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ABSTRACT

While this is typically ignored, the properties of the stochastic process followed by aggregate

consumption a.ect the estimates of the costs of fluctuations. This paper pursues two approaches to

modelling aggregate consumption dynamics and to measuring how much society dislikes

fluctuations, one statistical and one economic. The statistical approach estimates the properties of

consumption and calculates the cost of having consumption fluctuating around its mean growth. The

paper finds that the persistence of consumption is a crucial determinant of these costs and that the

high persistence in the data severely distorts conventional measures. It shows how to compute valid

estimates and confidence intervals. The economic approach uses a calibrated model of optimal

consumption and measures the costs of eliminating income shocks. This uncovers a further cost of

uncertainty, through its impact on precautionary savings and investment. The two approaches lead

to costs of fluctuations that are higher than the common wisdom, between 0.5% and 5% of per capita

consumption.
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1 Introduction

In a famous contribution, Robert Lucas Jr. (1987) asked: what would be the effect on wel-

fare of eliminating economic fluctuations? As Lucas (1987, page 3) put it, answering this

question would allow us “to get a quantitative idea of the importance of stabilization policy

relative to other economic questions.” To reach an answer, Lucas made three assumptions.

First, he assumed that society’s preferences can be represented by a welfare function that

depends on the time path of consumption per capita alone. That is, he assumed not only

that there is a representative consumer, but also that her utility function represents soci-

ety’s normative preferences. Second, he assumed that this welfare function is time-separable

and iso-elastic. Third, he assumed that the log of annual per capita consumption is seri-

ally uncorrelated and normally distributed around a linear trend. These three assumptions

produced a surprising result: society would be willing to sacrifice a meagre 0.05% of con-

sumption to get rid of fluctuations. The economic fluctuations that macroeconomists have

focused so much attention on cost each person on average only $12 per year.

A large literature has followed focusing especially on the first two assumptions. Imro-

horoğlu (1989), Atkeson and Phelan (1994), Krusell and Smith (1999), Storesletten, Telmer

and Yaron (2001), Beaudry and Pages (2001), and Krebs (2003, 2004) measured the costs

of fluctuations in economies where agents are heterogeneous and markets are incomplete, so

that there is not a representative consumer whose preferences are a valid measure of welfare.

While it is conceivable that the costs of fluctuations would be higher, as bad income shocks

hurt a few households severely, the typical finding from these studies is that the costs of

fluctuations are only slightly higher or even lower than the Lucas benchmark. Other studies

looked at the second assumption of iso-elastic preferences. Dolmas (1998), Otrok (1999),

Tallarini (2000), and Epaulard and Pommeret (2003) assumed different utility functions,

while Alvarez and Jermann (2004) used asset prices to elicit rather than assume prefer-

ences over risk. While many of these studies found much larger estimates of the costs of

fluctuations, this came typically at the expense of assuming people are extremely averse to

risk, which appears to be inconsistent with the risk-taking that we observe in their choices

(Lucas, 2003).

The focus of this paper is on the third assumption that consumption is serially uncor-

related. I will present alternative models of consumption dynamics and study their impact
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on estimates of the costs of fluctuations. I will consider statistical models of aggregate con-

sumption and show that if consumption is very persistent, as is the case in the U.S. data,

Lucas’ (1987) estimates are severely downward-biased. A methodological contribution of

this paper is to show how to construct reliable estimates of the costs of fluctuations when

there is persistence of the degree that we observe.

Together with statistical models, I will also consider economic models in which con-

sumption fluctuations are an optimal response to shocks. One virtue of having endogenous

consumption choices is that it uncovers a cost of fluctuations that is typically ignored in

the literature: the existence or not of fluctuations affects the level and growth rate of con-

sumption by affecting the desire for precautionary savings and for risky investment. The

discipline imposed across the different models is that they must all match the main features

of the aggregate consumption data.

The Lucas assumption that shocks to consumption are serially uncorrelated is clearly

dismissed by the data. More surprisingly, either interpreted through an economic model

or using an estimated statistical model, the adequate process for aggregate consumption

implies that the costs of fluctuations are actually one or two orders of magnitude than Lucas

argued. The estimates in this paper suggest that the costs of fluctuations are between 0.5%

and 5% of per capita consumption.

It is important to be clear about how these estimates should be used. This paper

measures the costs of eliminating the uncertainty that makes consumption fluctuate. These

numbers do not distinguish between fluctuations due to productivity or monetary shocks,

or between those that correspond to business cycles and those that are due to uncertainty

about long-run growth. In terms of economic theories, what these large numbers suggest

is that focusing attention on deterministic growth models, as it happened at least partly

in response to Lucas’ original results, will be missing out on a significant part of welfare.

Section 6 of this paper will discuss how the results in this can be used to assess the costs

associated with business cycles more specifically.

Even though the assumption that consumption is serially uncorrelated is clearly at odds

with the data, it has received little attention in the literature. A few studies have modelled

consumption instead as a random walk (Dolmas, 1998, Tallarini, 1999, and Epaulard and

Pommeret, 2003), but their focus was on the other assumptions behind the Lucas’ calcula-

tions. This paper instead systematically investigates the effect of the stochastic properties
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of the consumption data on the costs of fluctuations. This focus leads the paper to address

some problems with making inferences about the costs of fluctuations, which the literature

has so far ignored. More related to this paper is Obstfeld (1995), who found that model-

ing consumption as a random walk only slightly increased the costs of fluctuations. I will

show that this conclusion hinges on the way in which Obstfeld calibrated the parameters

of his model; an alternative approach, which is more in accord with the data, gives the

opposite result. On the side of theory, this paper shares with Barlevy (2004) the emphasis

on measuring the costs of fluctuations without excluding the possibility that these may

have long-lasting effects, either through long-lived fluctuations or through an impact on the

average growth rate.

The paper proceeds as follows. Section 2 presents some simple models of consumption

that highlight the main determinants of the costs of fluctuations. These involve choosing

some key parameters, and section 3 discusses the evidence that will guide the choice of

values for these parameters. Section 4 estimates the costs of fluctuations across a variety of

statistical models for consumption, while section 5 uses instead economic models. Section

6 concludes by interpreting the economic significance of the estimates.

2 Models of consumption and the costs of fluctuations

A central tenant of most theories of choice under uncertainty is that people dislike risk. If

society faced a choice between its current risky consumption series {Ct} and a “suitably

modified” consumption series {C̄t} that is purged from fluctuations, it is assumed that

society would choose the latter. As Lucas (1987) emphasized, it is important to go one step

further and be able to quantify this preference for stability. He suggested measuring the

costs of fluctuations by the fraction of annual consumption that society would be willing to

pay to eliminate these fluctuations. Maintaining his assumptions of a utility function that

is time-separable (with discount rate ρ) and iso-elastic (with a coefficient of relative risk

aversion γ), the costs of fluctuations (λ) are defined as the solution to:1

E

" ∞X
t=0

e−ρt
Ã
(Ct(1 + λ))1−γ − 1

1− γ

!#
=

∞X
t=0

e−ρt
µ
C̄t
1−γ − 1
1− γ

¶
. (1)

1E[.] denotes the expectation operator conditional on information at time 0.

4



Solving this equation requires two pieces of information. First, one needs the stochastic

process for the risky consumption path in order to evaluate the expectation. Second, one

must define precisely what the counterfactual “suitably modified” consumption series is.

Both of these requirements are met by having a model for consumption. This paper will

consider two distinct approaches to modelling consumption: one consists of estimating a

statistical process for consumption; the other consists of assuming an economic environment

in which society optimally chooses how much to consume.

Statistical models of consumption

From a statistical perspective, a natural choice for the counterfactual consumption series

is expected consumption. The exercise of eliminating fluctuations then corresponds to

eliminating the variability of consumption, while keeping its mean unchanged. One of

the stylized facts about economic growth in the United States in the past century is that

consumption, like income, has grown at an approximately constant rate. An appropriate

model for counterfactual consumption is: C̄t = E[Ct] = C0e
gt.

I will maintain the assumption that consumption is log-normally distributed. The U.S.

data is consistent with this assumption and it is analytically convenient since it leads to the

following simple expressions for the costs of fluctuations:2

ln(1 + λ) =

⎧⎨⎩ 0.5(1− eg−r)
P∞

t=0 e
(g−r)tV ar(ct) if γ = 1

1
γ−1 ln

£
(1− eg−r)

P∞
t=0 e

(g−r)te0.5γ(γ−1)V ar(ct)
¤

if γ 6= 1.
(2)

Small letters denote the natural logarithm of the respective capital letter, e.g., ct = ln(Ct).

In the expressions, I replaced the (unobservable) discount rate by the (observable) average

real interest rate r, using Ramsey’s result that with iso-elastic preferences, γg ∼= r − ρ.

Estimating the costs of fluctuations now requires only calculating the forecast error vari-

ance of consumption at different horizons. This, in turn, requires a model of consumption

dynamics. One simple model of de-trended consumption is

ct = ηct−1 + εt, (3)

where εt is normally distributed with mean zero and variance σ2. This representation fits

2The calculations leading to this and most other results are in the appendix.
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the post-war U.S. consumption data well: lagged consumption can account for 84% of the

variability of present consumption when η equals the least squares estimate 0.92. Moreover,

special cases of (3) correspond to two important processes. Lucas (1987) assumed that η = 0

and I will correspondingly call this the Lucas consumption process. Hall (1978) showed that

optimally chosen consumption dynamics approximately follow a random walk and that the

U.S. data is consistent with this assumption. This corresponds to the case η = 1, which I

will label the Hall consumption process.

With this AR(1) model and if |η| ≤ 1, the costs of fluctuations approximately equal:

λ ∼= 0.5γσ2

r − g + 1− η2
(4)

=
0.5γ(1− η2)

r − g + 1− η2
×
µ

σ2

1− η2

¶
. (5)

These formulae shows clearly the role of different parameters on the costs of fluctuations.

The roles of γ and r − g and their calibration will be discussed in section 3. The focus of

this paper is on the properties of the stochastic process for consumption on the costs of

fluctuations. In this case, these are captured by the two parameters σ2 and η.

The first expression (4) shows that λ increases with both the variability and the per-

sistence of consumption. The larger is the variability of shocks to consumption, the more

society finds these shocks costly, so the more it is willing to pay to eliminate consumption

fluctuations. The more persistent are shocks to consumption, the more long-lived is their

impact on consumption, and thus the larger their cost.3 Still, for r−g = 0.02, which section

3 will justify, even when η is as high as 0.8 so that a shock to consumption takes about

two years to dissipate by half, the costs of fluctuations are only twice higher than those

with a process with no persistence. As persistence increases further though, the costs of

fluctuations increase quite rapidly. If η is 0.9, the costs are already 7 times larger than with

a Lucas process, and if η = 0.95 they are 14 times higher. The impact of the persistence on

the costs of fluctuations is more dramatic when we shift from the Lucas to the Hall models.

If r − g = 0.02, then the Hall consumption model predicts costs of fluctuations that are 51

3When ρ = 0, the formula in (4) differs from the one derived by Lucas (1978) by a factor of 1/(1+ r− g).
This difference arises because I evaluate expected utility conditional on information at time 0, whereas
Lucas computes the unconditional expectation. Since r − g is close to zero, this difference is quantitatively
negligible. I focus on the conditional rather than the unconditional expectations, since in the latter case the
costs of fluctuations would be infinite when ρ = 1 and would be severely downward biased when ρ is close
to 1 since the unconditional variance would be estimated using the relatively short post-war U.S. sample.
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times larger than those estimated by Lucas. If r − g = 0.01, another value that section 3

will show is consistent with the data, the costs of fluctuations are two orders of magnitude

larger than what Lucas estimated.

These calculations assumed that σ2 was held fixed while η varied. It might be argued

that Lucas (1987) instead measured the unconditional variance of consumption, which cor-

responds to σ2/(1− η2). In expression (5), the first term actually decreases as η rises. The

reason is that keeping the unconditional variance fixed, raising η increases the predictability

of consumption by lowering its forecast error variance. The consumer therefore faces less

risk so the costs of fluctuations fall. However, rather than undermining the argument of

the previous paragraph, instead this alternative view of the Lucas (1987) calculation pro-

vides an alternative demonstration of its limitations. Lucas (1987) used a finite sample to

gauge the unconditional variance of consumption. This implies that if consumption is very

persistent, his estimate is severely downward biased. This is particularly clear in the case

where consumption follows a random walk: while in a finite sample one obtains a finite es-

timate of the variance of consumption, the actual variance is infinite. Even if consumption

is stationary, if it is very persistent, one will obtain a very downward-biased estimate of its

variance using the post-war U.S. sample.

Whichever way you look at it, what these calculations show is that it is crucial to jointly

estimate both the volatility of shocks to consumption and their persistence. One needs a

statistical model for consumption to calculate the costs of fluctuations. Section 4 will attack

this estimation problem directly using different statistical approaches.

Economic models of consumption

An economic model of consumption starts with a specification of the environment facing

a representative consumer earning a random income stream.4 The consumption process is

then whatever is optimally chosen. The counterfactual consumption with no fluctuations is

what the consumer would choose if income was stable.

4To focus solely on the third of the Lucas (1987) assumptions, I will maintain the assumption of a
representative consumer. It would be interesting in future work to both model the consumption process
carefully and to take into account the large idiosyncratic risks facing households (Parker and Preston, 2004).
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In this section, I consider a simple economic environment. The consumer solves:

max
{Ct}

E

" ∞X
t=0

e−ρt
Ã
C1−γt − 1
1− γ

!#
(6)

s.t.: Kt+1 + Ct = RtKt. (7)

The budget constraint states that savings (Kt+1) plus consumption equals income. Last

period’s savings are the only source of income through investment in a risky technology

with positive marginal return Rt, which is log-normally distributed with mean r − 0.5σ2

and variance σ2. The consumer starts at time 0 with some positive amount of capital K0.

The appendix shows that the solution to this problem is:

ct = ct−1 + g − 0.5σ2 + εt, (8)

where g = (r − ρ)/γ + 0.5(γ + 1)σ2 − σ2,

with initial condition C0 =
¡
1− eg−r

¢
R0K0.

In this model, consumption follows a random walk as in the Hall statistical model. How-

ever, there is one important difference between the two models. Now, both the level and the

growth rate of consumption are functions of σ2. Income uncertainty not only causes fluctu-

ations in consumption but also has two effects on the level and growth rate of consumption,

captured by the two terms on the right-hand side of the expression for g. The first effect

is due to precautionary savings: the rational consumer reacts to the uncertainty by saving

more. This allows her to accumulates a stock of precautionary savings to safeguard against

unexpected future bad shocks. The second effect is due to investment risk: the risk-averse

consumer will shy away from the investing in the risky technology. In this model, as long

as relative risk aversion exceeds one, the combined precautionary-investment effect is such

that eliminating fluctuations would raise the level of consumption and reduce growth.5

The counterfactual C̄ therefore differs from average consumption both in the level of

initial consumption and in its growth rate. While one can follow Lucas and calculate the

gains from eliminating fluctuations in consumption, one needs a theory of consumption

choices to calculate the costs of fluctuations in income. The latter affect not just the

5Barlevy (2004) has suggested a complementary channel through which fluctuations affect growth. Elim-
inating uncertainty may raise investment in innovative activities and consequently long-run growth.
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fluctuations in consumption, but also the level and growth rate of consumption through the

precautionary-investment motive.

Moreover, note that this precautionary-investment effect is more general than the model

in this section. It will be present in most economic models of consumption under uncertainty,

regardless of their predictions for the persistence of consumption.6 Likewise, while growth

may be higher or lower without uncertainty, welfare will always be higher. By ignoring this

effect, statistical models will necessarily underestimate the costs of fluctuations.

Initial estimates of the costs of fluctuations

Table 1 presents estimates of the costs of fluctuations for the different models that I have

discussed so far. The value of σ2 for each model is estimated using U.S. annual data from

1947 to 2003 on real per capita consumption of non-durables and services from the Bureau

of Economic Analysis. This will be the measure of consumption used in this paper. Quar-

terly data leads to very similar results; total consumption, which inappropriately includes

expenditure on durables as current consumption, approximately doubles the estimate of σ2

and so doubles all of the estimates of the costs of fluctuations. As for the choice of values

for γ and r − g, it will be discussed at length in section 3.

Panel A displays the estimates with the Lucas model of consumption. As Lucas (1987)

originally concluded, fluctuations cost very little, between 0.04% and 0.2% of per capita

consumption. Panel B presents estimates for the AR(1) statistical model fitted to the U.S.

data. The estimated η implies a considerable amount of persistence, with a half-life of

deviations from trend growth after a shock of 8 years. However, the estimated costs still

lie in the same range as the Lucas estimates.7 These results should be interpreted with

great care though; section 4 will show that these estimates are statistically inconsistent and

severely downward biased.

Panel C shifts to the economic model presented in this section. The infinite persistence

of shocks and the precautionary savings effect combine to generate substantially larger costs

of fluctuations, between 0.2% and 3.1%. This upper bound is almost 80 times larger than

6Epaulard and Pommeret (2003) find an effect of volatility on growth in an AK-growth model, but
interpret it as being specific to endogenous growth models. Actually, this effect is present in most models
of consumption and uncertainty.

7The reader may be surprised that the estimates in panel B are actually lower than those in panel A, in
spite of the higher persistence. The reason is that the estimated volatility of shocks is lower for the AR(1)
than for the Lucas model, which drives down the costs of fluctuations.
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the smallest number in Panel A that Lucas focused on.

Table 1 — Estimates of the costs of fluctuations in three simple models

Panel A: The Lucas statistical model

γ = 1 γ = 3 γ = 5

0.04%

($9)

0.12%

($28)

0.20%

($46)

Panel B: The AR(1) statistical model estimated by least squares

γ = 1 γ = 3 γ = 5

r − g = 0.03
0.03%

($8)

0.10%

($24)

0.17%

($40)

r − g = 0.02
0.04%

($8)

0.11%

($25)

0.18%

($43)

r − g = 0.01
0.04%

($9)

0.12%

($27)

0.19%

($45)

Panel C: The random walk economic model

γ = 1 γ = 3 γ = 5

r − g = 0.03
0.21%

($48)

0.62%

($145)

1.03%

($242)

r − g = 0.02
0.31%

($73)

0.94%

($219)

1.56%

($365)

r − g = 0.01
0.63%

($147)

1.88%

($441)

3.14%

($735)
Each cell shows the per capita costs of fluctuations as a fraction of consumption
and, in brackets, in 2003 dollars. The standard deviation of shocks is 0.028, 0.011,
and 0.011, for panels A to C respectively.

After a brief detour in the next section to discuss the calibration of γ and r − g, the

remainder of this paper explores more refined estimates of the costs of fluctuations. Section

4 estimates statistical models that deal with the high persistence of consumption data, while

section 5 builds more elaborate economic models of consumption. To preview the results,

most models will suggest that the costs of fluctuations are closer to those in Panel C.

3 Choice of parameters

Risk aversion
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The extent to which society dislikes risk is measured by the coefficient of relative risk

aversion γ. While this parameter is at the center of many economic models, there is some

disagreement on its value. The wider disagreement comes from looking at either data on

consumption choices, or data on financial market prices.

Data on consumption choices suggests a value for relative risk aversion between 1 and

5. Arrow (1971) originally made a case for relative risk aversion equal to 1 on theoretical

grounds. Friend and Blume (1975) looked at variation in portfolio allocations between

households and found values between 2 and 4. The consumption of leisure can also be

used to elicit preferences towards risk. Chetty (2005) shows that the choices by consumers

facing the risk of unemployment combined with plausible values for the income and wage

elasticities of labor supply imply that the coefficient of relative risk aversion is at most 2.

People’s choice of careers with risky income profiles also runs against very high risk aversion

(Saks and Shore, 2004), as does their choice to hold most of their wealth in illiquid housing

that carries a significant amount of risk (Cocco, 2003).

Starting with Mehra and Prescott (1985), economists have realized that financial market

prices imply much higher risk aversion. In order to account for the large premium that

equity pays over Treasury bills requires that relative risk aversion is at least 50 and close

to 200. This paper offers no solution to this disparity between consumption and financial

price data. The approach taken here (as the title indicates) is to use consumption data to

measure the costs of fluctuations, so I will use values for relative risk aversion between 1

and 5. The hope is that these measurements are more robust to advances in the theory

linking consumption choices to financial markets.8

Discounting future costs

The difference between the return on savings and the growth rate of consumption, r−g,

equals the growth rate of the marginal utility of consumption. This is the effective rate

at which consumers discount the impact of shocks on future consumption. The smaller is

r − g, the less people discount the future costs of a shock that persists for at least a few

periods. Thus, the larger the overall costs of fluctuations.

8A few recent papers offer some hints at reconciling a reasonable degree of risk aversion with asset prices
using precisely observations on consumption. Gabaix and Laibson (2003) and Chetty and Szeidl (2004) show
that the infrequent adjustment of plans regarding total or parts of consumption, due to either inattentive
behavior or consumption commitments, can explain the equity premium.
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The average return on savings and the average consumption growth rate are both ob-

servable in the data, so calibrating r−g is a relatively easy matter. Poterba (1998) estimates

the after-tax return on capital in the United States in the period 1959-1996 to be either

3.9% or 5%, depending on whether one includes property taxes or not. McGrattan and

Prescott (2003) use data from 1880 to 2002 and find returns of 4% on accounting capital,

and 5.4% on equity. As for the average annual growth rate of per capita consumption, it

equals 2.2%. These point estimates therefore suggest a value for r − g somewhere between

1.7% and 2.2%. Correspondingly, I will consider the values of 1%, 2%, and 3% for r − g.

The role of the intertemporal elasticity of substitution

Obstfeld (1995) argued that it is important to distinguish between risk aversion and in-

tertemporal substitution when calculating the costs of fluctuations. He noted that while risk

aversion determines the per-period cost of volatility, intertemporal substitution determines

the weights given to the future cumulative per-period costs.

To investigate this claim, I consider the specification of preferences due to Epstein and

Zin (1989) and Weil (1990). Utility at time t, Vt, is defined by the recursion:

£
1 + (1− e−ρ)(1− γ)Vt

¤(1−θ)/(1−γ)
= (1−e−ρ)C1−θt +e−ρ

£
1 + (1− e−ρ)(1− γ)Et [Vt+1]

¤(1−θ)/(1−γ)
.

(9)

The parameter γ still equals the coefficient of relative risk aversion. Nevertheless, now the

intertemporal elasticity of substitution equals 1/θ. With the expected utility preferences in

(8), the elasticity of intertemporal substitution equals the inverse of relative risk aversion,

so the two concepts cannot be distinguished. (You can see this by noting that if γ = θ,

then (9) becomes (6).)

Solving for optimal consumption and for the costs of fluctuations in the economic model

in (9) and (7) is an easy matter. The appendix contains the calculations, which lead to the

following surprising result: The costs of fluctuations with Epstein-Zin-Weil preferences (9)

are the same as the costs with iso-elastic preferences (6) up to a term in O(σ4). Therefore,

distinguishing between intertemporal substitution and risk aversion does not affect the

estimates of the costs of fluctuations. Moreover, the intertemporal elasticity of substitution

does not enter the formula for the costs of fluctuations.

How can this finding be reconciled with Obstfeld’s (1995) conclusion? The explanation

12



lies in the following expression that holds with the preferences in (9):

r = ρ+ θg − 0.5γσ2(θ − 1). (10)

This paper used the available direct observations on r, the parameter that directly affects

the costs of fluctuations. Obstfeld (1995) instead chose a value for ρ. Therefore, his choice

of the elasticity of intertemporal substitution affected the value attributed to the return on

capital via expression (10), which in turn affected the estimates of the costs of fluctuations.

Because Obstfeld (1995) set ρ at 0.05, and θ between 2 and 20, he implicitly attributed a

value for the average after-tax return to capital between 9% and 49% per annum. Thus,

his calculations heavily discounted the future costs arising from persistent shocks, which

explains why he found that going from the Lucas to the Hall consumption models had little

effect on the costs of fluctuations.

4 Statistical models of consumption

Which process for consumption? Lucas versus Hall

Section 2 showed that the Lucas and Hall statistical models of consumption imply very

different costs of fluctuations. Because these models impose a rigid structure on the time-

series of consumption, one can test which best describes the data.

Table 2 shows the results from different tests of the null hypothesis that consumption

has a unit root: the original (augmented) test of Dickey and Fuller (1979), the alternative

due to Phillips and Perron (1988), the point-optimal test of Elliott, Rothenberg and Stock

(1996), and finally the modified Phillips-Perron (MZt), point-optimal (MPt), and Barghava

statistic (MSB) tests combined with a modified Schwarz criteria to select the lag length.

These last three test were suggested by Ng and Perron (2001) in order to account for size

distortions if the underlying data process is stationary. The results are clear: the null

hypothesis corresponding to the Hall process is never rejected at the 5% significance level.

The last row of the table presents the result of a test, by Kwiatkowski et al (1992), of

the null hypothesis that consumption is trend stationary. The data rejects this hypothesis

at the 5% significance level.
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Table 2 — Statistical tests of whether consumption has a unit root

Test Test statistic 5% critical value Decision

Null hypothesis: Unit Root

Dickey-Fuller -1.88 -3.49 not rejected

Phillips-Perron -1.74 -3.49 not rejected

Elliott-Rothenberg-Stock 10.95 5.71 not rejected

Ng-Perron:

MZt -2.02 -2.91 not rejected

MSB 0.24 0.17 not rejected

MPt 10.83 5.48 not rejected

Null hypothesis: Stationarity

Kwiatkowski et al 0.17 0.15 rejected
The modified Schwarz criterion of Ng and Perron (2001) with a maximum lag of 10 selected the
lag length of the regressions. For the Phillips-Perron and the Kwiatkowski et al tests, I estimated
the spectral density at frequency zero with a Bartlett kernel.

There is a simple way to understand why the data clearly favors the Hall process over

the Lucas process. It is possible to nest the two models in a single regression equation:

ct − ct−1 = const.+ ut − βut−1, (11)

where ut is the residual. The Lucas process imposes the restriction β = 1, while the Hall

process requires that β = 0.

The 1947-2003 U.S. data produces an estimate of β of −0.36 with a standard error of

0.13. Not only is the estimate lower than one, it is not even positive — thus the strong

statistical rejection of the Lucas model. However, note that while the Hall model is closer

to the data, it is also rejected at the 5% significance level. Consumption growth is positively

serially correlated, a fact that has inspired most modern research on consumption.9 Fitting

the facts requires richer models of consumption dynamics; the rest of this section investigates

different possibilities.

9See Fuhrer (2000) and Reis (2004) for two alternative models that try to account for this positive serial
correlation, either by appealing to habits or to costs of processing information.
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Estimating the persistence of U.S. consumption

A statistical model for consumption that is more general than either the Lucas or the

Hall models is the AR(1) in (3), where η is not restricted to necessarily equal either one

or zero. A naive application of this model would be to estimate η by least squares and, if

this estimate is below 1, apply the formula in (4). This was the procedure that led to the

estimates in panel B of table 1.

However, it is well-understood that for very persistent series like consumption, the least-

squares estimate of η is downward-biased. For example, if the true model is a random walk,

then the least squares estimate of η will be below 1 with a probability of 68%. Given how

steeply costs increase with η when it is close to 1, this can lead to severely under-estimating

the costs of fluctuations.

The most popular way to deal with this problem is to model η as lying within a circle of

radius c/n around 1, where n is the size of the available sample. The estimate of the new

parameter c (a “Pitman” drift) has a distribution that can be characterized using local-to-

unity asymptotics (Stock, 1994). Since deterministic formulae link c to η and in turn to λ,

this characterizes the distribution of the estimate of the costs of fluctuations.

In the data, the confidence intervals for η include a large region well above one. The

formula in (2) would then imply that the costs of fluctuations are estimated to be infinity

with a probability of more than 30%. This result arises because forecast error variances far

ahead shoot quickly to infinity. This highlights one weakness of directly applying the formula

in (2) if consumption follows an explosive process. The estimate of the costs of fluctuations

in this case is dominated by estimates of the variability of consumption at horizons very far

ahead, well above the size of the finite sample in which they were estimated.

The local-to-unity model suggests a natural way to deal with this issue. That model

assumes that as the sample size increases, consumption becomes closer to a random walk;

likewise, one can calculate the costs of fluctuations assuming that after the sample horizon,

the forecast error variance is indistinguishable from that of a random walk. Focusing for

now on the case of log utility, one estimator that formalizes this suggestion is

L̂ = 0.5(1− eg−r)

"
nX
t=0

e(g−r)tv̂(ct) +
∞X

t=n+1

e(g−r)t [v̂(cn) + v̂(c1)(t− n)]

#
, (12)

where v̂(ct) is the least squares estimator of the the forecast error variance t steps ahead.
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This estimator replaces v̂(ct) for horizons that exceed the size of the sample, by the nth

step-ahead forecast error variance for a random walk.10 As n→∞, this estimator coincides

with the exact value the costs of fluctuations: L̂ → ln(1 + λ). In a finite sample, under

the maintained local-to-unity model, this is the estimator that is within 1/n of the costs of

fluctuations.11

In the AR(1) model, straightforward but tedious algebra shows that, using the approx-

imation 1 + c/n = exp(c/n) +O(1/n2):

L̂ = 0.5σ̂2eg−r
"

nX
t=0

e(g−r+2c/n)t + e(g−r)n/(1− eg−r)

#
, (13)

where σ̂ is the least-squares estimate of the standard error of shocks. It is simple to show

that as n→∞, σ̂2 → σ2. Applying the functional central limit theorem:

1

n

nX
t=0

e(g−r−2c/n)t ⇒
Z 1

0
e(g−r+2U)sds, (14)

where⇒ denotes weak convergence. U equals the random variable
³R 1
0 J(s)dW (s)

´.³R 1
0 J(s)

2ds
´
,

where J(.) is an Orstein-Uhlenbeck process dJ(s) = cJ(s)ds+dW (s) andW (.) is a standard

Brownian motion. The continuous mapping theorem then implies that:

L̂

n
⇒ 0.5σ2eg−r

eg−r+2U − 1
g − r + 2U

, (15)

which fully describes the asymptotic distribution of the estimate of the costs of fluctuations.

According to this asymptotic result, the least squares estimate of the costs of fluctuations

is not only an inconsistent estimate of the true costs, but moreover, it converges to a random

variable. The reason is that as n grows, the least squares estimation errors persist for

longer rather than dying off. This implies that the estimates in panel B of table 1 were

downward-biased. Yet using the formula in (15), constructing median-unbiased estimates

and confidence intervals for the costs of fluctuations is possible.12

10For a random walk, V ar(ct) = σ2t, so V ar(ct) = V ar(cn) + V ar(c1)(t− n).
11This approach has a close relative in Phillips’s (1998) construction of confidence intervals for far-ahead

impulse responses in the local-to-unity model.
12The distribution of U is not only non-normal but it also depends on the (unknown) value of c. It

therefore requires many numerical simulations to characterize this distribution for each value of c. Stock
(1991) has already done the work of tabulating the distribution of U . Since L̂/n increases monotonically
with U , one use his tables to construct confidence intervals for the estimates of the costs of fluctuations.

16



In the appendix, I extend the calculations in this section in two directions. First, I

consider the case when relative risk aversion is different from one. Second, I extend the

statistical model to the Dickey-Fuller regression form:

∆ct = κ0 + κ1t+ ct−1 +
kX

j=1

ψj∆ct−j + ut. (16)

Now, it is the largest autoregressive root that is modelled as 1+c/n. This allows for a more

flexible characterization of log consumption, as a k + 1th order autoregressive process with

a drift and a time trend.

Table 3 presents median-unbiased estimates and 90% confidence intervals for the esti-

mated costs of fluctuations if consumption dynamics are described by (16). The costs are

now much higher than the naive estimates in table 1. They range from 0.2% to 3.2% of

per capita consumption and even the lower bounds of the confidence intervals are higher

than those in the panel B of table 1. According to these calculations, society substantially

dislikes the current variability in consumption.

Table 3 — The costs of fluctuations when consumption is persistent

Panel A: Costs in percentages of annual per capita consumption

γ = 1 γ = 3 γ = 5

r − g = 0.03
0.21%

(0.19 ; 0.21)

0.63%

(0.57 ; 0.64)

1.05%

(0.95 ; 1.07)

r − g = 0.02
0.31%

(0.29 ; 0.32)

0.95%

(0.87 ; 0.96)

1.58%

(1.46 ; 1.61)

r − g = 0.01
0.63%

(0.60 ; 0.64)

1.90%

(1.81 ; 1.92)

3.19%

(3.03 ; 3.22)

Panel B: Costs in annual per capita 2003 dollars

γ = 1 γ = 3 γ = 5

r − g = 0.03
$49

(44 ; 50)

$147

(133 ; 150)

$246

(223 ; 256)

r − g = 0.02
$74

(68 ; 75)

$222

(204 ; 225)

$371

(341 ; 377)

r − g = 0.01
$148

(140 ; 149)

$446

(423 ; 450)

$747

(709 ; 755)
Each cell shows the median unbiased estimate and, in parenthesis, the 90% confidence
interval. The Ng and Perron (2001) modified BIC picked the autoregression’s order.
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Parametric unrestricted estimates

The evidence at the beginning of this section strongly suggested that consumption is

not stationary. The data does not reject the null hypothesis that the first difference of

consumption is stationary however. (The unit root tests are not reported here for brevity.)

Wold’s theorem states that any stationary series has a moving average representation. A

general statistical model for consumption then is

∆ct = const.+A(L)ut, (17)

where ∆ct = (1− L)ct and A(L) =
P∞

i=0 aiL
i, and L is the lag operator Liut = ut−i.

If consumption follows this process, the costs of fluctuations in (2) become:

ln(1 + λ) =

⎧⎨⎩ 0.5σ2(1− eg−r)
³P∞

t=1 e
(g−r)tPt−1

j=0

Pj
i=0 a

2
i

´
if γ = 1

1
γ−1 ln

h
(1− eg−r)

³
1 +

P∞
t=1 e

(g−r)te0.5σ
2γ(γ−1) t−1

j=0
j
i=0 a

2
i

´i
if γ 6= 1.

(18)

It is impossible to estimate the infinite number of parameters ai with a finite number of

observations. However, it has long been known that an ARMA model

B(L)∆ct = const.+C(L)εt, (19)

where B(L) and C(L) are lag polynomials of low order, typically provides a good approx-

imation to the dynamics of most macroeconomic series. Given estimates of the ARMA

model, one can easily recover the parameters ai using the relation A(L) = B(L)−1C(L).

Estimating (19) requires choosing the order of B(L) and C(L). I restricted the range

of admissible models to a maximum of 3 AR and/or MA parameters. ARMA processes

with many parameters are notoriously difficult to estimate and the experience with ARMA

modelling has been that low-order ARMA processes typically have a superior forecasting

performance. I estimated the 16 admissible models by maximum likelihood.13 To pick

between them, I used the Bayesian information criterion (BIC). This criterion picks the

model with the highest likelihood, while imposing a penalty that increases with the number

13One important concern with estimating ARMA models is that the likelihood functions are often multi-
peaked or nearly flat for a wide range of parameter values, so numerical procedures can converge on incorrect
estimates. To safeguard against this possibility, I plotted the likelihood functions, examined their gradients
at the proposed optima, and started the numerical maximizations from different initial values.
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of parameters being estimated. One advantage of the BIC is that, as the sample size goes

to infinity, it consistently picks the true underlying model. The BIC picked the ARMA(2,2)

as the best model, followed by the ARMA(1,0) and by the ARMA(0,1).

Table 4 — Estimates of the costs of fluctuations from ARMA models

Panel A: Estimated ARMA (2,2) model

(1− 0.66L− 0.32L2)∆ct= (1 + 1.03L+ 0.56L
2)ut, σu= 0.011

γ = 1 γ = 3 γ = 5

r − g = 0.03
0.31%

($72)

0.94%

($219)

1.60%

($375)

r − g = 0.02
0.47%

($109)

1.43%

($334)

2.47%

($579)

r − g = 0.01
0.94%

($220)

2.93%

($687)

5.33%

($1248)

Panel B: Estimated ARMA (1,0) model

(1− 0.34L)∆ct= ut, σu= 0.010

γ = 1 γ = 3 γ = 5

r − g = 0.03
0.40%

($94)

1.23%

($288)

2.13%

($498)

r − g = 0.02
0.61%

($144)

1.89%

($442)

3.33%

($780)

r − g = 0.01
1.25%

($292)

3.94%

($923)

7.40%

($1734)

Panel C: Estimated ARMA (0,1) model

∆ct= (1 + 0.36L)ut, σu= 0.011

γ = 1 γ = 3 γ = 5

r − g = 0.03
0.34%

($79)

1.02%

($240)

1.76%

($412)

r − g = 0.02
0.51%

($120)

1.56%

($366)

2.73%

($638)

r − g = 0.01
1.03%

($242)

3.23%

($752)

5.92%

($1388)
Each cell shows the per capita costs of fluctuations as a fraction of consumption
and, in brackets, in 2003 dollars.

Table 4 shows the costs of eliminating fluctuations in consumption for these three sta-

tistical models. The first conclusion to take from the table is that the estimates are all

larger than the corresponding estimates in Panel C of table 1. The positive serial correla-

tion in consumption growth implies that shocks propagate by more over time than what
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the Hall model predicted. A second conclusion is that across the three empirical consump-

tion processes, the estimates of the costs of fluctuations are roughly similar. The results

are robust in the sense that moving between models that fit the data almost equally well

does not drastically affect the estimates. This leads to the third conclusion: the costs of

fluctuations are approximately between 0.5% and 5% of per capita consumption, similar to

the estimates in table 3.

Non-parametric unrestricted estimates

The key empirical inputs into the formula for the costs of fluctuations in (2) are the

forecast error variances of consumption. So far, I have estimated these by fitting parametric

models to the observations of consumption. A natural alternative is to estimate the forecast

error variances directly imposing as little structure as possible on the model of consumption.

Since these variances are conditional on information at time zero, then V ar(ct) =

V ar(ct − c0). It is difficult to estimate these without specifying what the conditioning

information at time 0 is. However, doing so is close to specifying a parametric model for

consumption, precisely what this section is trying to avoid. I overcome this dilemma by

estimating the unconditional variance of the tth difference in log consumption. The con-

ditional and unconditional variances will be the same in the case of the AR(1); otherwise,

the unconditional variance will be higher. The estimates in this section therefore provide

non-parametric upper bounds on the costs of fluctuations.

Cochrane (1987) showed that the unconditional variance of the tth difference in con-

sumption equals:

tσ2∆c

⎛⎝1 + 2 t−1X
j=1

t− j

t
Rj

⎞⎠ . (20)

Rj is the jth order autocorrelation of the first difference of consumption; σ2∆c is its variance.

The quantity in parenthesis is the Bartlett estimator of the spectrum of the first-difference of

consumption at frequency zero using a lag window of length t. The sample autocorrelations

and the sample variance of the first difference of consumption provide consistent estimates

of these moments, so it is an easy mater to evaluate this expression.14

One difficulty is that it is impossible to compute the variance of the tth difference in

14 I multiply the expression in parenthesis by n/(n− t + 1) to improve the performance of the estimator
in a small sample (Cochrane, 1987).
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consumption if t is larger than the sample size. Even if t is smaller than n, as long as

it is close to it, the estimator of Rt will be using only a few observations. I tackle this

problem in the same way that I did earlier when deriving the asymptotic distribution of

the costs of fluctuations. I use an estimator like L̂ in (12), with the only difference that

the first sum now includes terms only up to a fraction of n. This way, the estimator only

requires computing the variances of consumption differences up to a fraction of the sample.

As before, this estimator asymptotically converges to the true costs of fluctuations and it

provides a good approximation in a finite sample if consumption is very persistent.

Table 5 — Estimates of costs of fluctuations from variance estimates

Panel A: Estimating correlations of order up to 25% of the sample

γ = 1 γ = 3 γ = 5

r − g = 0.03
0.25%

($59)

0.76%

($179)

1.29%

($303)

r − g = 0.02
0.36%

($85)

1.10%

($257)

1.87%

($440)

r − g = 0.01
0.68%

($160)

2.10%

($492)

3.68%

($863)

Panel B: Estimating correlations of order up to 50% of the sample

γ = 1 γ = 3 γ = 5

r − g = 0.03
0.26%

($61)

0.78%

($183)

1.33%

($311)

r − g = 0.02
0.37%

($86)

1.12%

($262)

1.91%

($447)

r − g = 0.01
0.69%

($161)

2.12%

($496)

3.71%

($871)

Panel C: Estimating correlations of order up to 75% of the sample

γ = 1 γ = 3 γ = 5

r − g = 0.03
0.16%

($37)

0.48%

($113)

0.81%

($189)

r − g = 0.02
0.22%

($52)

0.68%

($159)

1.15%

($271)

r − g = 0.01
0.48%

($112)

1.47%

($346)

2.60%

($610)
Each cell shows the per capita costs of fluctuations as a fraction of consumption
and, in brackets, in 2003 dollars.

Table 5 contains the new estimates of the costs of fluctuations. From panels A to C, I
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use increasing fractions of the sample, from 25% to 50% to 75%. The costs of fluctuations

from using this approach are typically in between the random walk estimates and the larger

estimates using ARMA models. They are all larger than the Lucas benchmark of 0.05%.

5 Economic models of consumption

The components of the model

One pervasive model of consumption and fluctuations is the neoclassical stochastic

growth model, in which a representative consumer solves:

max
{Ct}

E

" ∞X
t=0

e−ρt
Ã
C1−γt − 1
1− γ

!#
s.t.: Kt+1 = A1−αt Kα

t + (1− δ)Kt − Ct.

The new notation refers to: At - stochastic productivity, α - the capital share, and δ - the

depreciation rate.15

I set the depreciation rate at 0.05, the value typically chosen in the literature; close

alternatives do not greatly affect the estimates of the costs of fluctuations. Choosing the

process for productivity and the value of the capital share requires more attention though.

These affect a key determinant of the costs of fluctuations: the persistence of consumption.

All else equal, the faster diminishing returns set in, the more transient the effect of shocks

to consumption. With a Cobb-Douglas production function, the capital share determines

the speed of convergence. The assumption in the model of section 2 was that there were

constant returns to savings. Considering the broad investment possibilities available to

society, this might just be the right assumption (Knight, 1944). Constant returns also

imply that shocks have a permanent effect. Thus, there are no consumption dynamics

associated with the transition to a steady state. Some of the endogenous growth literature

claims that this may be an appropriate approximation of reality; for instance, King and

Rebelo (1993) argued that transitional dynamics likely are quantitatively insignificant.

15Otrok (2001) also uses an estimated business cycle model to investigate the costs of fluctuations. How-
ever, his model has many other features (habits, two sectors of production, etc.) and his approach to
calculating the welfare cost of fluctuations is different and does not capture the precautionary-investment
effect that I emphasize.
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Barro and Sala-i-Martin (2003) instead pointed to the evidence of conditional conver-

gence of income levels across countries as supporting transitional dynamics and diminishing

returns to capital accumulation. As they discuss at length, the existing estimates of the

speed of convergence point to a value of the capital share around 0.75. This is consistent

with a broad vision of capital that includes both physical and human capital. If Kt stands

solely for physical capital though, the U.S. data on factor payments suggest instead that the

capital share is about 0.36. Having considered the case α = 1 in section 2, I now examine

these two alternatives.

The second factor driving the persistence of consumption is the process driving produc-

tivity shocks. I will model productivity as:

at = µ+ τ(1− φ)t+ φat−1 + wt, with wt ∼ N(0, ω2). (21)

Prescott (1986) discusses how this process provides a good approximation to the obser-

vations of the Solow residual. While these observations imply that productivity is highly

persistent, it is difficult to distinguish in the data between a stationary process, with say

φ = 0.9, or a non-stationary process, in which case φ = 1. Moreover, Kydland and Prescott

(1982) found that a real business cycle model performs equally well with either option. I

will consider both cases.

Aside from persistence, the other key determinant of the costs of fluctuations is the

volatility of consumption. In this economic model, consumption volatility is driven by the

parameter ω. It is difficult to pinpoint this value in the data, since the Solow residual is

likely a very noisy measure of productivity. Consistent with this paper’s overall approach,

I calibrate this parameter to match the properties of consumption. Namely, I set ω so that

the model matches either the standard deviation of log consumption (for the stationary

model), or the standard deviation of its first difference (for the non-stationary model).

Solving for the costs of fluctuations

I solve the four models corresponding to the different assumptions on α and φ by log-

linearizing around the non-stochastic steady state. Unfortunately, when productivity is non-

stationary, I am only able to solve the model when γ = 1. With non-stationary productivity,

the model does not have a steady state. The variables must then be transformed to employ

23



log-linearizations. In the case when γ = 1, Christiano (1988) found such a transformation,

but for γ 6= 1 there is no available transformation.

The value function V (K, a) gives the expected discounted utility of having an amount of

capital K when the current productivity is a. As long as there are shocks to productivity,

output and consumption will fluctuate. The counterfactual scenario in which there are

no fluctuations in income corresponds to a world in which productivity does not vary but

remains constant at E[At].

While the costs of fluctuations are defined as before, now one must specify at which

(K, a) pair do they apply. The stationary steady state capital stock of the non-stochastic

economy is a natural choice forK. As for a, I will calculate the expected costs of fluctuations

by taking the expected value of V (K, a) over the different possible realizations of a.

The appendix shows that if productivity is stationary, then:

ln(1 + λ) =

⎧⎪⎨⎪⎩
0.5ω2

1−φ2 [1− (1− eg−r)Vaa] +O(ω4) if γ = 1

0.5ω2

1−φ2 +
1

γ−1 ln

∙
1 + 0.5ω2Vaa

(1−φ2)V

¸
+O(ω4) if γ 6= 1

, (22)

while if productivity is non-stationary and γ = 1, then:

ln(1 + λ) = 0.5ω2
∙

1

1− eg−r
−
¡
1− eg−r

¢
(Vaa − Va)

¸
+O(ω4). (23)

Subscripts denote partial derivatives and all the functions are evaluated at the non-stochastic

steady state; analytical expressions for each term are in the appendix. Given how small the

ω’s typically are, the error in the expressions should be negligible.

Estimates of the costs of fluctuations in the economic model

Table 6 presents the estimated costs of fluctuations. Panel A has the estimates for the

model with quickly diminishing returns to capital (α = 0.36) and stationary productivity

(φ = 0.9). The costs of fluctuations are small, around 0.09% of consumption. While these

are the smallest numbers in the table, they are already twice larger than the Lucas baseline.

In Panel B, productivity is still stationary, but there are only mildly diminishing re-

turns to scale (α = 0.75). Technology shocks now have a more long-lasting impact, and

correspondingly the costs of fluctuations are two to three times larger. According to these

estimates, each person in the United States would be willing to pay between $31 and $55
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to eliminate fluctuations in consumption.

Table 6 — The costs of fluctuations in the stochastic growth model

Panel A: Stationary productivity and strongly diminishing returns

γ = 1 γ = 3 γ = 5

r − g = 0.03
0.07%

($16)

0.08%

($19)

0.09%

($22)

r − g = 0.02
0.07%

($17)

0.09%

($21)

0,10%

($24)

r − g = 0.01
0.08%

($19)

0.10%

($24)

0.12%

($27)

Panel B: Stationary productivity and mildly diminishing returns

γ = 1 γ = 3 γ = 5

r − g = 0.03
0.17%

($40)

0.15%

($36)

0.13%

($31)

r − g = 0.02
0.18%

($43)

0.18%

($42)

0.16%

($38)

r − g = 0.01
0.21%

($48)

0.23%

($55)

0.23%

($55)

Panel C: Non-stationary productivity

α = 0.36 α = 0.75

r − g = 0.03
0.55%

($129)

0.26%

($60)

r − g = 0.02
0.85%

($199)

0.39%

($92)

r − g = 0.01
1.76%

($412)

0.81%

($190)
Each cell shows the per capita costs of fluctuations as a fraction of consumption
and, in brackets, in 2003 dollars.

Panel C finally turns to the case when productivity is non-stationary (φ = 1). Con-

sumption fluctuations are now much more costly. With quickly diminishing returns to scale,

they cost between 0.6% and 1.8% of per capita consumption; slowly diminishing returns to

scale lower these estimates by half. Increasing the speed of diminishing returns therefore

raises the costs of fluctuations, the opposite of what happened with stationary productiv-

ity. The reason is that with non-stationary productivity, consumption is already a random

walk in steady state, so that with mildly diminishing returns to scale, the model predicts
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that consumption is too persistent. Fitting the unconditional variance of first-differenced

consumption predicted then requires a lower calibrated value for the volatility of shocks,

which pushes the costs of fluctuations down.

The class of models analyzed in this section is just one among many different possibilities.

Aside from generating estimates of the costs of fluctuations that are interesting in their own

right, these models served a dual purpose. First, they showed how to calculate the costs

of fluctuations within economic models that take the precautionary savings and investment

risk effects into account. Second, they showed that the model’s predicted persistence of

consumption is a key determinant of the costs of fluctuations. This opens the door to

estimating the costs of fluctuations in models that have other mechanisms propagating

shocks over time aside from investment, such as for instance nominal rigidities or credit

market frictions.

6 Conclusion

This paper re-examined the estimation of the costs of fluctuations, by focusing on the

properties of aggregate consumption. It showed that the properties of the stochastic process

describing consumption, and especially the persistence of shocks, are a key determinant of

the costs of fluctuations. While the assumptions made by Lucas (1987) are decisively

rejected by the data, this paper has shown that if one knows with certainty that shocks

to consumption are only mildly persistent, the estimated costs of fluctuations are close to

those that Lucas estimated.

The evidence though suggests that consumption fluctuations are more persistent than

this. As persistence increases, the costs of fluctuations rise substantially. For instance, if

consumption is a random walk, as some theories suggest and the data does not reject, the

costs of fluctuations are fifty times larger than what Lucas estimated. The statistical models

that best fit the data and the economic models that account for the effect of fluctuations

on precautionary savings lead to even larger estimates of the costs of fluctuations, typically

two orders of magnitude larger than Lucas’ benchmark.

The conclusion that the costs of fluctuations are large and that they are driven mostly by

persistent shocks was also suggested by Alvarez and Jermann (2004). This paper and theirs

are very different however. First, they use asset pricing data to infer the marginal utility of
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consumption so they implicitly assign a large value for risk aversion, whereas I consider value

for relative risk aversion of at most 5. Second, they estimate the covariance of consumption

with asset prices, whereas I estimate the persistence of consumption. Third, whereas they

tackle the problem of estimating risk premia, I tackle the problem of estimating persistence

when it is large. And fourth and finally, whereas they emphasize the need for a model of

how consumers trade risk, I emphasize the need for a model of consumption dynamics over

time. It is a demonstration of the power of the science of economics that sometimes, even

if only rarely, we can pursue completely different measurement strategies and yet obtain

some convergence in estimates and conclusions.

As the introduction discussed, it is unclear whether the fluctuations behind the estimates

in this paper correspond to business cycles. If business cycles are transitory short-lived

deviations of consumption away from a stable trend, as defined by for instance the use of

band-pass filters, this paper suggests that the costs of business cycles are small. However,

there is an alternative view of business cycles that dates back at least to Burns and Mitchell

(1946) and which defines cycles as a set of regularities in the comovement of macroeconomic

series. Campbell and Mankiw (1987) found that output fluctuations in the United States

are actually very long-lived. In turn, Kydland and Prescott (1982) found that a calibrated

real business cycle model driven by non-stationary productivity shocks fits quite closely

the data on U.S. business cycles, and it predicts infinitely-lived consumption fluctuations.

Under this view of business cycles, the welfare costs may be quite large. Whichever view

one takes of business cycles, the calculations in this paper have at least provided the tools

to estimate the costs of business cycles under different scenarios.

The bulk of the estimates in this paper suggest that the costs of fluctuations lie in the

range from 0.5% to 5%. These are significant amounts. To put these numbers into per-

spective, in 2003 the total amount spent by the U.S. federal government in unemployment

and medical insurance was $53 billions, or 0.8% of consumption; the amount spent in con-

sumption by the federal government excluding national defense was $223 billions (3.3%);

the amount spent in health coverage for low-income families through the Medicaid program

was $265 billions (3.9%).16 The estimates in this paper suggest that eliminating fluctuations

in consumption could be as valuable to society as the current protection against unemploy-

ment and the current provision of health care to the poor. If the federal government was

16Source: National Income and Product Accounts, tables 3.9.5 and 3.12.
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able to devise some policy that eliminated consumption fluctuations, consumers would be

willing to reward it by almost doubling its non-defense budget.

These estimates still do not overturn the main Lucas (1987) point. Raising the economy’s

growth rate by 1% would have a much larger effect on welfare than eliminating fluctuations

likely ever would. This comparison is only fair though insofar as it is as easy to raise a

country’s growth rate as it is to dampen fluctuations. There is little evidence that the

recommendations of economists have had any effect on growth, let alone a substantial one

(Easterly, 2002), but there is some evidence that advances in economic knowledge have

led to policies that have stabilized the economy (Romer and Romer, 2002). A more fair

comparison may be with other policies that seem within the scope of public policy. As

Lucas (2003) discusses, lowering inflation from 10% to zero would imply a gain of 1% of

consumption. Eliminating capital income taxes would raise per capita consumption by 2

to 4%. The numbers in this paper put an upper bound on the benefits of eliminating

fluctuations (short-run or not) that is in this range as well.

If an economist was able to come up with a policy that, when implemented, made a

country grow 1% faster forever, his work would have a more important on society’s welfare

than probably any other economist has ever had. Until this happens though, lowering

inflation, reducing taxes on capital income, and dampening consumption fluctuations, are

aims that are within the grasp of our knowledge. If better stabilization policy can bring

society a gain of $200 billions, this is a large enough impact on well-being to motivate the

work of a modest economist.
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Appendix

This appendix contains calculations omitted in the main text.

The costs of fluctuations in statistical models

For the case γ = 1, the definition of the costs of fluctuations in (1) and of the counter-

factual in statistical models imply that:

ln(1 + λ) + (1− e−ρ)E

" ∞X
t=0

e−ρtE (ct)

#
= (1− e−ρ)

∞X
t=0

e−ρt (E (ct) + 0.5V ar(ct)) . (A1)

This result used the log-normality of Ct to evaluate ln(E(Ct)). Rearranging and substituting

ρ for r − g gives the first expression in (2). For γ 6= 1, log-normality of consumption im-

plies that E(C1−γt ) = E(Ct)
1−γe0.5γ(γ−1)V ar(ct). Similar rearrangements lead to the second

expression in (2).

The costs of fluctuations in the AR(1) statistical models

For a stationary AR(1), V ar(ct) = σ2(1−η2t)/(1−η2) for t ≥ 1. When γ = 1, evaluating

the sum in (2) shows that

ln(1 + λ) =
0.5σ2

er−g − η2
. (A2)

Using the approximations er−g − 1 ∼= r − g and ln(1 + λ) ∼= λ gives the result.

For the case when γ 6= 1, approximate

ln(1 + λ) =
1

γ − 1 ln
"
(1− eg−r)

∞X
t=0

e(g−r)te0.5γ(γ−1)σ
2(1−η2t)/(1−η2)

#
(A3)

around σ2 = 0 using a first-order Taylor expansion. Terms of order σ4 or higher are tiny in

the data, so this involves little error. This leads immediately to the same expression as in the

log case, but now multiplied by γ: ln(1 + λ) ∼= 0.5γσ2/(er−g − η2). Similar approximations

to before give the final result.

The costs of fluctuations in the benchmark economic model

The Euler equation for the problem in (6)-(7) is:

C−γt = e−ρEt

h
Rt+1C

−γ
t+1

i
. (A4)
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Then, guess that consumption is linear in wealth, Ct = πRtKt, with a coefficient π to be

determined. The budget constraint implies that:

Ct+1

Ct
=

Rt+1Kt+1

RtKt
= Rt+1(1− π). (A5)

Using this result to replace for Ct+1/Ct in the Euler equation and the fact that Rt+1 is

log-normally distributed, (A5) becomes:

γ ln(1− π) = (1− γ)r − ρ+ 0.5γ(γ − 1)σ2. (A6)

This expression does not depend on any state variable, which confirms the initial guess.

Combining (A6) with (A5) and using the definition of g gives the result in (8).

The costs of fluctuations for γ 6= 1 solve the equation:

(1 + λ)1−γ (1−eg−r)1−γ
∞X
t=0

e[−ρ+(1−γ)(g−0.5γσ
2)]t = (1−eg−r+0.5(1−γ)σ2)1−γ

∞X
t=0

e[−ρ+(1−γ)(g+0.5(1−γ)σ
2)]t.

(A7)

Use the definition of g in (8) to replace for ρ and obtain:

(1 + λ)1−γ (1− eg−r)1−γ
∞X
t=0

e(g−r)t = (1− eg−r+0.5(1−γ)σ
2
)1−γ

∞X
t=0

e[g−r+0.5(1−γ)σ
2)]t. (A8)

Evaluating the sums and taking logs shows that:

ln(1 + λ) =
γ

γ − 1 ln
Ã
er−g − e−0.5(γ−1)σ

2

er−g − 1

!
. (A9)

The case when γ = 1 follows along the same steps.

The costs of fluctuations in the Epstein-Zin-Weil model

It is easy so show (e.g., see Weil, 1990) that optimal consumption is in (8) but now with:

θg = r − ρ+ 0.5(θ − 1)γσ2. (A10)

The expected discounted utility from setting optimal consumption equals:

(R0K0)
1−γ (1− e−ρ)(1−γ)/(1−θ) (1− eg−r)−θ(1−γ)/(1−θ)

(1− e−ρ) (1− γ)
− 1

(1− e−ρ) (1− γ)
. (A11)
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With the preferences in (9), without fluctuations, discounted utility equals

(1− e−ρ)(1−γ)/(1−θ) (R0K0)
1−γ (1− eg−r−(θ−1)0.5γσ

2/θ)−θ(1−γ)/(1−θ)

(1− e−ρ) (1− γ)
− 1

(1− e−ρ) (1− γ)
.

(A12)

Given the definition of the costs of fluctuations, (1 + λ)1−γ equals the ratio of the first

terms in (A12) and (A11). After cancelling some terms and taking logs, this equals:

ln(1 + λ) =
θ

θ − 1 ln
Ã
er−g − e−0.5(θ−1)γσ

2/θ

er−g − 1

!
. (A13)

Finally, note that a linear approximation of the right-hand side of (A13) in σ2 around zero

is equal to a linear approximation of the right-hand side of (A9).

Asymptotic distributions for the extended auto-regressive model

The first extension is to include the γ 6= 1 cases. The simplest way to do this is to

approximate the definition of the costs of fluctuations in (2) around the point σ2 = 0. This

shows that up to terms that are O(σ4) the costs of fluctuations with γ 6= 1 just equal γ

times the costs for the log utility case. In the data, the estimates of σ are typically tiny so

the σ4 terms being ignored are quantitatively insignificant.

The second extension is to the Dickey-Fuller regression. One change is that now =

1 + (c/n)(1 −
Pk

j=1 ψj). Another change is that the distribution of is affected by the

presence of the constant and the trend. Stock (1991) showed that:

n(ˆ− 1)⇒

⎛⎝1− kX
j=1

ψj

⎞⎠"µZ 1

0
Jτ (s)2ds

¶−1µZ 1

0
Jτ (s)dW (s)

¶
+ c

#
, (A15)

where Jτ (s) = J(s) −
R 1
0 (2 − 6r)J(r)dr − s

R 1
0 (12r − 6)J(r)dr. The distribution of the

estimate of the costs of fluctuations is otherwise similar to before.

The costs of fluctuations in the stochastic growth model with stationary productivity

The value function is defined as:

V (K, a) = max
{Ct}

(
E

" ∞X
t=0

e−ρtu(Ct)

#
s.t. Kt+1 = e(1−α)atKα

t + (1− δ)Kt − Ct

)
(A16)
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Define z ≡ (µ − φτ)/(1 − φ) and transform the variables using the relation (ãt, c̃t, k̃t) =

(at− z− τt, ct− z− τt, kt− z− τt). Note that ãt = φãt−1+wt. The problem then becomes

V (K, a) = max

(
E

" ∞X
t=0

e−ρtu(C̃te
z+τt)

#
s.t. eτK̃t+1 = e

(1−α)ãt
t K̃α

t + (1− δ)K̃t − C̃t

)
(A17)

Let v(K̃, ã) = max
n
E
hP∞

t=0 e
−[ρ−(1−γ)τ ]tũ(C̃t)

i
s.t. eτ K̃t+1 = e

(1−α)ãt
t K̃α

t + (1− δ)K̃t − C̃t

o
.

The new utility function, ũ(.), is a simple monotonic transformation of the utility function

such that ũ(Ct) = {ct if γ = 1, or C1−γt /(1 − γ) if γ 6= 1}; it serves only the purpose of

avoiding carrying one irrelevant additive term throughout. It then follows that

V (K,a) =

⎧⎨⎩ v(K̃, ã) + 1
1−e−ρ

³
z + τ

eρ−1

´
if γ = 1

ez(1−γ)v(K̃, ã)− 1
(1−γ)(1−e−ρ) if γ 6= 1.

(A18)

In the counterfactual case where productivity equals A∗t = E[At] = exp(z + τt +

0.5V ar(a)), consider instead the transformation (ã∗t , c̃
∗
t , k̃

∗
t ) = (a∗t − z − τt − 0.5V ar(a),

c∗t − z − τt − 0.5V ar(a), k∗t − z − τt − 0.5V ar(a)). By taking the exact same steps as in

the previous paragraph, you can see that the transformed value function is the same v(.)

as in the original problem, for the case where ã = 0 and w0 = 0. The value of being in an

economy without fluctuations then is:

V ∗(K,a∗) =

⎧⎨⎩ v∗(K̃, 0) + 1
1−e−ρ

³
z + τ

eρ−1

´
+ 0.5V ar(a)

1−e−ρ if γ = 1

e0.5V ar(a)ez(1−γ)v∗(K̃, 0)− 1
(1−γ)(1−e−ρ) if γ 6= 1.

(A19)

I compute the costs of fluctuations at the steady state capital stock Kss and integrating

over the possible values of a. The definition of the costs of fluctuations in (1) implies:

ln(1 + λ)/(1− e−ρ) +Ea [V (K
ss, a)] = V ∗(Kss, a∗) if γ = 1

(1 + λ)1−γEa [V (K
ss, a)] + (1+λ)1−γ−1

(1−γ)(1−e−ρ) = V ∗(Kss, a∗) if γ 6= 1,
(A20)

where Ea[.] is the expectations operator over the random variable a. Using the expressions

for the value functions in (A18) and (A19), this becomes:

ln(1 + λ) = 0.5V ar(a)− (1− e−ρ)
³
Ea

h
v(K̃ss, ã)

i
− v∗(K̃ss, 0)

´
if γ = 1

ln(1 + λ) = 0.5V ar(a)− 1

γ − 1 ln
h
Ea

h
v(K̃ss, ã)

i
/v∗(K̃ss, 0)

i
if γ 6= 1 (A21)
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Finally, a Taylor approximation of v(K̃ss, ã) around the non-stochastic steady state is:

v(K̃ss, ã) = v∗ + vaã+
vaaã

2

2
+

vaaã
3

6
+O(ã4), (A22)

where va(n) = ∂(n)v(.)/∂ã(n) and all the functions are evaluated at the non-stochastic steady

state. Integrating over ã and using the fact that it is mean-zero normally distributed:

Ea

h
v(K̃ss, ã)

i
= v∗ + 0.5vaaV ar(ã) +O(ω4) (A23)

Replacing this result into the expressions in (A21), using the fact that V ar(ã) = ω2/(1 −

φ2), and noting that Va = va from (A18), gives the resulting expression for the costs of

fluctuations in (22).

The costs of fluctuations in the stochastic growth model with non-stationary productivity

One appropriate transformation now is (c̃t, k̃t) = (ct − at, kt − at−1) so that:

V (K, a) = max

(
E

" ∞X
t=0

e−ρtu(C̃tAt)

#
s.t. K̃t+1 = K̃α

t e
−α(µ+wt) + (1− δ)K̃te

−(µ+wt) − C̃t

)
(A24)

Define v(K̃, w) as in the stationary case, and obtain:

V (K, a) = v(K̃, w) +
∞X
t=0

e−ρtE0[at]. (A25)

The stable economy is the one in which A∗t = E0[At] = exp(E0(at) + 0.5V ar0(at)). The

corresponding transformation is (c̃∗t , k̃
∗
t ) = (c

∗
t − a∗t , k

∗
t − a∗t−1). This now leads to

V ∗(K, a∗) = max

(
E0

" ∞X
t=0

e−ρtu(C̃tA
∗
t )

#
s.t. K̃t+1 = K̃α

t e
−α(µ+0.5ω2) + (1− δ)K̃te

−(µ+0.5ω2) − C̃t

)
(A26)

The problem of the consumer in the stable economy then equals the problem of the consumer

in the fluctuating economy when w = 0.5ω2, so

V ∗(K, a∗) = v∗(K̃, 0.5ω2) +
∞X
t=0

e−ρtE[a∗t ]. (A27)

The costs of fluctuations are still given by the top expression in (A20), but the new
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expressions for the value functions with and without fluctuations now lead to:

ln(1 + λ) = 0.5ω2(1− e−ρ)
X

e−ρtt− (1− e−ρ)
³
Ew

h
v(K̃ss, w)

i
− v(K̃ss, 0.5ω2)

´
(A28)

The approximation of v(K̃ss, w) is now around the point w = 0.5ω2. Integrating over w

leads to

ln(1 + λ) =
0.5ω2

eρ − 1 + 0.5ω
2(1− e−ρ) (vw − vww) +O(ω4) (A29)

Finally, the relation linking V (.) and v(.) shows that vw = Va − 1/(1 − e−ρ), and that

vww = Vaa. Rearranging (A29) gives the expression in (23).

Calculating the derivatives of the value function in the stationary productivity case

Bellman’s principle of optimality implies that the problem defined in v(k̃, ã) has the

following dynamic programming formulation:

v(K̃, ã) = max
k̃0

n
ũ
³
e(1−α)ãK̃α + (1− δ)K̃ − eτK̃ 0

´
+ e−ρ+(1−γ)µE

h
v(K̃ 0, φã+ w0)

io
.

(A30)

The optimality conditions are:

vk(K̃, ã) = e−ρ−γτR(K̃, ã)Et[vk(g(K̃, ã), φã+ w0)] (A31)

vk(K̃, ã) = R(K̃, ã)u0(c̃(K̃, ã)) (A32)

va(K̃, ã) = (1− α)e(1−α)ãK̃αu0(c(K̃, ã)) + eτ−rφEt[va(g(K̃, ã), φã+ w0)]. (A33)

R(K̃, ã) ≡ αe(1−α)aK̃α−1 + 1− δ (A34)

The first equation is the Euler equation, the second is the envelope theorem condition with

respect to K̃, and the third is the envelope theorem condition with respect to ã. The fourth

equation defines an auxiliary function (that corresponds to the return on capital), which

is useful to reduce the length of the expressions. The optimal choice of K̃ 0 is given by

a function g(K̃, ã). Using the resource constraint, the optimal choice of consumption is

c̃(K̃, ã) = e(1−α)ãK̃α + (1− δ) K̃ − g(K̃, ã)eτ .

In the non-stochastic steady state, g(K̃ss, 0) = K̃ss, ã = 0 and w0 = 0. The set of

equations above then returns the steady state values of R, vk, va, and K̃ss. (When a

function is written without its argument, it is being evaluated at the non-stochastic steady
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state.) Note that r ≡ ln(R) = ρ + γτ . The Bellman equation and the resource constraint

in turn give the solutions for v and C̃ss. Finally, it is trivial to use the equation defining

R(K̃, ã) to obtain Rk and Ra.

To construct the Taylor approximation, I perturb the system with respect to (k̃, ã)

around the point (k̃ss, 0). Perturbing the Euler equation with respect to k̃ and evaluating

the functions at (k̃ss, 0) gives:

vkk = R−1Rkvk + vkkgk (A35)

Rearranging, this gives an expression for gk in terms of only one unknown vkk. Likewise

perturbing the envelope theorem condition with respect to capital gives another equation

for gk and vkk. Using the expression from the perturbed Euler equation to replace for gk in

the perturbed envelope theorem equation and rearranging gives a quadratic in vkk:

v2kk −
£
R(R− eτ )u00(css) +Rku

0(css)
¤
vkk −Rku

00(css)vke
η = 0 (A36)

Aside from vkk, all the other elements in this equation are known. It is therefore trivial to

solve this equation for vkk, picking the negative solution, since the value function is concave.

Next perturb (A31) and (A32) with respect to ã. This leads to the system:

vka(1− φ) = R−1Ravk + vkkga (A37)

vka = Rau
0(css) +Ru00(css)

h
(1− α)

³
k̃ss
´α
− gae

τ
i

(A38)

These are two linear equations in two unknowns: vka and ga. It is easy to solve the system

to obtain these two values. Finally, perturbing (A33) with respect to ã and rearranging

gives a simple expression for vaa:

vaa =
gae

τ−rφvka + (1− α)2
³
k̃ss
´α

u0(css) + (1− α)
³
k̃ss
´α

u00(css)
h
(1− α)

³
k̃ss
´α
− gae

τ
i

1− eτ−rφ2
.

(A39)

All of the terms in the right hand side of this expression are known, so this gives vaa.

Calculating the derivatives of the value function in the non-stationary productivity case
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Bellman’s principle of optimality now implies:

v(K̃,w) = max
k̃0

n
ln
h
K̃αe−α(µ+wt) + (1− δ)K̃e−(µ+wt) − K̃ 0

i
+ e−ρtE

h
v(K̃ 0, w0)

io
.

(A40)

The set of optimality conditions, in the same order as before is:

vk(K̃, w) = e−ρR(K̃, w)Et[vk(K̃
0, w0)] (A41)

vk(K̃, w) = R(K̃, w)u0(c̃(K̃, ã)) (A42)

vw(K̃, w) = −vk(K̃, w) (A43)

R(K̃, w) ≡ αe−α(µ+w)K̃α−1 + (1− δ) e−(µ+w) (A44)

The optimal choice of K̃ 0 is still denoted by g(K̃, w), and the optimal consumption amount

now equals c̃(K̃, w) = e−α(µ+w)K̃α + (1− δ) K̃e−(µ+w) − g(K̃, w).

Evaluating this set of equations at the non-stochastic steady state, K̃ = K̃ 0 = K̃ss and

w = ω2/2, gives the steady state values R, vk, va, k̃ss, and straightforward manipulations

give v, c̃ss, Rk and Ra.

Perturbing (A41) and (A42) with respect to k̃ gives the same expressions as in the

stationary case (though the expressions for R and c̃ss are of course different). Again, these

two equations give the solutions for vkk and gk. Perturbing (A43) with respect to k̃ and with

respect to w gives the system of two equations: vwk = −vk − k̃ssvkk and vww = −K̃ssvkw.

Solving for vww then gives the solution: vww = K̃ss
³
vk + K̃ssvkk

´
.
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