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Abstract

A factorization of the basis for any block-angular 12 nDdel is presented,

and its inverse is shown to be readily irintainable as piecemeal product-

forms plus possible additional columns. Straightforward rules for piece-

meal transforirat ion of full rows and columns are given.
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1. Environment

The foim of a general block-angular LP nodel for decomposition algorithms

is as follows:
PAX+ZAX=b.
pl p p

where the A and B are matrices of row-order m0 and m

(pO ,1,. . . ,P for p=l,. . . ,P
for B) X are np_order

columns matching the coltmn orders of the A (and B for

p > 0), and b are rn-order columns of constants.

A0 and each B are assumed to contain full nip-order identity matrices

with corresponding logical (slack) variables in the X columis. Except

as explicitly noted, it is unnecessary to distinguish logical and

structural variables in the present discussion. One fr logical in

= {X, X2,..., X0 I

is to be maximized. For simplicity, we will take this to be X when

necessary to distinguish it, i.e •, the functional is the top row.

When necessary to be precise, the ui_order identity matrix will be

denoted by I, but usually I will stand for the identity of whatever order

is required. Occasssionally 'k is used to dentoe the k-order identity.

In the present discussion, the total model is of only minor interest,

the basis for some solution to such a model being the focus of attention.

Hence the same letters as above will be used for substructures of a basis,

with no additional notation since additional marks will be required for

other purposes. Thus, in the sequel, A0 and B stand for square, nonsingular

matrices unless modified by "the full".



—2—

2. A General Basis

Almost the entire difficulty in partitioning a block-angular model for

computation is due to the fact that a general basis has a more Oclicated

structure than the entire model. The most generel structure required for

a basis is as follows:

(A T ...TJA...A...Aoo ol 0±-' 1 p P

(0 T1 ... 0) B1 =

(0 0..T ...O) B
pp p

(0 0 UT) •B
PP P

S
where A is k columns from the full A , T are00 0 0 op
k columns from the full A with T the corresponding

columns from the full B

The columns of A00 and of each T0 are all linearly independent so that

the matrix

(A T ... T00 ol oP

is nonsingular. Obviously then

P
k m
p a

p=o



—3-.

3. Factoring of D arid

Let

10 A
B=

B1

p

B

The matrix B is readily factored into P matrices of the form

1g... Ar... 0
I

•B
p

.. I

which are completely corrmutative arid have inverses of the same form. Hence

the inverse of B can be computed piecemeal and the pieces multiplied together

in any order. Since P2 encompases all possible cases, that is, any results

can be applied recursively, we illustrate the above statements for P2, which

in fact constitutes a proof.

II Ai I
-A B1. [ A2 -1 [ -A B

B1 B1 . I I

[ I L B2 [



I A I
A2 [i A2 1 F Al 1

I Al A2 1
B1

I = I B =

ij B2 [ B2j [ 'j A2

Let -A B1 = A Then substituting A for A in the above shows that thepp p p p
inverses corimute and nniLtiply together in exactly the same way. Hence

handling of B and B1 poses no problem at all. Note that B is

computed autanaticafly by the product form of inverse. In fact, the above

factorization is merely a generalization of a special case of the product

form of inverse. This gave rise to the name "block-product form of inverse"
[LIP]in an ealier decomposition algorithm.

We must now seek a matrix E such that either EBD or BED. A little

experimentation should convice the reader that the form EB leads to riore

complications than it resolves. Hence, we adopt the form BE=D.

Let E be partitioned exactly as D with blocks denoted by E . Let
pq

E Q forp>0
op

E =1 forp>0
pp p

E =0
pq

E =B(0..T ...0)=(0...T ...0) forp>0
pa p pp pp

P
E (A T .. .T ) - A B1 (0.. .T . . .0)00 oool p::1 pp pp

P
= (A T . . .T ) + A (0.. .T ..0)

00 ol OP
1 p pp

P
=(A T ...T )— A (0... ...0)

00 ol oP p pp
p=l .
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Note that the second tern in E0 can be computed in either of t .ys, which-
ever is itore convenient.

Again i1ustrating with P2, it is apparent that the above definitions

of E satisfy the equation BE-D.

I A ((A00 T01 T2) - (0 0) -A2 (0 0 T22))

a1 (0T110)

B2 (0022)

(A T T) A.. A
00 ol 02 j 2

(0 T11 0) B1

(0 0 T22) B2

—1 —1 —1
Therefore D = E B . Since E is of the fonn

E00

E10 i

20
its inverse is of the form

-E E' I10 oo

—E E1 I20 00
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The difficulty is thus reduced to ccznputing E . Although this looks

somewhat formidable, further simplications are possible.

4. Recathining Second Order Factors

Consider a single factor of B1 in the form

10 Ai = D
[oBjJ

and an with all T—columns replaced with unit vectors, the positions

in all lower blocks being zero, i.e.

{Al,

The

(A00 'm - k0 0
Suppose some column T1 from the full

replace the (k0+l) - St unit vector.

transformed by D1, as follows:

D' Tl = 1 All rTi
L BJLT1±[

B1} is to be irrtroduced to

column T must first be

[ol
+

A1 Til = [To1 A1

L B1T L Tl
The result is
and

E10
. The

Let T
ol

.

S

exactly the two subcolumns which should go into the new Eoo

new E can be computed in product form, as follows:

T1 - A1

-l -=E T
00 01

the eta column formed from o by
k-Fl

pivoting on (Y.

nil the extension to n1 using T11

FCoi the elementary column matrix containing

r in column k +1
ol 0
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Then

= ((F() A) 1 'm0-k-l
= OO nO1

(Note: The notation A is imprecise since A00 is riot square. What

is meant is the part of E corresponding to A00. The remaining unit

columns are unchanged.)

Now -E10 E - (0.. .T11...) E which is Inerely*

row k0+l of repeated m,1 times scaled by the elements

Call this highly singular matrix (E)10. To see its effect in

subsequent transformations, suppose some general column S={S0,S1,S2}

is to be transformed into terms of the new basis or, nore briefly,

"updated". First

IAA S s+A..s S12 o o 1 1 2

D1S = B1 -li B1S1l s2 B1S2

Note that is simply the upper parts of the updates by D' and

added to S0. Next,

00 0 00 0

(E) I (E)10

0
12 s2 S2

Such a product of a column on the left multiplied by a row on the right
is often called an outer product, as it is in the sequel.
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is merely another update to and =
S2

But what of the term

(E)10 It is merely

k+l
- S° (sclar times m1-order column)

Hence the computation and recording of either Ti11 or (E)10 is

unnecessary. Only T11 need be kept. Furthermore, since it applies only

to the p=l seg'nent, it can be kept with the pl block. If there were

severul such columns, they would all be additive (subtractive) with

multipliers from . If (E)20 were not void, it would apply in the

same way to

This appears to be about as complete a factorization if as is
possible. Note that all inverse factors except the can be carried

in product form in the usual manner, in fact this is advantageous for

computing the terms A S. And even the application of the is only a

slight variation on usual product-form updating.

Note also that if a new T1 replaces the original T1, the upper part

can be incorporated in the product form of and the lower part simply

replaces T11. It must be understood, however, that if any B1 changes,

the rm.ist be updated, which is another reason for carrying them with

block p. Moreover, there is an effect on E which is rather more

complicated. This will be taken up in Section 6.

.
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5. Row Updates with the Factored Inverse

Suppose a general row R CR0 ,R1,. ..
,R,) must be transformed. In

point of fact, the simplex method and most of its variations almost never

update a general row, except the Phase 1 feasibility form. In a decanposi-

tion model, feasible solutions to the subproblems must be found independently

anyway, so that even a feasibility form would be nonzero only in R0. In

dual pricing, the denominator form would be nonzero in some block and

zero elsewhere. However, we may as well look at the general case since the

special cases will be apparent.

In order to compute PD, we first compute

E1
= CR ,R,1,R )o 2 (E)10 I

(E)20 12

((RQE ÷ R1(E' 10 + R2 (E)20), R1, R2)

Since R1 and R2 are unchanged we can concentrate on R0. The first term is

merely the usual backward transformation if E is kept in product form.

If R1=R2=0, as would often be the case, that is the end of it, but suppose

not. However, even then, there is a further effect only when both R and
(E) are nonzero. Suppose R1 and (E),0 are both nonzero; what is their0 k+l
product? Recall that (E)10 is the outer product of and (E0)

° or,
rrore generally, the r-th row of , or the sun of several such outer

products for r1,r2,... For each such r, let

R1 T, an inner product over m1 elements
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Then

R1(E1)10 = r
r

where

r is the r-th row of E

This is readily computed by adding each to the r-th element of

before computing

R0 00

Let be the product so computed. Then we must compute

= (,R1R2) B'

For p1, this gives

(0,R1,R2) B'
= +

I

and this applied to block p2 gives

A2

'ok + R1B1) ,R2)
I 'Ai +

R1B1) 'oA2 + R2B))

=
(RQ,R1.R2)

Note that and that p > 0, are of the same form, merely the

usual backward transforrr.tion for (Re, R) post-multiplied by
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Thus the can be computed piecemeal provided all the are

accessible first to compute R0.

6. Effect of Change in D on E

It has thus far been shown that both row and co1imin updates are

readily performed with the factored inverse and that changes in

are easily accounted for. However, a change in a D1is not as snp1e

when T exist. First of all, the must be updated, as previously

noted, but this is not different from one eta-update on any set of 1n_order

columns. We must now investigate the effect on E.

Consider again the situation arrived at with E in Section L, and

suppose the next change of basis occurs in D1, i.e. in {A1 ,
B..

Insofar

as D1 is concerned, this is handled in normal fashion with an additional

eta-column. But E and E were computed on the basis of the original D1

and are no longer valid. Drop the hats on Eand E and consider them

the current E and E . We now have D arid D . Let00 00 1 1
T-AT. Tol i ol

T11 T11

Then the (k0+l)-st column of E has changed from to T01 and must be

accounted for in E. This is done as usual by computing

—l
-'

czE T
oo ol

k+l
arid pivoting on ct

0 to form a new which is added to the product form

for E to give (a new) . Furthermore, this must be done for all T-columns

from block pl if several are in effect.
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The question arises as to whether a
°

might not vanish so that pivoting

is not possible. We glossed over this question in the first place but presumably

the column T1 was selected to pivot in position k0+l becasue. that a-element

was nonzero. The change in {A1 ,B1}, however, was determined on the basis of

some updated element from the full B1 being nonzero and has no obvious implication

for T1 and a. One answer is that since, in a global sense, we are simply

nuiltiplying nonsingular matrices to form a nonsingular product, no factor

can become singular, but this argument is incomplete and vague.

Let S be the column from the full {A1 ,
B1

} which replaced the r-th

column Cr > m) of D1 to give D1. To make this selection, the column S

had to be updated and made into an a-column. Let us carry out this

calculation, again with P 2.

I A1 A2 S0 S0 + A1 S1

S = s1 ç' S1 =

B;1 0 2

E' S S
00 C) 00 0 0

E1 = (E)10 I
S1 CE1)10 . +

(E)20 I 0 (E)20

Nov 0 since it was selected to pivot on. Assuming only one T11 in

position k0+1, then

k +1=_o T1�0 .
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Hence not both terms are zero arid they are not equal. But we have

uncovered another question: How do we know that 0 so the pivot can be

made in D1? Let us answer this question first.

Suppose ço. Then S should not replace the r-th column in but
k +1

the T1 column in E since S0 ° 0. We have already seen how to accomplish

this. But of course this is not to the purpose, so after replacing T1 with S,

we must replace the r-th column of D1 with T1. We are assured that this is

possible since T, the second pivot, is also nonzero.
k +1

Now suppose 0. The ci. we initially started to investigate
- k +1

is simply S0 ° and what makes it nonzero? Suppose it is zero. Then S
—1 *

does not depend on T1 and vice-versa so Eco need not be updated. This

seems like a nice answer but there is a catch.

Let us now assume there are several T-columns from block pl, say

in positions t1,t2,... Then

1 i ot
Now if ç=o, we can select any 0 for the interchange, say the largest

magnitude. But if 0 and the sum is zero, it is not necessarily true that

S is independent of all Tt. Furthermore if the sum is not zero but some S

are zero, they may not remain zero as individual updates to E are made.

Hence the updating of E may be order-dependent. (A similar phenomenon

occurs in updating GUB bases which are a special case of decomposition. The

situation is much messier in general block-angular models.)

k+l - -
Note -that if S ° 0, that is, T11 does not enter into the

calculation and hence does not change.
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7. Cross-Block Exchanges

There are two remaining cases to consider: a column fran the fufl

A replacing a T-column, and a column fran block q replacing one from block p.

We will take up the latter first.

The calculation of S in the previous section showed that although

S2O, 2 might not be zero and the pivot might be selected fran this

segment. However, in this case, for sane r-index in p2 and some t-index in

p=0,

Hence column S from block 1 replaces column Tt from block 2 in E. The

old Tt2 must be dropped and l added to the T-columns for p1. The

E1 is updated in standard fashion. There is no trouble with zero values.

Now suppose some column S from the fullA0 is to replace sane T-column.

In this case,

E1 S
oo_ 0

(E)10 S

(E)20 s0

•

since S =S 0 and . The update of E1 is standard, i.e. S is a12 0-0 oo 0

igular a-column pivoting in some position r m0. The is merely

dropped from the set for block p.

We thus have the rather surprising result that inter-block exchanges

are simpler tbari intra-block exchanges, except for p0. (A column from the full

A0 replacing another in is a standard operation, just like the last case above.)

.
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8. Suixmaxy of Basis-Change Cases

We sumBarize here for nore convenient reference the various basis—

change cases analyzed in prior sections. The designation (p ,q) indicated

(in, out) with respect to blocks.

A. Case (o,o)

Some S from the full A0 replaces another in Eco•

Standard LP update.

B. Case (o,p)

Same as Case (o,o) except the outgoing T-column must have its

dropped from the set p.

C. Case (p,o)

Compute T and T with D1. Use T' as the entering column in
op pp p op

E and add P to the set of T-columns for block p.
oo pp

D. Case (p,g)

Can only occur as a change in E with one or irore columns
Tqq

in

effect. Drop the outgoing Tqq from the q set and then proceed

as in Case (p,o).

E. Case (p,p)

1. 0 where r is basis index of outgoing column.

Use as the -co1umn to update to D1.

If O, done. ((E)0 O if and only if the

set of T-columns for block p is empty.) If not,

proceed as follows:
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.
Update all to reflect the change in D.

Each one has a position index t. For each 0,

use S0 as an entering column in E pivoting on

position t. This may have to be done recursively

until aU t are processed. (Note that itself

changes with each such update.)

2.
p

In this case, 0. Select, say,
t

ft]t°J
as the t of interest. Theating Tt as an outgoing

co1inrn, do Case (p ,q). (Actually qp but this is

ijirnaterial.) Now treating Tt as an incoming co1i.nin

(in place of S which replaced it in E), do step 1.

above.

9. A Skeletal Decomposition Algorithm

Of the several algorithms which have been developed for block-angular

dnDmposition mdoels, the best-known and, probably for that reason, the

most successful have been those based on the Dantzig-Wolfe principle.

However, D-W algorithms have often proved unsatisifacotry in practice

although the generality of approach is sometimes indispensible.

The concept of partitioning is not usually associated with D-W algorithms

and, in fact, all algorithms are sometimes regarded as falling into t classes:

D—W or Generalized LP, and partitioning schemes. But this is inaccurate.
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D-W algorithms must deal with subproblems and a master or derived problem just

as any others do. The proper distinction is whether or not factorization of

the basis inverse is employed. In D-W algorithms, factorization of B1 is

implicitly used but no particular point is made of it. Nevertheless,

factorization is an outgrowth of Dantzig's old idea of a pseudo-basis. The
[5]

GUB algorithm of Dantzig and Van Slyke when implemented with product-form

is a special case of complete factorization, or, more properly, complete

factorization of a special case of a block-angular model.
[3]

The Beale decomposition scheme, produced before computers were adequate,

used a form of pseudo-basis and what amounted to factorization. The block-
[4]

product algorithm developed by this writer used factorization essentiafly as

described in the preceding sections, though in more tortuous forms, combined

with a parametric RHS approach. Unfortunately, most readers focused on the

parametric aspects rather than the factorization. Also, the computer

implementations of the algorithm (of which there were t with a third variant

reportedly under development) fell into obscurity for nontechnical reasons.

Consequently, factorization as such is not well known. However, the

excellent performance of GUB algorithms in recent years ought to recommend

more attention to it. Furthermore, it is not antithetical to other concepts

but may be helpful to their successful implementation. Any reasonable

algorithm rrust, in this writer's opinion, employ the factorization of B1.

Indeed, this is virtually the raison d'etre for decomposing block-angular

odels. The use of E1, while more complicated, avoids many of the

numerical problems of standard D-W algorithms and the associated slow-

convergence properties.
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A skeletal algorithm is outlined below. Points at which a user's

own variation are easily incorporated will be noted. The reason for such a

skeletal algorithm is to standardize and automate the various complicated

data handling problems and transformations which always occur. It is simply

iractical for each investigator to start building all his own system gear from

scratch. -iat is needed is an off-the-shelf decomposition "engine" which can

be used in a variety of "vehicles".

Step 0 Obtain, generate or guess a master pricing row

oi'" 'om' i.e., a set of dual variable

values for the A . A number of schemes for

obtaining ir0 have been proposed and several used.

Any meaningful approach is worth considering.

However, it must be realized that even if the

optimal ir were provided, no algorithm will

produce a global optimal solution in one sweep

except by sheer chance.

Step 1 Obtain a "good" feasible solution to each subproblem

in the following form:

maximize
mjjiimjze ii A subject to

r Ally1 lo1° H RI_I
10 BHX I lbL JLJ L

arid stated ranges on the X,, where VP is a column

of m free variables.0
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It is probably wasteful to fully optimize each

on the first sweep but some irnprovnent

over the first feasible solution should be

obtained. If w0A goes unbounded, just stop

at that point since presumably is incorrect.

[The user may have additional rules to impose here.]

Accumulate Z VP as the subproblems are solved.
P

If any subproblem is infeasible, the whole

model is andthere is no use continuing. Also

consuct the basic solution column { 0,f,... ,
where is the basic subcoliinn of

Step 2 We have the following (probably infeasible)

solution to the whole model.

B=]I D , the bases obtained in Step 1, with
pP

corresponding D DpP
Since V + & X = 0, with all X feasible,

P
.Z A X - E V

p1 p p p P

P
E1 where m = E m , hence

0 p

EI EIm' 00 0
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Thus,

E U +A X =b000 pp •0
B X b (pl,. ..,P)

where U0 is the subcoluinn of logical variables in X0

and has the vector value b0+ V . Only elements ofPP
U0 are prinially infeasible. U becomes If the
user wishes to use a D-W algorithm, he may alternatively

regard the VP as candidate columns and fonn the derived

problem

AX -E E V. A. zb00 Jp Jp 0

A. =1
j

where only jl for each p is presently defined.

The effect is the same in either event: If U0

is not feasible, a Phase 1 is now generated;

if it is, a Phase 2 . Then an atteirt is made

to obtain either feasibility or optiniality with

A0X0 holding the V constant. If an unbounded

feasible solution is found, the whole model is
unbounded and. nothing more need be done.

Otherwise a final for this sweep is obtained,

whether Phase 1 or Phase 2. In general, E00 is

now of the form initially assumed in Section L,

with corresxnding
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Step 2A An irrevocable decision must be made as to whether

to use factorization or not. If a D-W approach

or some other convergence scheme is employed, the

rest of the mechanics are essentially repetitions

of Step 1, possibly with user's selection and

termination rules. Otherwise, proceed to

Step 3 for factorization.

Step 3 Establish some tolersrice (negative upper limit

in the usual scheme) for an acceptable reduced

cost or "di". This should have a larger magnitude

than the standard system tolerance but must

progressively approach the latter as the end of

the phase nears.

Using the current ir , form R by adding* the f to

in Section 5. All for p > 0. (Alternatively,

one could use the dual algorithm with two R-forms but

this is less practical, particularly if P is large,

requiring dual pricing of all subproblems.)

Comput? R0 and proceed to form the for pl ,2,... and

price the corresponding subproblems until an acceptable

is found.

On the first sweep of Step 3 (the second sweep altogether), all
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[The user may wish to impose priority rules on

selection of p. If these are independent of

the current solution, the simplest way is to

input the subproblems in priority order in the

first place.]

Step Li. A column S (say for variable X) from some block

ps has been selected to enter the solution (enter

the basis or change bound). First form

BSDS; -o
5 S

S

as in Section L. (S 0 for p 0, s) This column

should be saved in case it is needed later.

= - -
Now compute S0 and all for which exist.

will exist in any event.) As each pice is

generated, do pivot selection for

vs , pO,... ,s..

retaining the subcolumn for any winning ratio.

(In fact, the entire vector should be retained.)

At the end, some winning ratio

r row r in block t

or

change of bound for X
is at hand.
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The new solution vector must now be computed:

= B - 0 , over all nonzero

If a change of bound occurred, we nay return

to Step 3 arid continue pricing. Otherwise a
change of basis must be made in Step 5.

Step 5 Depending on whether s 0, t0, and st,
update the entire basis inverse using the

appropriate case from Section 8.

Step 6 Return to block 0 and reoptniize it (whether

in Phase 1 or Phase 2), updating the basis

as required and obtaining a new Note

that this can possibly eliminate some

T-colurnns. Now return to Step 3.

Terminations:

1. Some subproblem is infeasible in Step 1.

No feasible solution to model.

2. An unbounded solution is found in Step 2.

Entire model is unbounded.

3. No acceptable d found in Step 3, even after

tolerance is set to system standard,

(a) In Phase 1, no feasible solution to model.

(b) In Phase 2, current solution is optimal.
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ii.. No 0-value found in Step 4. (Can only happen in Phase 2

unless digital difficulties occur.) An unbounded solution

has been found, viz:

- 0 for any 0 > 0
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