset holdings at age
t. The illiquid asset generates two sources of returns: capital gains and consumption flows. We

assume that in all periods Z is bounded below by zero.

Z: >0

The household borrows to invest in Z, and we represent such collateralized debt as D, where D is
normalized to be positive. Let IZ > 0 represent new investments into Z and let $(I%) represent
transaction costs generated by that investment. We assume that each new investment is paid for

with a down-payment of exactly g - I4, implying that investment of magnitude 7% generates new

debt equal to (1 — y) - IZ.

3.5. Dynamic and static budget constraints. Let IX represent met investment into the
liquid asset X, during period ¢t. Recall that IZ represents net investment into the illiquid asset Z,

during period t. Let TP represent net repayment of debt, I, during period ¢. Hence the dynamic

budget constraints are given by,

Xey1 =R (X, + 1)) (3)
Zi41 = R* - (Zy + If) (4)
Diyy = RP (D, - IP) (5)

where RX, RZ, and RP are the real interest rates, respectively, on liquid wealth, illiquid wealth,

and debt. We assume that the interest rate on liquid wealth depends on whether the consumer is
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borrowing or saving in her liquid accounts. We interpret liquid borrowing as credit card debt.

X RCC if X, +IX <0

R if X34+IX>0

Naturally, R is the interest rate on credit card debt, and R represents the interest rate on positive

stocks of liquid wealth. The within-period budget constraint is:
C=Y. - I —If - 1P - y(1%)

For computational tractability, we have made an additional restriction, which eliminates one choice
variable. Specifically, we assume that the debt contract is structured so that a proportion A = .10

of Dy is paid off between periods. Hence, we require that debt repayments, I, be set such that
Deyi=(1—A) D+ R” - (1— p) - 17 (6)

Combining Equation 6 with Equation 5 implies that 7P is fully determined by the other variables
in the model. Hence, the state variables at the beginning of period t are liquid wealth (X:+ Yq),
illiquid wealth (Z;), collateralized debt (D:}, and the value of the Markov process (u;). The non-

redundant choice variables are net investment in liquid wealth (I¥) and net investment in liquid

wealth (7). Consumption is calculated as a residual.

3.6. Bankruptcy. For some of our simulations we will allow households to declare bankruptcy.
If a consumer declares bankruptcy in period %, we assume the following consequences: consumption
drops permanently to some level which is proportional to the expected value of permanent income
(where permanent income is evaluated at the date at which bankruptey is declared), X drops

permanently to zero, Z drops permanently to min{ZBa“k‘“PtCY, Zy— Dy}, and D drops permanently

to zero.
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3.7. Preferences. We use standard preferences in our benchmark model. The instantaneous
utility function is characterized by constant relative risk aversion and the discount function is
exponential (§).

We also analyze an alternative model that has hyperbolic discount functions, but is otherwise
identical to the benchmark model. Hyperbolic time preferences imply that from today’s perspective
discount rates are higher in the short-run than in the long-run. Experimental data support this
intuition. When researchers use subject choices to estimate the shape of the discount function, the
estimates consistently approximate generalized hyperbolas: events 7 periods away are discounted
with factor (1 -+ ar)~"e with a, > 0.13

Figure 2 graphs the standard exponential discount function (assuming § = .944), the generalized
hyperbolic discount function (assuming o = 4, and v = 1}, and the quasi-hyperbolic discount
function, which is an analytically convenient approximation of the generalized hyperbola. The
quasi-hyperbolic function is a discrete time function with values {1,8-6,3-6*3-8,...}. Figure
2 plots the case of 3= .7 and § = .956.14 When 0 < B < 1 the quasi-hyperbolic discount structure
mimics the qualitative property of the hyperbolic discount function, while maintaining most of the
analytical tractability of the exponential discount function.

Quasi-hyperbolic and hyperbolic preferences induce dynamically inconsistent preferences. Con-
sider the discrete-time quasi-hyperbolic function. Note that the discount factor between adjacent
periods n and n+ 1 represents the weight placed on utils at time n+ I relative to the weight placed
on utils at time n. From the perspective of self ¢, the discount factor between periods ¢ and t+ 1 is

38, but the discount factor that applies between any two later periods is é. Since we take 3 to be

13See Loewenstein and Prelec (1992) for an axiomatic derivation of this discount function. See Chung and Herrnstein
(1961) for the first use of the hyperbolic discount function, Laboratory experiments have been done with a wide
range of real rewards, including money, durable goods, fruit juice, sweets, video rentals, relief from noxious noise, and
access to video games. See Ainslie (1992) for a partial review of this literature. See Mulligan (1997) for a critique.

“This discount function was first analyzed by Phelps and Pollak (1968). However, their use of this structure
was motivated in a different way, Their application is one of imperfect intergenerational altruism, and the discount
factors apply to non-overlapping generations of a dynasty. Following Laibson (1997a) we apply this discount function
to an intra-personal problem. Like Laibson (1997a) we assume the horizon is finite, Phelps and Pollak assume an
infinite horizon which admits a continuur of equilibria (Laibson 1994). The particular parameter values used in this
example correspond to the calibration used in this paper for households with a high school educated head.
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less than one, this implies a short-term discount rate that is greater than the long-term discount
rate. From the perspective of self ¢t + 1, 36 is the relevant discount factor between periods t + 1
and ¢ + 2. Hence, self ¢ and self ¢t + 1 disagree about the desired level of patience at time £ + 1.

Because of the dynamic inconsistency, the hyperbolic consumer is involved in a decision which
has intra-personal strategic dimensions. Early selves would like to commit later selves to honor
the preferences of those early selves. Later selves do their best to maximize their own interests.
Economists have modelled this situation as an intra-personal game played among the consumer’s
temporally situated selves. Recently, hyperbolic discount functions have been used to explain a wide
range of anomalous economic choices, including procrastination, contract design, drug addiction,
retirement timing, and undersaving.'®

To analyze the decisions of an agent with dynamically inconsistent preferences, we must specify
the preferences of all of the temporally distinct selves. We index these selves by their lifecycle
position, t € {20,21,...,T+ N — 1,7 + N}. Self t has instantaneous payofl function

(C'y{—iz: ) 1-p -1
e
‘U.(Ct, Zt'}nt) =T

l—p
and continuation payoffs given by:
THN-t
gy & (H}lllst+j) [8t44 * (Crtiy Zyss mets) + (1 — Se4s) - B{Xi1i, Zeiy Do) (7)
i=1

Note that n; is the effective household size,

g = ([# a.dllltSt] + K:[# of Childrent])a

p is the coefficient of relative risk aversion, vZ, represents the consumption flow generated by

'®See Akerlof (1991), Barro {1997), Diamond and Koszegi (1998), Laibson (1994,1996,1997a), O’Donoghue and
Rabin (1997a, 1997b).
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Zy, 8141 is the probability of surviving to age ¢ + 1 conditional on being alive at age t, and B(-)
represents the payoff in the death state, which incorporates a bequest motive. The first expression
in the bracketed term in Equation 7 represents utility flows that arise in period t+1 if the househald
survives to age t + 7. The second expression in the bracketed term represents termination payoffs

in period ¢ + ¢ which arise if the household dies between period t +i — 1 and ¢ + 3.

3.8. Equilibrium:. When 3 < 1 the household has dynamically inconsistent preferences, and
hence the consumption problem can not be treated as a straightforward dynamic optimization
problem. Late selves will not implement the policies that are optimal from the perspective of early
selves. Following the work of Strotz (1956} we model consumption choices as an intra-personal
game. Selves {20,21,..,T+N—1,T+N} are the players in this game. Taking the strategies of other
selves as given, self ¢ picks a strategy for time ¢ that is optimal from its perspective. This strategy
is a mapping from the (Markov) state variables, {t, X + Y, Z, D, u}, to the non-redundant choice
variables {I%, I?}. An equilibrium is a fixed point in the strategy space, such that all strategies
are optimal given the strategies of the other players. We solve for the equilibrium strategies using
a numerically implemented backwards induction algorithm.

Our choice of the quasi-hyperbolic discount function simplifies the induction algorithm. Let
Vi+1(Xes1 + Y, Zey1, Dig1, uerq) represent the time ¢ + 1 continuation payoff function of self ¢.

Then the objective function of self ¢ is:

w(Cy, Zt, ) + B6E V101 (Asyr) (8)

where Ay, represents the vector of state variables: {Xis1 + Y1, Zpa1, Deya, U1} Self ¢ chooses
IX and IZ, which jointly define C, maximizing this expression. The sequence of continuation

payoff functions is defined recursively:

Vi—1,(Ad) = se[u(Ct, Ze,ni) + 6BV g1 (A1) + (1 - st)EyB(A) (9)
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where s; is the probability of surviving to age ¢ conditional on being alive at age t — 1 and C, is the
consumption chosen by self t. The induction continues in this way. Note that dynamic inconsistency
in preferences is reflected in the fact that a 3 factor appears in Equation 8 — reflecting self t's
discount factor between periods ¢ and £ + 1 — but does not appear in Equation 9, since self + — 1
does not use the 3 factor to discount between periods ¢ and ¢ + 1.

Equations 8 and 9 jointly define a functional equation which is not a contraction mapping.
Hence, the standard dynamic programming results do not apply to this preblem.  Specifically,
V' does not inherit concavity from u, the objective function is not single-peaked, and the policy
functions are in general discontinuous and non-monotonic.'®  We have adopted a numerically
efficient solution algorithm — based on local grid searches — which iterates our functional equation
in the presence of these non-standard properties,

Our equilibrium definition has a major shortcoming: we adopt the standard economic assump-
tion of unlimited problem-solving sophistication. The consumers in our model solve perfectly a
complex backwards induction problem when making their consumption and asset allocation choices.

We are not satisfied with this extreme assumption, but view it as a reasonable starting point for

analysis.1?

4. ANALYTIC APPROXIMATIONS
4.1. Exponential case: # = 1. Consider a stripped-down version of our benchmark model.
Specifically, set 3 = 1, assume that labor income is iid, eliminate the illiquid asset, and eliminate
time-varying mortality and household size effects. It is possible to use the standard Fuler Eqguation

to impute a value for the discount rate, — In(é). The exponential Euler Equation is:

w(Cy) = E;Réu' (Ci+1)

%See Laibson (1997h).
1" Another reasonable starting point is the model of “naif” behavior first proposed by Robert Strotz (1956) and
more recently studied by Akerlof (1991), and O’Donoghue and Rabin (1997a, 1997b). These authors propose that

decision makers with dynamically inconsistent preferences make current choices under the false belief that later selves
will act in the interests of the current self.
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The second order approximation of this equation is:

A 1
Eidn (Cipa) = - (+In(6)) + th [Aln(Ciy)],
which can be rearranged to yield

discount rate = —In(é)

(10)
= —pEAI(Cip) +7+ £V [Aln(Char)]

To impute the value of the discount rate, we need to evaluate F,A In (Civ1),7, p, and V3 [Aln (Ciy1)] .
We will do this for a typical household.

Consider only U.S. households which have access to a line of revolving credit and have a 45-
year-old head. Order these households by the expected one-year rate of consumption growth.
Survey data implies that the median household should expect flat consumnption between ages 45 and
46.1® Tt is reasonable to assume that this median household holds credit card debt, as credit card
borrowing peaks in frequency and magnitude for households with 45-year-old heads. Owver three-
quarters of households with 45-year-old heads and credit cards have credit card debt.19 Hence, for
our analysis, the appropriate real interest rate is the real credit card borrowing rate, r = r°¢  .14.20
We will consider a range of values for p. Finally, the conditional variance of consumption growth
can be represented as a proportion of the conditional variance of income growth. When income
is a random walk, the conditional variance of consumption growth is approximately equal to the
conditional variance of income growth. We assume that the conditional variance of consumption
growth is half of the conditional variance of income growth, implying that the conditional variance
of consumption growth is .025. This value is consistent with our calibrated simulation results.

The lack of consumption smoothing is also consistent with the fact that the typical household is

1%E.g., Gourinchas and Parker {(1999).
°SCF, 1995 cross-section.
2086e section 5 for details on the calibration of interest rates.
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borrowing in. the credit card market, a portfolio decision that suggests low levels of liguid wealth
accumulation and hence necessarily imperfect consumption smoothing.?!

We are now in a position to evaluate —In(6). Figure 3 plots — In(8) on the y-axis, against p on
the x-axis. The solid line reflects the assumptions described in the previous paragraph. The line is
monotonically increasing with a minimum of 0.14 (at p = 0). For reasons that we describe below,
this value turns out to be anomalously high. In anticipation of this problem, we have plotted a
second line in Figure 3 (the dashed line), which reflects more aggressive assumptions that lower our
envelope of discount rates. Specifically, we raise EyAln (Cyy1), lower r, and lower V; [Aln (Cyyq)]
in an effort to make the discount rate, -In(6), as low as possible. For this second line, we set
EAIn (Ciy1) = 01, r = .13, and V; [AIn(Cy41)] = .015. We believe that these assumptions are
inappropriate, but they serve to identify a lower bound for the discount rate envelope. This second
plotted line begins at a discount rate of 0.13 (at p = 0), and then falls slightly to a minimum of
0.127 (at p = .67), before rising monotonically thereafter. Hence, whatever assumptions we make,
we are unable to generate implied discount rates below thirteen percent.

Our first set of analytical approximations turn out to match closely the results of our numerical
simulations of exponential consumers {assuming p = 2). When we choose the exponential discount
rate so our simulations match a credit card borrowing frequency of .70 (the empirical frequency for
the HS households), we end up selecting an exponential discount rate of 179, close to the value

predicted by Equation 10:

—PEB AN (Coit) +7+ SV [AIn(Cyr)] = —2-0+ .14+ 2 - (.025)

= .19

Such high discount rates are problematic. Observed household wealth accumulation profiles

2115 is not optimal for consumers with exponential or hyperbolic time preferences to simultaneously hold credit
card debt {at a real interest rate of 14%) and hold positive liquid assets (at a rea) interest of approximately 4%). See
Morrison (1998) and Gross and Souleles {1999) for evidence that some consumers do engage in such transparently
irrational behavior.
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can only be explained with much lower discount rates. For example, the median U.S. household
accumulates total pre-retirement wealth equal to 3.34 times after-tax income.?2 To calibrate
lifetime consumption and wealth profiles, most authors have used discount rates that lie below
0.10. Engen, Gale, and Scholz (1994} calibrate their model with a discount rate of 4% (p=3).
Hubbard, Skinner and Zeldes (1995) calibrate their simulations with a discount rate of 3% (p=23).
Gourinchas and Parker estimate a discount rate of 4% (p = .5). Laibson, Repetto, and Tobacman
(1998) estimate two central discount rates: 4% (p = 1) and 6% (p = 3). Engen, Gale, and Uccello
(1999} calibrate their model with a discount rate of 0% and 3% (p = 3).23

Hence, these observations suggest a puzzle. Consumers act impatiently in the credit market

but act patiently when accumulating for retirement. We call this the Debt Puzzle. In Sections 6

and 7 we extend this argument by analyzing the fully general model which incorporates many of

the rich institutional details that complicate real-world decisions.

4.2. Hyperbolic case: 3 < 1. The discussion above only applies to exponential consumers.
As Harris and Laibson (2000) have shown, making the discount function hyperbolic generates an
important modification of the Euler Equation. To derive this Hyperbolic Euler Equation?®?, recall

that the current self chooses C' according to:
C* = argmaxg w(C)+ B6EQ[VIR- (X +Y —C) +Y,)].

where V{(-} is the continuation payoff function, and for simplicity the horizon is infinite, implying

that V(-) does not depend on time. Recall from above that V(-) has the recursive property,

VIX+Y)=u(C) +6Eq[V(R- (X +Y — C*) + Y1)

223CF, 1995 survey. Our definition of wealth includes all assets except claims on defined contribution pension
plans. For a detailed list of the assets that we include, see the section on model calibration.

23 All of these papers assume real interest rates (on positive savings) of 1-5 percent. Naturally, substantially higher
interest rates would justify substantially higher discount rates, but historical data pin the interest rate down.

?4An heuristic derivation follows, which assumes differentiability of the value and consumption functions. For a
fully general derivation, see Harris and Laibson (2000).
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where {2 represents the current information set. Finally, represent the welfare of the current self
as:

W(X +Y) =u(C*) +BEq V(R (X +Y — C*) + Y31)]

Then the envelope theorem (ET) implies:
WX +Y) =u'(CY) (ET)
Moreover, the first-order-condition (FOCY) in the current self’s problem implies
w(C") = RB6Eq V(R (X +Y — C*)+Yy1)]. (FOQ)
Finally, V() and W(-) are linked by the identity
BVX +Y) =W(X +Y) — (1 - Blu(C¥). (By def.)

Using these relationships it follows that

W(Cr) = RBSE[V'(Xer1 + Yiet)] by the FOC
= R6E, {W’(Xm +Yi) - (1- ﬁ)uf(cm)g—g.;ﬁ] by definition
= ROE [W(Cor) - (1 - B (Cuy1) 352 by the ET

Note that the partial derivative of consumption with respect to cash-on-hand can be equivalently

. aCH-l 6Ct+1 . . . .
represented as either 5%y O XAV Rearranging the last equation yields:

’ _ ICi 1 _ 0C41 '
¥(0) = mR[s () +o (1- 2 wicu)

This equation is identical to the exponential case, except that the exponential discount factor, 6,

is replaced by the endogenous effective discount factor
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0C; 41 ICt41
5 (——) +5(1__)J |
[ﬁ 0Xi51 X1
This effective discount factor is a weighted average of the short-run discount factor ¢, and the

long-run discount factor 6. The respective weights are gg’{‘:ﬁ » the marginal propensity to consume,

and (1 — %‘:ﬁ) . The effective discount factor is stochastic and endogenous to the model.

When consumers are liquidity constrained, the marginal propensity to consume, g—}%&, is ap-
proximately equal to unity. In this case, the effective discount factor is approximately equal to
(6. Assuming that 3 = 0.7 and § = 0.95 (a conservative calibration of the quasi-hyperbolic dis-
count function when each period is a year)?® the effective discount rate will approximately equal
~1n(0.7 x 0.95) = 0.41.

Hyperbolic consumers have an incentive to keep themselves liquidity constrained (Laibson,
1997a). By storing wealth in illiquid form, hyperbolic consumers prevent themselves from over-
spending in the future. Early selves intentionally try to constrain the consumption of future selves.
This has the effect of raising the future marginal propensity to consume out of the (constrained)
stock of liquid wealth. The high marginal propensity to consume generates high effective discount
rates (ms .41}, explaining why hyperbolics are frequently willing to borrow on credit cards.

Hyperbolics recognize that illiquid wealth will be spent much more slowly than liquid wealth.
Illiquid wealth — e.g., housing — generates marginal utility flows for many periods in the fu-

ture. The consumer discounts utility flows 7 periods away with factor 367. When discounting

consumption increments over long-horizons, a hyperbolic consumer uses an effective discount rate

of

lim [in(567)#] = lim. [—%111(5) —111(6)] ~ _In(6).

Hence, illiquid wealth accumulation is primarily driven by &, not 3, implying that the consumer

**See Laibson (1997a).
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accumulates illiquid wealth as if she had a discount rate of — In(8) = .05.
With the potential for effective discount rates of 41% per year, the model prédicts widespread
borrowing on credit cards at 15% — 20% annual interest rates. However, the hyperbolic model

simultaneously predicts that most consumers will accumulate large stocks of illiquid wealth, basing

accumulation decisions on a relatively low discount rate of .05,

5. CALIBRATION
In this section we discuss our calibration decisions for both our benchmark models and for variations
to that benchmark. Most of our calibration decisions are standard for the consumption literature

except for the second to last subsection which discusses calibration of preferences.

5.1.  Demographics. We use education group population weights 0.25, 0.50, and 0.25 (no-high
school, high school, college) which roughly match the actual proportions in the PSID,

Consumers live for a maximum of 90 years (I'+ N), though they do not enter the work force or
make economically meaningful decisions in our mode! until age 20. The conditional hazard rates
of survival are taken from the life tables of the U.S. National Center for Health Statistics (1993).
These tables report the probability of living to age t + 1, conditional on having lived to age t. This
one-year survival probability is close to one through age 70, dropping to 96.3% by age 80, and
67.6% by age 89.

Following Engen, Gale and Scholz (1994), we use the survival rates for a single individual even
though the “consumers” in our model are actually multi-person households. Conceptually our
model assumes that surviving households always have two non-dependent adults (e.g., a head of

household and a spouse) and an exogenously age-varying number of dependents — including adult

dependents and non-adult dependents.26

26 0ur “single individual” mortality assumption engenders two subtle biases that go in opposite directions. First,
our approach may yield too much simulated retirement saving because our model implicitly rules out insurance effects
that arise when spouses have independent mortality outcomes (in real life an N-person marriage creates a partial
annuity which becomes perfect as N goes to infinity). Second, our mortality assumption yields a bias which implies
too little simulated retirement saving, because widows and widowers have expenses that fall by less than 50% when
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To calibrate the age-varying number of dependents, we use the Panel Study of Income Dynamics
(PSID), and condition on households with a head and a spouse. The measure of children in the
household includes all children between 0 and 17; it does not include the head or spouse even if
either or both of them is younger than 18. It includes all children whether or not they are actually
children of the head or spouse. The number of dependent adults represents the actual number of
members 18 years of age and older, excluding head and spouse.

To construct effective household size, we smooth the observed profiles of dependent children and
dependent adults. These smooth profiles are computed, for each educational category, as follows.
First, we dropped households with heads younger than 20 or older than 90. Second, we restricted

the sample to households with a head and a spouse. Finally, we estimated the following nonlinear

regression model, using nonlinear least squares

Ty = Poexp(B - agey — o - agel) + ey (11)

Note that x; represents either the number of children or the number of dependent adults in house-
hold 7 at date ¢, and the errors e;; represent i.i.d. noise. We picked this particular function because
it captures the shape of the observed profiles, and because it predicts a positive number of children
and dependent adults for every age.

In Table 3 we report the estimated coefficients and their standard errors. In Figure 4 we plot
the smoothed profiles for the number of children and the number of dependent adults of the three
education groups. To construct these profiles we set £ equal to zero. The life cycle pattern of
the variables is considerably different across education groups. The profiles are lower and slightly
steeper {or college educated individuals, and the peak in the number of children occurs two to three

years later.

Following Blundell et al (1994), we define effective household size as the number of adults plus

their spouses die.
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0.4 times the number of children.?” We assume that the total number of adults is equal to two
(head and spouse) plus the number of predicted dependent adults. As expected, our predicted
measure of effective household size exhibits a hump shape pattern. Furthermore, like empirical

profiles of consumption (Gourinchas and Parker, 1999), family size peaks in the mid to late 40’s.

5.2. Income from transfers and wages. We define income as after-tax non-asset income.
Our definition includes labor income, bequests, lump-sum windfalls, and government transfers such
as AFDC, SSI, workers’ compensation and unemployment insurance. This definition is broader
than the one used by Engen and Gale (1993) — who use only labor earnings — and the one used
by Hubbard et al (1994 and 1995) — who only add unemployment insurance payments to labor
income.

The sample of households is taken from the Panel Study of Income Dynamics (PSID). We use
the family files for the interview years between 1983 and 1990, since these are the only PSID sample
years that include bequests and other lump-sum windfalls, as well as federal taxes. We exclude
all households whose head is younger than 20 vears of age, that report annual income less than
$1000 (in 1990 dollars, deflated by the CPT for urban consumers}, or that have any crucial variable
missing.?® To calculate pre-retirement income we follow the approach of Bernheim et al (1997),
who define a Iyear as pre-retirement if anyone in the household worked 1500 hours or more in that

year or in any subsequent year. A household is retired if no member works more than 500 hours in

the current year or in any year in the future.

We estimate the regression equation:

Y = HSy + polynomial(age;) + TF; + CFE; + it (12)

“"There exist other adult equivalence scales. For instance, Attanasio (1998) uses the official OECD scale, which
Bives weight 1 to the first adult, 0.67 to the following adults, and 0.43 to each child. Using empirical data, Deaton and
Muellbauer (1986) estimate that children cost their parents about 30-40 percent of what they spend on themselves.

“We believe that reported income of less than $1000 is more likely to reflect a coding or reporting error than to
reflect a true report. Recall that our income definition includes all government transfers.



A DEBT PuUzzLE 23

by weighted least squares, using the PSID population weights. This equation is estimated twice,
once for households in the labor force and once for retired households. Income of household 7 in
period 1 is determined by a household size effect (HS;t), a polynomial in age, a time effect (TE),
and a cohort effect (C'E;). The household size effect integrates the effects of three variables: the
number of heads in the household (head only or head and spouse), the number of children, and the
nurmber of dependent adults. We specify the age polynomial as third degree for our pre-retirement
regression and linear for our post-retirement regression. Following Gourinchas and Parker (1997),
and to circumvent the problem that age, time, and birth vear are perfectly correlated, we assume
that the time effect is related to the business cycle and that it can be proxied by the unemployment
rate. We use the unemployment rate in the household’s state of residence, taken from the Bureau
of Labor Statistics. Our cohort effects control for birth year to account for permanent differences
in productivity across cohorts.?® We use five-year age-cohorts, the oldest born in 1910-14 and the
youngest born in 1970-74. Table 4 reports the income regressions for each education group.

We calculate f% and f® — the polynomials in the model of the previous section -— by setting
the cohort and unemployment effects equal to the sample means, setting the number of heads equal
to two, and the number of dependents — children and adults — equal to the age varying smoothed
profiles estimated in the previous subsection. This allows us to recover variation in expected income
over the lifecycle for a household that has a typical lifecycle evolution in household size, experiences
1o business cycle effects, and has a typical cohort effect. Figure 5 plots the exponentiated values
of f% and R for the three education categories.

To study the stochastic component of pre-retirement non-asset household income we exploit the
panel dimension of the PSID. We model the unexplained part of measured non-asset income (&)

as the sum of an individual fixed effect, an AR(1) process, and a purely transitory shock:

Eit =0 +uy + ’U'J;f =9+ auy_1 + e + vﬂ’

*9See Ameriks and Zeldes (2000) and Attanasio and Weber (1993) for & discussion of cohort effects.
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The individual fixed effect is included to account for permanent differences in income that are not
completely captured by the educational categories, particularly differences in human capital and
earning ability.

Let 02 be the variance of the transitory shock v, and o2, the variance of e, Also, let C =

E(A& A& ) represent the theoretical autocovariances of AE. Then

202
C — 3 2 2
0 14+ a Ty
—o2. (1 —a)
G = ~1 + B JS
c, — —of‘d_lzrs2 (1 —a)

14+«

We estimate the parameters 2, G’E‘W and o using weighted GMM by minimizing the distance
between the theoretical and the empirical first seven autocovariances. The estimated parameters
are presented in Table 5. These parameter values are almost identical to the values reported by
Hubbard et al (1994), who estimate an identical after-tax income process.

The transitory noise in retirement income is inferred by estimating
R
it =0 + vy}

on retired households, where ¥; is a household fixed effect, and vg has variance crﬁ, R

In the numerical simulations, we set the individual effect equal to zero, and we represent u;
(an AR1 process) with a two-state Markov process. 'The latter is done to save computational
time. The Markov process is symmetric, taking on two states {6, +8}, with symmetric transition
probability p. To make this two-state Markov process match the variance and autocovariance of
ut, we set 8 = \/gandpz %’—1.

To calculate the typical retirement age by education group we look at households that expe-
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rienced a transition into retirement over the observed period (using the Bernheim et al (1997)
definition of retirement). We find that the mean age at which households without a high school

diploma (with a high school diploma, with a college degree) begin retirement is 61 (63, 65).

5.3. Liquid assets and non-collateralized debt. We calibrate the credit limit A-Y; using

the 1995 SCF. Specifically, for each education group we identify the households with credit cards

and calculate for each age t

Oni(credit limit)y,
=3 7 :

h
where £ indexes households, and 6y, is the population weight of household A who is t years old.
The age profiles of A are virtually flat, while the levels are quite similar across education groups,
with an overall weighted average of almost 24%. We selected \ — .30, a number larger than the
observed mean, to take into account the fact that the SCF reports the credit limit associated with
Visa, Mastercard, Discover, and Optima cards only, and does not include credit limit information
on store and other charge cards. It is worth noting that the four listed cards accounted, on average,

for about 80% of total credit card debt according to the 1995 SCF.

5.4. Illiquid assets and collateralized debt. For our benchmark simulation we assume an

extreme form of transaction costs:

7 0 if 12>0
P(I%) =

oo if I <0
In other words, purchases of the illiquid asset generate no transaction costs, but sales are infinitely
costly. Alternatively, one could simply assume that sales costs are sufficiently large to make sales
of the illiquid asset unappealing. By making the illiquid asset extremely illiquid we heighten the
need for credit card borrowing, since the illiquid asset cannot be used to buffer transitory income
shocks. Our simulation code is sufficiently flexible to consider other less extreme assumptions,

which we do in Section 7 on robustness.
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In our benchmark simulations we allow no collateralized debt, and therefore set the downpay-

ment fraction p = 1. We explore the parameterization ¢ = .10 in our robustness checks.

5.5. Dynamic and static budget constraints. We set the value of the after-tax real interest
rate on liquid savings equal to 3.75 percentage p;)ints. This assumes that liquid assets are invested
in a diversified portfolio of stocks and bonds (% stocks and § bonds), and that the effective tax rate
on real returns is 25%.

In our benchmark simulation, we do not allow the household to declare bankruptcy. In this
case, we set the real interest rate on credit card loans to 10.75 percentage points, three percentage
points below the mean debt-weighted real interest rate measured by the Federal Reserve Board. We
do this to bias up our credit card borrowing, and to implicitly capture the effect of bankruptcy.
Actual annual bankruptcy rates of one percent per year, imply that the effective interest rate is
one percentage point below the observed interest rate.

Later in the paper we explicitly model bankruptcy, allowing consumers to escape their uncol-
lateralized debt obligations with some penalty. When bankruptcy is explicitly modelled, we set
the real interest rate on credit card loans to 13.75%, equal to the rate measured by the Federal
Reserve Board. |

We set the real return on illiquid assets to 0, but assume that illiquid assets generate a con-
sumption flow equal to 5.00 percent of the value of the illiquid asset (i.e., v = .05). Hence, illiquid
assets have the same pre-tax gross return as liquid assets, but illiquid assets generate consumption
Hows that are by-and-large not taxed (e.g., housing). Hence, the “after-tax” return on illiquid
assets is considerably higher than the after-tax return on other assets. We explore an even higher
rate of return in our robustness checks.

Finally, we set the after-tax real interest rate on collateralized debt to 5.00 percentage points.

Hence, the pre-tax real interest rate is 6.67 percentage points, assuming that interest payments on

collateralized debt are tax deductible (e.g., housing).
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5.6. Bankruptcy. Inour benchmark simulations we do not allow bankruptey and instead lower
the credit card interest rate three percentage points to reflect the probability that the debt will
not all be repaid. In Section 7, we consider a simulation that explicitly allows households to enter
bankruptey. We describe the assumptions for this case here.

If bankruptcy is declared in period ¢, we assume the following consequences: consumption
drops permanently to a proportion epypiruptey 0f the expected value of permanent income {where
permanent income is evaluated at the date at which bankruptcy is declared), X drops permanently
to zero, Z drops permanently to min{ZBerkrurtey 7z _ DY and D, drops permanently to zero.
We set ZBankruptcy — 100,000 to reflect state laws that allow bankrupt households to retain
partial or full ownership of their primary residence.®9 We found that setting aRankruptey = 1
generates simulated bankruptcy rates that approximately match observed bankruptcy rates (on
average .7/ of our simulated households enter bankruptcy each year). This match arises because
consumers value the flexibility of choosing the timing of consumption. Recall that early-life child
rearing and high rates of time preference make it optimal to consume more when young. In our
simulations, declaring bankruptcy forces the households to give up this flexibility (i.e., they are
forced to consume the annuity value of their human and physical wealth). Naturally, this annuity
assumption is unrealistic. It simply serves as a calibrated “punishment” for declaring bankruptcy.
We know that our assumed punishment has realistic utility consequences because of the associated
frequency with which bankruptey is endogenously chosen by our simulated consumers. In other

words, the utility consequence is roughly realistic since our simulated consumers choose bankruptcy

as often as real-world consumers.

5.7. Preferences.

Coefficient of relative risk aversion: p. We adopt a utility function with a constant

coeflicient of relative risk aversion. In our benchmark calibration we set the coefficient of relative

305ee Repetto (1998).
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risk aversion, p, equal to two, a value which lies in the middle of the range of values that are

commonly used in the consumption literature (i.e., p € [.5,5]).3!

Time preferences: (. In Section 6 we simulate exponential economies and hyperbolic
economies. In these simulations we assume that the economy is either populated exclusively
by exponential households (i.e., 3 = 1) or exclusively by hyperbolic households, which we model
by setting 3 = .7. Most of the experimental evidence suggests that the one-year discount rate is

at least 30%-40%.3% We experiment with 3 values below .7 in Section 7.

Bequests:. We parameterize the bequest payoff function as

aBequest -y (3}, 0’ ﬁ)

1-4

B(X¢, %, Ds) = (R ~ 1) - maoc{0, X, + %(zt — D)} (13)

where 71 is average effective household size over the life-cycle, and ¢ is average labor income over
the life-cycle (calculated separately for each educational group). We arbitrarily set aBeauest — 1
but test other values in our section on robustness. We multiply bequeathed illiquid wealth by
two-thirds to capture the idea that much of that wealth can only be liquidated with substantial
transactions costs (e.g., furniture, automobiles, and to a more limited extent housing). Note that
B(Xy, Z;, Dy) is weakly increasing in X; and 2, — D,.

To motivate our specific functional form assumptions, recall that

uw(C,Z,n)=mn- (C—t:ﬁ)l_p !

b

1-p

implying that,

1(@,0,7) = (g)‘p.

#1See Laibson, Repetto, and Tobacman (1998) for a detailed discussion of calibration of g, and an argument that
p is closer to .5 than to 5. -

*23ee Ainslie (1992) for a review.
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Equation 13 follows from assuming that the bequest recipient’s total consumption is approximately
equal to 7, the bequest recipient’s effective household size is n, and the bequest recipient consumes

bequeathed wealth as an annuity.

Time preferences : §. Having fixed all of the other parameters, we are left with three

: : : : NHS HS COLL
free parameters in our hyperbolic simulations 6hyperbolic’ 6hyperboﬁc, 6hyperbolic and three free
: : : : NHS HS COLL :
parameters in our exponential simulations 6exponential,éexponemial,6exp0nentia|. The superscripts

NHS, HS, and COLL represent our three educational groups. In our simulations we pick the
various ¢ values so that our simulations replicate the actual leve] of pre-retirement wealth holdings.
Specifically, we pick § such that the simulated median ratio of total wealth to income for individuals
between ages 50 and 59 matches the actual median in the data, (SCF). When we construct total
wealth from the SCF, we include liquid assets {checking accounts, savings accounts, money market
accounts, call accounts, CD’s, bonds, stocks, mutual funds, cash, less credit card debt), and illiquid
assets (IRA’s, defined contribution pension plans, life insurance, trusts, annuities, vehicles, home
equity, real estate, business equity, Jewelry /furniture/antiques, home durables, less education loans).
We do not include defined benefit pension wealth, such as claims on the Social Security System.
When we measure total wealth in our simulations, we add: X + Z + 2—};, where X represents liquid
assets (excluding current labor income), Z represents illiquid assets, and Y represents annual after-
tax labor income. The last term is included to reflect average cash-inventories used for (continuous)
consumption. If labor income is paid in equal monthly installments, %, and cgnsumption is
smoothly spread over time, then average cash inventories will be %.

The SCF data is taken from the 1983, 1989, 1992, and 1995 surveys. We match the mean of the
medians across those four years of surveys. The empirical medians and their means are reported in
Table 6. The {mean) median ratio of net wealth to income for individuals between ages 50 and 59

is 2.3 for households whose head has no high school degree, 3.2 for households whose head’s highest

educational attainment is a high school education, and 4.3 for households whose head has a college
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degree.

The discount rates (1-6) that replicate these wealth to income ratios are reported in Table 7.
Three properties stand out. First, the discount rates generally fall with educational attainment.
Since the shape of the labor income profile is roughly similar across educational groups, a relatively
high discount rate is needed to replicate the relatively low wealth to income ratio of the least
educated households. Second, the discount rates for the hyperbolic consumers are lower than the
discount rates for the exponential consumers. Since hyperbolic consumers have two sources of
discounting — J and § — the hyperbolic §’s must be higher than the exponential §’s. Recall that
the hyperbolic and exponential discount functions are calibrated to generate the same amount of
pre-retirement wealth accumulation. In this manner we “equalize” the underlying willingness to
save between the exponential and hyperbolic consumers. Third, all of éur calibrated long-term
discount rates are sensible, falling between .04 and .09. Note that these discount rates do not

include mortality effects which add roughly another .01 to the discount rates discussed above.

5.8. Equilibrium. To numerically solve for our backwards induction solution, we have devel-

oped an algorithm based on local grid searches that iterates our functional operators (Equations 8

and 9).33

6. SIMULATION RESULTS
We begin by presenting our results on the exponential households (8 = 1). Throughout this section,

we focus on households in the HS group and on aggregates, since results for households in the NHS

and COLL groups are qualitatively similar to the results for the HS group.

6.1. Exponential Simulation Results. Figure 6 plots the average consumption profile for
households whose heads have a high school education (HS group). The average labor income

profile is plotted for comparison. Low frequency consumption-income comovement is evident in

337 description of the algorithm is available from the authors.
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this figure. Figure 7 plots the realized consumption and income path for a single household in the HS
group. This Figure demonstrates both high and low frequency consumption-income comovement.

Figure 8 plots the simulated median and mean amount of credit card borrowing, along with
the age-dependent credit limit.3¢ Since X; is liquid wealth, credit card borrowing is defined as
max{0, —X;}. Hence, when X, is negative, credit card borrowing equals —X;. When X; is positive,
credit card borrowing equals zero.

Figure 9 plots the mean level of illiquid wealth (Z¢), liquid wealth (X;), and illiquid plus liquid
wealth (7Z,4X,) for our simulated households in the HS group. Liquid wealth incorporates the
effects of credit card borrowing, and borrowing is sufficiently large to make average liquid wealth
negative before age 25. The precautionary motive generates buffer stock saving which eventually
overtakes credit card borrowing in the 307, pushing average liquid wealth above zero. In mid-life
the buffer stock vanishes because the consumer can now buffer transitory income shocks by cutting
back her substantial investment flow into illiquid assets.

To evaluate the accuracy of the model, we focus on the proportion of households who are
borrowing on their credit cards. We focus on this variable since there does not exist a reliable
public-use data source for household level credit card borrowing-magnitudes (see Section 2). Figure
10 plots the simulated proportion of households in the HS group who are borrowing on their credit
card. On average 20.5% of the simulated exponential households borrow on their credit card. This
proportion is well below 70%, the observed fraction of HS households that report that they are
credit card borrowers in the SCF (1995 cross-section. See Table 1). Naturally, one would like to
control for cohort effects when making such comparisons between the simulated data, and the SCF
data. Hence, in Figure 10 we plot both the simulated profile and the cohort-adjusted empirical

estimate of the fraction of households in the HS group who are borrowing on their credit cards.3®

*Simulated levels (like means and medians) are not directly comparable to the aggregate averages, since the
simulated values correspond to a single representative cohort. At any given point in time many different cohorts of
consumers coexist, each with a specific proportional shift of the expected income profile, Consequently, each cohort
has its own proportionally shifted profile for level variables like consumption, credit card debt and weslth.

%5See Figure 1 and the appendix.
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The estimated empirical profile lies everywhere above the simulated profile.

Similar results arise for the simulated exponential households in the NHS and COLL groups.
In the NHS (COLL) group, the borrowing frequency is 22% (28%). These results are particularly
puzzling because they reverse the empirical ranking of the educational groups. In the 1995 SCF,
the reported frequency is 68% for the NHS group and 53% for the COLL group.

We calculate population aggregates by taking weighted averages across our three groups of
households: NHS, HS, COLL. These groups respectively represent roughly 25%, 50%, and 25% of
the household population, but since we are focusing on households with credit cards, we assume
that the percentages are actually 22.6%, 48.3%, and 29.2%. These proportions are consistent with
the 1995 SCF which reports that 72% of households in the NHS group have credit cards, 77% of
households in the HS group have credit cards, and 93% of households in the COLL group have
credit cards.?® Figure 11 plots the simulated aggregate median and mean amount of credit card
borrowing, along with the mean of the credit limit. Figure 12, plots the aggregate percentage of
households that are borrowing on their credit cards. It is immediately apparent that these aggregate
plots do not match the observed data. In the simulated aggregate data, 23% of households borrow
on their credit cards at any point in time. In the observed data at least 63% of all households with
credit cards borrow on their credit cards at any point in time. Figure 12 also plots the aggregate
empirically estimated fraction of households who are borrowing on their credit cards, removing
cohort effects. This estimated empirical profile lies uniformly above the simulated profile.

We also compare the simulated borrowing frequencies across wealth categories. Table & reports
the simulated borrowing frequencies across age-contingent wealth quartiles (for both exponential
and hyperbolic simulations). These values can be compared to the empirical frequencies in Table 2.
It is immediately apparent that the exponential simulations do not match the empirical data. Two
tensions arise. First, as already pointed out, the exponential borrowing frequencies are too low.

Second, the exponential borrowing frequencies drop off too sharply as wealth rises. For example

38 (.25)(.72) —
E.g. @m0 miies = 226
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for the 40-49 year olds in the HS group, the quartile-based simulated borrowing frequencies take
values: 54%, 20%, 9% and 2%. By contrast, the empirical frequencies take values: 86%, 79%,
74%, 50%. Similar contrasts arise for other age categories and educational groups. Simulated
exponential borrowing is too infrequent, and this empirical failure is particularly dramatic among
the high wealth households. Contrary to the data, high wealth simulated exponential households
practically do not borrow at all. This mismatch is most striking at the youngest ages. Simulated
exponential consumers between ages 20-29 and 30-39 in their respective top wealth quartiles borrow
at an average frequency below 1%. This contrasts with empirical borrowing frequencies of 68%

(ages 20-29, top wealth quartile) and 59% (ages 30-39, top wealth quartile).

6.2. Hyperbolic Simulation Results. We now turn to our benchmark hyperbolic simula-
tions. Figure 13 compares the exponential and hyperbolic consumption paths for the HS group.
‘These paths are almost identical, except for a small hyperbolic consumption boom at the beginning
of life, and the relatively steeper decline in hyperbolic consumption during the retirement period. 7

Figure 14 compares total wealth accumulation of exponential and hyperbolic consumers. Two
properties distinguish the hyperbolic households. First, the hyperbolic households borrow more
when young, depressing total wealth and even driving it below zero for a substantial portion of
the lifecycle. Second, hyperbolic households hold more illiquid wealth, which cannot be dissaved
and hence elevates total wealth when old. These comparisons are shown in Figure 15, which
plots illiquid wealth for exponentials and hyperbolics, and Figure 16, which plots liguid wealth
for exponentials and hyperbolics. Similar exponential-hyperbolic contrasts arise for the simulated
households in the NHS and COLL groups.

The relative scarcity of liquid wealth is associated with high levels of credit card borrowing

for simulated hyperbolic households. Households in the NHS, HS, and COLL groups borrow at

37Like the exponential simulations, the hyperbolic simulations also exhibit low and high frequency comovement
between consumption and income (see Laibson et al, 1998). Hence the hyperbolic model is consistent with the
empirical regularities documented by Carroll (1992, 1997a), Gourinchas and Parker (1999) and others.
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respective frequencies of 60%, 58%, and 49%. These percentages are similar to those in the SCF
data: 68%, 70%, 53%. In both the simulations and the data, the NHS and HS frequencies are
approximately equal, and the COLL frequency is noticeably lower.

We now turn to comparisons of population aggregates (aggregating across the three educational
groups). Figure 17 plots the median amount of simulated credit card borrowing for exponential and
hyperbolics, along with the simulated age-dependent credit limit. Figure 18 plots the proportion
of households who are borrowing on their credit cards. For simulated hyperbolic households the
aggregate borrowing frequency is 55%, compared to 23% of the simulated exponential households.
Recall that at least 63% of households are currently borrowing on their credit cards. Figure 18
also plots the estimated cohort-adjusted lifecycle profile of borrowing frequencies. This profile lies
everywhere above the simulated exponential profile, but either intersects or nearly intersects the
hyperbolic profile at ages 21, 66, and 90.

Finally, we compare the simulated borrowing frequencies across wealth categories. Recon-
sider Tables 2 and 8, which report the empirical and simulated borrowing frequencies across age-
contingent wealth quartiles. Like the exponential simulations, the hyperbolic simulations also
predict too little borrowing of high wealth households. For example for the 40-49 year olds in the
HS group, the quartile-based hyperbolic borrowing frequencies take values: 84%, 60%, 42% and
24%. The exponential borrowing frequencies take values: 54%, 20%, 9% and 2%. ‘The SCF em-
pirical frequencies take values: 86%, 79%, 74%. 50%. Hence, both the hyperbolic and exponential
borrowing frequencies drop off too quickly as wealth rises. Similar patterns arise for other age
categories and educational groups.

In summary, the hyperbolic model seems broadly consistent with the empirical data. Hyperbolic
consumers borrow at approximately the right average frequency. Moreover, hyperbolics with college
educations borrow less frequently than hyperbolics without a college degree. The principal failure
of the hyperbolic model is the prediction that high wealth households will borrow at relatively low

frequencies. High wealth households in the SCF borrow too frequently to match the predictions of
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either the hyperbolic or the exponential model.

7. ROBUSTNESS CHECKS
The results reported in the previous section are robust to substantial variation in all of the cali-
bration assumptions. In every variant that we have considered (a fraction of which are reported
here), exponential households continue to hold credit card debt far too infrequently.

Table 9 summarizes these results. The first row of the Table reports our benchmark simulations
{see previous two subsections) for the exponential and hyperbolic households in the HS group.
Rows 2-15 report perturbations to these benchmark cases. In each of these rows, the benchmark
simulation is perturbed by changing the calibration values of important parameters in the model.

Those perturbed parameters are identified in the first column of Table 9. To simulate behavior
with the perturbed parameter values, we replicate the calibration procedure described in Section 5.
Specifically, we numerically find the values of égg,onemial and 61133,Sperbolic that generate simulated
wealth accumulation that matches the SCF mid-life median wealth-to-income ratio. Hence, each
row of Table 9 uses a new pair of values of ég(sponential and 6$e;bouc. Column two reports 65(%0““@.
Column three reports the simulated percentage of exponential consumers who borrow on their credit
card at any point in time. Column four reports the average amount of credit card debt held by
exponential consumers. Likewise, column five reports 6g,sperboﬁc, column six reports the simulated
percentage of hyperbolic consumers who borrow on their credit card at any point in time, and
column seven reports the average amount of credit card debt held by hyperbolic consumers.

All of the simulations in rows 2-15 have been implemented with partition jumps of $2000 for the
liquid asset and jumps of $50,000 for the illiquid asset. By contrast, in the benchmark cases (row
1}, we use a partition with jumps of $500 for the liquid asset and jumps of $10,000 for the illiquid
asset.*® We adopt a relatively coarse partition in rows 2-15, because many of these simulations are

far more complex then the benchmark simulations (e.g., some of the state spaces and action spaces

35The large partition Jumps for the illiquid asset reflect the fact that illiquid assets tend to be lumpier than lquid
assets.
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are relatively large in these new runs). Even with the coarse partition, some of these robustness
simulations take nearly two weeks to execute.

Row 2 matches the benchmark simulation, but adopts the relatively coarse partition. These
results provide a check that changing the coarseness of the partition does not significantly change
the original benchmark simulation results. The other reported robustness checks are summarized

below:

Row 3 In the benchmark formula for effective household size, children are weighted with a factor

of .4 relative to adults. The simulations reported in row 3 change the weighting on children

from .4 to .6.

Row 4 In the benchmark simulations, disinvestment from the illiquid asset is not permitted. The
simulations reported in row 4 allow such disinvestment and assume disinvestment transaction

costs: a fixed cost of $10,000 and a .1 proportional cost.

Row 5 In the benchmark simulations the required downpayment for the illiquid asset is 100 per-

cent. The simulations reported in row 5 assume a downpayment of 10 percent.

Row 6 In the benchmark simulations the real interest rate on credit card debt is 11.75 percent.

The simulations reported in row 6 assume a credit card interest rate of 9.75 percent.
Row 7 The simulations reported in row 7 assume a credit card interest rate of 13.75 percent.

Row 8 In the benchmark simulations, bankruptcy is not allowed. The simulations reported in
row 8 allow households to declare bankruptcy and set the credit card interest rate to 13.75

pecent.3®

Row 9 In the benchmark simulations the coefficient of relative risk aversion, p, is set to two. The

simulations reported in row 9 assume p = 1.

338ince households can declare bankruptcy, we no longer need to set a lower credit card interest rate to account
for non-payment.
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Row 10 The simulations reported in row 10 assume p = 3.

Row 11 In the benchmark hyperbolic simulations, the hyperbolic discount. parameter, 3, is set to

.7. The hyperbolic simulation reported in row 11 assumes 3 = .6.
Row 12 The hyperbolic simulation reported in row 12 assumes 3 = .8.

Row 13 In the benchmark simulations the altruism parameter, aP®9Ust ig set to one. The

simulations reported in row 13 assume o/Beauest — 5

Row 14 In the benchmark simulations the total consumption flow from the illiquid asset, v, is 5

percent per year. The simulations reported in row 14 assume a flow of € percent.

Table 9 demonstrates two points. First, the simulation results are not sensitive to our model
and calibration assumptions. No reasonable variation in the modeling assumptions drives the sim-
ulaﬁed exponential borrowing far from the levels in our benchmark simulation. Second, calibrated
hyperbolic households always borrow between two and four times as often as their exponential coun-

terparts. This difference arises, even though hyperbolic and exponential consumers accumulate

identical levels of pre-retirement wealth.

8. CONCLUSION

Consumers appear to be of two minds. Relatively large voluntary retirement accumulations imply
exponential discount rates of only five percent. However, frequent credit card borrowing implies
exponential discount rates of eighteen percent. It does not appear to be possible to calibrate
realistic lifecycle models to match both observed levels of voluntary retirement savings and the
observed frequency of credit card borrowing. We call this apparent paradox, The Debt Puzzle.

We have also suggested a resolution to this puzzle. If consumers have hyperbolic discount
functions, then they may act both patiently and impatiently.l Our calibrated simulations show

that hyperbolic consumers will save aggressively for retirement, primarily in illiquid form, and

borrow frequently in the credit card market.
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10. APPENDIX: ESTIMATING THE LIFE-CYCLE PROFILE OF THE FRACTION OF HOUSEHOLDS
BORROWING ON THEIR CREDIT CARDS.
This appendix describes the construction of the profiles of the proportion of households borrowing

on their credit cards (see Figure 1). We construct these profiles so they can be compared directly

to the profiles generated by our simulations.

The consumers in our model have the following characteristics: (1) they have always had a credit
or charge card, (2) they have an exogenous level of education, (3) they experience no business cycle
effects, and (4) they live in households with a head and a spouse, Using data from the SCF, we
construct age profiles that condition on these four characteristics. We build the profiles as follows.

First, we exclude all households with heads younger than 20 or older than 90, and drop house-
holds who do not have credit or charge cards.

We then assign all households to one of the three educational groups in the model. We also
assign households to a cohort group, in order to account for the fact that different generations of
consumers have had differential access to revolving credit. QOlder cohorts may not have developed
the habit of using credit cards because they did not have credit cards when they were young adults.
We use 3 year cohorts, matching the frequency of the SCF, the youngest born in 1973-75, and
the oldest born in 1898-1900. To account for business cycle effects in the data that are not in
the model, we use the unemployment rate in the household’s census division. Finally, we create a

dummy variable to account for the head’s marital status.

We then construct a dummy variable d;; equal to 1 if household ¢ held credit card debt at date

t, and 0 otherwise, and estimate the equation

dir = flageit) + Bice; + Bapr + Bamsit + Pueducy + ex (14)

where f{age::) is a function of the head’s age, ce; is a complete set of cohort dummies (excluding

the last one), pj; is the rate of unemployment in the household’s census division, ms; is a marital
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status dummy equal to one if the head is married, educ;; is a set of education dummies (excluding
the HS group dummy), and &;; represents classical measurement error. We estimate the equation
by weighted least squares — using the SCF population weights — as well as by probit and logit
models. Since these methods generated almost identical results, we only report the weighted least
squares results.

To model the function f(.), we experimented with several alternatives, including polynomials
in age, age dummies and linear splines, all generating similar results. Figure 1 plots the estimated
profile of the proportion of HS households borrowing on their cards, using a spline with knots at ages
33, 50, 63, and 80. To match the characteristics of the households in the model, we set the yvoungest
cohort dummy equal to one, and set all the other cohort dummies to zero. We also evaluate the
unemployment rate at the average rate in the sample, and set the marital status dummy equal to
one. Thus, the figure represents the fraction of married households born in the youngest cohort,

facing the average unemployment rate.



Table 1. Credit Card Debt*’

Conditional on Having a Credit Card

Balance
% with Card % with Debt Mean Median
All categories
20-29 0.72 0.77 1668 746
30-39 0.77 0.76 2114 772
40-49 0.85 0.72 2487 760
50-59 0.84 0.60 1603 343
60-69 0.83 0.43 980 0
70+ 0.80 0.27 250 0
All ages 0.80 0.63 1715 343
No high schoot diploma
20-29 0.68 0.83 1823 849
30-39 0.66 077 2559 943
40-49 0.77 0.84 2988 B15
50-59 0.73 0.71 1910 549
60-69 0.71 0.55 1115 129
70+ 0.76 0.35 285 4]
All ages 0.72 0.68 1832 429
High schooi graduates
20-29 0.60 0.84 1885 935
30-39 0.74 0.86 1673 858
40-49 0.81 073 2274 772
50-59 0.84 0.72 1424 515
60-69 0.85 0.44 722 0
70+ 0.75 0.28 265 0
All ages 0.77 0.70 1637 472
College graduates
20-29 0.89 0.65 1364 600
30-39 0.92 065 2213 532
4049 0.93 0.64 2340 497
50-59 0.96 0.40 1545 0
60-69 1.00 0.26 1143 0
70+ 0.83 0.13 180 0
All ages 0.93 0.53 1767 84

Source: Authors' caiculations based on the 1995 SCF.

? Includes traditional cards such as Visa, Mastercard, Discover and Optima,
and other credit or charge cards such as Diners Club, American Express,
store cards, airline cards, car rental cards, and gasoline cards.
Excludes business and company cards.
® The total credit card debt is constructed on the basis of the
responses to the following SCF question:
"After the last payments were made on this (these) account(s),
roughly what was the balance still owed on this {these) account(s)?"



Table 2. Fraction of Households Borrowing on Credit Cards Across
the Distribution of Wealth*®

Wealth Distribution Percentile

Age group Less than 25 25-50 50-75 Over 75
All categories
20-29 0.87 0.77 0.70 0.65
30-39 0.86 0.80 0.69 0.51
40-49 0.79 0.76 0.56 0.41
50-59 0.75 0.65 0.40 0.27
60-69 0.55 0.40 0.25 0.18
70+ 0.48 0.26 0.11 0.05
Incomplete High School
20-29 0.91 0.83 0.67 0.82
30-39 0.73 0.82 0.78 0.70
40-49 0.84 0.85 0.80 0.60
50-59 0.83 067 0.75 0.45
60-69 0.60 0.51 0.39 0.25
70+ 0.57 0.30 024 0.10
High School Graduates
20-29 0.89 0.78 0.82 0.73
30-39 0.90 0.83 0.83 0.66
40-49 0.86 0.79 0.74 0.50
50-59 0.79 0.72 0.55 0.40
60-69 0.60 0.42 0.31 0.24
70+ 0.47 0.29 0.09 014
College Graduates ‘
20-29 0.81 0.65 0.51 0.56
30-39 0.82 0.81 0.55 0.39
40-49 071 0.53 0.44 0.20
50-59 0.63 0.38 0.24 0.22
60-69 0.41 0.20 0.09 0.10
70+ 0.28 0.07 0.06 0.03

Source: Authors' calculations based on the 1983-1995 SCFs.

? Conditional on having a credit card.

" We calculated the fraction of households who are borrowing in each quartile of
the weaith distribution contingent on age and education group, for every SCF year.
The table reports the weighted average across the 4 SCF years, using the
proportion of households with credit cards in a given year/category as weights.



Table 3. Estimated Age-Number of Children and
Age-Number of Dependent Adults Profiles

Dependent
Children Adults
High School Dropouts
Constant 0.12143 0.00002
(0.0111) {0.0000)
Age 0.16690 0.41411
(0.0048) (0.0125)
Age’ 0.00238 0.00396
(0.0001) (0.0001)
High School Graduates
Constant 0.00813 8E-09
(0.0006) (0.0000)
Age 0.32402 0.72718
{0.0054) (0.0160)
Age? 0.00450 0.00713
(0.0001) (0.0002)
College Graduates
Constant 0.00005 4E-12
(0.0000) (0.0000)
Age 0.55628 1.00347
{0.0139) (0.0413)
Age? 0.00729 0.00965
{0.0002) (0.0004)

Source: Author's calculations based on data from
the PSID. Standard errors in parenthesis.

We estimated the following modei by NLLS:

Xi= Po@Xp(B1 agey - B, age®y)+e

where x; is either the number of dependent children

or the number of dependent adults in the househoid,
and g, represents iid noise.
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Table 4. Estimated Age-Non Asset Income Profiles *

Less than High High School College
School Graduates Graduates
In the labor force °
Age 0.077 0.118 0.223
{0.039) (0.021) (0.038)
Age?/100 -0.172 -0.201 -0.390
(0.074) (0.050) (0.086)
Age®/10000 0.092 0.081 0.204
{0.045) (0.035) {0.059)
N head and spouse 0.668 0.548 0.462
(0.035) (0.019) (0.032)
N kids 0.012 0.033 -0.023
(0.010) (0.005) {0.008)
N dep. adults 0.167 0.170 0.022
(0.011) (0.008) (0.021)
Other effects ¢ 7.958 7.439 6.029
Retired ©
Age -0.039 -0.002 -0.009
(0.024) (0.013) (0.008)
N head and spouse 0.656 0.554 0.327
(0.316) (0.084) (0.140)
N kids 0.042 0.199 -0.560
(0.096) (0.172) (0.102)
N dep. adults 0.421 0.204 0.162
(0.092) {0.102) (0.081)
Other effects ¢ 9.927 8.433 10.172

Source: Authors' calculations based on data from the PSID 1983-90.

? The dependent variable is the natural logarithm of non-asset after tax
household income. It includes lump sum payments such as
inheritances. Standard errors are in parenthesis.

® A household is in the labor force if anyone in the household

worked 1500 hours or more in that year or in any subsequent year.

® A household is retired if no member works more than 500 hours

per year in the current year or in any year in the future.

¥ Includes the effects of a constant, cohort dummies, and

the unemployment rate in the household's state of residence, evaluated
with each regressor set equal to its sample mean.



Table 5. Estimated Age-Income Processes

Less than High Completed High Completed

School School College
In the Labor Force™®
o 0.881 0.782 0.967
(0.022) (0.006) (0.007)
Variance of ¢ 0.024 0.029 0.019
(0.006) (0.003) (0.002)
Variance of v 0.041 0.026 0.014
(0.005) (0.003) (0.002)
Retired™" :
Variance of v 0.077 0.051 0.042
(0.019) (0.013) {0.013)

Source: Authors' calculations based on data from the PSID, 1883-90.
Standard errors in parenthesis.

The coefficient a and the variances of £ and v were estimated using GMM.,

A household is in the labor force if anyone in the household worked

1500 hours or more in that year or in any subsequent year.

® Model estimated, using the residuals of the regressions reported in Table 4:
Ea= Gt U+ up =G+ atlpy + g + vy

© A household is retired if no member works maore than 500 hours

per year in the current year or in any year in the future.

“ Model estimated, using the residuals of the regressions reported in Table 4;
&=L +uy
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Table 7. Calibrated Long-term Discount Rates®

Exponential  Hyperbolic
Consumers Consumers

High school dropouts 0.0880 0.0700
High school graduates 0.0560 0.0440
College graduates 0.0550 0.0440

Source: Authors' calculations.

® The tabie reports the long term discount rates (1-5) that
replicate the average wealth-income ratios for households
with heads between ages 50 and 59, as reported in Table 6.
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Table 8. Simulated Share Borrowing Across the Wealth Distribution®
Wealth quartile

Age group 0-25 25-50 50-75 75+
incomplete High School - exponential
20-29 1.00 0.34 0.00 0.00
30-39 1.00 0.06 0.01 0.00
40-49 0.68 0.19 0.05 0.00
50-59 0.45 0.20 0.05 0.00
60-69 0.09 0.06 0.05 0.00
70+ 0.26 0.30 0.31 0.37
Incomplete High School - hyperbolic
20-29 1.00 0.89 0.15 0.13
30-39 1.00 068 0.4 0.24
40-49 0.91 0.65 0.49 0.37
50-59 0.75 0.55 0.43 0.31
60-69 0.46 0.43 0.40 0.39
70+ 0.72 0.84 0.96 0.98
High School Graduates - expenential
20-29 1.00 0.25 0.00 0.00
30-39 0.79 0.07 0.02 0.00
40-49 0.54 0.20 0.09 0.02
50-59 0.33 0.17 0.09 0.04
60-69 0.07 0.05 0.04 0.03
70+ 0.41 0.33 0.32 0.14
High School Graduates - hyperbolic
20-29 1.00 0.74 0.17 0.10
30-39 1.00 0.56 0.36 0.19
40-49 0.84 0.60 0.42 0.24
50-59 0.73 0.54 0.44 0.27
60-69 0.56 0.57 0.70 0.45
70+ 0.93 0.97 0.98 0.32
College Graduates - exponential
20-29 1.00 0.98 0.01 0.00
30-39 1.00 0.32 0.01 0.00
40-49 0.70 0.06 0.02 0.03
50-59 0.64 0.14 0.11 0.01
60-62 0.90 0.26 0.02 0.00
70+ 0.59 0.10 0.00 0.00
College Graduates - hyperbolic
20-29 1.00 1.00 0.38 0.03
30-39 1.00 0.90 0.13 0.06
40-49 1.00 0.85 0.24 0.11
50-59 1.00 0.73 0.22 0.00
60-69 1.00 0.57 0.01 0.00
70+ 1.00 0.52 0.00 0.00

Source: Author’s simulations.
® Fraction of simuiated households who borrow in each wealth quartile of an age-education group.



‘papnioul ale sdnoub uoneanpa ||y

‘suopdwnsse uoljesqi|es juaiagip 1oj Buimollog spjoyasnoy Jo UOHORY 3u pue pamolog Junowe abelaAe ay) smoys sjqe) ayJ

‘suonejnuwlis sJoyiny aainog

SUONENWIS 210G19dAH

SUCHE[NLUIS [enuauodxy

SH29YJ ssauisnqoy "6 ajqeL

- 96'¢68'cS 950 1v0°0 20°0pE'LS IT0 £90'0 90" = Winjas Jo ajes pinbil ¢4
ELGEr'Es 760 gc£0'0 0v'9/8% 810 2500 g = Jejaweled wsinyy €|
9L IPE'TS 880 or0°0 YIN VIN VvIN g=d2l
61°1L68'cS ¥S'0 8200 V/N VIN VIN 9=4¢1L
oL'09¥'2$ 8£°0 6700 Ze08es L0 €900 €= V4D 0l
20°8€0'vS G50 ge00 £L'€65% GLO 6¥0°0 L =VHYD 6
65'82Z'cs Zro Zroo 06'696% gL0 9500 (52°c1 8jey jsase)u} pamojle Aojdnnjueg g
09'€26'C$ 0 Zro'0 G2'9L/$ G0 9600 G/ '€l 9)e) JSa19jul pied Ipasd /L
02'Z85'c$ 160 Zr0'0 8G¥LL LS 120 9600 GZ'6 Skl }Sa1ajui pieo Jpal)d g
EP'9E0'P$ 650 600 06'G20°L$ i20 6500 Z Jo @seyoind paoueuy-igad §
9.'60L'E$ ¥¥°0 P00 8/°068% JAN| 9500 Z U1 JUSLLISDAUI B|qISISADY
£9'090'cs £F0 ov00 L£'86/% 910 Zs00 (9" =) usJppyo uo JyBiom jalnesy ¢
LO'PET'ES 870 Zvoo 66 ¥06$ 810 9600 (uoniued 85100 ym) Sylewydsusg Z
82'8v2'c$ 160 ¥#0°0 #G'206$ 120 9500 (uoniued auy ypm) sylewyauag |

192Q Buimosog  aley Junoasig 192q Buimoulog ajey unoosiq
abeisny uorpodoly pajesqies abeiany uopodoig pajelqijen



SBILILLND LOKEINES J0 135 B pUE 'AUIWND SMIEIs elBwW B ‘ajer uatiodileun ey} ‘ssuuwnp Hoyos ‘sbe L alyds Jeeu e uo ucisseiBa) B Woy peBINIIBD "40S 8AIN0S

afiy
06 S8 08 7 04 G9 09 GG 0s Sy o 194 0g T4 174
il erersll—————— [l F L S VN U T WS SN SN SR WA S-S A R N S | Lol F N S Y TS IR N T WO T T N NS W'y m.o

_ sdnoJb Jjy ——
7 sajenpely) abgjjoy) — — —
_ looyos YbIH a38idwon — - - —
| looyog ybiH ayedwoou)- - - - - -

60

spie)d Jpais Jiay} uo Buimollog spjoyasnoH Jo uoijoetd | ainbi4



I oljoqiadAH — — I..‘
“ " jenuauocdx3

256°0=8 PuE 2'0=g ywm ' 90" od'eq}} oijoguedAy-senb pus |j=A pue p=0 Unm ', (1041} or0q8dy [GEE'0= LI 8 (IBIUAIodXT "SLOIEINOJED EOLINY (32005

Jea)

14 ov Gt o€ 14 0e Gl ] S 0

1 ]

onoatadiy-iseny = 7

suoiOUN} JUN0VSI "z aInbi4

c0

o
o

90

80

rA

uonoIuUN} JUNCISIg



(G 10" PUB §20) UM0IE Landnsuos Jo sUBLER [BUOHIPUOS 3L PUE (LY’ PUE 0) Yol Londwnsuod Jo ajed 1eak euo parpadxa syl (S1 PUE | ') S 1SaI8IUI [B8J BU) J0} S3N|BA LUIRIGHED
SANEWSIE JApUN ‘Loiienbe JBiNg ay) jo uonewxo dde JpIo PUDJTS B LIM JLSISISUD SIE L) UDISISAE S DANEISY JO SIUSIOINS0 PUE SB]BJ Junadsip |enuaucdxa syl siotd sinfild “sualieImjes Bioyny 8005

UOISIBAR S| 8ARE[8] JO JUBIDNYS0D
00'G 0s'v 00'v 05t 00°€ 0s°¢ 00¢ 051

o0'L

00 000
! 000

T 600

010

e g

020

geco

- ]

sajed Junoasip pendwy "¢ aunbig

ajel JuUnoIsIp



“#5(0U pil sjuasaidel *3 pue

‘Ployasnoy sy} ui sInpe jiepuadap o JSLWNL 3} Jo uaIp|IyD JuBpuadap O JaGUNU By JayNs §) ™X slaum Ha(",afie 3 - Yabe ‘g)dxe O =Mk [epolw ay) uo sasenbs jsea) JeaUUOU Buisn paleWsa suam seNBA QIS4 (S0IN0S

aby
56 58 L 59 gg &b 5e 5z 51
= la-.lll.l.”“rllllllullllrl. ’ , .l\\"\tll‘“ ‘ 00
.I/./ I.r.f. ~ \.\ ” Fa
S NN M2 " L7 /
N W\ 7 s /’
N \ s s SHN /7
N NN S, . 50
//. N A ;s .\_
N N\ e \\ 7 /
/.// /\u\ rd \
AR G /
A Nt /o
SIinpy A\ : / -
Juapuadsq / \ \
v /
W\ .\ \
\
// .\ \\
/,. / 109 / ¢y
/ﬂ / \\ SH
\ /!
Ny / /
N / SHN
A=
b 7
uaJpjiyg
A

3194AD-3417 3y} Jan0 s)npy Juapuadaq jo pue uaipjiys Jo JaquinpN ‘y ainbig



ewodip jooyss ybiy
aalbap jooyos ybiy oN

aalbap she|on — — —|

06

‘SUBSW Jioy) 6} [Enba Jo8 $1085)62) JOUI0 UuM ‘Spaye abe ay) sjoud aunby ey -a1e) JuswAojdwaun sU) pue ‘ezte AIB} ‘salLiwnp HoyoD ‘abe ut jewoud|od oigno

aby

1] 0s 14 ov

=1 e

se oe ge

4 T T T T T T g T T T

/./ / ]

/!
AN

$9|1J04d swooul-aby pajewnsy 'g ainbiy

® uo swoaul Jo Boj suy Jo uoissasBel  Wo. paIE|nojes aue senjeA dnosb uoleanps pue afie A SWOLI PIOUBSNIOY XB)-3oUe SSE-UoU PejeLLNsE sjojd ainBig ‘qISd Fwmes

0

00001

0000z

0000¢€

0000

00005

00009



Figure 6: Simulated Mean Income and Consumption of Exponential Houscholds
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Source: Authors’ simulations.
The figure plots the simulated average values of consumption
and income for households with high school graduate heads.
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Figure 7 : Simulated Income and Consumption of a Typical Exponential Household
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Source: Authors’ simulations.

The figure plots the simulated 1life cycle profiles of
consumption and income for a typical household with a high
school graduate head.
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Figure 8: Simulated Mean & Median Debt, and Credit Limit, for Exponential Households
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The figure plots the simulated median and mean amount of

credit card debt,

simulations.

along with the age-dependent credit limit,
for househclds with high school graduate heads.



Liquid, Illiquid, and Total Wealth

Figure 9: Simulated Mean Liquid, Illiquid, and Total Wealth for Exponential Households
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Source: Authors’ simulations.

The figqure plots the simulated mean level of liguid,
illiquid and total wealth for households with high school
graduate heads.
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Figure 10: Fraction of Households Borrowing on Credit Cards
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Source:  Authors’ simulations, and Survey of
Finances.

The figure plots the simulated fraction of households with a
high school graduate head who are borrowing on their credit

cards, along with the estimated life-cycle profile from
Figure 1.

Consumer
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Figure 11: Simulated Mean & Median Debt, and Credit Limit, for Exponential Households
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Scurce: Authors’ simulations.
The figure plots the simulated median and mean amount of

credit card debt, along with the age-dependent mean credit
limit, for all educational groups.



wt

Fraction Borrowing

Figure 12: Fraction of Households Borrowing on Credit Cards
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Source: Authors’ simulations, and Survey of Consumer
Finances.

The figure plots the simulated fraction of households who are
borrowing on their credit cards, along with the estimated
life-cycle profile from Figure 1, for all educational groups.
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Figure 13: Mean Consumption of Exponential and Hyperbolic Households
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Source: Authors’ simulations.

The figure plots average consumption over the life-cycle for
simulated exponential and hyperbolic households with high
school graduate heads.



Figure 14: Mean Total Wealth of Exponential and Hyperbolic Households
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Source: Authcrs’ simulations.
The figure plots average wealth over the life-cycle for

simulated exponential and hyperbolic households

school graduate heads.

with high
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Figure 15: Mean Illiquid Wealth of Exponential and Hyperbolic Households
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Source: Authors’ simulations.

The figure plots average illiguid wealth owver the life-cycle
for simulated exponential and hyperbolic households with high
school graduate heads.
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Source: Authors’ simulations.

The figure plots average liquid wealth over the life-cycle
for simulated exponential and hyperbolic households with high
school graduate heads.



Figure 17: Mean Credit Limit and Simulated Mean Debt
tor Exponential and Hyperbolic Households
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The figure plots the mean credit limit and mean credit card
debt over the life-cycle for simulated exponential and
hyperbolic households, for all educational groups.
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Figure 18: Fraction of Households Borrowing on Credit Cards
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Source: Authors’ simulations, and Survey of Consumer
Finances.

The figure plots the simulated fraction of expeonential and
hyperbolic households who are borrowing on their credit
cards, along with the estimated life-cycle profile from
Figure 1, for all educational groups.



