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suggesting that the market recognizes differences across multiple grading criteria.
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I.  Introduction 

Market economies devote substantial resources to certify product quality—

Educational Testing Services (ETS) offers SAT tests for college applicants, U.S. News & 

World Report ranks universities, Underwriters Laboratories certifies consumer and 

industrial products, Moody’s reports bond ratings, and accounting companies audit 

financial reports for public corporations.  In theory, if one party of the trade possesses 

superior information about product quality, a professional certificate can alleviate the 

information asymmetry, and therefore attenuate the lemons problem and facilitate trade 

(Akerlof 1970).1   

The informational role of professional certification has profound implications for 

markets, yet little is known empirically how professional certifiers behave and compete. 

Indeed, while theories have advanced to making welfare comparisons across market 

structures (Lizzeri 1999, Franzoni 1999) and regulators express concerns about the 

market power of certifiers (SEC 2003), little is known about the primitive facts on market 

structure and certifier performance.  For example, what information does a monopoly 

certifier provide?  Who obtains useful information from such a certificate?  How do 

subsequent entrants compete with the incumbent?  And, whether, and to what extent, 

entrants provide information to the market are all fundamental questions to which we 

have limited insights.  The lack of clean empirical evidence is not surprising since 

observational data alone might confound criteria differences and sorting effects, rendering 

field data suggestive, but not entirely compelling.  Indeed, even when field data 

circumvent these problems, too many theoretically relevant factors change simultaneously 

to allow a clean comparative static test.  

                                                 
1In addition to solving the lemon's problem, professional certifiers might have the expertise to provide 
information to both sides of the market.  Such information can significantly enhance allocative efficiency 
(Blackwell 1953).  
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The goal of this paper is to use two controlled field experiments to provide 

empirical insights on these basic questions.  Using sportscard grading as an example, we 

employ an approach—field experiments—that might prove useful for future scholars 

studying related phenomena.  For decades, a popular tool in the literature to answer such 

questions has been an event study.  Event studies infer information content by comparing, 

for example, market prices before and after the release of bond ratings or analysts’ 

earnings report.  Assuming market price is a sufficient statistic of the information 

available to the market, the event study approach has two caveats: it is difficult to control 

simultaneous information flow; and it is difficult to pin down the exact timing of the 

arrival of the “certificate” (rumors may spread before the official announcement).   

We overcome these difficulties by collecting data from one natural field 

experiment and one framed field experiment (see Harrison and List 2004 for a detailed 

discussion of natural versus framed field experiments).  Both experiments are undertaken 

in naturally occurring settings where the key theoretical factors are identifiable and arise 

endogenously.  Our chosen market—the sportscard grading industry—is attractive in this 

regard for several reasons.  First, there is a generally agreed upon set of traits for grading 

sportscards, and quality is a major determinant of price.  Second, the industry is relatively 

young, and thus far has been unregulated.  Third, there has been little change in the 

grading technology but the industry has evolved dramatically over the last 20 years.  

Specifically, the first grading service, PSA (Professional Sports Authenticators), began 

operating in 1987 and now belongs to a publicly traded company.  Due to institutional 

reasons detailed below, PSA has not changed its grading system since its inception.  In 

1999, the market expanded, and two competitors entered the market (Sportscard Guaranty 

LLC (SGC) entered in early 1999 and Beckett Grading Services (BGS) entered later in 

1999).  All three services continue operating today, and at least 14 other “fringe” grading 
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companies have joined the market since 1999.  In theory, these grading companies could 

compete in both price and grading criteria.  Empirically, the "big three" graders (PSA, 

SGC and BGS) adopt similar price structures but differ in grading criteria.2  

Based on this observation, our natural field experiment compares the information 

content of PSA grades to those of subsequent entrants, SGC and BGS.  In particular, we 

submitted 212 sportscards to all three major certifiers for grading—PSA, SGC, and 

BGS—as well as to three professional dealers who differ by card-dealing experience.  By 

making use of a random “round-robin” experimental design, we ensure proper inference 

about the relative information content across all graders.  Data gathered in this field 

experiment are fit in a structural econometric model to recover two aspects of grading 

criteria:  the grading cutoffs of each grader and the amount of noise in each grader’s 

signal.  This approach allows us to conduct a direct comparison across certifiers and 

professional market traders.  Furthermore, it allows us to compare the estimated grading 

criteria with actual market prices, and therefore detect whether the market understands the 

information conveyed in the certificates.  

Several insights emerge.  First, the grading monopolist, PSA, utilizes a signal that 

is as noisy as that of the experienced dealers.  This finding is complemented by insights 

gained from a supplementary framed field experiment that was conducted in 1997, when 

PSA acted as the monopolist certifier:  when the same card copy was auctioned with and 

without the PSA grade, non-dealers adjusted their bids in response to the publicized PSA 

grade, whereas dealers did not change their bidding distribution.  This suggests that PSA 

certificates were used to credibly distinguish lemons from non-lemons for the uninformed 

party, but added little information to the experienced market players.   

                                                 
2 PSA price has slightly increased over time, which is against the intuition that price should go down had 
newcomers intensified price competition.  Moreover, among the big three, the price difference for the most 
commonly used grading service (grading a number of cards in 20-30 days turnover time) is no more than 
$1.   
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In contrast, subsequent entrants—SGC and BGS—considerably sharpened the 

signal precision and adopted finer grading cutoffs in an attempt to differentiate from PSA.  

In doing so, they provided information to both dealers and non-dealers.  Importantly, 

because SGC and BGS differentiated from PSA in grading cutoffs, the three certifiers 

provide a much finer signal than any individual certifier.  This result suggests that 

although new entrants might capture market share from the incumbent, they do not 

entirely crowd out the information value of the incumbent’s grading scheme.  Rather, they 

add information value to the market.  Finally, we find a consistent mapping between 

market prices and our empirically estimated grading cutoffs and signal precision, which 

provides a robustness check of our empirical methods and suggests that the market 

efficiently uses information on the differences across multiple grading standards.   

 The remainder of our study proceeds as follows.  Section II reviews both 

theoretical and empirical literatures about professional certifiers. Section III provides a 

brief description of the sportscard certification market.  Section IV discusses our 

experimental design and empirical results.  Section V concludes.   

III. Literature Review 

Starting with Grossman (1981) and Milgrom (1981), many theorists have 

examined how intermediaries induce the market to reach a state of full information.  For 

example, Biglaiser (1993) sets up a model of "middlemen" and presents some guidelines 

on which markets benefit from expert intermediaries.  A related line of inquiry explores 

the theory of independent certifiers.  Such certifiers do not trade the certified goods, 

rather they maximize profits by setting certification fee and grading criterion.  Assuming 

certifiers can detect product quality with perfect accuracy and zero cost, Lizzeri (1999) 

shows that a monopoly certifier has incentives to provide a simple pass/fail certificate in 

order to extract information rents, but competition among intermediaries will lead to full 
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information revelation.  Franzoni (1999) examines a different setting where a third-party 

certificate of compliance is required for firms to engage in a regulated activity but 

detecting compliance involves unobserved efforts from the certifier. With certain liability 

imposed on certifiers, competition among certifiers will reduce certification fees but does 

not always improve social welfare.3  

Guerra (2001) extends Lizzeri's model by allowing buyers to have a noisy 

estimate of product quality in the absence of quality certificate. This modeling innovation 

yields a disclosure of ordered ranks (say A, B, C) instead of the simple pass or fail.  Hvide 

and Heifetz (2001) consider a free-entry model of certification, allowing each certifier to 

choose certification criterion and certification fee. They find that, in equilibrium, 

certifiers differentiate their grading criteria and the certification fee increases with the 

stringency of grading criterion.   

  Clearly, these models do not exactly match the structure of the sportscard grading 

industry.  For example, most theories assume that sellers and certifiers have perfect 

information about product quality, and therefore restrict the certifier’s role to solving the 

lemons problem.  In reality, there may be noise in the information set of both sellers and 

certifiers.  Most theories also assume that competing certifiers adopt grading criteria 

simultaneously. In reality, the incumbent may face difficulty revising her grading criteria 

because the new criteria may upset old customers.  Despite these differences, we believe 

the theoretical literature provides three insights that are useful benchmarks for our 

empirical analysis.   First, in the absence of competition, a monopoly certifier may not 

reveal full information.  Second, competition in the certification industry should improve 

the information content of certificates.  Third, if certifiers can choose grading criterion 

beyond the simple pass or fail, competition among certifiers is likely to lead to 

                                                 
3 The model restricts all certificates to pass/fail and asserts that in equilibrium all certifiers exert the same 
effort in determining compliance.    
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differentiation in grading criteria.  

Interestingly, on the empirical side, the bulk of the literature focuses on the 

certified goods rather than the certifier(s).  A typical event study investigates how the 

market reacts to a change of certificate. For example, Ippolito and Mathios (1990) 

investigate how cereal consumers respond after the government lifted a ban of advertising 

on the health benefits of fiber cereal consumption (while the fiber content of ready-to-eat 

cereal is verifiable through independent sources).  Jin and Leslie (2003) document how 

consumers and restaurants respond to the issue of restaurant hygiene grade cards. 

Numerous studies measure how the price of a financial asset reacts to bond rating, analyst 

report, or audited earnings report.4 Aside from these event studies, researchers have 

documented price and/or quality differences between certified and uncertified goods in 

thoroughbred racehorses (Wimmer and Chezum 2003), collectible stamps (Dewan and 

Hsu 2004) and sports cards (Jin and Kato forthcoming).  Chaney et al. (2004) examine 

how private firms select into different auditors and conclude that the fee-premium for the 

big-5 auditors disappears after controlling for selection.  

Only a few studies draw direct comparisons across certifiers.  For example, 

researchers have found that the market treats US bonds with split ratings differently from 

the bonds with equal ratings and the bonds with only one of the two ratings (Thompson 

and Vaz 1990, Cantor et al. 1997).  These findings suggest that Moody's and S&P may 

differentiate in rating criteria.  Yet because bond issuers can choose whether to obtain 

one or two ratings, these results are confounded with selection effects.  To distinguish the 

two explanations, Cantor and Packer (1997) examine the factors driving the split ratings 

                                                 
4The evidence on bond ratings is inconclusive.  Katz (1974), Grier and Katz (1976), and Hettenhouse and 
Sartoris (1976) report evidence that bond rating increases provided unanticipated information, but 
decreases did not.  Hand et al. (1992), Ederington and Goh (1998), and others have found the opposite 
result—bond rating decreases provided new information but increases did not.  Pinches and Singleton 
(1978), Wakeman (1981), and Weinstein (1977) found no evidence that bond rating changes provided new 
information in either direction.  For financial analysts and auditors, the general conclusion is that stock 
prices are responsive to some of their reports, but not to all of them (Healy and Palepu 2001). 
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between Moody’s, S&P, and two other rating agencies that accept voluntary request for 

bond rating.  They find limited evidence of selection bias.  

Berger et al. (2000) broaden the scope of professional certifiers to include both 

private certifiers and regulators. They use price and rating data to infer whether the 

government inspection and rating of a bank holding company Granger-cause a movement 

in Moody's rating of the same company, or vice versa. They find Granger-causality in 

both directions, which suggests that supervisors and bond rating agencies both acquire 

some information that aids the other group in forecasting changes in bank condition.  

Besides financial industries, differential ratings have also been documented in health plan 

report cards (Scanlon et al. 1998) and college rankings (Pike 2004).  

As is clear, the existing empirical literature has cleverly used both price and 

multiple rating data to infer differences across certifiers.  While econometric techniques 

are useful in identifying selection from the differentiation of grading scales, the evidence 

is indirect and does not reveal the full structure of grading differentiation.  In comparison, 

the experimental approach used in this paper allows us to circumvent the selection issue 

and obtain direct estimates on grading criteria.  Compared to the traditional event studies, 

field experiments enable us to focus on the informational content of professional 

certificate while controlling for numerous confounding factors that arise in an 

observational study.  

III. Sportscard Grading 

Each year, card companies design and print sets of cards depicting players and 

events from the previous season.  Once the print run of a particular set has been 

completed, the supply of each distinct card in the set is fixed.  The value of a particular 

card depends on its scarcity, the player depicted, and the physical condition of the card—

i.e., condition of the edges, corners, surface, and centering of the printing.  To track card 
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condition, people often use a 10-point scale.  For example, a card with flawless 

characteristics under microscopic inspection would rate a perfect “10” while obvious 

defects to the naked eye, including minor wear on the corners, would decrease the card’s 

grade to a “7”.  The card's overall grade is computed via the aggregation of the various 

characteristics5, and post-1980 sportscards that merit a grade below “7” are rarely traded.6   

Card condition, especially at the high end, is hard to detect by the naked eye.  

Each collector may examine the card carefully (sometimes with the help of a magnifying 

glass) and obtain a noisy signal of the card condition. The noise of the signal decreases 

with experience, but most likely remains positive for even the most experienced dealers. 

In fact, it is not uncommon to observe two experienced dealers disagreeing on the 

condition of a specific card.  

Professional grading offers an alternative channel to identify card condition. PSA 

began offering grading services in 1987 and its parent company became publicly traded in 

1999 (Collectors Universe, under Nasdaq ticker symbol CLCT).  SGC entered the 

professional grading market in 1999, soon followed by BGS.  As of 2002, PSA, BGS, and 

SGC remained the largest and most respected of the existing 15-20 grading services.  We 

believe the breakdown of the PSA monopoly in 1999 is due partly to the onset of the 

Internet, as detailed in Jin and Kato (2007).  In 1998, eBay, the most popular auction site 

for sportscard transactions, went public.  The Internet not only substantially reduces 

transaction cost, but also intensifies the information asymmetry between buyers and 

                                                 
5 Strictly speaking, the quality of sportscard is multi-dimensional and different graders may assign different 
criteria on not only the vertical scale along each dimension but also the analytical weight across 
dimensions.  However, since only one professional grader (BGS) offers detailed grades on surface, border, 
corner and center separately, it is difficult to compare graders on each dimension. Moreover, market price 
concentrates on the single quality grade instead of detailed grades in each dimension. For these reasons, we 
treat card quality as single dimension.   
6 Because grading is voluntary and costly, better quality cards are more likely to be graded.  This is why 
very few post-1980 graded cards are ever observed in the 1 to 6 range, even though such grades exist and 
are given out when warranted.  In practice, graded cards are usually “8” or above (Jin and Kato 
forthcoming).  
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sellers.  To overcome the information problem, the demand for professional grading 

services considerably increased after 1998.  The demand shock, plus PSA’s commitment 

to its initial grading criterion (as detailed below), opened profitable opportunities for 

potential entrants.   

Professional grading is voluntary and costs $6-$20 per card, depending on 

package size and requested turnaround time; further, the fee is independent of the actual 

grade received.  Graded cards are encased in plastic and sealed with a sonic procedure 

that makes it virtually impossible to open and reseal the case without evidence of 

tampering.  The casing indicates the grading service, grade received, and a bar code with 

serial number that identifies the particular copy of the card.  Anyone with Internet access 

can visit the grader's web site and verify the card's grade by serial number.  Figure 1 

provides an example of a PSA-graded 1985 Topps #401 Mark McGwire (rookie), an 

example of a BGS-graded 1993 Topps Traded #1T Barry Bonds, and an example of an 

SGC-graded 1991 Topps Tiffany #352 Ken Griffey Jr. All Stars.   

PSA adopted integer grades from 1 to 10, whereas BGS adopted a slightly finer 

grading scheme, which included half grades from 1 to 10:  7.5, 8, 8.5, etc.  SGC initially 

used a 100-point grading scale—e.g. 88, 92, 96—but soon provided equivalent 

conversion to a half-grade system similar to BGS, where 88 means 8, 92 means 8.5, 96 

means 9 and 98 means 10.  Interestingly, because SGC used only a limited number of 

grades in the original 100-point grading scale, the converted grades do not exhaust all 

possible half grades between 1 and 10.  One curious omission is 9.5 – the converted SGC 

system has 7, 7.5, 8, 8.5, 9, and 10, but no 9.5.  In comparison, the BGS scale includes all 

possible half grades, although BGS rarely gives a perfect grade of 10.  Among the three 

certifiers, BGS is also the only one that offers sub-grades for centering, corner, edge and 

surface, in additional to the overall grade.  
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A casual comparison of grading scales suggests an interesting pattern:  the first 

entrant, PSA, adopted a coarse grading scheme, the second entrant, SGC, adopted a finer 

scheme, and the third entrant, BGS, adopted an even finer grading scheme.  Subsequent 

“fringe” entrants have generally followed this approach as well, adopting scales that are 

refinements of the existing certifiers’ techniques.   

We find it interesting that PSA has not changed its grading criteria since its 

inception.  In theory, PSA could respond to the entries of SGC and BGS by changing its 

own grading criteria, but such a change is likely not optimal due to at least two important 

facts.  First, because PSA never indicates date of certification, and thousands of 

previously and newly graded copies are traded daily in the same market, PSA is 

committed to one grading standard over time unless it wishes to upset the market.  In this 

spirit, PSA has learned an important lesson from the coin market—one major coin 

certifier increased its grading upper bound from 60 to 64 in the 1970s, which generated a 

major market upset and was believed to contribute to the decline of coin trading (PSA 

also grades coins).  Second, PSA remains the dominant player in the industry.  Given the 

market expansion since 1998, PSA's grading business has grown rapidly (even though the 

growth could have been greater had entry not occurred).  It would therefore be unwise to 

jeopardize a long-established reputation and a rapidly growing business to combat a 

relatively small market stealing pressure resulting from competitive entries.  As a 

consistency check, we consulted a number of experienced sportscard dealers, who all 

confirmed the temporal stability of the PSA grading standard.  As a whole, this represents 

convincing evidence, for any criterion change undetected by the market generates no 

benefit to PSA, and should have never been adopted in the first place.   

A further attractive feature of using the sportscard grading industry in our case 

study is that, whether buying or selling, all trading parties refer to a standard price guide 
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for sportscards—Beckett Baseball Cards Monthly for baseball cards, Beckett Football 

Cards Monthly for football cards, etc.  For each single type of ungraded card, Beckett 

collects pricing information from about 110 card dealers throughout the country and 

publishes a “high” and “low” price reflecting current selling ranges for Near Mint-Mint 

(8) copies.  The high price represents the highest reported selling price and the low price 

represents the lowest price one could expect to find with extensive shopping.  For graded 

cards, Beckett follows the same practice but lists price ranges for each grade level 

(usually 7 to 10) of frequently graded cards.  When trading volume is high, Beckett 

reports separate prices for PSA, BGS, and SGC, and pools all other companies as 

“Others”.  Jin and Kato (2005a) report that market-clearing prices of graded cards closely 

track the “low” price listed in the Beckett price guide.  This particular market feature 

allows us to treat Beckett “low” prices as a proxy of market-clearing prices and to map 

them with our empirically estimated grading cutoffs.  

IV. Empirical Results 

This section presents two field experiments and one price analysis. The first 

experiment identifies the grading criteria of the three professional certifiers. In 

complement, the price analysis detects whether the price structure prevailing in the 

trading market is consistent with the grading criteria discovered in the experiment. 

Further market examination is presented in the second experiment, where we investigate 

how different types of card traders react to the presence of a professional certificate.  

IV.1 Experiment One 

Experimental Design We began our natural field experiment by equally 

distributing 216 sportscards into 9 groups in February 2002.  Upon the grouping, we 

randomly allocated the cards first to the three sportscard dealers (Kevin, Rick, and 

Rodney) and then to the three certifiers (PSA, SGC, and BGS).  Specifically, Kevin 
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received groups A, B, C; Rick received groups D, E, F; and Rodney received groups G, 

H, K.  Once all three dealers finished grading, we mailed groups A, D, G to PSA; B, E, H 

to BGS, and C, F, K to SGC for official grading.  All certifiers returned the cards by 

April 29, 2002, which marked the end of Round 1.  In the next two rounds, we rotated the 

cards to be graded by one of the other graders until all 6 graders had graded each of the 

216 cards.  Table 1 presents the rotation details:  each row represents a card group and 

each column represents one of the six graders.   

The round-robin aspect of the experimental design is especially important for two 

reasons.  First, each of the three professional certifiers places the graded card into a 

sonically sealed plastic casing upon certification and grading. To avoid confounding 

influences, when we received the graded cards from the certifiers, we recorded the card’s 

grade and carefully chiseled off the plastic casing before re-sending the card to the other 

graders.  Because the case is designed to prevent tampering, we may have inadvertently 

damaged the card.  The round-robin rotation prevents one certifier from receiving 

systematically worse cards than another certifier.  Indeed, we damaged 4 of the cards 

accidentally during the process; hence, our final data analysis uses 212 cards.   

Second, for the three dealers who do not seal cards in plastic cases, grading entails 

physical handling.  Although they are all experienced dealers and promised to handle the 

cards with great care, there exists a chance that the grading process generated some minor 

damage to the cards.  Such damage would upset future grades, but would not be easily 

detectable by even the trained eye.  This fact represents the impetus for rotating the cards 

among dealers in such a way that even if the handling differed by dealer, each certifier on 

average faced the same distribution of card quality.  Also note that in each round, dealer 

grading took place before certifier grading.  In case dealers introduced an additional noise 

in card quality, we would capture it as part of a certifier’s signal noise, thus understating 
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the signal precision difference between certifiers and dealers. Since in the data we find 

that all certifiers are at least as precise as dealers, our conclusion is potentially 

strengthened.  

Prior to moving to our empirical results, we should mention a few interesting 

aspects of our field design.  First, none of the professional certifiers knew that we were 

running an experiment on the certification market and so they graded the cards under the 

assumption that they had been mailed to their company as “normal” cards to be graded.  

This was not a difficult task, as these three companies grade, on average, at least 10,000 

cards per year.  Nevertheless, when mailing the cards to each of the certifiers we took 

special precautions not to tip them off by using different consumer names and addresses 

in each round.  Second, to ensure that this was a naturally occurring transaction, we paid 

the typical grading fee for PSA ($8), SGC ($6.5), and BGS ($9) to grade the cards, and 

we paid a flat-fee ($108) to our three dealers (whose requested fees were lower because 

they could grade the cards during slow times of the day at their retail shops).  We were 

careful to choose professionals who had been shop owners in the sportscard market for at 

least five years and who had heterogeneous experience levels (Kevin: 8 years; Rick and 

Rodney: 14 years) to provide a demanding test of the professional certifiers.   

Summary Statistics Different graders might adopt disparate grading cutoffs, 

hence it is important to highlight that the grades are ordinal and the raw grades are not 

readily comparable across graders (e.g., PSA 10 may not be equivalent to SGC 10).  

Moreover, because most grades are 8 or above and each grader has at most 5 possible 

grading categories at 8 or above (i.e., 8, 8.5, 9, 9.5, 10), a number of cards obtain identical 

grades from the same grader, thus creating ties.  Inevitably, each grader has a lumpy 

distribution (see Table 2).  Depending on how we order ties, the rank correlation of any 

two graders could be as low as 0.4 or as high as 0.9.  For this reason, it is difficult to make 
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sharp inferences from raw rank correlations.  

To deal with these difficulties, we adopt an alternative approach.  For any two 

cards randomly selected from the pool of 212 cards (call them A and B), we examine 

whether grader j  and grader j'  agree on their relative quality.  If both j  and j'  agree 

that the quality of card A is superior to the quality of card B (i.e., q
A
>q

B ) or the two 

cards are of equal quality (i.e. q
A
=q

B ) , we define the two graders as strongly consistent 

for this card pair.  If grader j  rated q
A
>q

B  but grader j'  rated q
A
<q

B , they are 

strongly inconsistent.  If one grader rated q
A
>q

B  but the other rated q
A
=q

B , they are 

weakly inconsistent.  After completing this comparison for all possible card pairs (22,366 

in total), we compute the percentages in which grader j and grader j'  are strongly 

consistent, strongly inconsistent, or weakly inconsistent.  This exercise results in three 

matrices, which are provided in Table 3:  panel A for strong consistency, panel B for 

strong inconsistency, and panel C for weak inconsistency.  The three percentages, by 

definition, must sum to one in every cell.  

Of particular interest is Panel B.  The degree of strong inconsistency among 

professional certifiers is roughly 5%-7%, much lower than that among dealers (10%-

13%), or that between professional certifiers and dealers (7%-13%).  This suggests that 

professional certifiers, as a whole, are more compatible and more precise than dealers. 

Should all professional certifiers systematically miss some important component of card 

quality, the inconsistency between certifiers and dealers would have been much higher 

than that among dealers.  The same logic applies if professional certifiers represent the 

main market but the three dealers were not representative of the mainstream.  Short of this 

inconsistency, it is reasonable to assume independent evaluation noise among all six 



 16 

graders, rather than some systematic bias within professional certifiers or within dealers.  

In the last row, we compute the average strong inconsistency for each grader as 

compared to the other five.  Among professional certifiers, it is clear that BGS, the last 

entrant of our three certifiers, achieves the highest level of consistency with the other 

certifiers, and that PSA, which was once the monopolist certifier, is the least in accord.  

Panel A in Table 3 displays similar patterns:  professional certifiers are more likely to be 

strongly consistent with each other than are certifiers with dealers, or dealers with dealers.  

Again, in terms of consistency, BGS is the sharpest and PSA is the least in accord.7   

While these summary statistics are suggestive, they do not account for the fact that 

the grading criteria of one grader may be more crude or refined than another, which leads 

to mechanical inconsistency across graders.8  Without explicit estimates of grading 

cutoffs or grading precision, the summary statistics do not offer a strict comparison across 

all graders.  We overcome these shortcomings by implementing a full structural model.  

Structural Model Suppose card i  has an unknown quality q
i , which is iid from 

a common distribution )|( θqF  where Î¸  denotes the distributional parameters. Grader 

j  observes an unbiased noisy signal s
ij
=q

i
+Î µ

ij , where the iid noise Îµ
ij

N 0,Ïƒ
j  

and Ïƒ
j denotes the degree of noise in grader j ’s grading system.  Internally, grader j  

has a set of cutoffs, such as J8 , J9 , J10 , etc.  Once grader j  observes signal s
ij , she 

fits the signal within those cutoffs and assigns corresponding grade g
ij .  For example, if 

                                                 
7 If we restrict attention to professional certifiers only, then PSA seems the best while a comparison 
between BGS and SGC produces the largest inconsistency.  This holds because PSA adopts fewer grading 
cutoffs than the other two.  For this reason, it is important to compare the three certifiers against a common 
comparison group (i.e. the three dealers).  
8 Another possible explanation for more inconsistency among dealers (than among certifiers) is dealers 
exercising less care during card handling and therefore having a higher probability of damaging the cards. 
We have done our best to assure careful handling in the dealers' hands. By putting dealers before certifiers 
in the order of the round-robin design, our structural estimate tends to under-estimate the signal precision 
difference between certifiers and dealers.  
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J8 sij <J8.5 , then g
ij

8.  

Of course, we observe only the final grade gij .  According to the raw grade 

distribution in Table 3, g
ij could be one of (7, 8, 9, 10) if grader j is PSA, (7.5, 8, 8.5, 9) 

if j  is BGS, (7.5, 8, 8.5, 9, 10) if j  is SGC, (7.5, 8, 8.5, 9, 9.5) if j  is Kevin or 

Rodney, or (6, 7, 7.5, 8, 8.5, 9, 9.5) if j is Rick.  Note that we do not observe any card 

receiving a BGS 9.5 or BGS 10, implying that the cutoffs for BGS 9.5 and BGS 10 are 

higher than any cutoff we can estimate from our data.  

We take qi as random effects (see below for a robustness check on this 

assumption).  Thus, the unknown parameters are the quality distribution parameters }{θ , 

grading cutoffs Jg , and signal precision Ïƒ j .   Defining 1
i,j,g equal to 1 if grader j  

gave card i  a grade of g , we have the overall likelihood function 

L=
i= 1

212

qi
j= 1

6

g
1

i,j,g
Î¦

J
g+

q
i

Ïƒ
j

Î¦
J

g
q

i

Ïƒ
j

dF q;Î ¸     

where Î¦  denotes the cdf of a standard normal and J
g+  denotes  grader j ’s cutoff that 

is immediately above grade g .  Estimates are obtained via maximum likelihood.  

Estimation Results To allow flexibility, we assume F q;Î ¸  to be a beta 

distribution with two free parameters 0<a 10  and 0<b 10 .  Beta is a general type of 

distribution on the support of (0,1), and importantly, it includes the uniform distribution, 

as well as PDFs that increase or decrease with various concavity/convexity.  Our 

empirical results presented below are qualitatively similar to those under different bounds 

of a,b .   
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Empirical results are reported in three panels.  Table 4 Panel A presents the 

estimated grading cutoffs and precisions Jg ,Ïƒ j for all six graders.  Panel B conducts 

Wald tests for statistical significance in grading cutoffs of the three professional graders.  

Panel C tests the statistical significance in grading precision among all six graders.  We 

omit cutoff comparisons for individual dealers because they do not offer grading service 

for regular business.  We ask them to grade by the most detailed scales, however, 

including all half grades and applying their own grading criteria to ensure that we obtain 

the most conservative estimation of their grading precision.     

 All grading noises are strictly positive.  Consistent with Table 3, the latest entrant 

in the professional grading industry – BGS – has the smallest grading noise and is most 

agreeable with the other graders.  For the other two certifiers, the second entrant, SGC, is 

less noisy than the first entrant PSA ( Ïƒ
SGC

<Ï ƒ
PSA ), though the difference is not 

statistically significant.  The amount of grading noise is very close between PSA and the 

most experienced dealers (Rick and Rodney), while the least experienced dealer (Kevin) 

is noisier than all the other five, especially BGS and SGC.   

Note that the first certifier, PSA, utilizes a signal that is statistically as noisy as 

those of the experienced dealers.  Unlike PSA, the second entrant—SGC—sharpens its 

signal precision beyond the least experienced dealer in our sample, while the third 

entrant—BGS—adopts a signal that is statistically more precise than all three dealers.  

This result suggests that later entrants, especially BGS, provide more precise information 

than PSA.  

Full estimation results also shed light on grading cutoffs.  The first two certifiers, 

PSA and SGC, adopt similar cutoffs in their common grade categories: SGC 10 is not 

distinguishable from PSA 10, SGC 9 is not distinguishable from PSA 9, and SGC 7.5 is 

very close to PSA 8.  The finer categories that SGC tends to add – SGC 8 and SGC 8.5 – 
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are between PSA 8 and PSA 9.  In contrast, the third entrant, BGS, adopts a rather 

different strategy:  it defines finer categories on the high end – BGS 9 is between PSA 9 

and PSA 10, but not close to either end; while BGS 9.5 and BGS 10 are certainly above 

PSA 10.  

 It is worth mentioning that, although SGC and BGS use finer scales than PSA, the 

whole system encompassing all three certifiers is much finer than any certifier or dealer 

alone.  This result suggests that, although new entrants might capture market share from 

the incumbent, they do not replace the existing grading system.  Rather, by improving 

grading precision and adopting differentiated grading cutoffs, they add information value 

to the whole industry.9  In response, facing multiple (noisy) certification systems, a seller 

can strategically maximize the grade of a specific card quite easily.  For example, he 

could send the card first to BGS, crack it open and resend it to PSA if the BGS grade is 

lower than 9.5, crack open the PSA case if the PSA grade is less than 10, and try it again 

with SGC.  Of course, this practice will stop at some point when the cost of repeated 

grading becomes too high.  Although we do not have enough data to empirically test for 

this phenomenon, it is commonly observed in the field.  This phenomenon is also non-

unique to sportscard grading: at least 15 MBA programs claim in the top 10, and multiple 

producers within the same industry claim to have the single best quality.  

The procedure described above assumes the underlying card quality conforms to a 

beta distribution.  Although the beta distribution encompasses a number of specific 

distributions (such as uniform), it remains an arbitrary assumption.  Instead of trying other 

distributions that are equally arbitrary, we conducted a robustness check by allowing 

                                                 
9 It is difficult to directly test whether the three professional grades (PSA, BGS, SGC) together provide 
significant new information to individual collectors. Because we must destroy the previous professional 
grade before obtaining a grade from the next certifier and many ungraded copies appear identical in front of 
naked eyes, it is impossible to present the three grades at the same time and convince collectors that the 
three grades apply to the same card copy.  This difficulty motivates us to infer the informational value of 
professional grades by testing graders in our natural field experiment.  



 20 

card-specific fixed effects.  Specifically, we treat all card qualities qi as free 

parameters. This is the least constrained model and can accommodate any empirical 

distribution of the underlying card quality.  The relevant estimation details are contained 

in Appendix.  The identifiable parameters from the fixed effects approach generate 

qualitatively similar results as the random effects approach:  cutoffs are ranked in the 

same order, and relative magnitudes are similar.  This consistency provides confidence 

that the main results of our paper are robust to the distributional assumption for the 

underlying card quality.  

To summarize, the natural field experiment has two main findings: (1) the 

incumbent certifier produces a signal that is as noisy as individual dealers, but later 

entrants improve in signal precision; (2) later entrants also differentiate in grading 

cutoffs, as a result the whole system encompassing all three certifiers is much finer than 

any certifier alone.  

These findings are consistent with the theoretical literature about certifiers, but 

they raise two economic questions: first, if a certifier has a better signal than anybody 

else in the market, does the market understand the information conveyed in the 

certificate?  If the answer is no, certifiers may lack the incentives to gather and release 

such information. We address this question by analyzing the relationship between trading 

price and grading cutoffs. The second question pertains to the information role of 

professional certifiers. In theory, if a certifier's signal noise is independent of the noise in 

a trader's self evaluation, the certificate will always help the trader improve his 

knowledge on the underlying quality of the card. However, to what degree a professional 

certificate provides new information to various card traders is an empirical question. The 

second field experiment intends to shed light on this question.  

IV.2 Mapping grading criteria with price data   
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There are two reasons to believe that understanding multiple grading standards is 

not a trivial task.  As shown in the natural field experiment, even experienced dealers do 

not have a more precise signal than any of the three professional certifiers.  This implies 

that individual traders face a challenge of separating grading noise from grading criteria. 

While the numerical grades adopted within each grading standard imply an obvious 

ordinal rank, the grades across certifiers are not directly comparable.  Without an 

experiment like ours, it is difficult to conclude whether BGS 9 is above or below SGC 10. 

These difficulties raise a natural concern that a market that lacks the ability to understand 

multiple grading scales may motivate certifiers to shirk in grading efforts thus 

undermining the fundamental role of professional certification.  

Because our natural field experiment identifies the certifiers’ grading criteria 

independent of market price, we can contrast the estimated grading criteria with the 

perceived criteria as revealed by the market price.  If our experimental approach provides 

meaningful estimates and the market understands the fundamental differences across 

multiple grading standards, then we should observe a consistent mapping.  

 To implement our approach, we take the Beckett “low” book price as a proxy of 

market-clearing price (Jin and Kato (2006) have shown a close relationship between 

market transaction price and the Beckett “low” price).  Our price sample consists of 32 

baseball cards that were similar to our experimental cards (i.e., identical technologies), 

and have detailed book prices by grade and certifier.10  We use Beckett guides dated 

                                                 
10 The cards are 1989 Upper Deck #1 Ken Griffey Jr., 1989 Upper Deck #25 Randy Johnson, 1990 Leaf 
#220 Sammy Sosa, 1990 Leaf #300 Frank Thomas, 1990 Upper Deck #17 Sammy Sosa, 1991 Bowman 
#569 Chipper, 1991 Upper Deck Final Edition 2F Pedro Martinez, 1992 Bowman #82 Pedro Martinez, 
1992 Bowman #461 Mike Piazza, 1992 Bowman #532 M. Ramirez, 1993 Bowman #511 Derek Jeter, 1994 
Upper Deck #24 Alex Rodriguez, 1995 Bowman's Best #B2 Vlad Guerrero, 1995 Bowman's Best #B7 A. 
Jones, 1998 Fleer Tradition Update #U87 T. Glaus, 1998 Fleer Tradition Update #U100 Drew, 1999 
Bowman #350 A. Soriano, 1999 Fleer Tradition Update U5 A. Soriano, 1999 Topps Traded T65 A. 
Soriano, 1991 Upper Deck Final #17F Thome, 1999 Upper Deck Ultimate Victory #136 A. Soriano, 2001 
SP Authentic #211 Prior, 2001 SP Authentic #212 Teixeira, 2001 SP Authentic #91 Ichiro Isuzu, 2001 SP 
Authentic #126 Pujols, 2001 Upper Deck Victory #564 Ichiro, 2001 Bowman #254 Pujols, 2001 SPx #206 
Pujols, 2001 Upper Deck #295 Pujols, 2001 Upper Deck Sw Spt #121 Pujols, and 2001 Upper Deck Sw 
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February 2002–October 2003 to maximize sample size.  Defining the unit of observation 

as card-certifier-grade, we have 2,022 observations in total, and all available grades are 8 

or above.  To deal with demand changes across cards and over time, we deflate each price 

by the PSA 8 price of the same card in the same month.  So a deflated price of 2 should 

be interpreted as 200 percent of its benchmark price.  We then compute the average of 

deflated prices by grade and certifier.11  

Figure 2 plots grading cutoffs in the upper panel and contrasts them with the 

average deflated prices in the lower panel.  In the upper panel, the horizontal axis is the 

grading cutoffs estimated in the full model, and the vertical axis is the grading scale 

ranging from 7 to 10.  Each vertical line in the graph denotes the grading cutoff for a 

specific grade and a specific certifier.  To distinguish among certifiers, we use blue lines 

for PSA, black lines for SGC, and pink lines for BGS.  In the lower panel, the horizontal 

axis is the deflated prices (interpreted as multiples of PSA 8 price) and the vertical axis is 

the grading scale from 7 to 10.  The observed price schedule is a convex, increasing 

function of grade within each certifier – BGS 9.5 is priced as high as 12.26 times the 

benchmark price, while that number drops to 2.79 for BGS 9, 1.336 for BGS 8.5, and 

1.022 for BGS 8.  This confirms the industry understanding that the main action in card 

grading is to seek a grade at the very high end.  

Focusing on ranks, we find that the ordering of grading cutoffs is consistent with 

the price order.  Comparing PSA versus BGS, we find that both cutoffs and prices have 

BGS9.5>PSA10>BGS9>PSA9>BGS8.5>BGS8>PSA8 .  The relative position of 

SGC grades at the high end is also consistent:  the cutoff (and price) of SGC 10 is less 

                                                                                                                                                 
Spt #139 Prior.  
11 Regression analysis controlling for card type and time trend yields the same rank of prices; hence our 
discussion focuses on the raw averages rather than on regression coefficients. 
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than PSA 10 but higher than BGS 9.  The only inconsistency between the two panels is 

that SGC is usually priced significantly lower than PSA at the same grade, even if their 

cutoffs are not statistically different.  This result could be due to our small sample sizes, 

or due to a first mover advantage of PSA.  BGS is better able to overcome this 

disadvantage, likely because it is more precise and strategically differentiates at the high 

end.     

IV.3 Experiment Two 
 

The natural field experiment allows us to compare the three professional certifiers 

while using three dealers as a common comparison group. Because it focuses on grading 

criteria and the number of dealers is small, the experiment does not lead to a convincing 

conclusion of how a professional certificate changes a trader's information set and how 

such change differs across different types of card traders. Insights in this regard can be 

obtained from another field experiment we carried out in 1997. At that time, PSA was the 

only professional certifier.  

Experimental Design The goal of the framed field experiment is to detect 

whether the PSA grade of sportscard quality delivers information to dealers and non-

dealers.  The experiment was carried out on the floor of a sportscard show located in a 

major Southern city in 1997.  It consisted of four steps:  (1) we auctioned 4 ungraded 

sportscards and determined the winner, (2) we purchased the cards back from the auction 

winners,12 (3) we immediately had PSA grade the cards via their 1-hour, $50 per card, on-

site grading system, and (4) we auctioned the same card as a graded variant.  The entire 

procedure took place at the same card show in the morning or afternoon, allowing us to 

match the cards identically across the ungraded/graded treatment, and to control whatever 

                                                 
12 We were able to re-purchase all four of the ungraded cards from the auction winners at, or just above, the 
winner’s bid.   
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factors might affect the demand for sportscards over time or across locations.13   

Each participant’s auction experience typically followed three steps: (1) inspecting 

the good, (2) learning the rules, and (3) concluding the transaction.  In Step 1, a potential 

subject approached the experimenter’s table and inquired about the sale of the sportscard 

displayed on the table.  The experimenter then invited the potential subject to take about 

five minutes to participate in an auction for the sportscard displayed on the table.  In Step 

2, the subject learned the allocation rules.  To perform the simplest possible test of the 

effect of information on bids, we chose an allocation mechanism−Vickrey’s (1961) 

second-price auction−which has proven straightforward in other field experiments (List 

2001).  To ensure that the graded and ungraded auctions could be run in the same few 

hours, we limited the number of participants to 30 in each auction, 15 dealers and 15 non-

dealers.   

Finally, in Step 3 the subject filled out a survey (the survey and auction 

instructions are in the spirit of List (2001; 2002)), after which the experimenter explained 

that the subject should return at the top of the hour to find out the results of the auction (in 

some cases the auction did not “clear” until the top of the next hour).  If a subject did not 

return for the specified transaction time, she would be contacted and would receive her 

cards in the mail (postage paid by the experimenter) within three days of receipt of her 

payment.  For each ungraded auction, we also asked the participating subject what PSA 

grade she thought the auctioned card would receive if it were graded.  

 We followed several steps to maintain experimental control.  First, no subjects 

participated in more than one treatment.  Second, if the individual agreed to participate, 

she could pick up and visually examine each card (in sealed cardholders, with the graded 

                                                 
13 We also considered reversing the order (i.e., auctioning off graded cards, buying them back, cracking the 
seal, auctioning off the identical ungraded cards), but we wished to avoid inadvertently damaging the cards 
when cracking the seals, which would lead to incorrectly rejecting the null of a treatment effect because the 
ungraded card would not be the “identical” card of the graded card. 
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card condition clearly marked if they were participating in the graded auction).  The 

experimenter worked one-on-one with the participant, and imposed no time limit on her 

inspection of the cards.  Third, treatment type was changed at the top of each hour, so 

subjects’ treatment type was determined based on the time they visited the table at the 

card show.  To further control for temporal selection effects, the ungraded/graded 

auctions were paired so the bidding in any ungraded/graded pair took place in either the 

morning or the afternoon.  Further, our dealer table was situated at the front of the card 

show and thus consumers entering the market were the auction participants.  Finally, the 

sportscard market naturally includes subjects of varying experience. Thus, we can capture 

the distinction between those consumers that have intense market experience (dealers) 

and those that have less market experience (nondealers).  Limiting each auction to 15 

dealers and 15 non-dealers, we could not find any significant demographic difference 

between bidders in the ungraded session and bidders in the graded session.  This 

guarantees that each ungraded/graded pair highlights the change in information rather 

than any selection by the grading status.   

 Results Table 5 summarizes the 4x2 experimental design.  In total, we observed 

data from 240 subjects:  120 bids and expected grades for ungraded cards, and 120 bids 

for graded cards.  The table can be read as follows:  row 1, column 1 shows that 15 

dealers and 15 non-dealers placed bids for the ungraded Ripken Jr. 1982 Topps card. The 

median non-dealer believed the card would grade at PSA 7 if it were graded (s.d. = 3.3), 

and bid on average $27.9 (s.d. = $40.9).  The median dealer believed the card would 

grade at PSA 8 if it were graded (s.d. = 0.6), and bid on average $41.0 (s.d. = $20.6).  

Data suggest two differences between dealers and non-dealers: first, dealers 

predicted the PSA grade much better than the non-dealers. Dealers are not only more 

likely to expect the actual PSA grade at the median, but also exhibit much smaller 
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variance in the expected grade. Second, while the mean and variance of nondealers’ bids 

are considerably influenced by the PSA certificate, dealers are largely unaffected.  For 

nondealers, both parametric and non-parametric Mann-Whitney tests suggest that the bid 

distributions observed across the graded and ungraded auctions are statistically different 

at the p < .05 level for the Ripken, Thomas, and Griffey card. No statistical significance is 

achieved for the Sanders card, probably because the non-dealers expected the PSA grade 

correctly at the median. Furthermore, the bid variances in all four of the graded auctions 

are significantly less than the bid variances in each of the ungraded auctions at the p < .05 

level.  Alternatively, neither the bid mean nor variance is significantly different across the 

graded and ungraded cards in the dealer data at conventional levels.   

Based on Table 5, we reach two conclusions: first, dealers know more about card 

quality than non-dealers; second, the information revealed by the PSA certificate results 

in significant changes in the non-dealers’ bidding distribution, but no significant changes 

in the dealers’ bidding distribution.   

Changes in the bidding distribution are subject to many possibilities. In one case, 

the publicized PSA grade may provide new information about card quality, resulting in 

an update in the bidder’s private evaluation of the card (unconditional on winning or 

losing the auction).  Because the submitted bid is always an increasing function of the 

underlying evaluation, change in evaluation leads to a change in the submitted bid.  In 

another case, the PSA grade may reduce the uncertainty a bidder faces, thus allowing the 

bidder to bid more aggressively.  This effect is likely more prevalent for the non-dealers 

because they face more uncertainty before observing the PSA grade. 

We cannot distinguish between the two explanations without a mapping of a 

specific bidding function (which depends on model assumptions and often involves 

multiple equilibria).  Since the dealers’ bidding distribution changes little (in both mean 
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and variance) upon the release of the PSA grade, however, we conclude that neither 

effect occurs for dealers and therefore the PSA certificate adds little new information to 

dealers.  Alternatively, regardless of the exact mechanism underlying the bidding 

function, the PSA grade must provide a significant amount of new information to non-

dealers, as their distribution has significant changes in both the mean and variance.  

The insignificant dealer response to the PSA grade revelation seems inconsistent 

with the strong theoretical notion that any signal that contains independent noise should 

help a card trader to improve his information on card quality. Such inconsistency can be 

attributed to at least two reasons:  first, dealers' bids have a much tighter distribution than 

non-dealers' bids, and the sample size may be too small to detect statistical changes in a 

tight distribution.  Second, sportscards may have both private and common value to 

collectors.  If the private value is iid across collectors, it is statistically indistinguishable 

from the evaluation noise.14  But private value, by definition, is unaffected by the 

publication of the PSA grade.  If most variation across dealers is due to their difference in 

private value, this variation remains regardless of how each dealer makes use of the PSA 

grade to update his view on the common value.  This potentially explains the lack of 

dealers' response to the PSA grade.  Unfortunately, data limitations prohibit us from 

separating these two explanations.  Under either interpretation, however, our findings 

suggest that the PSA grade is more informative to non-dealers than to professional 

dealers, thus reducing the information asymmetry between the two types of card traders. 

V. Concluding Comments 

This paper uses two field experiments—one framed and one natural—to explore 

                                                 
14 The structural model as described for the first experiment remains valid in this new framework. If we 
allow iid private value in addition to evaluation error, the only interpretation change is that the sum of 
private value and evaluation noise has about the same variance between PSA and dealers.  If we assume 
zero private value for professional graders and some private value for dealers, our results suggest that the 
evaluation error of PSA is at least as noisy as that of the dealers.   
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the information content of professional certifiers in an evolving certification market.  As a 

case study, our findings indicate that a professional certificate issued by the first certifier 

provides new information to inexperienced traders, but adds little information to 

experienced dealers. This implies that the certificate plays an important role in solving the 

lemons problem.  More interesting is the role of competition in the certification market.  

Since the first certifier is committed to maintaining consistency in its grading criteria, 

new entrants compete by utilizing more precise signals and differentiated grading cutoffs.  

In doing so, the subsequent entrants enrich the overall grading scale used in the market, 

and these criteria differences are well reflected in the market prices of graded cards.  

The fact that new entrants improve the information content of professional 

certificates depends on two industrial features: first, there has been an unexpected 

demand shock that increased the demand for professional certificates. Second, the 

incumbent certifier is committed to maintaining one grading standard over time.  In the 

absence of either, the incumbent certifier could have adopted or adjusted its standard to 

meet the new demand.  While the two conditions restrict our ability to extend the findings 

to other certification industries, they facilitate the empirical account of grading 

differentiation in this case study. As shown in Hvide and Heifetz (2001), grading 

differentiation could arise in a general model of certifier competition. Empirically, 

grading differentiation is common in almost every certification industry, and the 

differentiation could be vertical along one dimension (such as sportscard quality and 

bond default risk) or horizontal across many dimensions (like in restaurants, colleges and 

health plans). 

An important normative consideration is that new entrants in a professional 

certification market might provide both benefits and costs, and therefore may not 

unequivocally be welfare-improving.  The benefits arise from better information content 
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embedded in the entrants’ grading scales that are often finer and differentiated.  Given 

that there is a fair amount of noise in the new and old grading systems, however, the 

increased competition in the certification industry might generate incentives for repeated 

grading, which possibly results in duplicate and excessive certification.  Another cost lies 

in learning the market positioning of the new grader—for every new certifier, the market 

not only needs to learn its grading criteria, but also must determine the relative position 

of the newcomer’s grading scale to that of all existing certifiers.  Since each individual 

often has less information than any one certifier, this learning process could be long and 

costly.  On this front, any normative model would require more formal theoretical 

structure.     
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Appendix: Fixed Effects Robustness Check 
Under the fixed effects approach, the likelihood function is:  

L=
i= 1

212

j= 1

6

g
1i,j,g Î¦

Jg+ qi

Ïƒ
j

Î¦
Jg qi

Ïƒ
j

 

This introduces a renormalization problem. Should the grades be continuous, qi  would 
have been identified as card fixed effects.  When grades are ordinal with unknown cutoffs 
and unknown noise, however, it is possible to renormalize the structure.  Specifically, we 
can take one grader ( j' ) as a benchmark, redefine the true card quality as q

i
=q

i
+Î µ

ij' , 

and transform the signal error as Îµ
ij'

0  for grader j'  and Îµ
ij
= Î µ

ij
Îµ

ij'  for grader 
j j' .  This renormalization treats grader j'  to be as precise as observing the truth, 

which results in perfect prediction for grader j'  (i.e. Ïƒ j'
2 0 ), and an increase of 

grading noise for the other graders (from Ïƒ j
2

 to Ïƒ j
2 =Ï ƒj

2+Ï ƒj'
2

).  The optimal strategy 
in terms of maximum likelihood is to choose the least noisy grader as the benchmark.   

We maximize (1) by choosing the true quality of every single card qi , the 

grading cutoffs Jg , and the grading precision Ïƒ j .  The computation converges to 
selecting BGS as the zero-noise benchmark.  This is not surprising given the fact that both 
Tables 3 and 4 suggest BGS to be the most agreeable grader.  When we exclude BGS 
from the data set, the algorithm converges to picking the second least noisy grader – SGC 
– as the benchmark.  Such a pattern confirms our intuition: with no knowledge of the true 
quality, it is difficult to measure how noisy an expert grader is relative to the truth.  
Rather, we learn which grader is more precise than the others.   

Setting one grader as the benchmark introduces another identification problem, 
however.  By definition, the benchmark grader has zero noise and therefore his ordinal 
grades would be perfectly predicted conditional on the true card quality.  If the 
benchmark grader assigns grade g  to all cards with q q0  and grade g+ 1  to all cards 

with q q0+x , his grading cutoff for grade g+ 1  could be anywhere between q0  and 
q0+x .  In other words, the overall likelihood function has a flat area at the maximum 
and cannot find a unique solution for the benchmark grader’s grading cutoffs.  The under-
identification will prevent us from comparing the grading criteria across graders.  

The random effects approach avoids the renormalization problem because the 
quality distribution is set different from the noise distribution.15  Random effects also 
avoid the incidental parameter problem that exists for most fixed effects estimation with 
short panels (Neyman and Scott 1948; Hsiao 1986; 1991).  Adopting an arbitrary rule to 
determine the benchmark grader’s cutoffs,16 we can obtain the fixed effects results.

                                                 
15 In practice, we set F . as beta, and the noise distribution as normal. 
16 We adopt a sequential procedure.  First, taking a set of true card quality as given, we identify grading 
cutoffs and grading precisions by ordered probit.  Second, given the estimated grading cutoffs and 
precisions, we choose the true card qualities to maximize the likelihood and iterate the two steps until all 
parameters converge.  When the algorithm identifies the benchmark grader and sets its grading noise to 
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Table 1.  Field experiment: the round-robin design 

 
 
Total 216 Cards 
 

PSA SGC BGS Kevin Rick Rodney 

Card Group A Round 1 
Step 2 

Round 
2 Step 2

Round 3 
Step 2 

Round 1 
Step 1 

Round 3 
Step 1 

Round 2 
Step 1 

Card Group B Round 2 
Step 2 

Round 
3 Step 2

Round 1 
Step 2 

Round 1 
Step 1 

Round 3 
Step 1 

Round 2 
Step 1 

Card Group C Round 3 
Step 2 

Round 
1 Step 2

Round 2 
Step 2 

Round 1 
Step 1 

Round 3 
Step 1 

Round 2 
Step 1 

Card Group D Round 1 
Step 2 

Round 
2 Step 2

Round 3 
Step 2 

Round 2 
Step 1 

Round 1 
Step 1 

Round 3 
Step 1 

Card Group E Round 2 
Step 2 

Round 
3 Step 2

Round 1 
Step 2 

Round 2 
Step 1 

Round 1 
Step 1 

Round 3 
Step 1 

Card Group F Round 3 
Step 2 

Round 
1 Step 2

Round 2 
Step 2 

Round 2 
Step 1 

Round 1 
Step 1 

Round 3 
Step 1 

Card Group G Round 1 
Step 2 

Round 
2 Step 2

Round 3 
Step 2 

Round 3 
Step 1 

Round 2 
Step 1 

Round 1 
Step 1 

Card Group H Round 2 
Step 2 

Round 
3 Step 2

Round 1 
Step 2 

Round 3 
Step 1 

Round 2 
Step 1 

Round 1 
Step 1 

Card Group K Round 3 
Step 2 

Round 
1 Step 2

Round 2 
Step 2 

Round 3 
Step 1 

Round 2 
Step 1 

Round 1 
Step 1 

Notes: Round 1 in blue, Round 2 in black, and Round 3 in pink. The total number of cards in use 
is 216. Four of them were damaged, so the final sample size is 212. 

                                                                                                                                                 
zero, we compute the benchmark graders’ cutoff J

g as the average between the highest card quality with 
grade g-1 and the lowest card quality with grade g.  Standard errors are bootstrapped under the same rule.  
Detailed algorithm description and estimation results are available at 
http://www.glue.umd.edu/~ginger/research/.  
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Table 2. Field Experiment: Grade Distribution by Grader 
 
  PSA BGS SGC KEVIN RICK RODNEY 

4 0 0 0 0 1 0 
4.5  0  0 0 0 
5 0 0 0 0 0 0 

5.5  0 0 0 0 0 
6 0 0 0 0 1 2 

6.5  0  0 0 0 
7 1 2 2 1 2 0 

7.5  3 3 4 3 2 
8 66 43 11 37 45 25 

8.5  124 49 129 92 62 
9 134 40 134 40 57 120 

9.5  0  1 11 1 
10 11 0 13 0 0 0 

Total 212 212 212 212 212 212 
Notes: Each cell represents frequency.  Blank means the grade is not applicable to the 
grader.  
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Table 3. Summary Statistics by Degree of Consistency 
       
Panel A:  % strongly consistent (both graders said A>B, A=B or A<B) 
  psa bgs sgc kevin rick rodney 
PSA 1.000      
BGS 0.491 1.000     
SGC 0.537 0.465 1.000    
Kevin 0.409 0.399 0.418 1.000   
Rick 0.377 0.492 0.414 0.402 1.000  
Rodney 0.408 0.492 0.475 0.428 0.429 1.000 
sum (except self) 2.223 2.339 2.308 2.057 2.114 2.232 
average (except self) 0.445 0.468 0.462 0.411 0.423 0.446 
Ranks by average 4 1 2 6 5 3 
       
Panel B:  % strongly inconsistent (one grader said A>B, and the other said A<B)
  psa bgs sgc kevin rick rodney 
PSA 0.000      
BGS 0.059 0.000     
SGC 0.053 0.070 0.000    
Kevin 0.111 0.109 0.100 0.000   
Rick 0.130 0.089 0.109 0.131 0.000  
Rodney 0.111 0.069 0.091 0.103 0.118 0.000 
sum (except self) 0.463 0.396 0.423 0.554 0.577 0.492 
average (except self) 0.093 0.079 0.085 0.111 0.115 0.098 
Ranks by average 3 1 2 5 6 4 
       
Panel C:  % weakly inconsistent (one grader said A=B and the other said A>B or 
A<B) 
  psa bgs sgc kevin rick rodney 
PSA 0.000      
BGS 0.450 0.000     
SGC 0.411 0.465 0.000    
Kevin 0.480 0.492 0.482 0.000   
Rick 0.493 0.419 0.478 0.467 0.000  
Rodney 0.481 0.438 0.435 0.469 0.453 0.000 
sum (except self) 2.314 2.265 2.269 2.389 2.309 2.276 
average (except self) 0.463 0.453 0.454 0.478 0.462 0.455 
Ranks by average 5 1 2 6 4 3 
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Table 4. Full Model Estimation  
 
Panel A: Estimates  

  PSA SGC BGS KEVIN RICK RODNEY 
  coeff. std.err. coeff. std.err. coeff. std.err. coeff. std.err. coeff. std.err. coeff. std.err. 
σ 0.1553 0.0287 0.1218 0.0212 0.0909 0.0165 0.2518 0.056 0.1624 0.0268 0.1505 0.0256 

cutoff 6               0.1401 0.1376    
cutoff 7               0.1841 0.1300    

cutoff 7.5     0.2489 0.1227 0.3103 0.1141 -0.0623 0.1963 0.2412 0.1243 0.2014 0.1341 
cutoff 8 0.1481 0.1404 0.3118 0.1185 0.3616 0.1121 0.1038 0.1585 0.2908 0.1209 0.2532 0.1282 

cutoff 8.5     0.4145 0.1164 0.5497 0.1142 0.4255 0.1217 0.5228 0.1143 0.4502 0.1184 
cutoff 9 0.5691 0.1146 0.5778 0.1147 0.7924 0.1129 0.8995 0.126 0.7545 0.1148 0.6317 0.1144 

cutoff 9.5           1.3810 0.2047 0.9824 0.1216 1.1315 0.1308 
cutoff 10 0.9732 0.1201 0.9149 0.1132                 

Note: Assume the true card quality conforms to an iid Beta distribution on the support of (0,1) with two free parameters 
0<a 10 and 0<b 10 . Maximum likelihood identifies the cutoffs, the grading precisions, and the beta distribution parameters 

simultaneously. Blank cells indicate non-applicable. 
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Table 4 Panel B: Test of significant difference across grading cutoffs   
Null hypothesis for cell (ij) : cutoff in row i = cutoff in column j   

PSA vs. SGC            

  SGC 7.5    SGC 8      SGC 8.5   SGC 9      SGC 10      

PSA 8 -0.1008  -0.1637 * -0.2663 *** -0.4296 *** -0.7668***  

 (0.1037)  (0.0980)  (0.0938)  (0.0927)  (0.1031)   

PSA 9 0.3202 *** 0.2572 *** 0.1546 *** -0.0087  -0.3458***  

 (0.0615)  (0.0491)  (0.0360)  (0.0241)  (0.0411)   

PSA 10 0.7243 *** 0.6614 *** 0.5588 *** 0.3955 *** 0.0583   

  (0.0820)   (0.0725)   (0.0627)   (0.0530)   (0.0549)   

            

PSA vs. BGS            

  BGS 7.5    BGS 8      BGS 8.5   BGS 9         

PSA 8 -0.1621  -0.2135 *** -0.4016 *** -0.6443 ***    

 (0.1000)  (0.0958)  (0.0931)  (0.0954)      

PSA 9 0.2588 *** 0.2074 *** 0.0194  -0.2234 ***    

 (0.0485)  (0.0385)  (0.0237)  (0.0262)      

PSA 10 0.663 *** 0.6116 *** 0.4236 *** 0.1818 ***    

 (0.0689)   (0.0626)   (0.0526)   (0.0498)      

            

SGC vs. BGS            

  BGS 7.5    BGS 8    BGS 8.5   BGS 9       

-0.0614  -0.1127 * -0.3008 *** -0.5436 ***    SGC 7.5 
(0.0740)  (0.0679)  (0.0620)  (0.0620)      

0.0016  -0.0498  -0.2378 *** -0.4806 ***    SGC 8 
(0.0638)  (0.0566)  (0.0492)  (0.0498)      

0.1042 * 0.0529  -0.1352 *** -0.378 ***    SGC 8.5 
(0.0546)  (0.0459)  (0.0352)  (0.0363)      

0.2675 *** 0.216 *** 0.0281  -0.2147 ***    SGC 9 
(0.0479)  (0.0378)  (0.0213)  (0.0221)      

0.6046 *** 0.5533 *** 0.3652 *** 0.1224 ***    SGC 10 
(0.0563)   (0.0483)   (0.0369)   (0.0371)      

            

Note: For row i column j, we report (the cutoff in row i - the cutoff in column j) with standard 
error in parentheses.  *** p<0.01, ** p<0.05, * p<0.1. All the tests use the estimates reported in 
Table 4A.  
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Table 4 Panel C: Test of significant difference across grading precisions     

           

 σ of SGC   σ of BGS   σ of Kevin   σ of Rick   σ of Rodney   
σ of PSA 0.0336  0.0644 ** -0.0965  -0.0071  0.0048   

 (0.0359)  (0.0325)  (0.0627)  (0.0401)  (0.0398)   
σ of SGC   0.0309  -0.13 ** -0.0407  -0.0287   

   (0.0299)  (0.0587)  (0.0339)  (0.0325)   
σ of BGS     -0.1609 *** -0.0715 ** -0.0596 * 

     (0.0593)  (0.0307)  (0.0305)   
σ of Kevin       0.0894  0.1013 * 

       (0.0600)  (0.0596)   
σ of Rick         0.0119   

                  (0.0361)   

Note: For row i column j, we report (σ in row i - σin column j) with standard error in parentheses.  ***p<0.01, ** 
p<0.05, * p<0.1. All the tests use the estimates reported in Table 4A.  
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Table 5:  Results from the 1997 Auction Field Experiment 
 
Card Type 

 
Ungraded 

 
Graded 

 
Ripken Jr. 
1982 Topps 

 
n=30 (PSA 7; 2.5) 
Bid = $34.7 (32.2) 

 
Non-dealer bid = $27.9 (40.9) 

(PSA 7; 3.3) 
 

Dealer bid = $41.0 (20.6)  
(PSA 8; 0.6) 

 
n=30 (PSA 8) 

Bid= $48.0 (17.2) 
 

Non-dealer bid = $51.7 (13.0) 
 
 

Dealer bid = $44.3 (20.3) 
 

 
Sanders 1989 
Score 
 

 
n=30 (PSA 7; 2.2) 
Bid = $34.3 (32.3) 

 
Non-dealer bid = $44.3 (40.8) 

(PSA 8; 3.0) 
 

Dealer bid = $22.0 (15.2)  
(PSA 7; 1.1) 

 
n=30 (PSA 7) 

Bid= $30.7 (22.5) 
 

Non-dealer bid = $40.2 (24.5) 
 
 

Dealer bid = $21.1 (15.9) 
 

 
Thomas 1990 
Leaf 

 
n=30 (PSA 8; 2.3) 
Bid = $70.8 (43.4) 

 
Non-dealer bid = $66.3 (53.5) 

(PSA 7; 3.2) 
 

Dealer bid = $75.3 (31.4)  
(PSA 8; 0.8) 

 
n=30 (PSA 9) 

Bid= $90.0 (22.3) 
 

Non-dealer bid = $96.9 (21.4) 
 
 

Dealer bid = $83.0 (21.7) 
 

 
Griffey Jr. 
1989 Upper 
Deck 

 
n=30 (PSA 7.5; 2.8) 
Bid = $41.0 (35.9) 

 
Non-dealer bid = $36.7 (47.8) 

(PSA 5.5; 3.5) 
 

Dealer bid = $45.3 (18.7)  
(PSA 8; 0.8) 

 
n=30 (PSA 8) 

Bid= $56.3 (22.3) 
 

Non-dealer bid = $65.0 (24.6) 
 
 

Dealer bid = $47.6 (16.2) 
 

Notes:  Row 1, column 1 shows that 30 bidders placed bids for the ungraded Ripken Jr. 1982 
Topps card.  The median bidder believed the card would grade at PSA 7 if it was graded (s.d. = 
2.5).  Mean bid was $34.7 (s.d. = 32.2).  Non-dealers bid on average $27.9 (s.d. = $40.9) and the 
median non-dealer believed the card would grade at PSA 7 if it was graded (s.d. = 3.3).  Dealers 
bid on average $41.0 (s.d. = $20.6) and the median dealer believed the card would grade at PSA 8 
if it was graded (s.d. = 0.6).  Each auction had 15 non-dealers and 15 dealers.  
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Figure 1. Examples of Graded Cards 
 
 

BGS (serial number at the back)  SGC (96 is equivalent to 9 in a 1-10 scale)   PSA   
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Notes: The first graph suggests that PSA assigns grade 9 if the observed signal falls between 0.5691 (the cutoff of PSA9, the blue line whose height 
equals 9) and 0.9732 (the cutoff of PSA10, the blue line whose height equals 10).  The second graph shows that on average the market price of a 
PSA9 card is 2.137 times of the PSA8 price conditional on the same card type.  The magnitude of BGS9.5 cutoff is constructed because we do not 
observe a BGS9.5. However, the deflated price of BGS9.5 is precisely estimated based on Beckett low book price.  

Figure 2. Contrast of grading cutoffs and deflated price by grade and grader 

Grading cutoffs:   
PSA  SGC BGS 
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