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Abstract

The paper explains how the Almon polynominal lag specification can be

made stochastic in two different ways - one suggested by Shiller and

another following the lines of Liridley and Smith. It is shown that

both the estimators can be considered as modified ridge estimators.

The paper then compares these modified ridge estimators with the ridge

estimator suggested by Hoerl and Kennard. It is shown that for the

estimation of distributed lag models the ridge estimator suggested by

Hoerl and Kennard is not useful but that the modified ridge estimators

corresponding to thestochastic versions of the Almon lag are promising.

The paper has two empirical illustrations.
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1. Introduction

Consider a distributed lag model

p
= E . x1 + u (1)

1=0

where u are IN(0,a2) t = 1,2 ... n.

The problems in the direct least squares estimation of (1) are: firstly,

p the length of the lag is not known and secondly, even if p is known, because of

high multicollinearity between the x, ordinary least squares estimates usually

are erratic. The problem of an unknown p is usually 'solved' by assuming an

infinite lag distribution that 'dies out' after a certain point. The Koyck [8],

Solow [13], and Jorgenson [7] models are examples of this. There are, on the

other hand, procedures that depend on a known p (or on the assumption that p can

be determined by a bit of experimentation) like the models suggested by Almon [1],

Leainer [9], and Shiller [12]. The basic problem these formulations are intended

to solve is that of multicollinearity. The present paper assumes a known length

of the lag distribution. We will write equation (1) in matrix notation as

y = XB + u.

The plan of the paper is as follows: In section 2 we outline the Almon

and Shiller procedures and show how they are related to the ridge estimators
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suggested by Hoerl and Kennard [5]. We also discuss a Bayesian version of the

Almon estimator, different from that of Shiller, and show how it is related to

the ridge estimators and the estimator suggested by Lindley and Smith [10].

The next section reports the results obtained by the application of these methods

to two sets of data: one the set of data on capital appropriations and expendi-

tures used by Almon and the other the data used by Griliches et al., [3] and

Zellner and Geisel [16]. The final section presents the conclusions of the paper.

2. The Models Considered

(a) The Almon Method: Basically the procedure is based on the assumption that

the in (1) lie on a low degree polynomial. For the sake of illustration we

will assume that it is a quadratic.

= + c1i + a2i2 (2)

Then equation (1) can be written as

p 2=

i=0°
+ al + c2i )x + Ut

= az0 + + c2z2 +
Ut

p.
where z. = i3x . (3)

i=0
t-i

One can also impose some end point constraints as Almon does, e.g..,

for i = -1 and p+1. This implies two linear restrictions on the ct's in (2).

It has been often argued that the nice smooth shape that is usually obtained with

the Almon method is partly due to the imposition of the end point constraints.

Equation (2) can be written as

(4)
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where H= 1 0 0

1 1 1

1 2 4

: ; ;2

Define M = I - H(H'H)H' (5)

Then equation (4) implies the set of restrictions

M8=0 (6)

Thus, to get Almon's estimator we minimize (y - X) (y - X$) subject to (6).

The resulting estimator is (Theil [15], p. 143)

= - (X'X) M' [M(X'X) M'] M$ (7)

where is the Almon estimator of and is the ordinary least squares estimator

of 3.

(b) Shiller's Method: The basic argument in Shiller's method is that we often

specify a restriction such as (2) not because we believe in it but we believe

the lag distribution to be smooth and consider (2) as an approximation.

One can add an error term to (2) and write

(8)

where v. are IN(O,a2), This will result in the model

= aZ + c1z1 + 2z2 +

where are as defined in (3) and

p
w = u + E v.x
t t 1=0it—i
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This results in a complicated covariance matrix for the residuals. The residuals

are heteroscedastic and autocorrelated. The Bayesian formulation of (8) will be

discussed later.

Instead of making equation (2) stochastic, Shiller notes that assump-

tion (2) implies that

= 0

where = -

Shiller makes equation (9) stochastic by adding an error term to it, i.e.,

(9)

3
1 1

This can be written as

R = w

2where w. are IN(0,a )
1 w

(10)

(11)

R is a (p—i)

method, we get

(p+l) matrix.

the estimator

Using the

of as

Theil-Goldberger [14] mixed estimation

= [X'X + kR'R] X'y
2

where k = 4 is assumed known,

w

If we follow the non-stochastic version of Shiller's method, we minimize

(y — X) (y - X) subject to R = 0 and the estimator of we obtain is

= - (X'X) R' [R(X'X) R'] R

(12)

(13)

where

R=

1 -3 —3 1 0 0

0 1 -3 -3 1 0

- - ol
- — 0

—3 —3 1
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where 8 is the OLS estimator of 8. This expression can be shown to be equivalent

to the expression in (7). However when we introduce the stochastic term, it makes

a difference whether we make (2) or (9) stochastic.

Cc) Ridge Estimator: Heoerl and Kennard [5] present a set of biased least squares

estimators which they call 'ridge estimators'. Their suggestion is to use, instead

of the least squares estimator

8 = (X'X) X'y

the modified estimator

= (X'X ÷ kI) X'y (14)

They suggest an iterative procedure to decide on a suitable k.

Instead of (14) we can consider a more general form

= (X'X + kQ)1 X'y (15)

where Q is a positive semi-definite matrix and written this way it can be seen

that Shiller's estimator (12) is also a ridge estimator.

One can give a Bayesian interpretation to all these estimators and in

fact this way of looking at the estimators is more revealing. Consider the ridge

estimator (14), If the prior distribution of 8 is N(O,t21) then the mean of the

posterior distribution of 8 is given by (14) with k = c12/T2. Instead, if we

assume the prior distribution of 8 to be N(6,t2) then the posterior distribution

of 8 is also normal with mean

[X'X + k1]1 [X'y + k1] (16)

2 —1—1and variance a (X'X + kL )

If t = I then the posterior mean is

(X'X + kI) (X'y + k6) (17)
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The important point to note is that the commonly used ridge estimator

given by (14) implies a prior distribution for with mean zero. This may not be

a plausible assumption to make in many applications and if so equation (16) or (17)

should be used. These modifications can be made very easily.

The Bayesian approach to the stochastic version of the Almon lag given

by (8) can easily be seen to yield the ridge estimator as the posterior mean.

Equation (8) can be written as

= Hc + v

where H is defined in (4).

Following Lindley and Smith [10] we can say that

y " N(X, i a2)
(18)

and '' N(Ho, I

This still leaves us with the specification of the priors for c. We can assume

a diffuse prior for c. Lindley and Smith prove the following theorem:

If y "- N(A101, C1)

N(A®2, C2)

and we assume a diffuse prior for then the posterior distribution of is

N(D d , D ) where00 0

D1 = A C1 A1 + C - C A2(A C1 A2) A C

and d=ACy
In our case the posterior mean of is (after simplification)

= (x1x + kM) X'y (19)
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where M is as defined in (5) and k =

Thus we see that the mean of the posterior distribution for the Bayesian version

of the stochastic Almon lag specification is a ridge estimator of .

As - 0 this should give the usual Almon estimator defined in (7). This can be

checked as follows.

= (X'X + kM) Xty

= (X'X + kM2) X'y since M is idempotent.

Now (X'X + kM2) can be written as (see Rao [11] p. )

(X'X)1 - (X'X) M [M' (X'X) M + - I]_1 M' (X'X)

As - 0, - 0 and thus = the expression in (7).

Henceforth we will call the estimator (18) the Bayesian Almon estimator. The

fact that k = suggests an iterative procedure for estimating k. We first

estimate from the least squares residuals and from the estimated least

square s's. In our computation of the Bayesian Almon estimator we used the itera-

tive procedure suggested by Lindley and Smith ([10], p. 17).1 In principle the

same iterative procedure can also be used for Shiller's method.

(d) Lindley-Smith Estimator: Instead of making the assumption (18) Lindley and

Smith assume

N(ul, I)

where 1 is the unit vector and we have a vague prior for u. This is just a

special case of the Almon lag (with zero degree polynomial). Thus, the posterior

1Throughout our discussion of the Bayesian Almon estimator, we assumed and

known. 1ien these are not known one has to assume priors for them. Since the
analysis is similar to that given in Lindley and Smith we will not repeat it here.
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mean they get is the same as in (19) except that instead of I-I we have the unit

vector 1 and hence M = I - —i--- J when J is a matrix with all elements unity.
p+l p+1 p+l

This is the case considered by Lindley and Smith and for the sake of comparison

we computed this estimator too using the iterative procedure suggested by them.

3. The Results

For illustrative purposes we used two sets of data: one the data used

by Almon [1] and the other the data used by Griliches et al., [3]. The former

data consist of 60 observations and the latter of 56 observations. Tables (1)

and (2) present the correlation matrices for the two sets of data. These indi-

cate how highly inter-correlated the variables are.

Tables (3) and (4) present the estimates obtained by using the OLS

method, the Lindley-Smith method, the Bayes-Almon method and Shiller's method.

In all cases the lag distribution was arbitrarily terminated at x8. For the

Bayes-Almon method we used a quadratic polynomial. As mentioned earlier, the

Lindley-Smith method is a particular case of the Bayes-Almon method and corre-

sponds to a zero-degree polynomial. Clearly the results given by this method

are not as satisfactory as those obtained by a second degree polynomial. We

report in the table the final value k* of k arrived at by the iterative procedure

and we also report the number of iterations after which things

tconverged.t? With the consumption function data the value of k did not increase

much but with the Almon data the value of k kept on increasing. In both cases

we terminated the iterations when the sum of the absolute values of the changes

in the coefficients was less than .001.

For Shiller's method k was selected using the rule of thumb described

2

2
in his paper viz, in k = —s-we tak:: as the estimate of the residual variance

from the OLS regression and as where S is the sum of the lag coefficients.

p
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2 1In our case p = 8 and S " 1 so that -. There is of course one problem with

assuming a constant value of a. In this case k will change with the units of

measurement of y, since changes. As mentioned earlier, the same iterative pro-

cedure used by Lindley and Smith can also be used for Shiller's method but we did

not pursue this avenue yet. In our computations we used a first degree smooth-

ness prior for the estimation by Shiller's method. This implies a first degree

Almon polynomial.

We used the first degree smoothness prior because Shiller got good re-

suits with it in his paper and further it did capture the shape of a lag distri-

bution that first rises and then declines. Since the results in Tables 3 and 4

do not enable us to make an adequate comparison between Shiller's method and the

Bayes-Almon method, we recomputed the latter for the first degree polynomial. For

the Almon data the coefficients were respectively: .12116, .12857, .14052, .13647,

.12201, .10191, .09336, .07708, .06515. Sum = .98623 (convergence in 6 iterations).

For the consumption function data the coefficients were respectively: .55104,

.31501, .16258, -.15350, .00945, —.09091, .02169, .03385, .08655. Sum = .93576

(convergence in 7 iterations). These results show that there are substantial dif-

ferences in the results produced by the two different ways of making the Almon

polynomial specification stochastic. The Shiller procedure has produced a smoother

lag distribution (particularly for the consumption function data) than the Bayes-Almon

procedure but the estimates of the lag coefficients (particularly the initial ones)

make more sense for the latter procedure. It is conceivable that the estimates

produced by the two methods come closer if we used a similar iterative procedure

for the Shiller method. But we have not pursued this further. It would be il-

luminating if we started with a known lag distribution and we are doing a Monte-Carlo

study of the performance of the iterated and non-iterated estimators for the dif-

ferent specifications of the models discussed here. Hopefully this will shed more

light on their relative performance.
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The reason why the two pieces of data discussed here were selected is

that there do exist estimates obtained by other methods (Koyck, Solow, etc.) for

these data. These methods can he characterized as "strong parametric specifications"

because they imply a strong specification that the 's lie on a particular shaped

distribution. By contrast the methods discussed here are weak parametric speci-.

fications. We need not make an elaborate comparison here but the results obtained

suggest that the strong parametric specifications may be responsible for producing

some "plausible" - but distorted - lag shapes.

Finally, we come to the straight ridge method - the method of Hoerl and

Kennard. We take

= (X'X + kI)1 X'y

The usual procedure is to take X'X as the correlation matrix rather than the matrix

of variances and covariances (to avoid problems with units of measurement). This

merely amounts to multiplying the diagonal elements of the variance covariance

matrix X'X by (1+k). We computed the ridge estimates by this method. We did

not use an iterative procedure. Instead we used some trial values and one of

the values of k suggested by Paul Holland {6] viz. k1. We did not use the other

k's suggested by him because they involve an iterative computation. Holland's

suggestion was in the context of Robust regression but we simplified it for the

simple ridge method here. However, his suggested k did not work too well. For

the Almon data k'1 turned out to be negative (-.031). For the consumption func-

tion data it was .026. But for this value of k, the ridge estimator really

smoothed things out. The estimates of the parameters were: ,11099, .10967,

.10724, .10357, .10274, .10214, .10430, .10732, .11021. Sum = .95818. Apart

from the fact that the sum is a bit high, the total is almost equally distributed

among all the coefficients. Hence we decided to see what the results look like
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if k was reduced substantially. Table 5 presents the results for the consumption

function data, for different values of k. Since our experience with the ridge

regression is similar for the Almon data, we are not presenting the results here.

The one puzzling feature in the results is the large and stable coefficient for

x8. This is perhaps a consequence of some seasonal elements in the data that

we have not accounted for (a similar result did not appear for the Almon data).

But apart from this, what the results in Table 5 (and similar results with Almon

data not reported here) suggest is that the k for the simple Hoerl and Kennard

ridge method has to be really very low. For values of k even as low as 0.1 or

.005, the method really smooths things out. This also suggests the other modi-

fications of the ridge method suggested earlier in the paper are more promising

than the Hoerl and Kennard method.

4. Conclusions

The paper explains how two different stochastic formulations of the

Almon polynomial method result in ridge estimators and how the Lindley-Smith pro-

cedure is also a special case of the Bayes-Almon method. All these methods have

been applied for illustrative purposes to two sets of data. The results show

that the ridge estimator of Hoerl arid Kennard and the extension given by Lindley

and Smith are not as promising for distributed lag estimation as the more general

methods such as the stochastic versions of the Almon polynomial method. There

are two ways of making the Almon polynomial method stochastic - one given by

Shiller and the other which is a straightforward application of the Lindley and

Smith procedure. The results presented, though inconclusive, suggest that the

latter procedure is perhaps more flexible than Shiller's. Shiller argues that he

does not have to specify a prior distribution for - all he has to do is to

specify a prior for differences in the F.. However, this is only superficially

true. If we assume a first degree smoothness prior for F this leaves two of the
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's (say and ) free and implicitly Shiller is assuming a diffuse prior for
0 1

these parameters. Anyway the relative merits of the two procedures and the itera-

tive versus non-iterative computation of k need more detailed study and the

results of some further empirical examples and some Monte Carlo experiments which

are under way will be presented elsewhere.
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Table 1: Correlation Matrix: Almon Data

1 1,000
2 0,92
3 0,910
14 O,FL45
5 0,769
6 0,700
7 0,630
8 0,53

0.Sn
10 0.8he,

0,Q5 1,000
0,qq9 0•qr,7
0,??4 0.891
U,94 0,887

Table 2: Correlation Matrix: Consumption Function Data

1,000
0,QSO
0, 89

Note: Variable 10 is the dependent variable Variables 1 to 9 are x to

-8•

1.000
0,961 1,000
O,904 0,960 1.000
0,8142 0,906 0,959 1,000
0,763 fl,37 0,903 0,958
0,689 0,752 0.829 0.899
0.19 0,h60 0,748 0.83?
0,569 0,'fli fl,7i 0,7U3
0.91w 0,958 0,'7

I • OOn

0,759 1,000

I • 000
0,?9.4 1,000
0,978 0,979 1,000

1 1,000
2 0,995 1,000
3 0,991 0,995 )00
14 09Mb 0,991 0,'5 1,000
5 0,982 0,98h 0'90 0,995 1,000
6 0,980 0,982 0.985 0,990 O•995
7 0,960 0,980 0,981 0,990 0,9qr, 1,000
8 o,qo 0,980 0,6i 0,985 0,990 0,9959 0,981 0.981 0•983 0,979 0•980 0,95 fl,Qfl10 0,99 0.99t 0,98h 0,978 0,915
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Table 3: Estimates for Almon Data

Lag OLS Lindley-Smith
= 193.5

(After 8 iter.)

Bayes-Almon
k* = 12.35

(After 5 iter.)

Shiller
k = 729.326

0 .07272 .11441 .09142 .13251

1 .08121 .11648 .12446 .13209

2 .23184 .11845 e15607 .13052

3 .18436 .11698 .15540 .12631

4 .13406 .11314 .13508 .11868

5 .01382 .10820 .10678 .10778

6 .13647 .10517 O9980 .09445

7 .06380 .10220 .07331 .07962

8 .06870 .10086 .04225 .06423

Sum .98698 .99589 .98457 .98619
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Table 4: Estimates for the Consumption Function Data

Lag OLS Lindley-Smith
= .0364

(After 9 iter.)
Bayes-Almon
k* = .0182

(After 5 iter.)
Shiller

k = 329.466

0 .70974 .47681 .64012 .28324

1 .20808 .29430 .29529 .23784

2 .27463 .15736 .14319 .19255

3 -.48068 —.10832 -.21783 .14755

4 .25129 .00044 .02372 .10296

5 -.23845 .08088 -.12591 .05883

6 .12432 .01800 .00688 .01508

7 -.11278 .05833 .00925 -.02843

8 .19838 .12451 .16081 -.07183

Sun .93453 1.10231 .93552
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Table 5: Ridge Estimates for Consumption Function Data

Value of k

Lag 0.0 .0002 .0006 .0010 .0014 .0020

0 .70974 .42246 .29302 .24038 .21096 .18489

1 .20808 .28187 .22554 .19578 .17773 .16096

2 .27463 .15615 .14612 .13865 .13324 .12764

3 - .48068 —.06079 .03052 .05761 .07060 .08088

4 .25129 -.00301 .02429 .04473 .05736 .06902

5 — .23845 —.06461 — .00562 .02304 .04010 .05578

6 .12432 .01705 .03600 .05116 .06135 .07138

7 —.11278 .06733 .07964 .08491 .08862 .09254

8 .19838 .12632 .11941 .11563 .11367 .11220

Sum .93453 .94277 .94892 .95189 .95363 .95529

.
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