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ABSTRACT

The growth of high-technology clusters in the United States suggests the presence of strong

regional agglomeration effects that reflect proximity to universities or other research institutions.  Using

data on licensed patents from the University of California, Stanford University, and Columbia University,

this paper compares the geographic “reach” of knowledge flows from university inventions through two

important channels: non-market “spillovers” exemplified by patent citations and market contracts

(licenses).  We find that knowledge flows through market transactions to be more geographically

localized than those operating through non-market “spillovers.”  Moreover, the differential effects of

distance on licenses and citations are most pronounced for exclusively licensed university patents.  We

interpret these findings as reflecting the incomplete nature of licensing contracts and the need for licensees

to maintain access to inventor know-how for many university inventions.  Such access appears to be less

important for inventions that are non-exclusively licensed (e.g. “research tools”).
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1. Introduction 

A substantial body of recent research has examined the contributions of university 

research to regional economic development and technological innovation (Jaffe 1989; Jaffe, 

Trajtenberg, and Henderson 1993; Acs, Audretsch, and Feldman 1992, 1994; Audretsch and 

Stephan 1996; Zucker, Darby, and Armstrong 1998; Agrawal 2000; Adams 2001).  Interest in 

this topic has been sparked by the extensive historical and anecdotal evidence of links between 

U.S. university research and the growth of high-technology industries such as semiconductors, 

computer software, and biotechnology.  The growth of these high-technology clusters in the 

United States suggests the presence of strong regional agglomeration effects that reflect 

proximity to universities or other research institutions.  Accordingly, much of the literature on 

the economic contributions of university research has focused on the extent to which these 

contributions are localized. 

This literature suggests that the channels through which university-based research affects 

regional economic or innovative activity may be divided into two broad categories: knowledge 

“spillovers” (i.e., positive externalities from university research that affect the performance of 

nearby firms) and “market-based” channels such as technology licensing or various types of 

employment relationships between academic scientists and firms.  Most of this empirical 

research suggests that the economic or innovative contributions of university-based research tend 

to be geographically concentrated, but little or no empirical research has yet compared the 

geographic “incidence” of these market and nonmarket channels of interaction.  This paper 

undertakes such an analysis, comparing the localization of outflows of university-based research 

through citations to university patents and through licenses that involve these same patents. 

We conduct this analysis at the regional rather than the state level, disaggregate among 

broad technological areas, and control for inter-regional differences in industrial composition and 
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population.  Our empirical analysis contains important limitations.  The data are drawn from a 

small set of research universities that may not be representative of all U.S. universities.  In 

addition, our comparative analysis of knowledge flows in patent citations and licensing 

agreements excludes other potential channels of interaction.  Nevertheless, the opportunity to 

consider multiple avenues of technology transfer for the same set of inventions allows us to 

address questions that thus far have been overlooked in the literature. 

A finding that the geographic “reach” of knowledge spillovers differs from those of 

market-based channels has significant implications for industrial managers and university 

administrators.  Managerial decisions on the location of R&D and other knowledge-intensive 

activities often are influenced by beliefs about the characteristics of the channels through which 

academic knowledge is transferred to industrial practice.  And for university administrators, 

especially those in public universities, the renewed concern of federal and state policymakers 

with the level of economic returns from university-based research is matched only by these 

policymakers’ concerns with the national and regional distribution of these returns. 

Immediately below, we consider the reasons for the observed localization of the effects of 

university research and discuss some of the prior literature on geographic localization.  This 

section is followed by an explanation of our data sources and methodology.  Section 4 presents 

and discusses our empirical findings, and Section 5 concludes the paper. 

2. Why Are the Effects of University Research Localized? 

The extensive literature on technology management and the economics of innovation 

argues that virtually all technologies contain important “tacit” elements such as aspects of know-

how, performance, operations, etc., that cannot be easily codified in a blueprint, a published 

article, or a contractual document.  Oral communication of tacit knowledge over long distances 
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may be ineffective or infeasible.  As a result, technology transfer is frequently described as a 

“contact sport,” in which the transfer or exchange of personnel is essential.  The limited 

geographic reach of such channels for the exchange of information and know-how is widely 

cited as one of the leading causes of regional agglomeration economies.  Marshall (1896) pointed 

out in his celebrated discussion of this topic that in such areas, “the mysteries of the industry are 

in the air,” and therefore presumably more accessible to local participants or would-be entrants. 

Despite the enormous outpouring of literature on “industrial districts” and regional high-

technology complexes such as Silicon Valley in Northern California or Route 128 in 

Massachusetts, the mechanisms that create and sustain these regional concentrations are not well 

understood.  Knowledge “spillovers,” which are widely believed to be important to these 

localized economic and innovative effects, are defined by economists to be “externalities,” for 

which the source of the spillover is not fully compensated.  For example, technical knowledge 

acquired through the trade press or by participation in industry conferences constitutes a 

knowledge spillover.  In other words, pure knowledge “spillovers” operate through non-market 

mechanisms.  But many other channels for technology transfer that sustain regional 

concentrations of industry are market-based.  For example, the extensive regional high-

technology infrastructures in the Boston or San Francisco areas of lawyers, venture capitalists, 

consultants, equipment suppliers, and the like all operate within markets for labor, services, and 

information.  At the same time, however, contracts for new or complex technologies frequently 

are incomplete, markets for such technologies are often thin and subject to “small-numbers” 

problems, and contracts rarely can codify all knowledge necessary for the exploitation of the 

technology (Arrow 1962, Williamson 1975, Mowery 1983).  There are strong reasons to suspect 
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that these and other factors limit the geographic reach of market mechanisms for the transfer of 

relatively new technologies. 

The literature on universities’ regional economic effects also reaches a mixed verdict on 

the relative importance of market and non-market-based channels in the realization of these 

effects.  Jaffe, Trajtenberg and Henderson (1993) examine the extent to which “spillovers” of 

university-based research are locally concentrated using citations to university patents to 

measure spillovers.  These scholars measure the localization of these spillovers by examining the 

relative proportions of university patents and a “control sample” of patents from the same years 

and technology classes that are cited by inventors in the same state and in the same “standard 

metropolitan statistical area” (SMSA).1  They find significant localization effects; inventors of 

patents that cite university patents are more likely to be in the same state or SMSA than are 

inventors that cite patents from their control sample. 

No attempt is made to compare the strength of localization effects by technological area, 

although Jaffe, Trajtenberg, and Henderson do note that these localization effects are similar for 

patent citations that span patent classes and those within patent classes.  Although their analysis 

excludes self-citations, their data do not enable Jaffe, Trajtenberg, and Henderson to control for 

the potential existence of market relationships (e.g., licenses) between firms citing university 

patents and the universities or inventors whose patents are cited.  To the extent that these market 

relationships exist, these scholars’ findings of localization may reflect the operation of market 

and non-market channels of knowledge transfer, rather than a pure knowledge spillover. 

Indeed, recent research by Lynne Zucker and Michael Darby and their co-authors 

(Zucker, Darby, and Armstrong 1998; and Zucker, Darby, and Brewer 1999) suggests that a 
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significant fraction of knowledge transfer between universities and biotechnology firms can be 

attributed to market-mediated interactions between a relatively small number of “star” 

university-based scientists and biotechnology firms.2  Rather than spillovers, Zucker and 

colleagues argue that knowledge flows from universities to industry through these “star” 

academic scientists’ industrial roles as principals, consultants, employees, or members of 

scientific advisory boards. Their analysis shows that co-authorship between industry scientists 

and academic “stars” has a significant and positive effect on the number of new products being 

developed by biotechnology firms.  Related (less robust) results suggest that knowledge transfer 

between university scientists and firms is enhanced further by contractual affiliations between 

the scientists and the firms in the sample.  These results suggest that the geographic “knowledge 

networks” that link academic researchers and industrial innovators operate largely through 

market channels. 

Zucker and Darby’s results contrast with those of Audretsch and Stephan (1996), who 

examined interactions between university-based scientists and firms based on disclosures in 

biotechnology firms’ initial public offering (IPO) documents about academic researchers’ roles 

in the firms.  Audretsch and Stephan find that  “approximately 70 percent of the links between 

biotechnology companies and university-based scientists are non-local” (p. 649), and conclude 

that “While proximity matters in establishing formal ties between university-based scientists and 

companies, the influence is anything but overwhelming” (p. 650).  The Audretsch-Stephan 

results introduce yet another interpretation of the channels of interaction between universities 

                                                                                                                                                                                           
1 The “control sample” of patents provides a means of controlling for regional variations in industry 
composition, since the citation of patents in the same year and technology class as those from local 
universities is (other things equal) likely to reflect local industrial concentration. 
2 Zucker, Darby, Armstrong, and Brewer define “star” scientists as those active researchers at the “leading 
edge” of basic science research.  In biotechnology, they identified 327 scientists worldwide who reported 
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and industry.  Like Zucker and Darby, Audretsch and Stephan argue that university-industry 

knowledge interactions operate primarily through market channels.  But Audretsch and Stephan 

find that proximity is not essential to the operation of these market channels: 

“…geographic proximity matters when knowledge spillovers are informal.  But 
an important conclusion of this paper is that when knowledge is transmitted 
through formal ties between researchers and firms, geographic proximity is not 
necessary, since face to face contact does not occur by chance but instead is 
carefully planned.”  (p. 651) 

Agrawal (2000) examines the role of geography in university-industry interaction for a 

sample of 124 electrical, mechanical, and software technologies licensed from the Massachusetts 

Institute of Technology (MIT).  Although geographic proximity is positively associated with the 

likelihood and extent of product commercial success (measured by probability of product 

introduction and level of licensing royalties) for these technologies, this significant effect 

vanishes when Agrawal controls for the intensity of university researchers’ involvement with the 

licensee.3  Although it is apparent from the analysis that for many university-invented 

technologies, which are often at an early stage of development, inventor interaction is important, 

geographic localization effects may still be important.  The sample in the Agrawal study is 

selected from licensed technologies only, and these technologies may be licensed by nearby 

                                                                                                                                                                                           
at least 40 genetic sequencing discoveries in the Genebank database or published a minimum of 20 
genetic sequencing discoveries. 
3 Zucker, Darby, and Armstrong, and Brewer operationalized firm-scientist interaction as article co-
authorship and Audretch and Stephan categorized scientist roles from information in IPO documents.  
Agrawal measures the intensity of interaction between university researchers and licensees as the number 
of hours that university researchers devote to direct collaboration with the licensee firm to solve technical 
and development problems after the invention is licensed from MIT, but before revenues are generated.  
Interestingly, although the licensing agreement represents a market-based instrument for interaction, 
interaction between the firm and university researchers may or may not be governed by contractual 
agreements.  For example, some MIT faculty may maintain consulting, employment, or founding 
relationships with the firms in Agrawal’s sample of licensees.  Likewise, involvement by graduate student 
researchers with licensee firms may occur through employment or thesis research.  Nevertheless, it is 
clear from the analysis that collaboration with MIT researchers aided the commercial success of licensees, 
no matter how these collaborations were organized. 



 8

firms because of the ability to interact with university researchers that geographic proximity may 

afford.4 

Taken together, the findings of these four studies suggest that geographic proximity to 

university research is important not only for non-market spillovers, but also for market channels 

of interaction and knowledge exchange.5  But none of these studies directly compares 

localization of market and non-market channels of technology transfer for the same set of 

inventions.  That issue is the focus of our empirical investigation. 

3. Data and Methods 

The primary sources of data for our empirical analysis are the technology transfer offices 

at Columbia University, the University of California, and Stanford University.  According to a 

recent licensing survey by the Association of University Technology Managers’ (AUTM 2000), 

these three universities were among the top five recipients of gross licensing income from patent 

licenses among U.S. universities in fiscal year 1999 ($96 million, $81 million, and $40 million, 

respectively).  The University of California has been a licensor of faculty-invented technology 

since at least the 1950s, while Stanford established its Office of Technology Licensing (OTL) in 

1970.  Columbia established its technology transfer office in 1981, shortly after passage of the 

Bayh-Dole Act, which simplified the process by which universities could retain and license 

intellectual property resulting from federally funded research.  Our sample includes inventions 

from the Stanford and Columbia campuses, plus all nine University of California campuses 

                                                           
4 In a survey of sixty-two university technology transfer offices, Jensen and Thursby (2001) found that 
48% of licensed technologies were at only the “proof of concept” stage of development, and that for an 
additional 29% only a lab-scale prototype existed at time of licensing.  These findings suggest that many 
licensed university technologies are characterized by substantial uncertainty and require sizeable 
development efforts.  In light of these characteristics of the university inventions, it is not surprising that 
personal interaction between researcher and firm often is necessary for commercial success. 
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(Berkeley, Davis, Irvine, Los Angeles, Riverside, San Diego, San Francisco, Santa Barbara, and 

Santa Cruz), or eleven inventing locations in all. 

Internal records at these three university technology transfer offices contain a wealth of 

information on the inventions of faculty, students, and research staff.  University policies require 

that researchers “disclose” new inventions through a formal invention disclosure document.  

“Invention disclosures” from these universities enable one to trace (1) whether a patent 

application was filed in the U.S. and other industrial economies; (2) whether a patent was issued 

for the invention; (3) whether the patent was licensed to private firms, the general terms (e.g., 

exclusive or nonexclusive) of the license, and the identity and location of the licensee; and (4) 

the amount if any of license fees and royalties for each license.  The University of California data 

cover more than 10,000 invention reports dating back to the 1950s, the Columbia University data 

contain information on 1,600 inventions disclosed since 1981, and the Stanford University data 

contain over 3,000 invention disclosures. 

Our analysis compares the extent of localization of two channels through which 

university inventions may affect innovative firms or individuals:  (1) a non-market channel 

represented by citations to university patents in the patent applications filed by these firms or 

individuals, and (2) a market channel represented by licensing agreements of various types.  

Locational information associated with each of these channels enables us to identify the extent of 

localization of each channel for technology outflow. 

Much previous work on the regional effects of academic research has employed a variant 

of the “knowledge production function” developed by Griliches (1979).  In Jaffe, Trajtenberg, 

and Henderson (1993), patterns of localization are analyzed for a sample of academic patents and 

                                                                                                                                                                                           
5 Recent studies of federal research labs (Jaffe, Fogarty, and Banks 1998) and the semiconductor industry 
(Podolny and Shepard 1996 and Almeida and Kogut 1999) suggest that non-market spillovers are 
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a “control population” of non-cited patents of similar vintage and industrial classification.  This 

general procedure is less well-suited to the concerns of this paper, however, which seeks to 

compare the regional patterns of citations to academic patents with the regional distribution of 

licenses for these patents.  A “control population” of patents can be constructed, but there is no 

obvious “control population” for licenses.  Instead, we use the Census Bureau’s Metropolitan 

Statistical Area data to formulate two dependent variables: (1) the number of patents from a 

given campus that are linked to that geographic region through citations to those patents, and (2) 

the number of licenses to entities in that region from that campus for patented inventions.  We 

base these dependent variables on patents issued during 1975-88; for each patent, we include 

only citations or licenses during the 8 years following the patent’s issue. 

We separately analyze patents that are licensed exclusively and nonexclusively.  We also 

disaggregate our analysis by technological “area,” producing a campus-technology-region 

“triple” as our unit of analysis.  Our dependent variables represent the “intensity” of licensing or 

citing activity to campus i’s patents in technology area j (defined below), accounted for by 

geographic region k (defined below). 

Patent citations have been used in previous studies as measures of technological 

knowledge “spillovers,” i.e., the use of knowledge by an inventor of the work of a previous 

inventor where no contractual agreement is necessary and where in many cases no compensation 

is paid.  When the U.S. Patent and Trademark Office grants a patent, the granting officer 

includes a list of all previous patents on which the granted patent is based.  This list is made 

public as part of the publication of the patent at the time it issues.  The patent officer is aided in 

compiling a list of previous patents by the patent applicant, who is legally bound to provide with 

                                                                                                                                                                                           
geographically mediated in these settings as well.  
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the application a list of all patents that constitute relevant “prior art.”6  Citations of prior patents 

thus serve as an indicator of the technological lineage of new patents, much as bibliographic 

citations indicate the intellectual lineage of academic research. 

Our use of licenses and patent citations as indicators of market and non-market 

technology transfer introduces an interesting measurement issue.  A license clearly signifies a 

market transaction between licensor and licensee, but a patent citation may not indicate a 

knowledge spillover.  For example, a patent attorney or patent examiner at the USPTO may add 

citations during the patent application process.  If the inventor were not aware of such prior art, 

these citations would overstate the level of non-market knowledge spillover.  Jaffe, Fogarty, and 

Banks (1998) found that up to one-third of all citations to patents issued to a sample of patents 

assigned to the National Aeronautics and Space Administration appeared not to represent 

knowledge spillovers.  Similarly, a survey of patent holders by Jaffe, Trajtenberg, and Fogarty 

(2000) suggests that up to one-half of all citations may not constitute spillovers.  Nevertheless, 

the authors of these two studies conclude that patent citations, while “noisy,” are valid measures 

of knowledge spillovers.7 

Citations to patents typically peak in applications filed 4–5 years after the date of issue of 

the cited patent.  As a result, data on citations to patents issued during 1975–96 will be “right-

truncated,” i.e., more recent patents will be underrepresented in the citations data.  For this 

reason, we examined citations to patents issued during 1975–1988 (for these three universities, a 

total of 840 patents), and for each year’s cohort of patents, analyzed only citations made in 

                                                           
6 In addition to the legal requirement, it is in the applicant's interest to be forthcoming in this list because 
a more complete description of prior art is likely to reduce the prospects of an interference being declared 
during processing of a patent application. 
7 To the extent that the likelihood that a citation does not represent a non-market spillover is related to the 
distance between the inventors of the citing and cited patents, our citation equation results could be 
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applications appearing during the 8 years following that year.  Since our geographic analysis is 

limited to the United States, we exclude citations made by patents that list only inventors in non-

US locations.  In order to make our patent citation and licensing samples as comparable as 

possible, we also exclude citations by those entities that are not likely to be licensees:  

universities, non-profit foundations, non-profit hospitals, and governmental agencies (although 

we include citations by patents jointly assigned to a university or governmental agency and a 

private firm or individual).8  Similarly, we exclude patents that are not cited by another US 

patent and licensed in the US.  Table 1 presents the total numbers of patents, licenses, and 

citations generated by the Columbia, Stanford, and California samples, and the number of 

patents, licenses, and citations that remain after these exclusions. 

***  Table 1 Here  *** 

Geographic Regions and Distance:  We employ the Metropolitan Statistical Areas (MSAs) used 

by the U.S. Bureau of the Census to define economically distinct geographic regions in the 

United States.  MSAs are defined to be an “integrated economic and social unit with a large 

population nucleus.”  MSAs with a population of at least 1 million are disaggregated into sub-

units called Primary Metropolitan Statistical Areas (PMSA).  PMSAs in these regions combine 

to form a Consolidated Metropolitan Statistical Area (CMSA).9  In 1999, the Census Bureau 

                                                                                                                                                                                           
biased.  But Jaffe, Fogarty, and Banks (1998) and Jaffe, Trajtenberg, and Fogarty (2000) find no evidence 
of such bias in their analyses of citations and spillovers.  
8 We include citations to university patents made by three “foundations:” The Battelle Institute, The Gas 
Research Institute, and the Electric Power Research Institute.  These three foundations, while nominally 
non-profit, have large industrial clienteles and therefore could conceivably represent potential licensees. 
9 For example, the San Francisco CMSA is composed of seven PMSAs: San Francisco and San Mateo 
Counties, Santa Clara County, Santa Cruz County, Alameda and Contra Costa Counties, Marin County, 
Solano and Napa Counties, and Sonoma County.  In contrast, the San Diego region constitutes one MSA.  
Four of our eleven campuses are located within the San Francisco CMSA (University of California 
campuses at Berkeley, San Francisco, and Santa Cruz, and Stanford University).  One of our campuses is 
located within the San Diego MSA (University of California at San Diego). 
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defined 18 CMSAs and 258 MSAs in the United States.  In this paper we consider only CMSAs 

and MSAs, and restrict our analysis to the largest fifty regions, based on “manufacturing value-

added” attributed to each region in the 1987 Economic Census.  Table 2 lists these geographic 

areas, their share of total US manufacturing value-added, and their shares of sample licenses and 

patent citations. 

***  Table 2 Here  *** 

We obtained the zipcodes for each university campus and for the central business district 

for the largest city of each of the fifty metropolitan regions in our analysis.  For each of the 

campusi-CMSA/MSAk pairs in our analysis, we computed distance as the number of miles 

between their respective zipcodes, ,i kDIST .  We also included a variable for the square of 

distance, ,i kDISTSQ  in order to capture non-linearity in the distance relationship to licensing or 

citing activity.  In cases where multiple inventors were listed in the citing patent, we used the 

city and state location of the first listed inventor.10  We also include a variable, ,i kSAMEREG , 

that equals 1 if the campus is located in the citing or licensing CMSA/MSA. 

Industry Location and Population:  We control for the regional composition of industrial activity 

by Standard Industrial Classification (SIC) in each region in order to avoid confounding pure 

“distance” effects with those resulting from high concentrations of potential user firms in 

different industries.  Using data from the US Census Bureau’s 1987 Census of Manufactures, we 

                                                           
10 In cases where both foreign and U.S. inventors were listed, we use the location of the first listed U.S. 
inventor. 
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compute the “manufacturing value added” reported in the two digit SIC a that “owns” three digit 

SIC j in CMSA/MSA k, as a share of US manufacturing value added in the two digit SIC:11 

(  - )| ,
| , (   - )|

1987 Manufacturing Value Addeda j kVALADDa j k 1987 US Manufacturing Value Addeda j
=  (1) 

Note that we are not assuming that the location of industry is exogenous with respect to 

the location of Columbia, Stanford, or the University of California campuses.  Instead, we 

assume only that there is no difference in the locational “pull” exerted by these campuses for 

firms seeking to exploit university inventions through citing their patents and those seeking to 

exploit university inventions through licensing these patents. 

To further control for the substantial differences among our regions in size and economic 

“pull,” we also include the log of the population count for each CMSA/MSAk from the 1990 

census, kLNPOP . 

Technology Classification:  Patents are classified by the US Patent and Trademark Office into 

“fields of invention” at the time of issue.  Unfortunately, the USPTO fields of invention are not 

compatible with the structure of the SIC system.  We therefore employ a concordance developed 

by Silverman (1996) to aggregate the sample patents into 3-digit Standard Industrial 

Classifications (SICs), and report results for the 25 three-digit SICs accounting for the majority 

of patents in our sample.12  This concordance produces non-integer “counts” of licenses and 

citations generated by each SICj-CMSA/MSAk pair, and we use these counts as the dependent 

variables in our analysis. 

                                                           
11 The US Census Bureau does not consistently report CMSA/MSA level data on manufacturing value 
added at the 3-digit SIC level, because such disclosure would make it possible to identify firm-specific 
output in some regions. 
12 For a patent assigned by the USPTO to a particular international patent class (IPC), the Silverman 
concordance calculates the likelihood that this patent would be employed in a particular “SIC of use” and 
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Other Controls:  Differences in the importance of patents as a means for appropriating the returns 

to invention in different technology fields affect the probability that inventors are scanning 

patented “prior art” assiduously and influence the importance of formal licensing agreements for 

the exploitation of university inventions.  Where patent protection is of great importance, patent 

citations are likely to be a more reliable guide to intellectual antecedents of patented invention 

and licensing agreements are likely to be economically significant.  We utilize data from the 

original Yale Survey of Technological Opportunity and Appropriability (Levin, Klevorick, 

Nelson, and Winter 1987), which represents the assessment by senior industrial R&D managers 

(circa 1983) of the importance of formal instruments of intellectual property protection for 

capturing the returns to industrial innovation in their 3-digit SIC.  Several questions in the survey 

address the issue of the ability of patents to enable the innovator to appropriate the returns to 

innovation.  Our measure of the importance of formal patent protection uses the mean scores on 

a 7-point Likert scale for responses to the following question (I.B.1):  “In this line of business, 

how effective are patents in preventing competitors from duplicating an improved product?”  

Survey responses are reported at the 4-digit SIC level.  Since our analysis is at the 3-digit SIC 

level, we aggregate the responses for each 4-digit SIC sub-level to its “parent” 3-digit level, 

weighting each 4-digit mean response by its corresponding manufacturing value-added from the 

1987 Census of Manufactures. 

We also include indicator variables for the top five SICs that account for the bulk of our 

licensing activity:  SIC 283 (drugs), 382 (measuring and controlling devices), 367 (electronic 

components), 366 (communications equipment), and 384 (medical instruments).  Finally, we 

                                                                                                                                                                                           
assigns “weights” to each SIC equal to its likelihood.  For a detailed description of the construction and 
validity of this concordance, see Silverman 1996. 
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include indicator variables identifying Stanford patents and Columbia patents (with UC patents 

as the left-out category). 

Table 3 summarizes the definitions and notation for our variables. 

***  Table 3 Here  *** 

Our university patents are contained in 9 2-digit SICs: 23 (textiles), 28 (chemical 

products), 30 (rubber), 32 (stone, clay, and glass products), 34 (fabricated metal products), 35 

(non-electrical industrial equipment), 36 (electrical and electronic equipment), 38 (scientific and 

measurement instruments), and 39 (miscellaneous manufacturing industries).  Our CMSA/MSA 

sample accounts for 59% of total US manufacturing value-added, 81% of all citations within 8 

years of our sample patents, and 93% of all licenses within 8 years (Table 2). 

The potential number of observations in each of our specifications equals the number of 

campuses (11) times the number of selected SICs (25) times the number of selected 

CMSA/MSAs (50), yielding a possible 13,750 “observations.”  But this maximum is reduced by 

several factors.  First, although the University of California campuses of Santa Barbara and Santa 

Cruz have patents that are licensed and cited during the 1975-96 time period, none of these 

campuses’ patents are cited by industrial firms, nor are they licensed by industrial firms on an 

exclusive or non-exclusive basis.  We therefore exclude these campuses from the analysis.  The 

UC Riverside campus reports no exclusively licensed patents that are cited, and the UC Irvine 

campus data contain no non-exclusively licensed patents that are cited; these campuses also were 

excluded from the appropriate regressions. 

Second, our data on the importance of patents as a means of capturing the returns from 

innovation do not cover three of the SICs included in this study (SICs 239, 307, and 385).  Since 

jPATIMP  could not be calculated for these three SICs, they were dropped from the sample. 
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The structure of the resulting cross-sectional dataset consists of 9,900 observations for 

our analyses of overall licensing and citing activity and 8,800 observations when we 

disaggregate our sample into citations and licensing agreements for exclusively and non-

exclusively licensed patents (due to the exclusion of UC Riverside and UC Irvine, respectively). 

Table 4 displays the descriptive statistics for the primary independent variables for the 

overall patent sample, the subset of exclusively licensed patents, and the subset of 

nonexclusively licensed patents. 

***  Table 4 Here  *** 

Our empirical strategy is to conduct separate regressions for licensing and citing activity 

and compare the magnitude and direction of the corresponding coefficients in those equations.  

The regression specifications for licenses and citations accordingly contain the same set of 

observations, corresponding to the number of campuses, regions, and industries in the sample.  

The independent variables in each of these equations are also identical.  The dependent variables 

measure licensing or citing activity and are described more fully in Table 3.  We construct 

similar variables for the exclusively licensed and non-exclusively licensed patent sub-samples. 

The analysis is complicated by several factors.  First, we are unable to observe much of 

the substantial heterogeneity among regions and among industries located within each region.  

For example, transportation costs between regions and campuses may depend on the location of 

airline hubs (a factor that affects flight schedules and travel time) and airfares between cities.  

The presence of venture capital that could facilitate the commercialization of university 

technology varies by region.  The presence of other research universities from which a firm may 

license or cite patents also varies by region, and is unrelated to distance from our campuses.  

Moreover, different types of industrial facilities (e.g., manufacturing plants, design centers, and 
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headquarters offices) may be concentrated in different regions.  In order to account for our 

ignorance of many of these differences, we use random-effects regression equations with SICj-

CMSA/MSAk (industry-region) specific effects.  We also control for the left truncation at zero of 

our dependent variables by using a tobit formulation of the random-effects model.13  A 

representative model is defined below: 

'ijk ijk ijky Xα β ε= + +              if 0ijk ijkXβ ε+ >  (2a) 

0ijky =                                       otherwise (2b) 

ijk i jk jku v wε = + +  (2c) 

where jky is the level of citing or licensing activity represented by each SICj-CMSA/MSAk pair, 

α  is the y-intercept, ' ijkXβ are the coefficients and independent variable vectors, and ijkε  is the 

residual.  ijkε  is further decomposed into a cross sectional error component, iu , jkv , (a residual 

specific to each SICj-CMSA/MSAk pair), and a combined error component, jkw .  Each of these 

error components is assumed to be normally distributed around a mean of zero.  We further 

assume that individual error components are uncorrelated with each other and are not correlated 

with the independent variables.  More specifically, we assume that SICj-CMSA/MSAk pair 

residuals, jkv , are uncorrelated with our independent variables that measure distance, population, 

and industrial activity.15 

                                                           
13 We are unable to use Poisson or negative-binomial “count” data models because our derived “counts” 
of licenses and citations are not uniformly integers. 
14 Our “share” dependent variables are also theoretically right truncated at one by construction.  However, 
inspection of the data in Table 2 shows that no individual SICj-CMSA/MSAk pair generates all of the 
licensing or citing activity in our sample, so we do not observe right truncation.  Therefore, since 
incorporating right truncation into the model would not affect our results, we account for left truncation 
only. 
15 Although a “fixed-effects” model does not make this assumption, the left truncation of the dependent 
variable produces biased estimates.  Another alternative would be to employ a two-stage Heckman 
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We first report the results of regressions for all licensed and cited patents in our sample, 

then separately report results for licenses covering exclusively and nonexclusively licensed 

patents and the citations to the patents associated with each type of agreement.  We compare the 

results of specifications for the geographic distribution of citations to patents that are licensed 

exclusively with those for the geographic distribution of the licensees signing exclusive licensing 

agreements, and compare citations to patents that are licensed on a nonexclusive basis with the 

geographic distribution of nonexclusive licensees.  Separating licensed patents by type enables 

us to analyze the effects of distance on several different forms of market transactions and 

compare these with the effects of distance on “spillovers” associated with a reasonably 

comparable set of inventions. 

The licensing and citation specifications measure the impact of geographic localization 

on different dependent variables.  Therefore, we cannot directly compare coefficients between 

these two sets of regressions.  Instead, we convert our coefficient estimates to “standardized” or 

“beta” coefficients and use these coefficients as a basis for comparison.16  A representative 

standardized coefficient and its standard error are shown below: 

*ˆ ˆx
x x

y

s
s

β β=  (3) 

                                                                                                                                                                                           
selection model.  The selection equation requires that we specify independent variables that affect the 
probability that we would observe licensing or citing activity, but not the level of licensing activity 
estimated in the regression equation (conditional on a non-zero observation).  We do not use the Heckman 
model because we lack a theory that would suggest such variables.  Instead, we assume that our 
independent variables affect both the incidence and the level of licensing or citing activity.  (In this case, 
the Heckman model reduces to a tobit specification (Heckman 1979).) 
16 A standardized coefficient is generated by multiplying the coefficient estimate for a regressor X by its 
standard deviation and dividing by the standard deviation of the dependent variable Y.  Since the original 
coefficient is a slope, multiplying by the ratio of the standard deviations removes both the units of Y and 
X.  Such a variable can thus be interpreted as measuring the effect (in standard deviations) on the 
dependent variable by a one standard deviation change in the value of the independent variable, enabling 
direct comparison of the influence of different independent variables on a dependent variable. 
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* ˆˆ
xx

x

y

ss s
s ββ =  (4) 

Since standardized coefficients are normalized and free of scale, we can use these 

coefficients to compare the relative influence of corresponding independent variables in the 

licensing and citation equations on their respective dependent variables (number of licenses or 

citations).  Thus, we can compare the influence of the same independent variable on different 

channels of technology transfer.  To determine whether these effects are significantly different, 

we test the null hypothesis that the licensing and citation standardized coefficients are equal: 

* *ˆ ˆ:  0o xL xCH β β− =  (5) 

* *ˆ ˆ:  0A xL xCH β β− ≠  (6) 

using the following derived test statistic:17 

* *

* * * *

ˆ ˆ

ˆ ˆ ˆ ˆ( ) ( ) 2 ( , )
xL xC

xL xC xL xC

Z
VAR VAR COV

β β
β β β β

−=
+ + ×

 (7) 

and conducting a two-tailed test assuming that * *ˆ ˆ
xL xCβ β−  is distributed normally. 

4. Results and Discussion 

A comparison of the numbers of patent citations and license agreements accounted for by 

leading CMSA/MSAs (Table 2) suggests that the market-mediated licensing agreements are 

                                                           
17 The denominator in equation (6) is the standard deviation (square root of the variance) of the combined 
licensing and citation standardized coefficients in the random effects models and can be expressed in 
terms of the underlying coefficients using the basic definition of the variance of two jointly distributed 

variables: 

22

ˆ ˆ ˆ ˆ( ) ( ) 2 ( , )
S SS SxL xC xL xCVAR VAR COVxL xLxC xCS S S SyL yLyC yC

β β β β+ + × × ×
      
      

      
      

.   ( SxL , SxC , 

S yL , and S yL  are conditional on the sample and are assumed to be constants in this calculation.)   The 

covariance term accounts for the correlation between corresponding variables in these equations.  We 
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somewhat more “localized” than the knowledge spillovers captured through patent citations.  

Column 3 in Table 2, corresponding to the number of citations among regions to our sample of 

patents, shows that almost all of the 50 leading regions are home to citers of our university 

patents (the lone exception being the Lancaster, PA MSA).  Column 6 reports the incidence of 

licensing among the top 50 regions and indicates that licensing activity is more concentrated – 

only 27 of the 50 regions are locations of licensees of the patents in our sample, and these 

regions tend to be those with the largest manufacturing value-added. 

These regional statistics nonetheless mask considerable inter-industry variation.  

Moreover, the aggregate data for both patent citations and license agreements display a strong 

“bicoastal” pattern:  New York, Boston, San Francisco, and Los Angeles account for significant 

shares of both citations and license agreements, while Chicago, Houston, Minneapolis, and other 

large metropolitan areas distant from the coasts account for much smaller numbers of licenses 

and citations.  This pattern of exploitation of inventions from our three universities complicates a 

simple “distance-decay” interpretation of university economic effects.  We expect the “distance 

squared” variable, ,i kDISTSQ , in our regression equations to account for the bi-coastal patterns 

present in the data. 

Table 5 contains the results of our random-effects tobit analysis of the entire sample of 

university patents, Tables 6 and 7 respectively contain results for exclusively licensed and non-

exclusively licensed patent sub-samples.  In each table, the first four models consider the effects 

of the independent variables on the number of licenses accounted for by each observation, and 

the last four models consider the effects of these same variables on the number of citations to the 

same set of patents.  In each table, the basic specification (L1 and C1) reports the influence of 

                                                                                                                                                                                           
estimate the covariance of the underlying coefficients, ˆ ˆ( , )COV xL xCβ β , by regressing the licensing and 
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population, manufacturing value-added, patent importance, and whether the campus is located in 

the CMSA/MSA, on licensing and citing activity.  We then add measures for distance and the 

square of distance in equations L2 and C2.  The third set of equations (L3 and C3) controls for 

university differences by including indicator variables for Stanford and Columbia observations.  

Finally, the fourth set of equations (L4 and C4) adds additional controls for technology by 

including indicator variables for the five leading SICs in our sample (SICs 283, 382, 367, 366, 

and 384). 

Table 8 contains standardized coefficients that are analogous to the coefficients 

for kLNPOP , | ,a j kVALADD , jPATIMP , ,i kSAMEREG , and ,i kDIST  in the licensing and citation 

specifications in which we add distance measures to the basic controls (models L2 and C2 in 

Tables 5–7).  Table 8 also reports the results of our tests of the hypothesis that the standardized 

coefficients generated from the licensing and citation equations are equal (columns 3 and 4 of 

Table 8). 

We turn first to the results for the overall patent sample (Table 5). 

***  Table 5 Here  *** 

The coefficients for the regional population and industrial activity variables, kLNPOP  

and | ,a j kVALADD , are generally positive and significant for all eight specifications (with the 

single exception of the lack of significance for the | ,a j kVALADD  coefficient in equation 5C2).  

This result is not surprising, as we expect more populous and industrially active regions to more 

intensively license or cite university inventions, ceteris paribus. 

                                                                                                                                                                                           
citation equations jointly using the “seemingly unrelated regression” (SUR) technique (Zellner 1962). 
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At first glance it appears that overall population affects licensing and citing activity 

differently than does regional industrial activity.  The coefficients for kLNPOP  in licensing 

equations 5L1–5L4 are consistently smaller than the coefficients in the citation equations 5C1–

5C4, while the comparable coefficients for the corresponding | ,a j kVALADD  coefficients are 

larger in the licensing equations compared to the coefficients in the citation equations.  When we 

consider the licensing standardized coefficients for kLNPOP  and | ,a j kVALADD  in Table 8, 

however, we see that both population and industrial activity affect licensing more than citations.  

This difference in the standardized coefficients for kLNPOP  is consistent with the patterns 

exhibited in Table 2 that licenses tend to be more concentrated among the larger metropolitan 

areas, while citations are distributed more evenly among all sizes of regions in our sample. 

Moreover, the significant difference in size of the standardized coefficients for industry location 

effects reported in Table 8 supports the argument that knowledge flows through licensing 

agreements are more sensitive to regional industry composition than are citation-based 

spillovers, which reflect a generalized information dissemination process. 

The coefficient for jPATIMP  is also positive and significant in equations 5L1–5L3, 

suggesting that licensing contracts are more important in accessing university inventions for the 

technology classes in which patent protection is judged to be an important mechanism for 

appropriating the returns to innovation.  (We omitted jPATIMP  in equations 5L4 and 5C4 due to 

collinearity with the SIC indicator variables in those equations).  But differences among 

technologies in the importance of patents as mechanisms for capturing the returns to invention 

should have a smaller effect on citation than on licensing, a hypothesis that is supported by the 

ratio of the standardized coefficients for licensing and citations in Column 5 in Table 8 .  This 
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ratio for jPATIMP  is 2.5, suggesting that patent appropriability influences licensing activity to a 

much greater extent than it influences citing activity, consistent with our expectation. 

In equations 5L2 and 5C2, we introduce the variables of particular interest in our 

analysis, the distance variables ,i kDIST  and ,i kDISTSQ .  In these and subsequent equations, 

,i kDIST  is consistently negative and significant, while ,i kDISTSQ  is positive and significant.  The 

negative coefficients on ,i kDIST  suggest that greater distance is associated with lower licensing 

or citing activity.  Conversely, the positive coefficients for ,i kDISTSQ  indicate that beyond some 

distance from our universities, licensing and citation begin to increase again, revealing an 

upwardly concave relationship between distance and the share of citations or agreements 

accounted for by a given CMSA/MSA-SIC pair.  This result reflects the “bicoastal” distribution 

of licensees and citers of university patents visible in Table 2. 

The ,i kDIST  coefficients for patent citations (equations 5C2–5C4) are smaller than for 

licensing agreements (equations 5L2–5L4), indicating that citation-based “spillovers” decline 

less sharply as distance from the patent-holding university increases than does the market-based 

channel of licensing.  Moreover, the difference between the corresponding standardized 

coefficients for licensing and citations (column 4 of Table 8) is highly significant.  Table 8 

provides further evidence that distance affects licensing activity more heavily than it does 

citations.  First, the ratio of the standardized coefficients for DIS in the licensing and citations 

equations exceeds two (column 5), suggesting that this decline is twice as rapid for licensing.  

Furthermore, in the licensing equation (column 1), the standardized coefficient for distance (-

2.39) is more than twice as large as the next largest standardized coefficient (1.13 for kLNPOP ).  

This difference is much smaller (-1.03 compared to 0.79) for the citation equation (column 2).  In 
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other words, increasing distance has a much greater marginal effect on licensing activity than 

does a change in the next most influential variable, population.  For citation activity, by contrast, 

the marginal effects of distance and population differ by much less.  These results all suggest that 

distance has a stronger effect on licensing than on citation activity, and they support the 

argument that the incomplete nature of licensing contracts limits the ability of more distant firms 

to exploit such advances, contradicting the conclusions of Audretsch and Stephan (1996). 

The positive and significant coefficient for ,i kSAMEREG  in all eight equations indicates 

that the presence of a Columbia, Stanford, or University of California campus within a region is 

associated with a higher level of licensing or citing activity, implying that geographic 

localization is important for both citing and licensing activity.  But the difference in the 

corresponding standardized coefficients is not statistically significant (Column 4 of Table 8), 

suggesting that firms located close to one of our university campuses benefit from both market 

and non-market channels of technology transfer. 

The variables identifying Columbia and Stanford patents, DUMCU and DUMST , are 

inserted in equations 5L3 and 5C3 to control for differences among our three universities.  The 

positive and significant coefficients indicate that patents issued to Stanford and Columbia are 

more intensively licensed and cited than are University of California patents.18  Equations 5L4 

and 5C4 also control for industry effects associated with the five largest industries in the sample.  

The insertion of indicator variables to control for campus and 3-digit SIC effects does not change 

the coefficient estimates for kLNPOP , | ,a j kVALADD , jPATIMP , ,i kSAMEREG , ,i kDIST , and 

                                                           
18 These differences do not persist completely when the patent samples are disaggregated by those 
licensed exclusively and nonexclusively (see Tables 6 and 7).  While Stanford patents are associated with 
higher levels of licensing and citation for both exclusively and non-exclusively licensed patents, licensing 
intensity (but not citing intensity) of Columbia’s exclusively licensed patents is below UC’s. 



 26

,i kDISTSQ , although the significance of the coefficients for most of these variables suggests the 

presence of strong industry-specific and university-specific effects. 

Table 5 reports the results of two tests of the validity of each model.  The Wald statistic 

tests the null hypotheses that all coefficients in each model are jointly equal to zero.  The positive 

and significant Wald statistics allow us to reject this hypothesis for all eight models.  ρ  

represents the contribution to the total variance of the SICj-CMSA/MSAk variance component, 

jkv : 

2

2 2
v

vε

σρ
σ σ

=
+

 (8) 

When 0ρ = , the variance component jkv  is unimportant, and the random effects estimator is not 

significantly different from a pooled tobit estimator.  The 0vσ =  test compares the random 

effects estimator with the pooled tobit estimator, and the results of this test are also reported in 

Table 5.  The test statistic is significant for all equations, supporting our use of the random 

effects models rather than the standard tobit technique. 

Table 6 reports results for the subsample of exclusively licensed patents. 

***  Table 6 Here  *** 

These results are broadly similar to those reported for the overall sample of patents.  

,i kDIST  is negative and significant and ,i kDISTSQ  is positive and significant in licensing models 

6L2–6L4 and citation models 6C2–6C4.  The hypothesis test results in Table 8 (column 3) 

indicate that distance has a significantly greater effect on licensing than on citation to these 

exclusively licensed patents as well.  The ,i kDISTSQ  standardized coefficient ratio in Table 8 for 

the sub-sample of exclusively licensed patents is twice the corresponding ratio for the overall 
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sample, however (
*

*

ˆ
ˆ

xL

xC

β
β

 for distance equals 4.7 for exclusively licensed patents compared to 

2.3 for the overall sample).  This suggests that for exclusively licensed inventions, the greater 

influence of proximity on licensing, by comparison with its influence on citations, is particularly 

pronounced. 

Wald statistics are significant for all of our regressions using data for exclusively licensed 

patents.  Likewise, test statistics for the difference between the random-effects and pooled tobit 

estimators are also significant, with the exception of equations 6L2 and 6L4.  For these models, 

unreported pooled tobit regressions produced similar estimates. 

The evidence provided in Tables 5 and 6 of greater localization for licensing agreements 

compared to citation-based spillovers receives further support from the last set of regression 

specifications in Table 7, which cover non-exclusive licensing agreements and patent citations 

for the patents associated with these agreements. 

***  Table 7 Here  *** 

Coefficients for ,i kDIST  and ,i kDISTSQ , remain statistically significant (and continue to 

exhibit the upwardly concave U-shape) for nonexclusively licensed patents.  Moreover, the 

negative coefficients for ,i kDIST  are slightly larger in the licensing specifications 7L1–7L4 

relative to the corresponding coefficients in the citation specifications 7C1–7C4.  The results for 

nonexclusive licenses reported in Table 8 indicate that the influence of distance on licensing is 

significantly greater than its influence on citations, consistent with the findings for the overall 

sample and the subsample of exclusively licensed patents reported earlier.  Comparing the ratio 

of ,i kDISTSQ  standardized coefficients for licensing and citation (column 5 of Table 8) reveals 

that the difference in market/non-market geographic localization is smaller for non-exclusively 
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licensed patents than it is for exclusively licensed patents by almost a factor of three.  

(
*

*

ˆ
ˆ

xL

xC

β
β

equals 1.6 for nonexclusively licensed patents and 4.7 for exclusively licensed patents).  

This result is consistent with our earlier finding that the greater influence of proximity on 

licensing, relative to citations, is particularly large for exclusively licensed inventions. 

Wald statistics for the regressions in Table 7 are significant.  The statistics for the test 

0vσ =  are not significant for three of the eight models, which may reflect the smaller number of 

patents for this set of inventions.  We conducted pooled tobit estimates for these three models 

and found little difference between those estimates and the random-effects estimates reported in 

Table 7. 

5. Conclusion 

Previous studies have found that knowledge-intensive economic interactions tend to 

benefit from geographic proximity, but have said little about the effects of distance on  the flow 

of knowledge through different channels.  This paper compares the geographic “reach” of 

knowledge flows from university inventions through two important channels: non-market 

“spillovers” exemplified by patent citations and market contracts centered on licensing.  We find 

a consistent tendency for knowledge flows through market transactions (in the narrow sense 

defined above) to be more geographically localized than those operating through non-market 

“spillovers,” contradicting some previous research.  This result seems to reflect the necessarily 

incomplete nature of licensing contracts, as well as the need for licensees to maintain access to 

know-how that is difficult to transmit through documents, faxes, or even phone or e-mail 

communication. 
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The differential effects of distance on licensing and citations are most pronounced for 

exclusively licensed university patents.  This finding may reflect other, unobserved differences 

between the characteristics of university inventions that are licensed exclusively and non-

exclusively.  Our interviews with university technology transfer managers suggest that firms 

seek exclusive licenses for inventions with uncertain commercial potential that require 

considerable investments in development.  Such inventions more closely conform to the “proofs 

and prototypes” that require the transfer of complementary know-how, as analyzed by Jensen 

and Thursby (2001) and Arora (1995).  But  the transfer of such know-how may be less critical 

for inventions such as research tools that are licensed non-exclusively.  These types of inventions 

tend to require less transfer of tacit know-how from the original inventor and are therefore less 

constrained by geographic distance. 

Universities are an important source of technology and knowledge for firms in many 

industries.  Our study highlights the importance of additional research on how firms manage the 

acquisition of these technologies through contractual agreements and through spillovers.  

Knowledge flows embodied in patent licenses and citations co-exist within a broader 

environment of technology outflows from universities through other channels that include the 

dissemination of research findings through publication and conferences, sponsorship of research, 

employment of university graduates, and faculty consulting.  Moreover, knowledge flows 

between universities and industry, particularly in the life sciences, are increasingly governed by 

“materials transfer agreements” (MTAs).  The channels we examine in this study undoubtedly 

are affected by and simultaneously affect this broader environment.  The interaction of these 

various channels of market and non-market technology transfer suggests fruitful areas of future 

research, and we look forward to further investigation in this area. 
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Table 1: Licenses and Citations to Sample University Patents, 1975-1988 
 Columbia 

University
Stanford 

University 
University 

of California 
Total 

Sample 
Sample University Patents     
Issued Patents 41 310 498 849 
Cited Patents 41 309 489 839 
Licensed Patents 21 208 182 411 
   Patents Licensed Exclusively 13 155 114 282 
   Patents Licensed Non-Exclusively 8 29 24 61 
Cited and Licensed Patents 21 207 174 402 

 
Licenses to Sample University Patents 
Total Licenses within 8 Years 63 335 204 602 
   Less Non-Top 50 MSA Licenses 2 27 16 45 
   Less Licenses to Non-Cited Patents 0 1 8 9 
Total Licenses Remaining in Sample 61 307 180 548 

 
Citations to Sample University Patents 
Total Citations within 8 Years 486 3804 4142 8432 
   Less University Citations 112 683 700 1495 
   Less Non-US Citations 86 1030 1002 2118 
   Less US Government Citations 6 144 89 239 
   Less Other Institution/ 

Foundation Citations 16 69 134 219 

   Less Citations by Licensees 18 224 75 317 
   Less Non-Top 50 MSA Citations 43 266 355 664 
   Less Citations to Non-Licensed 

Patents 51 487 1217 1755 

Total Citations Remaining in Sample 154 901 570 1625 
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Table 2:  Top 50 CMSA/MSA Shares of Value Added, Patent Citations, and Licenses 
 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 
 
MSA/CMSA 

 
1987 Manuf. 

Value 
Added ($) 

% of US 
1987 Manuf. 

Value 
Added 

 
US Patent 

Citations in 
8 Years 

 
% of All US 

Patent 
Citations 

 
 

US Licenses 
in 8 Years 

 
 

% of All US 
Licenses 

New York CMSA 81,959.2 7.0% 588 9.4% 73 12.1% 
Los Angeles CMSA 72,520.5 6.2% 535 8.5% 117 19.4% 
Chicago CMSA 49,773.3 4.3% 151 2.4% 12 2.0% 
San Francisco CMSA 38,913.2 3.3% 1255 20.0% 169 28.1% 
Detroit CMSA 31,043.7 2.7% 81 1.3% 1 0.2% 
Boston CMSA 29,713.5 2.5% 602 9.6% 27 4.5% 
Philadelphia CMSA 28,940.8 2.5% 156 2.5% 24 4.0% 
Dallas CMSA 19,641.4 1.7% 67 1.1% 2 0.3% 
Houston CMSA 18,596.9 1.6% 114 1.8% 1 0.2% 
Cleveland CMSA 17,262.2 1.5% 101 1.6% 1 0.2% 
Minneapolis MSA 15,732.2 1.3% 118 1.9% 9 1.5% 
St. Louis MSA 14,115.0 1.2% 48 0.8% 11 1.8% 
Atlanta MSA 13,345.7 1.1% 26 0.4% 0 0.0% 
Cincinnati CMSA 12,831.7 1.1% 22 0.4% 0 0.0% 
Rochester, NY MSA 12,409.0 1.1% 67 1.1% 2 0.3% 
Milwaukee CMSA 11,609.4 1.0% 67 1.1% 17 2.8% 
Greensboro, NC MSA 10,910.7 0.9% 11 0.2% 0 0.0% 
Seattle CMSA 10,895.9 0.9% 112 1.8% 5 0.8% 
Baltimore MSA 9,675.6 0.8% 68 1.1% 3 0.5% 
Kansas City MSA 9,124.0 0.8% 11 0.2% 4 0.7% 
Louisville MSA 8,320.8 0.7% 4 0.1% 0 0.0% 
Phoenix MSA 8,179.8 0.7% 44 0.7% 1 0.2% 
Charlotte MSA 8,153.6 0.7% 3 0.0% 0 0.0% 
Denver CMSA 8,037.3 0.7% 51 0.8% 5 0.8% 
Hartford, CT MSA 7,596.9 0.7% 29 0.5% 0 0.0% 
Columbus, OH MSA 7,079.1 0.6% 15 0.2% 0 0.0% 
Buffalo MSA 7,025.5 0.6% 15 0.2% 0 0.0% 
Richmond, VA MSA 6,833.0 0.6% 8 0.1% 0 0.0% 
Indianapolis MSA 6,806.0 0.6% 32 0.5% 7 1.2% 
Washington, DC CMSA 6,788.0 0.6% 217 3.5% 9 1.5% 
Portland, OR CMSA 6,445.4 0.6% 43 0.7% 0 0.0% 
San Diego MSA 6,426.8 0.6% 212 3.4% 42 7.0% 
Pittsburgh MSA 6,322.8 0.5% 23 0.4% 4 0.7% 
Dayton MSA 6,284.6 0.5% 13 0.2% 0 0.0% 
Grand Rapids MSA 5,967.7 0.5% 2 0.0% 0 0.0% 
Miami, FL CMSA 5,700.2 0.5% 43 0.7% 4 0.7% 
Providence, RI MSA 5,493.1 0.5% 8 0.1% 0 0.0% 
Nashville, TN MSA 4,989.5 0.4% 3 0.0% 0 0.0% 
Greenville, SC MSA 4,967.5 0.4% 2 0.0% 0 0.0% 
Toledo MSA 4,925.1 0.4% 14 0.2% 0 0.0% 
Raleigh-Durham MSA 4,728.5 0.4% 36 0.6% 5 0.8% 
Allentown, PA MSA 4,693.8 0.4% 3 0.0% 1 0.2% 
New Orleans MSA 4,314.7 0.4% 37 0.6% 0 0.0% 
Norfolk, VA MSA 4,285.3 0.4% 9 0.1% 0 0.0% 
Tampa MSA 4,139.8 0.4% 8 0.1% 0 0.0% 
Wichita MSA 4,122.8 0.4% 1 0.0% 0 0.0% 
Memphis MSA 4,114.2 0.4% 7 0.1% 1 0.2% 
Lancaster, PA MSA 3,883.7 0.3% 0 0.0% 0 0.0% 
Oklahoma City MSA 3,653.4 0.3% 4 0.1% 0 0.0% 
Springfield, MA MSA 3,542.1 0.3% 2 0.0% 0 0.0% 
TOTAL 682,834.9 58.6% 5088 81.1% 557 92.5% 
US Total 1,165,746.8 100.0% 6272 100.0% 602 100.0% 
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Table 3:  Variable Definitions 
Variable Definition 
Dependent Variables 
LICENSEi,j,k “Number” of licenses to inventing campus i’s patents in SIC j from 

CMSA/MSA k. 
CITEi,j,k “Number” of citations to inventing campus i’s patents in SIC j from 

CMSA/MSA k. 
EXLICi,j,k “Number” of licenses to inventing campus i’s exclusively licensed patents 

in SIC j from CMSA/MSA k. 
NONEXLICi,j,k “Number” of licenses to inventing campus i’s non-exclusively licensed 

patents in SIC j from CMSA/MSA k. 
EXCITEi,j,k “Number” of citations to inventing campus i’s exclusively licensed 

patents in SIC j from CMSA/MSA k. 
NONEXCITEi,j,k “Number” of citations to inventing campus i’s non-exclusively licensed 

patents in SIC j from CMSA/MSA k. 
Independent Variables 
DISTi,k Distance (in thousand mile units) between inventing campus i and 

licensing or citing CMSA/MSA k. 
DISTSQi,k Square of distance between inventing campus i and licensing or citing 

CMSA/MSA k. 
POPk, LNPOPk Total population in 1990 of CMSA/MSA k ; natural log of POPk. 
VALADDa|j,k Share of US manufacturing value-added in 1987 in 2-digit SIC “owner” 

of 3-digit SIC j, accounted for by CMSA/MSA k. 
PATIMPj Reported importance of formal patent protection in 3-digit SIC j. 

SAMEREGi,k Indicator variable equal to 1 if campus i is located in licensing or citing 
CMSA/MSA k. 

SIC283 Indicator variable equal to 1 if SIC j = 283, 0 otherwise. 

SIC366 Indicator variable equal to 1 if SIC j = 366, 0 otherwise. 

SIC286 Indicator variable equal to 1 if SIC j = 286, 0 otherwise. 

SIC349 Indicator variable equal to 1 if SIC j = 349, 0 otherwise. 

SIC382 Indicator variable equal to 1 if SIC j = 382, 0 otherwise. 

DUMCU Indicator variable equal to 1 if campus i is Columbia University, 
0 otherwise. 

DUMST Indicator variable equal to 1 if campus i is Stanford University, 
0 otherwise. 
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Table 4:  Descriptive Statistics 
 
Variable Minimum 

 
Maximum 

 
Mean 

Standard 
Deviation 

Independent Variables 
 DISTi,k 0 2.70 1.72 0.74 
 POPk 422,822 19,800,000 2,731,237 3,461,290 
 VALADDa|j,k 0 14,826.70 1,052.14 0.019 
 PATIMPj 1.50 6.53 4.12 1.15 
Dependent Variables     
Overall University Patent Sample, N=9,900 
 LICENSEi,j,k 0 20.95 0.05 0.46 
 CITEi,j,k 0 36.12 0.15 1.01 
Exclusively Licensed Patent Sample, N=8,800 
 LICENSEi,j,k 0 17.86 0.03 0.31 
 CITEi,j,k 0 29.75 0.13 0.80 
Nonexclusively Licensed Patent Sample, N=8,800 
 LICENSEi,j,k 0 10.54 0.02 0.23 
 CITEi,j,k 0 12.37 0.04 0.37 
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Table 5:  Random-Effects Tobit, Overall University Patent Sample 
 Dependent Variables = LICENSE, CITE 
 Random-Effects Tobit 
 LICENSES CITATIONS 

Model No. 5L1 5L2 5L3 5L4 5C1 5C2 5C3 5C4 
Model 
Type 

Basic 
Controls 

Add 
Distance 

Add 
Univ. 

Add 
Tech. 

Basic 
Controls 

Add 
Distance 

Add 
Univ. 

Add 
Tech. 

LNPOP 0.69*** 
(0.04) 

0.59*** 
(0.03) 

0.65*** 
(0.04) 

0.65*** 
(0.04) 

0.91*** 
(0.04) 

0.92*** 
(0.04) 

0.92*** 
(0.04) 

0.91*** 
(0.04) 

VALADD 4.90*** 
(1.45) 

3.43*** 
(1.06) 

4.31*** 
(1.43) 

3.99*** 
(1.39) 

4.83*** 
(1.69) 

2.25 
(1.74) 

3.50** 
(1.76) 

3.19* 
(1.67) 

PATIMP 0.06*** 
(0.02) 

0.08*** 
(0.02) 

0.07*** 
(0.02) 

 0.07*** 
(0.02) 

0.07*** 
(0.02) 

0.08*** 
(0.02) 

 

SAMEREG 0.90*** 
(0.10) 

0.29*** 
(0.11) 

0.29*** 
(0.10) 

0.29*** 
(0.10) 

1.42*** 
(0.15) 

0.96*** 
(0.16) 

1.09*** 
(0.15) 

1.10*** 
(0.15) 

DISTA  -1.50*** 
(0.12) 

-1.11*** 
(0.14) 

-1.11*** 
(0.14) 

 -1.42*** 
(0.0005) 

-1.00*** 
(0.16) 

-0.98*** 
(0.16) 

DISTSQB  0.43*** 
(0.05) 

0.31*** 
(0.05) 

0.31*** 
(0.05) 

 0.52*** 
(0.06) 

0.38*** 
(0.06) 

0.37*** 
(0.06) 

DUMCU   0.48*** 
(0.06) 

0.47*** 
(0.06) 

  0.60*** 
(0.07) 

0.59*** 
(0.07) 

DUMST   1.29*** 
(0.05) 

1.28*** 
(0.05) 

  1.91*** 
(0.06) 

1.90*** 
(0.06) 

SIC283    0.49*** 
(0.11) 

   0.74*** 
(0.12) 

SIC382    0.39*** 
(0.11) 

   0.79*** 
(0.12) 

SIC367    0.07 
(0.12) 

   0.43*** 
(0.13) 

SIC366    0.04 
(0.12) 

   0.33*** 
(0.13) 

SIC384    0.22** 
(0.11) 

   0.37*** 
(0.13) 

CONST. -11.82 
(0.62) 

-9.40 
(0.48) 

-10.81 
(0.62) 

-10.50 
(0.60) 

-14.88 
(0.63) 

-14.28 
(0.64) 

-14.85 
(0.66) 

-14.52 
(0.62) 

Log 
Likelihood -4055 -4007 -3617 -3607 -8687 -8643 -8123 -8087 

No. of Obs. 9,900 9,900 9,900 9,900 9,900 9,900 9,900 9,900 
Groups 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 
Wald 803.0*** 1329.8*** 1276.7*** 1320.5*** 1201.4*** 1223.0*** 2001.0*** 2138.6*** 

ρ  0.15 0.003 0.17 0.16 0.07 0.08 0.11 0.09 

( )2 2 0uχ σ =
 

 
148.6*** 

 
5.0** 

 
153.6*** 

 
122.2*** 

 
74.6*** 

 
85.1*** 

 
163.7*** 

 
104.7*** 

 
Notes: AUnits in 1000 miles. 
 BUnits in (1000 miles)2. 

Standard errors in parentheses. 
 *** p>0.01         ** p>0.05         * p>0.10 
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Table 6:  Random-Effects Tobit, Exclusively Licensed University Patents 
 Dependent Variables = EXLIC, EXCITE 
 Random-Effects Tobit 
 LICENSES CITATIONS 

Model No. 6L1 6L2 6L3 6L4 6C1 6C2 6C3 6C4 
Model 
Type 

Basic 
Controls 

Add 
Distance 

Add 
Univ. 

Add 
Tech. 

Basic 
Controls 

Add 
Distance 

Add 
Univ. 

Add 
Tech. 

LNPOP 0.48*** 
(0.03) 

0.43*** 
(0.03) 

0.41*** 
(0.03) 

0.41*** 
(0.04) 

0.91*** 
(0.04) 

0.69*** 
(0.04) 

0.68*** 
(0.04) 

0.68*** 
(0.03) 

VALADD 5.84*** 
(1.06) 

4.40*** 
(0.90) 

4.72*** 
(0.93) 

4.38*** 
(0.90) 

4.83*** 
(1.69) 

3.71*** 
(1.41) 

4.61*** 
(1.43) 

4.29*** 
(1.35) 

PATIMP 0.04** 
(0.02) 

0.04*** 
(0.02) 

0.05*** 
(0.02) 

 0.07*** 
(0.02) 

0.05** 
(0.02) 

0.05*** 
(0.02) 

 

SAMEREG 0.88*** 
(0.08) 

0.33*** 
(0.09) 

0.20** 
(0.09) 

0.20** 
(0.09) 

1.42*** 
(0.15) 

1.07*** 
(0.14) 

0.98*** 
(0.13) 

0.99*** 
(0.13) 

DISTA  -1.27*** 
(0.10) 

-1.31*** 
(0.14) 

-1.32*** 
(0.11) 

 -0.70*** 
(0.14) 

-0.64*** 
(0.16) 

-0.62*** 
(0.16) 

DISTSQB  0.38*** 
(0.04) 

0.38*** 
(0.04) 

0.38*** 
(0.04) 

 0.27*** 
(0.05) 

0.22*** 
(0.05) 

0.22*** 
(0.05) 

DUMCU   -0.18*** 
(0.06) 

-0.19*** 
(0.06) 

  0.11* 
(0.067) 

0.10* 
(0.06) 

DUMST   0.73*** 
(0.05) 

0.72*** 
(0.04) 

  1.441*** 
(0.05) 

1.43*** 
(0.05) 

SIC283    0.28*** 
(0.08) 

   0.48*** 
(0.10) 

SIC382    0.32*** 
(0.08) 

   0.73*** 
(0.10) 

SIC367    0.09 
(0.08) 

   0.36*** 
(0.10) 

SIC366    0.03 
(0.09) 

   0.23** 
(0.10) 

SIC384    0.13* 
(0.08) 

   0.28*** 
(0.13) 

CONST. -8.57 
(0.48) 

-6.98 
(0.43) 

-6.67 
(0.44) 

-6.51 
(0.42) 

-14.88 
(0.63) 

-11.02 
(0.52) 

-11.03 
(0.53) 

-10.83 
(0.50) 

Log 
Likelihood -2658 -2574 -2415 -2406 -7129 -7110 -6553 -6617 

No. of Obs. 8,800 8,800 8,800 8,800 8,800 8,800 8,800 8,800 
Groups 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 
Wald 828.1*** 1100.8*** 1173.5*** 1229.2*** 1129.7*** 1142.6*** 1820.6*** 1953.8*** 

ρ  0.08 0.00006 0.03 0.02 0.07 0.07 0.11 0.09 

( )2 2 0uχ σ =
 

 
33.0*** 

 
0.01 

 
6.0** 

 
1.9 

 
61.7*** 

 
67.1*** 

 
139.3*** 

 
87.5*** 

 
Notes: AUnits in 1000 miles. 
 BUnits in (1000 miles)2. 

Standard errors in parentheses. 
 *** p>0.01         ** p>0.05         * p>0.10 
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Table 7:  Random-Effects Tobit, Non-Exclusively Licensed University Patents 
 Dependent Variables = NONEXLIC, NONEXCITE 
 Random-Effects Tobit 
 LICENSES CITATIONS 

Model No. 7L1 7L2 7L3 7L4 7C1 7C2 7C3 7C4 
Model 
Type 

Basic 
Controls 

Add 
Distance 

Add 
Univ. 

Add 
Tech. 

Basic 
Controls 

Add 
Distance 

Add 
Univ. 

Add 
Tech. 

LNPOP 0.48*** 
(0.03) 

0.42*** 
(0.03) 

0.48*** 
(0.03) 

0.47*** 
(0.03) 

0.55*** 
(0.01) 

0.38*** 
(0.03) 

0.64*** 
(0.03) 

0.63*** 
(0.03) 

VALADD 0.37 
(0.93) 

-0.53 
(0.79) 

-0.14 
(0.89) 

-0.46 
(0.89) 

3.93** 
(1.80) 

-0.40 
(1.01) 

-1.34 
(1.08) 

-1.60 
(1.03) 

PATIMP 0.06*** 
(0.02) 

0.07*** 
(0.01) 

0.06*** 
(0.02) 

 0.03 
(0.03) 

0.02 
(0.02) 

0.07*** 
(0.02) 

 

SAMEREG 0.71*** 
(0.07) 

0.29*** 
(0.08) 

0.32** 
(0.07) 

0.33** 
(0.07) 

1.42*** 
(0.15) 

0.10 
(0.10) 

0.45*** 
(0.09) 

0.46*** 
(0.09) 

DISTA  -0.97*** 
(0.09) 

-0.68*** 
(0.10) 

-0.68*** 
(0.10) 

 -0.95*** 
(0.11) 

-0.55*** 
(0.116) 

-0.56*** 
(0.11) 

DISTSQB  0.29*** 
(0.03) 

0.19*** 
(0.03) 

0.20*** 
(0.03) 

 0.32*** 
(0.04) 

0.22*** 
(0.04) 

0.22*** 
(0.04) 

DUMCU   0.48*** 
(0.04) 

0.47*** 
(0.04) 

  0.85*** 
(0.05) 

0.83*** 
(0.05) 

DUMST   0.93*** 
(0.04) 

0.92*** 
(0.04) 

  1.02*** 
(0.04) 

1.01*** 
(0.04) 

SIC283    0.47*** 
(0.07) 

   0.55*** 
(0.08) 

SIC382    0.30*** 
(0.07) 

   0.26*** 
(0.08) 

SIC367    0.05 
(0.08) 

   0.18** 
(0.08) 

SIC366    0.03 
(0.08) 

   0.21** 
(0.08) 

SIC384    0.21*** 
(0.07) 

   0.25*** 
(0.08) 

CONST. -8.31 
(0.45) 

-6.87 
(0.39) 

-8.09 
(0.46) 

-7.74 
(0.42) 

-9.85C 
 

-6.77 
(0.49) 

-10.74 
(0.48) 

-10.35 
(0.46) 

Log 
Likelihood -2332 -2280 -1912 -1894 -4089 -4099 -3171 -3150 

No. of Obs. 8,800 8,800 8,800 8,800 8,800 8,800 8,800 8,800 
Groups 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 
Wald 648.1*** 838.5*** 963.1*** 1015.2*** 57294*** 435.5*** 1276.7*** 1343.9*** 

ρ  0.10 0.003 0.14 0.11 0.70 0.81 0.12 0.09 

( )2 2 0uχ σ =
 

40.7*** 2.2* 66.9*** 38.4*** 864.4*** 981.5 69.6*** 41.1*** 

 
Notes: AUnits in 1000 miles. 
 BUnits in (1000 miles)2. 
 CDid not converge. 

Standard errors in parentheses. 
 *** p>0.01         ** p>0.05         * p>0.10 
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Table 8:  Standardized Coefficients and Hypothesis Tests: * *ˆ ˆ:  0o xL xCH β β− =  

 Standardized 
Coefficient 
LICENSES 

*ˆ( )xLβ  

Standardized 
Coefficient 

CITATIONS 
*ˆ( )xCβ  

 
 
 

* *ˆ ˆ
xL xCβ β−  

 
 
 

Z-Statistic 

 
*

*

ˆ
ˆ

xL

xC

β
β

 

 (1) (2) (3) (4) (5) 
Overall University Sample 

LNPOP 1.13 
(0.06) 

0.79 
(0.04) 0.34 4.54*** 1.4 

VALADD 0.14 
(0.04) 

0.04 
(0.03) 0.10 1.76** 3.5 

PATIMP 0.20 
(0.04) 

0.08 
(0.03) 0.12 2.14** 2.5 

SAMEREG 0.08 
(0.03) 

0.13 
(0.02) -0.05 -1.02 0.6 

DIST -2.39 
(0.19) 

-1.03 
(0.12) -1.36 -5.93*** 2.3 

Exclusively Licensed Patents 

LNPOP 1.21 
(0.08) 

0.74 
(0.04) 0.47 5.24*** 1.6 

VALADD 0.27 
(0.06) 

0.09 
(0.03) 0.18 2.75*** 3.0 

PATIMP 0.16 
(0.06) 

0.06 
(0.03) 0.10 1.53* 2.7 

SAMEREG 0.14 
(0.04) 

0.17 
(0.02) -0.03 -0.75 0.8 

DIST -3.02 
(0.25) 

-0.64 
(0.13) -2.38 -8.40*** 4.7 

Non-Exclusively Licensed Patents 

LNPOP 1.56 
(0.10) 

0.88 
(0.08) 0.68 5.57*** 1.8 

VALADD -0.04 
(0.06) 

-0.02 
(0.05) -0.02 -0.27 2.0 

PATIMP 0.32 
(0.07) 

0.06 
(0.05) 0.26 3.14*** 5.3 

SAMEREG 0.16 
(0.04) 

0.03 
(0.05) 0.13 2.27** 5.3 

DIST -3.07 
(0.30) 

-1.90 
(0.23) -1.17 -3.12*** 1.6 

 
Notes: Standard errors in parentheses. 

*** p>0.01         ** p>0.05         * p>0.10 
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