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Abstract
This document contains a description of the main purposes and characteristics of Lsd. It discusses

the problems related to the use of simulations in social sciences and describes how Lsd tackles these

problems.

In general, the use of simulations is constrained by two kinds of problems: difficulties in building

the programs and difficulties to make use of other people’s programs. Lsd proposes a system to

facilitate both aspects of the use of simulation models. This document is mainly concerned with the

use of simulations by unskilled computer users, and describes in detail how Lsd can be successfully

used to explore and use a model without requiring any programming knowledge. Though it is not

the main concern of the document, there are also few hints on the aspect of simulation program

building.
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Introduction
Lsd is a system developed to facilitate writing, use and presentation of simulation models in social

sciences. The use of simulations is becoming a widespread tool in these sciences, both because of

the cheap computing power available and of the difficulties in using alternative tools for the

problems in these fields. There are, anyway, many drawbacks in the use of simulations, stemming

mainly from the fact that they involve the use of computer programs by an audience that is not

normally trained in computer science. We can separate two different sources of problems, for

writing a model and for using other people’s model.

Writing a Simulation Model
Writing programs for simulation models entails many technical details not directly related to the

model itself, but necessary for its implementation. Though these technical details are basically

similar for any model, it is often necessary to re-write the whole set of “service” code for any new

model, so that modelers have to spend much of their time to write code not related to the model,

but yet crucial for its results. This technical code necessitates specific knowledge on file systems,

interfaces, memory management and, in general, all the technical aspects of a program. Lsd

provides the possibility of writing a simulation model by writing exclusively the code for the

equations of the model, while all the “technical” details are automatically arranged by the system.

Yet, Lsd does not constrain modelers to implement only specific classes of models: the run-time

version of a Lsd model is nothing but a C++ program, thus it is possible to implement virtually any

computational structure. Lsd provides a set of utilities that allow modelers to write only the code for

the model and to extremely simplify the most common operations.

This document does not discuss in detail the utilities for models writing, though it sketches the

general philosophy used. Rather, it presents the set of interfaces (introduced in the next paragraph)

final users have available to use an existing model. It needs just to remark that these interfaces are

automatically generated when loading the model and do not require any specific coding by the

model writers.

Presenting Simulation Results
The second type of problems in the application of simulation models in social sciences is due to the

fact that even relatively simple simulation models are far too long to be described in detail in a

scientific paper. Authors rightly prefer to discuss the contents and results of the model, rather than

their technical implementation, so that simulation results are generally accepted with some

skepticism on the way they were obtained. The best solution should be to distribute the simulation
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program along with the article, so that referees and interested readers could see the implementation

of the model, test the simulation runs presented in the paper and possibly try different settings, to

test the robustness of the claimed results. This is normally not done for many reasons. Using

someone else’s code is never a simple task. The code modelers in social science generally manage

to write is not endowed of user-friendly interfaces and not well documented. Often crucial choices

on parameters’ values are embedded in the code and modifiable only by digging in the source code,

making difficult even only finding the line with parameters assignment1. Readers are generally not

trained in computer science, so the task of using the authors’ code, even when available, can be

overwhelmingly difficult.

Lsd provides users of simulation models with ready-to-use executable programs, which allow a full

understanding of the models content and the possibility to re-run the original simulations (or testing

different parameter settings) without requiring any computer knowledge other than the one

necessary for commonly used computer programs. In particular, any computer unskilled computer

user can perform the following actions by simply using the mouse:

- Browse through the structure of the model, to have a global understanding of the model contents;

- Check the equations’ code, to see the actual implementation of the computational part of the

model (authors can include any comment to their equations and, anyway, most of the commands are

self-explaining even to naive computer users);

- Checking all the parameters and, in general, initial values proposed by the author of the model;

- Make their own simulation runs;

- Observe the results, both via run-time plotting of the most important variables and by post-

simulation plotting of any variable of the model;

- Test any combination of parameters, and in general initial values, and run the relative simulations;

- Run automatically batteries of simulation runs with different random number seeds to test the

robustness of the results.

A model written in Lsd is equivalent of a program written in C++, one of the most powerful, fast

and commonly used languages currently available. It means that the only limitations to the

dimensions and speed of the models are given by the systems the model is run on.

This document is meant to provide a general understanding of Lsd models, from the viewpoint of

users of an existing model. Thus, it does not discuss issues related exclusively to the tasks of

building models (e.g. the debugging facilities in Lsd), contained in the Programmers Manual for

                                                          
1 There are many good programs written by social scientists, available to the public and easy to use. This paragraph

does not, of course, refer to any particular simulation model, other than the ones produced by the author himself.
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Lsd. The first section contains a description of the general structure of models developed in Lsd.

The other sections present the use of the interfaces in Lsd. As example during the presentation is

used the Lsd implementation of a model originally presented by Nelson and Winter in 1982. The

first section contains also a brief illustration of this model, to better follow the example.

A Lsd Model

Objects
A model in Lsd is based on the Object Oriented approach. That is, its structure is made of a set of

Objects. Objects are abstract entities, referred to with a name, or label, which can contain either

other Objects, or numerical variables. Objects are devoted to represent entities of reality the model

simulates, like, for example, Markets, Firms etc. An Object is assigned a label so to distinguish it

from other Objects. Once an Object is defined, it is possible to implement it in any number of

copies in the model. In the following, we will refer to an Object type, indicating the nature of the

Object, and to the instances of the Object, to indicate its actual copies in the program.

Variables and Parameters
The behavior and status of an Object are determined by the elements it contains. They can be of two

different types: Variables (which will be referred to by using the initial capital to distinguish them

from generic variables) and Parameters. Both these elements are nothing but numerical values

associated to labels. The difference is that Variables have a piece of code associated to them, while

Parameters don’t. The piece of code associated to a Variable can do any computation, but normally

it computes a numerical value for the associated Variable. Parameters, instead, remain constant

through all the simulation run, unless the code associated with some Variable modifies their value.

In the following we will discuss about lagged values for Variables. In fact, the numerical values of

Variables are time tagged, since the general structure for the equations is that of difference

equations. The model uses as many lagged values for Variables as necessary in the equations (a

model whose equations don’t contain any lagged Variable is either trivial or inconsistent). The users

will then need to provide as many initial values for as many lagged have been defined in the

Variable.  Of course, Parameters cannot have any lagged value.



10

Structure of the Model
An Object can contain other Objects. Depending on the model, it is possible to either include one

type of Object within another Object or to keep the two independent. Even in cases where two

Objects are perfectly identical (that is, same Parameters, Variables and equations), the two cases

represent different choices made by the modeler. In case one Object is contained in another, the

instances of this Object will automatically refer to the instance of their parent Object that contains

them. Instead, in case the two Objects types are defined as independent one another, their instances

don’t refer automatically to instances of the other type.

For example, consider a model with two Object types: Firms and Markets. If you place Firms as

Objects contained in Market, it means that any time a Firm needs to refer to a Market (e.g. to know

the current price or to sell its production), it will automatically refer to one specific instance of

Market (the one containing it). Instead, in case the two Objects are defined as independent, any

instance of Firm will need a specific routine to decide to which of the (potentially many) instances

of Market it has to refer to. Hence, the structure of a model is relevant in respect of the results

obtained.

Simulation Run
A simulation run consists in computing repeatedly all the equations in all the instances of every

Object in the model. We will refer to each repetition as “time step”. Each equation is computed

once and only once for each time step2. When an equation is computed, its associated piece of code

is executed. The result of such computation is a numerical value that is assigned to that Variable for

that time step.

Users can decide which Variables’ values to observe during the simulation run, and automatically

Lsd will plot the graph of this values while the simulation is running. Analogously, users can

determine a set of Variables to save3. Lsd will create result files containing all the Values for every

Variable indicated. After the simulation, it is possible to use the Result Analysis module to plot all

or parts of the values contained in the result files.

It is possible to automatically run a battery of simulation runs. For example, 50 simulation runs,

with the same model and initial values, but different pseudo-random numbers. In these cases,

besides the result file for each simulation run, Lsd creates also a summary file containing all the

                                                          
2 This is the default choice in Lsd, but authors can always allow an equation to be computed as many times as desired.

As we will see below, the normal Lsd philosophy is based on providing default mechanisms that apply to the most
common cases, but models’ authors can always override these default mechanisms.

3 Each parameter setting can be separately saved and the result files will be named after the name given to the model
setting.
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final values for each simulation run. All result files are standard tab-delimited text files that can be

loaded in statistical programs to perform further analysis.

The time of execution of simulation runs depends, of course, on the type of model and the computer

used. But models in Lsd are comparably very fast, because they are in essence pure C++ compiled

code. Moreover, users have different options that allow to decide the amount of information

provided by the system during the simulation run, so that it is possible to minimize this information

and run the model at maximum speed.

Notes on Modelers’ Requirements
Though this document is not meant to illustrate how to write a model in Lsd, this paragraph

discusses the required tools and minimum knowledge a modeler is requested to use Lsd for writing

a model.

The structure of the model (that is, the Objects, their reciprocal relations, the Variables and

Parameters contained) is defined by simply using graphical interfaces, and in general takes no more

than few minutes to implement it4. The most difficult task is the definition of the equations for the

model. For that it is necessary to use a C++ compiler (Lsd used Borland C++, ver. 4.5 and superior

for Windows and GNU gcc compiler for Linux and Sun Solaris), and so modelers are requested to

know how to compile a program5.

The programming capabilities requested depend, of course, on the complexity of the model. But

they are extremely limited in respect of the knowledge necessary to write a dedicated program for a

model In fact, the equations are written independently one another as if they were difference

equations. That is, model writers do not need to decide the actual order of execution of each

Variable, since this is decided at run-time by the system, but only to write each equation

considering that it has to produce the result for that Variable at any generic time step. Moreover,

every information about the model (that is, the values of other Variables or Parameter in the model)

is indicated in the equations only by using their labels. In case many variables of the same type,

modelers can still avoid to specify the exact instance of the necessary variable because the Object

Oriented structure of the model resolves the problem of choosing the one that needs to be used in

any computation.

                                                          
4 Provided that model writer knows already the structure to implement, of course. Anyway, it is always possible to edit

the model structure at any stage of the model implementation.
5 The Lsd distribution for models’ writers has also makefiles so that the actual problem is limited to have a compiler.

The installation and the Programmers’ Manual describes how to accomplish the compilation.
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In summary, writing a model with Lsd is mainly a task of writing the equations for it, in an

extremely simplified format based on C++, and augmented with the Lsd library of functions. Lsd

will use this information to automatically prepare all the interfaces and to run the model as

described in this document.

Since the equations relate to the rest of the model only via Variables’ labels, they can also be easily

exported in different models, provided that in the new model exists somewhere (even in completely

different Objects) Variables with the same labels as the ones used in the equation. The same applies

also for Objects or sets of Objects. This implies that a model can be implemented gradually, by

beginning with an extremely simplified version and then adding more and more components or

revising existing ones, without the risk of disrupting the work previously done.

All the interfaces described in the next sections are automatically added to the model, without need

for work by the modelers, besides the equation code. When a model is finished, it can be distributed

as a stand-alone program6 that can be run either under Windows or under Unix (exactly the same

code can be implemented for the two platforms). The distribution of Lsd for modelers includes also

project files (for Borland IDE) and makefiles (for GNU gcc) that allow to compile the model in a

very simplified way.

The Example Model: Nelson and Winter (1982), ch.12
The model used as example in the following sections is an implementation of the model by

R.Nelson and S.Winter, presented in 1982 in their book Evolutionary Theory of Economic Change,

chapter 12. It refers to a market where a homogeneous product is traded. A number of firms are

allowed to make investments and research. Investments provide higher levels of capital and hence

of productive capacity. Research provides higher productivity to yield higher volumes of production

for a given amount of productive capacity. Firm exploits fully their capacity, producing the

maximum amount of production given their capital and productivity. The price is obtained as a

function of the total production of the market. Research can be done either by imitation of more

advanced competitors or by innovation, that is searching for brand new productive methods. The

results of research depend on the dimensions of the firm and on a random function.

Though simple, the model entails a rather high number of initial values and parameters, and, being

one of the most famous simulation models in Evolutionary Economics it is a very good basis for

developing new models, as modification of this base version.

                                                          
6 First time users of a Lsd model need to install a set of libraries for the graphical interfaces. The package providing

these libraries (Tcl/Tk) is freely available as a self-installing program.
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The variables’ labels used in the model are the ones used in the original presentation of the model.

Their meaning is reported below:

Q_TOT: Total quantity of production on the market.

P: Price

A_MAX: Maximum productivity currently used among the firms

PROF: Profits per unit of capital

K: Capital

RIM: Proportion of expenses for imitation research per unit of capital

RIN: Proportion of expenses for innovation research per unit of capital

A: Productivity

Inn: Parameter indicating whether the firms makes research both by innovation and imitation

(Inn=1) or only by imitation (Inn=0)

Q: Quantity produced in each firm

Id: An identification value, different for every firm

A_IM: Productivity obtained via research in imitation

A_IN: Productivity obtained via research in innovation.

The rest of the document assumes the reader has available a copy of the Lsd implementation of the

Nelson and Winter model (downloadable at http://www.business.auc.dk/~mv/lsd_home.html). The

document contains anyway pictures of the main windows of the program, so that it is possible to

evaluate Lsd even without the actual software available.

Load and Browse a Model Structure

There are two windows appearing at start time. The one labeled “Log” serves to report messages

from the system and for managing the options during the simulation run, and hence it will be

discussed later. The other window allows to browse through the model structure and to observe the

contents of the Objects. This window will be referred to as Browser, and it shows the content of one

single Object type per time. The header of this window shows a default name for a model, Sim1,

assigned when no model has been specified. If no model is loaded, like at start time, it shows the

only Object present in every model, named Root, which does not have any variable or descending

Object.
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Figure 1 – Model Browser on Root

A program in Lsd is partly embedded within the program and partly it is contained in data files. The

part within the program is composed by the equations, which cannot be modified by end-users of a

model. The data files contain the structure definition, the numerical values necessary to run a

simulation and the settings for a simulation run (e.g. number of steps). These files can be loaded,

modified and saved also by end-users of the model, so that it is possible to keep track of the

parameter settings associated with the results.

In order to load a model use the entry Load in menu File7 (the data files have the standard extension

“lsd’). Loading the file “nw82.lsd”, the window will appear as shown Figure 1. The model name is

changed showing the name of the model loaded. The window shows again the first Object in the

model hierarchy (that is, “Root”) but now it contains two Objects: Market and Technopolis.

Immediately under the menu bar, the window reports the Object label the Browser is showing and

the name of the Object it descends from. The two boxes in the bottom contain, as indicated by the

titles, the set of variables (that is, both Variables and Parameters) of current Object and the set of

descending Objects. The Root Object does not contain any variable, and shows the labels of the two

Objects above mentioned.

To move the Browser so to explore another Object, you need to follow the structure of the model.

That is, the Browser can be moved so to show the content of either one of its descending Objects or

the parent Object. Double-click on the name of the descending Object to move “down” the structure

and click on the name of the parent Object to move “up”.

                                                          
7 The menus can be activated, besides clicking on them, by typing the underlined letter while keeping the key Alt

pressed. Pressing F10 also activates the menu bar, so that it is possible to use the arrows to move through the entries.
Many entries inside the menus can be activated using shortcuts. These are indicated on the side of the entries in the
form “Control+X”, meaning that the key x has to be used while keeping the key Control pressed.
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Figure 2 – Graphical Representation

There is also a new window opened after loading a model, named “Lsd Model Structure”. It

contains a graphical representation of the model, and allows also give some commands to the

Browser. For the model “nw82” it appears as shown in Figure 2.

This window presents a graphical representation of the model’s structure. That is, Objects’ names

number of their instances, their content and relations8. Each Object is indicated by its name, in red

characters, and by a small graphical symbol; the numbers below the Objects represent the number

of instances for each Object type. In the above example, all the Objects are present with only one

instance, but Objects Firms having 8 instances.

The lines indicate the hierarchical relation among Objects: the higher Objects contain the lower

Objects in the picture. Thus, for example, Object Firms are contained in Object Market, and both

Object Imitation and Innovation are contained in the Object Technolopolis. But Market and

Technopolis are independent. Moving the mouse pointer over one of the Objects causes the

appearance of some writings on the left side of the window. They indicate the name of the Object

and the list of the variables contained. For example, passing over the Object Market (as in the case

of Figure 2), the window will tell that there are two variables, Q_TOT, A_MAX and P (the meaning

of the characters between parenthesis will be explained later).

The graphical window provides a global vision of the model structure. For a more detailed

                                                          
8 Only the Object Root is not represented, both because it is necessarily present in any Lsd model and, normally, it does

not contain any data relevant for the model.
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Figure 3 – Browser on Object Firm

observation of the model it is necessary to move the Browser window to point on the Object of

interest. Besides the way explained above, the Browser could be moved directly to the desired

Object from the graphical window by double-clicking on its symbol.

Equations in Lsd

In the previous paragraph we have seen how to have a general understanding of the model structure.

In order to observe the Variable’s equation you need to point the Browser on the Object containing

the Variable you want to observe. For example, move the Browser on the Firm Object, either by

double-clicking on its symbol on the graphical representation of the model, or by clicking on the

label Market and then Firm in the Object box of the Browser. When you have done this, the

Browser window will appear as in Figure 3.

The list of variables reports several labels followed by either a number or P. The labels followed by

P are Parameters, while the numbers are associated only to Variables and indicate how many lagged

values is has to store for the models’ equation. For example, Variable K has, at any time steps, two

values: one is the present value and the second one refers to the previous time step. Variable PROF,

instead, does not store any lagged value, since they are not necessary for the equations of the model.

It means that the equations of the model make use of the one period lagged value of Variable K

(precisely, the equations for K itself and for Q use the lagged values), while Variable PROF is

always used only with its current value.
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Figure 4 – Equation Code for Variable “Q”

As said in the introduction, the equations for a model are written in Lsd as C++ code. Actually, it is

an extremely simplified code that makes use of a set functions that, together with standard C++,

allows to write the equation in a very simple way. For example, consider the equation for Variable

Q, that is the quantity produced by each Firm.

In order to show the equation of a Variable you need to double-click on the desired Variable. A

small window appears, containing a set of options we will discuss later (this window is shown in

Figure 9). Press the button Equation in this window and a new window like the one shown in Figure

4 will be created. A shortcut to show the Variable’s equation is to click with the right button of the

mouse on the name of the desired Variable.

The window reports exactly the piece of code used to compute the equation of the Variable. Even

though it is C++ code, the structure of the equation should be easily understood. Moreover, as in

this case, model writer can include comments in the equation’s code.

The code reported in the window is the equivalent of the equation

Qt = Kt-1 * A t-1

The first two lines in the equation use the Lsd function “cal” to ask the system to provide the values

of K (one period lagged, as indicated in the second field of “cal”) and of A. The equation uses two

local variables, v[0] and v[1] for sake of clarity, to which assigns temporary the values of the two

lagged Variables K and A. The product between these two values is assigned to the variable “res”.

Such variable is used by the system to assign the result of the equation to its Variable, so any
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equation in Lsd terminates with an assignment to “res”. The last line is just a technical directive

saying that the equation code for this Variable is finished.

It is possible to double-click on the name of one Variable in the window for the equation to produce

a new equation window for the clicked Variable, so that it is possible to follow the chain of

computations in the model.

Technical Notes on Equations’ Code
There are two important things to note about the code above presented. And specifically, two things

that are missing from the above code and are normally present in simulation models. First, since

there are many Objects Firms, there are also many instances of Variables named “K” and “A”, that

is, one for each instance of Firm in the model. The model writer does not need to worry in the

equation about how to find the correct instance, since Objects’ structure allows the identification of

the correct instance. In fact, by default, the equation for each Variable will use the Variables present

in the same Object, or in one of its immediate relatives9. The programmer, therefore, can directly

use the name of the necessary Variables in the equations, without using indexes, addresses, or any

other means for tracking variables normally used in programs.

The second important (missing) fact is that the equation does not contain any control on the state of

the Variables A or K. That is, it should be possible that, given the sequence used for the

computations of Variables in a time step, the equation for Q is computed when A and K have not

been yet updated. Hence, their one-period lagged values are actually two-period lags. The model

writers do not need worry for this either, because Lsd takes care of checking the time of update for

the requested Variables so that it always reports the correct values.

The idea is to allow the programmer to write the equations of a model as he could write them in

mathematical terms on paper as difference equations, using an intuitive default system to complete

the information necessary to perform the task requested. Several Lsd functions (like summarization

or sorting functions) are available to facilitate the most common operations.

Hence, modelers can rely on the default systems to write as little code as possible. But it is always

possible to override the default in case of particular needs. In fact, the code for the equation, as well

as the whole code for Lsd itself, is written in C++, and hence does not have any constraints on the

possibilities of computational expressions. In theory, it should also possible write the whole

simulation program in one single “equation”, without using at all the Lsd facilities.

                                                          
9 Precisely, the Variables are searched first in the same Object of the Variable under computation; then in the

descending Objects; and then in the parent Object. The searching procedure is recursive, so that it follows the same
strategy in each of Objects encountered, ensuring that the whole model, if necessary, is explored.
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Note also that representing the equations as pure C++ allows also to easily plug external code in a

simulation model, so to make use of external modules.

Initial Values

We have seen how to observe the structure of a model and the Variables’ equations. There is one

relevant aspect left in order to understand in detail the content of a model, that is the initial values.

There are three different types of initial values necessary for a simulation run of a model:

- Number of instances for the different Objects

- Values for Parameters

- Lagged values for Variables.

Note that the number of each type of Object determines also the number of Parameters and lagged

values for Variables to initialize, since these are contained in the Objects.

Set Number of Instances
To open the interface to modify the number of instances of the Objects in a model you need activate

the entry “Object Number” in menu “Data”. The window will become as shown in Figure 5.

This window presents the whole set of Objects in the model by using their labels, followed by the

number of instances currently present in the model. The indentation indicates the hierarchical

relation among the Objects, so that Firms is shifted on the right in respect of the label Market above,

Figure 5 – Setting Number of Instances
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since Firm is a descendent from Market. Technolopolis instead is again starting from the left

margin, as the Object Market.

To modify the number of Objects click on the number of the Object you want to change, for

example the number 8 along the label Firms. The system will ask you the new number of Objects.

There are two different behaviors resulting from changing the number of instances for an Object

type: they depend on whether you have increased or decreased the former value. In case you

increased the number the window will return as the previous one, showing, of course, the new

number of Firms10. The new Objects created in this way are all identical to the very first of the

sequence. That is, the initial values (Parameters’ value and Variables’ lagged values) are copied

from the very first Object of that type in the model. These values are used as default, but Lsd does

not permit to use them for a simulation run. If you now tried to launch directly a simulation run, the

system will not do that and will issue a warning. The user needs, at least, to open the editor to

confirm that those values are accepted. The next paragraph will say how it is possible to edit these

values.

In case you decreased the number of Objects, a new window will appear asking which instances

you want to eliminate. Two options are available; a fast one, allows to eliminate the last Objects in

the series. The second option allows you to choose which instances you want to eliminate, by

indicating the ordinal numbers in the set of Objects to be reduced. You can try both options.

Consider that the values are not saved in a file unless you explicitly do that or you launch a

simulation run.

                                                          
10 The graphical representation of the model will update the values reported only when you exit from this window and
you return to the Browser
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The example we have seen till now have a very simple structure. Consider instead a case where the

model contains more Objects Market. In this case there will be one group Firm descending from

each instance of Market. It is possible to have the number of Objects descending from the different

instances of parents to different values. To test it, try to increase the number of Markets from 1 to,

say, 3. The new Objects number list will appear as in Figure 6.

As you can see, each new Object Market has been created by default with one descending Firm.

There are also three lines for Object type Firm, each referring to a specific Market. In the initial

setting, since there was only one Market, there was no need to specify which Market the set of

Firms was referring to. Now Lsd created the index for different Markets so to differentiate the

different groups of Firms.

Now, changing the number of Firms in the model you can choose whether the new number has to

be applied to all the sets of descending Firms or only to the one you clicked on. Try to click on one

number on the side of one of the label Firm. After having inserted a value, check the box along the

entry “All Equal”. After having pressed the Ok button, you will see that all the groups of Firms in

the model have been set to the new value. Note that, when using the “All Equal” option, is not

possible to choose the instances to delete, in case the new value is lower for some group. The last

Objects will be deleted automatically.

The creation of the indexes to differentiate among different sets of descendants is one important

characteristics of Lsd, because it is the only way to differentiate among entities otherwise identical.

Figure 6 – Multiple Groups
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The indexes can also become rather complex. In particular, consider a model with a “deeper”

hierarchy. For example the same model as here, but the Objects Firms containing descending

Objects, say Plant. In this case, Lsd would create a two-digit index to distinguish the different

instances of Plant: the first digit would refer to the higher level Objects (e.g. Market) and the second

to the lower level (e.g. Firms). We will see later how this index is used, even in the case of the

present structure of the model, in order to differentiate among the different instances of the

Variables in the model.

Setting Initial Values for Parameters and Lagged Variables
Once the number of Objects has been determined, the user can observe and edit the initial Values

for Parameters and Variables. It is possible to edit the initial values for only one Object type at each

time. For the following example, set the number of Objects Market to 3, each with 4 Firms. To exit

the window and return to the Browser click on the Ok button.

Move the Browser to point on Object Firms and then activate the entry “Init. Values” in menu

“Data”. The window will become as in Figure 7.

The system reads the structure of the model and prepares a spreadsheet-like window showing the

current values for each Variable or Parameter in the Object indicated in the label on the upper left

corner. Note that not all the variables of the Firm are actually listed in this window. In fact, the

system includes only the elements that actually need an initial values, that is all the Parameters and

Figure 7 – Initial Values for Variables
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lagged values for Variables. The line headers indicate to which Variable the line refers to, by using

three fields: the first indicates whether it is a Parameter or a Variable; the second reports the label of

the variable; and the third indicates, for Variables only, the lag the line refers to. So, for example,

the label

Var: K -1

Means that the line contains the values of Variable “K” used at the initial time step as one period

lagged value. On the bottom of the window a message will appear when you pass the mouse pointer

over one of the label reporting the same label.

The columns refer to the instances of the Object the variables refer to. The column headers report

the indexes we have seen above. There are two digits, because each variable instance needs to refer

to one Market (first digit) and to one Firm descending from that Market (second digit).

The easiest way to modify the initial values is to simply type the desired values into the cells. A set

of bindings allows to quickly step from one cell to the next, by pressing the Enter key, facilitating

the data entry. Since the number of instances can also be very high, it is likely that the line’s

headers disappear while you scroll the window on the right. On the bottom of the window a

message reports the instance of the variable the current cell refers to.

For large number of Objects it becomes very tedious to manually insert all the values11. It is

possible to use of a function that allows to set all the initial values for one variable in all the

instances of Objects in the model. On the right of the lines’ headers there are buttons labeled “Set

All”. Pressing on one of these buttons (for example, the one corresponding to “Id”) you access a

window as shown in Figure 8

                                                          
11 Because of memory constraints of the graphical windows, it is possible to show a maximum of 100 columns, despite

the actual total number of instances in the model. For models where some Objects have a higher number of instances
it is necessary to use the method described below in order to set the initial values.

Figure 8 – Set All Values
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This window accepts one numerical value and provides five options. The value inserted is used to

set all the values for every variable of that type in the model. The available options are the

following, and some of these need also a second value. In this case it is used the number reported in

the very first cell in the previous window, that is, the value on the first cell on the right of the button

“Set All” you pressed. In the following we refer to “inserted value” to indicate the one typed in the

window in Figure 8 and “first value” to indicate the value in the first cell for that variable in the

main “Data Editor” window show in Figure 7 above.

The options available are the following:

- Equal To: the inserted value is assigned to all the variables in the model;

- Increasing: the first value is not changed; the values for all other instances are assigned an

increasing number, equal to the one placed in the previous cell plus the inserted value.

- Increasing (Groups): the same as before, but instead of assigning continuously increasing values

for all the instances in the model, instances are firstly grouped according to the instances of the

Objects they descend from. For each first instance in the groups the starting points are re-initialized.

- Random (Uniform): a random value is assigned to any instance. The random numbers are drawn

from a uniform distribution whose minimum value is the first value and the maximum is the

inserted value.

- Random (Normal): same as above, but the random function is a normal distribution whose mean is

the first value and the standard deviation is the inserted value.

Simulation Settings

This paragraph describes how to set the options that affect the simulation runs, but are not related to

the model, that is:

- variables to save;

- variables to plot run-time;

- number of simulation runs;

- number of steps per simulation run.

- seed for pseudo-random number generator.
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Settings on Variables
To save one variable (either a Variable or a Parameter, if that makes sense) you need to point the

Browser on the Object containing that Variable. The settings for saving or plotting variables here

described are always determined for all the variables of the chosen type in the model. Thus, for

example, if the model has 8 Objects Firm, it is not possible to save Variable PROF only for some of

the Firms, and not for the others: either all the 8 PROF’s are saved or none.

Double-clicking on the name of the Variable you obtain a window as shown in Figure 9:

- The variable name. This entry allows to edit the name of the Variable. It is used when writing a

model to correct possible misspelling of the variables’ name. If you change the name of the

variable, it will not be found by the equations, and an error will occur when you launch the

simulation.

- A checkbox named “Debug”: sets the variable’s equation to be debugged. Does not affect a

normal simulation run (see below for running a simulation in “Debug Mode”).

- A checkbox named “To Save”: if checked on, save all the variables of this type in the model.

- A checkbox named “Run Time Plot”: if checked on, plots the values of these variables during run

time.

- The button “Equation” discussed above.

During the simulation run, all the values for the variables checked to be saved are stored the result

file. This file is used in the Result Analysis module to plot their time series graphs. This file is a tab

delimited text file, whose first line contains the labels of the variable saved (including the index

when necessary), and each line refers to a single time step. Hence, it can be easily loaded by a

statistical package (like SPSS) to make an accurate study of the simulation result. The same format

is used for summary files created when batteries of simulations are used, but the lines will refer to

the final step of each simulation run.

Figure 9 – Variable Options
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When a simulation is launched, Lsd controls if there are variables to be plotted. If it finds at least

one, it creates the run time plot described below. There are two considerations to be made when

deciding the variables to plot at run time. First, the mode variables series have to be plotted, the

slower is the simulation, thus it is better to reduce at the minimum the number of these variables.

Second, the run time plots have the y scale automatically set on the minimum and the maximum

values encountered during the simulation run. Hence, if you plot, say, market shares (counted in

decimals) and profits (counted in thousands) the y scale will not allow to follow the small

variability of the values reported.

If you want to quickly remove all the indications to save or plot variables, there are two entries in

menu “Run”: “Remove Save Flags” and “Remove Plot Flags”12. These functions avoid users to

browse through the entire model searching for unwanted settings. Remember that, after having used

one of these two entries, no variable will be plotted or saved, unless you re-set some as indicated

above.

Other Simulation Settings
Opening the menu “Run” and then choosing the entry “Sim. Settings” a window like the one shown

in Figure 10 will appear.

You can set the following preferences:

- Number of simulations. Lsd will run as many simulations as indicated. After each simulation run

is terminated, the model is reloaded from the disk as it was in the beginning of the very first

simulation run. If this number is higher than 1, Lsd creates also a summary file containing the

                                                          
12 There is also the possibility to remove all the debug flags, that disabled every Variable from being debugged.

Figure 10 – Simulation Settings
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values of the last time step for each simulation run, besides the individual result files for each

simulation run.

- Initial Seed: Sets a value used a random number generator seeds. For stochastic models, this

allows to obtain exactly the same sequence of pseudo-random numbers, if you repeat the simulation

with the same seed. If you indicated more than one simulation runs, the seed is changed for each

simulation, increasing its value of one. The seed is also used to set the names of the result files (see

below).

- Simulation Steps: the number of simulation steps for each simulation run.

- Debug: this checkbox allows to run the simulation in debug mode. See below.

Running a Simulation

All the settings for the simulation (both initial values in the model and the other simulation settings)

are stored in the model file. When running a simulation, the model settings currently in memory are

written on file, possibly overwriting an existing data file with the same name. Hence, if you made

the exercises proposed above, you’d better empty the system (entry “Empty” in menu “File”) and

re-load it. To run a simulation after having loaded a model’ data file is sufficient to open the menu

“Run” and choose the entry “Run”, accepting all the default settings in the file. The system will

present a window summarizing the settings of the simulation and indicating in which files it is

going to write the results. There will be as many result files as many simulation runs you chose to

run. The names of these files have the first part copied by the name of data file you loaded the data

from. To this name is attached a number, indicating the seed generator used for that simulation run.

Hence, the names of the result files provide a complete indication of the data used for the simulation

run that provided those results. Remember that a simulation run overwrites the data file with the

content of the model in memory. If you made some changes to the initial data and you don’t want to

overwrite the original data file, you need to save the model with a different name, before running

the simulation.

During the simulation run the Browser window disappears. If the model has some variables set to

be plotted, a new window will appear containing the graph of the variables you chose to observe at

run time. The window appears as in Figure 11.
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The lowest section contains the list of the variables to plot (note the index used to differentiate

among different instances). The variables are written in different colors, corresponding to the same

colors of the series in the graph. The horizontal scale depends by the number of steps of the

simulation (100 in the Nelson and Winter example). For simulation longer than 600 time steps, the

horizontal scrollbar allows to show a portion of the entire plot. During the simulation users can

observe any part of the entire window, for example to study the initial stages while the simulation

continues, by using the scrollbar below the plot. The button “Center” automatically scrolls the

window to show the last points currently plotting.

The vertical scale is automatically adjusted while new values are plotted.

If no variable is checked to plotted during the simulation run, the Log window will print the step

just terminated and the number of simulation run currently executed. In any case, both when there is

a graph being plotted, the Log window allows to control the simulation while it is running.

Figure 11 – Run Time Plot
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There are four buttons that change the type of information provided by the system on the ongoing

simulation:

- Stop: interrupt the simulation and return to the Browser.

- Fast: disable all windows, till the simulation is terminated. Note that it still enables the run-time

plotting (if any), but it will be mapped on the screen only when the simulation is terminated.

Therefore, the use of this button is an intermediate choice, in respect of the speed of execution. The

simulation is slowed down because Lsd has to store the information for the run-time plot, but it

does not refresh the graph at any time step, but only after the end of any simulation.

- Observe: after having pressed the button “Fast”, this button restores the normal mode of observing

the simulation run. Note that, since Fast disables also the Log window, when you press Observe the

system will return to refresh the Lsd windows only after the simulation is finished. It is used in case

you are running many simulations. You can decide to check the early steps for each simulation, and

then let it go quickly to the end. Pressing Observe immediately after Fast will cause the reactivation

of the windows at the beginning of next simulation.

- Debug: enable the Debug Mode. Set the simulation run in Debug mode. See below.

Technical Notes: Simulation Runs in Debug Mode
This mode for simulation running is very slow, but allows to follow step by step every single

equation computed in the simulation. Model writers can use this option to debug the equation code.

When running in debug model, the simulation is stopped any time the equation for one of the

Variables checked with the “Debug” option on is just computed. The debugging window shows the

Figure 12 – Log Window
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values for all the variables of the model, and users can modify the values, changing the debug

option for some instances of Variables individually (with the system saw above, the debug option is

enabled or disabled for all the instances of the Varibles). Users can also set conditional debug

options for some Variable in the system, which will stop the simulation only if the Variable

assumes specific values.

In Debug Mode, the Log window will also print a detailed report of the activities done during the

simulation, in order to control the actual sequence of execution for the equations.

Data analysis and Result Files

After a simulation run, you can use the Data Analysis module to plot graphs for all the variables

saved during the simulation. The files have the standard extension “res” and are called according to

the name of the model and the seed generator used. For example, the model “nw82” (that is, loaded

from the file “nw82.res”) launched with seed generator 1, will produce the result file “nw82_1.res”.

The name of the result file is also indicated in the confirmation window immediately before the

beginning of the simulation.

To load a result file you need to open the entry “Analysis Result” in the menu “Data”. Choose a file

(with the default extension “res”) and a window as in Figure 13 will appear.

The window contains three boxes: the first on the left contains the whole set of variables saved. You

can select some of these variables in many ways. The simplest is to click on one of them and then

Figure 13 – Data Analysis
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clicking on the symbol “>”. You can also double-click and it will immediately be added to the

central box. If you select one of the variables, and then click on another one while keeping the key

“Shift” pressed, you will also select all the variables in between them. Keeping the key “Control”

will instead add to the selection only the ones you clicked on, but will not de-select the previous

one. The button labeled “Sort” allows to sort the variables in alphabetical order, so to facilitate the

selection of the instances of the same variable.

When you have selected some variable in the middle box, you can directly press “Plot”, and the

system will automatically generate a plot.

It will make a series of default choices. The title of the new graph is the name of the first variable

you selected. You could have chosen another title by typing it in the entry on the right of the label

“Title”.

By default, the graph includes all the cases saved in the file. For very long simulations (more than

600 time steps), the system shrinks the actual cases by making an average of group of points in

order to fit the graph with the available dimensions of the window. You can decide to plot only

some of the cases to avoid this reduction, by indicating the first and the last case to plot in the

relative entries.

By default, the system sets the vertical scale very close to the maximum and the minimum values

for all the variables selected. You can decide to determine manually maximum and minimum values

Figure 14 – Post-Simulation Graph
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for the vertical axis by un-checking the box on the left of the label “Scaling: Auto” and setting in

the two entries the desired min and max values.

It is not possible to directly observe the values of the result files (you can always use a spreadsheet

for this, given the standard format of these files). But moving the mouse pointer over a graph makes

appear, on the bottom left corner, the number of the case and the y coordinate for that graph

corresponding to the point indicated by the mouse.

The produced graphs are listed in the last box on the right. Two properties of these windows

facilitate the management of even a large number of graphs. Double-clicking on one of the titles in

the third box brings immediately the related graph on the foreground. Instead, clicking on any part

of any graph brings the main Data Analysis window in the foreground.

Conclusions
This document presents the usage of the Lsd system to run simulation models. Lsd allows to

explore the graphical structure of the model, observe and edit both the number of entities and the

initial values for a simulation model only by using user-friendly graphical interfaces. Users can also

easily choose run time settings like number of simulation steps, pseudo-random number seed

generators, number of simulation runs. Models’ results can be plotted on run-time graphs during the

simulation run or analyzed with post-simulation study of any variable in the model.

Hence, a model written in Lsd is easily explored thoroughly, given the opportunity of easily test its

behavior with any setting. Moreover, it gives the opportunity to a wide audience of unskilled

computer users to make use of simulation models.

All the functions of the systems are provided automatically by Lsd when the model is created,

without need for model writers to worry for any technical detail of the simulation model not directly

related with the model content. Though not discussed in depth, few hints on the methodology to be

used to write models for Lsd are discussed. In particular, it is underlined that model writers have

only to write C++ code for their equations. Each equation is written individually, and the references

to other parts of the model are made only via variable labels. Thus, the programming knowledge

required to write a simulation model is minimal, and only dependent on the computational

complexity of the model itself, which, moreover, is reduced by the availability of a Lsd library of

functions. Moreover, the resulting models are basically composed by C++ code, ensuring high

speed of execution and portability on different platforms. The Lsd system is a freeware code
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distributed in two versions for Windows 95 and Unix. It is written in C++ (Borland C++ for

Windows 95 and GNU gcc for Unix) and Tcl/Tk.
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